
Accelerating Data-Intensive Genome Analysis in the Cloud

Nabeel M Mohamed Heshan Lin Wu-chun Feng
Department of Computer Science

Virginia Tech
Blacksburg, VA 24060

{nabeel, hlin2, wfeng}@vt.edu

Abstract

Next-generation sequencing (NGS) technologies
have made it possible to rapidly sequence the human
genome, heralding a new era of health-care innova-
tions based on personalized genetic information. How-
ever, these NGS technologies generate data at a rate
that far outstrips Moore’s Law. Consequently, an-
alyzing this exponentially increasing data deluge re-
quires enormous computational and storage resources,
resources that many life science institutions do not
have access to. As such, cloud computing has emerged
as an obvious, but still nascent, solution.

In this paper, we present SeqInCloud, our highly
scalable implementation of a genome analysis pipeline
on the Microsoft Hadoop on Azure (HoA) public cloud.
Together with a parallel implementation of GATK
on Hadoop, we evaluate the potential of using cloud
computing for large-scale DNA analysis and present
a detailed study on efficiently utilizing cloud resources
for data-intensive, life-science applications with SeqIn-
Cloud.

Keywords: Cloud Computing, Microsoft Azure,
MapReduce, GATK, Next Generation Sequencing.

1 Introduction

Today, next-generation sequencing (NGS) tech-
nologies generate data at a rate much faster than that
of the growth of compute and storage capacity [1]. As
a consequence, storing and analyzing genomic data
has become a fundamental “big data” challenge due
to the high cost associated with owning and main-
taining on-premise compute resources. Cloud comput-
ing offers an attractive model where users can access
compute resources on-demand and scaled according to
their needs. The cloud computing model also enables
the easy sharing of public datasets and helps to facili-
tate large-scale collaborative research. As such, cloud
computing has gained increasing traction in the bioin-
formatics community.

In this paper, we focus on accelerating a widely
used genome-analysis pipeline built atop Burrows-
Wheeler Aligner (BWA) [2] and the Genome Analysis
Toolkit (GATK)1 framework [3, 4] on Microsoft Azure
[5], a platform-as-a-service (PaaS) cloud environment.
Parallel implementations of the GATK pipeline in clus-
ter environments have been investigated in several pre-
vious studies [6, 7, 8]. While these implementations
can be deployed on infrastructure-as-a-service (IaaS)
clouds such as Amazon EC2, they require external
software packages (e.g., Pydoop and Oracle Grid En-
gine) that are not available on PaaS clouds such as
Microsoft Azure. In addition, existing parallel GATK
implementations are designed for clusters where node
failures are rare, and thus not suitable for cloud envi-
ronments where node failures are rather norm.

To address the above issues, we present SeqIn-
Cloud, short for “sequencing in the cloud” and pro-
nounced as “seek in cloud.” SeqInCloud seamlessly
integrates all the stages in the GATK pipeline with the
Hadoop [9] framework in order to maximize portabil-
ity. By doing so, SeqInCloud can be easily deployed on
PaaS and IaaS clouds as well as on on-premise clusters.
The tight integration with Hadoop also enables SeqIn-
Cloud to leverage Hadoop’s fault-tolerant features to
transparently handle node failures in cloud environ-
ments.

In addition, SeqInCloud offers a number of novel
features that are critical to cost and performance op-
timizations in cloud environments:

• In existing parallel GATK implementations, par-
allelism is achieved by partitioning the input data
by contig (e.g., chromosome). Due to the limited
number of contigs and the large variation in contig
sizes, such a partition-by-contig approach suffers
from limited scalability and load imbalance, re-
sulting in wasted cloud resources. To address this

1Our current implementation of SeqInCloud uses the latest
open-source version of GATK (i.e., version 1.6). We note that
our design approach and optimization techniques should be ap-
plicable to subsequent GATK versions.



issue, SeqInCloud adopts a highly scalable design
that allows data processing to be partitioned by
loci, a much finer level of parallelism.

• To optimize network costs, SeqInCloud en-
ables application-level compression by convert-
ing the Binary Alignment/Map (BAM) [10] for-
mat to a reference-based compression format like
CRAM [11] before transferring data to the cloud.
The compressed CRAM file is typically 40% to
50% smaller than the original BAM file. In addi-
tion, SeqInCloud optimizes storage costs by con-
verting the CRAM file to a lossless BAM file for
downstream analysis in the cloud.

• To improve I/O performance, SeqInCloud intel-
ligently maps input and output data across the
storage hierarchy on Azure, including the local
filesystem, Azure Blob, and Hadoop Distributed
Filesystem (HDFS), according to their I/O char-
acteristics. Experiments show that our storage
mapping approach can achieve a performance im-
provement of 20% compared to uniformly storing
all data on HDFS.

2 Related Work

In recent years, there has been a steep increase
in the number of bioinformatic applications and work-
flows that use the MapReduce framework, a large per-
centage of which runs in the cloud. Crossbow [12] and
Myrna [13] implement workflows for Single-Nucleotide
Polymorphism (SNP) discovery and RNA-Seq differ-
ential expression analysis, respectively, in the cloud.
Crossbow uses Bowtie [14] to align reads in the map
phase, sorts alignments by genomic region and uses
SOAPsnp [15] for SNP discovery. Both use Hadoop
Streaming to implement the workflow.

The Genome Analysis ToolKit (GATK) [3, 4] is
a MapReduce-like framework, which provides various
sequence analysis tools that are extensively used by Se-
qInCloud. While GATK does not support distributed
parallelism, it does provide a command-line scripting
framework, GATK-Queue [8], to implement workflows.
GATK-Queue can run jobs in batch processing sys-
tems like Oracle Grid Engine. In [6, 16], Pireddu
et al. discuss Seal, a workflow that uses Pydoop and
BWA to implement short-read mapping and duplicate
removal. Seal provides its own implementation of de-
duplication and covariate table calculation using the
MapReduce framework. In HugeSeq [7], Lam et al.
discuss a three-stage workflow, which uses GATK in
their pipeline. HugeSeq does not use the MapReduce
framework and runs on Sun Grid Engine (SGE) clus-

ters. In SIMPLEX [17], Fischer et al. discuss a cloud-
enabled autonomous exome analysis workflow, which
is implemented as a web service and shipped as a cloud
image for ease of use. It uses GATK for recalibration
and SNP discovery but does not parallelize it using
the MapReduce framework. Compared to these paral-
lel GATK studies, SeqInCloud delivers a significantly
more portable and scalable design and offers several
cloud-specific optimizations that can be applied in any
of the above environments.

3 Methodology

Fig. 1 shows a SeqInCloud workflow, imple-
mented using the Microsoft Hadoop on Azure (HoA)
cloud framework. SeqInCloud uses Hadoop MapRe-
duce framework and runs the workflow in a distributed
fashion using multiple compute nodes provisioned in
the cloud. The parallelism is achieved by partition-
ing input data by loci for the entire workflow. The
workflow starts with the alignment stage, which uses
a distributed implementation of BWA and supports
both single- and paired-end sequence alignment. The
aligned reads are sorted, merged, and fed into a lo-
cal realignment stage, which uses the RealignerTar-
getCreator and IndelRealigner walkers2 from GATK.
The realigned reads are fixed for discrepancy in mate
information using Picard’s FixMateInformation, de-
duplicated using Picard’s MarkDuplicates, and re-
indexed. The quality score of the de-duplicated reads
are recalibrated using CountCovariates and TableRe-
calibration walkers. This is followed by the identifi-
cation and filtering of structural variants (SNP and
INDELS) using UnifiedGenotyper and VariantFiltra-
tion walkers. Finally, the variants are merged using
CombineVariants walker.

FASTQ 

Align (BWA) 

Merge & Index 

 ….. 

Local-
Realignment & 

Sort 

Local- 
Realignment & 

Sort 

  .... 

MarkDuplicate 
FixMateInfo 

MarkDuplicate 
FixMateInfo 

   .... 

Count 
Covariate 

Count 
Covariate 

   …. 

Merge Covariates 

Base Quality 
Recalibration 
& Genotyper 

Base Quality 
Recalibration 
& Genotyper 

Combine 
Variants 

Merge BAM 
File 

  ....  

Align (BWA) 

Sort Sort  ….. 

  .... 

C
lie

n
t/

C
lo

u
d

 
C

lo
u

d
 

C
lo

u
d

 

Figure 1: SeqInCloud Workflow

2GATK is structured into walkers and traversals. GATK
walkers are analysis modules that process data fed by the GATK
traversals.



Below we present design details on the various
stages in SeqInCloud, in particular, sequence align-
ment, local realignment, and base quality recalibration
and variant calling.
Sequence Alignment. SeqInCloud uses BWA to
run both single- and paired-end sequence alignment in
the MapReduce framework. SeqInCloud utilizes the
Windows port of BWA from [18]. The input FASTQ
files are split into multiple fragments by the mappers
and are aligned in parallel by the reducers. The num-
ber of fragments owned by each cluster node depends
on its memory and processing capacity. Per compute
node, BWA requires about 3-4 GB of memory, and the
Hadoop daemons require about 2 GB of memory. Each
compute node in our resource allocation is a medium-
sized Azure virtual machine (VM) instance that has
a fixed memory limit of 3.5 GB, and the cluster is
configured with a Java heap space of 1 GB. Running
BWA under such resource constraints results in “out
of heap space” memory errors. To address errors aris-
ing from running BWA in such memory constrained
cloud environments and to provide more flexibility in
VM provisioning, SeqInCloud allows users to offload
the sequence-alignment stage to on-premise resources.
The resulting BAM files are then transferred to the
cloud using application-level compression (e.g., con-
version to CRAM), as described in Section 3.1.2. The
compression can also be used when the input reads for
alignment stage are stored in the BAM format.
Local Realignment. The local realignment stage
consists of two steps: (1) identifying suspicious align-
ment intervals that require realignment and (2) run-
ning the realigner. The suspicious intervals are identi-
fied using GATK’s RealignerTargetCreator, which is a
locus-based walker that is capable of processing read
sequences independently by intervals. The realign-
ment is done using GATK’s IndelRealigner, which is a
read-based walker, that mandates a single GATK in-
stance to process read sequences from the same contig.
If a read is realigned, its new alignment location has to
be updated in its mate pair and vice versa. This is not
possible if realignment for a read and its mate pair is
handled by different GATK instances, as it leads to in-
correct results. Due to this restriction, the maximum
parallelism that can be achieved for the indel realign-
ment step is equal to the number of contigs the input
BAM file spans across. So, in a sample data set, if all
the reads are aligned to a single contig (e.g., chr20),
the realignment step cannot run in parallel using mul-
tiple GATK instances.

To address the above restriction, we provide
a novel and scalable solution that enables multiple
GATK instances to process read sequences from the
same contig. This is achieved by using information on
the maximum insert size between a read and its mate

pair that GATK considers for realignment. GATK’s
IndelRealigner defines this as 3000 bases by default.
Our solution, as shown in Fig. 2, adjusts the genomic
interval provided as an input to each GATK instance,
such that there is a window of maximum insert size
base locations on either side of the actual interval
the split spans across. For example, if a split spans
across an actual interval of chr1: x-y, the adjusted in-
terval would be chr1: (x-3000)-(y+3000), capped by
the length of the contig. Invoking each instance of In-
delRealigner in this fashion includes additional reads
that provide the necessary mate information to realign
reads in the actual interval. The reads in the dummy
region are realigned and emitted as part of the MapRe-
duce split they belong to.

M
ap

re
d

 S
p

lit
 X 

Y 

X – Insert Size 

Y + Insert Size 

A
ct

u
al

 In
te

rv
al

 

Dummy  
region 

Dummy  
region 

Mapper 1 Mapper 2 Mapper 3 Mapper 4 

Split 1 Split 2 Split 3 Split 4 

Figure 2: Design of IndelRealigner Stage

Base Quality Recalibration & Variant Calling.
The base quality recalibration consists of two steps:
CountCovariates and TableRecalibration. For Count-
Covariates, which is a locus-based GATK walker, the
reducer aggregates identical covariates from all map-
pers and calculates a new empirical quality score using
Phred scores3. This is followed by the TableRecali-
bration step, which rewrites the quality score of the
reads with the empirical quality values calculated by
CountCovariates stage. The structural variants are
identified using UnifiedGenotyper, which is a locus-
based GATK walker used for SNP and indel calling.
A single MapReduce job is used for both TableRecali-
bration and UnifiedGenotyper stage to improve per-
formance. In addition, the recalibrated BAM files
from TableRecalibration stage are written to the lo-
cal filesystem (local FS), which provides 10- to 15-
fold faster write throughput than HDFS (verified using
Hadoop TestDFSIO benchmark). The UnifiedGeno-
typer processes recalibrated BAM files directly from
the local FS. The recalibrated BAM files and variants
are finally merged.

The InputFormat and RecordReader for han-
dling BGZF-compressed BAM files are used from the
Hadoop BAM [19] library. The RecordReader pro-
vided by Hadoop BAM is extended in SeqInCloud to

3Phred is the most widely used basecalling program due to
its high base calling accuracy.



define genomic intervals for each GATK instance in-
voked by the Hadoop mapper.

3.1 Cost Optimization in the Cloud

In this section, we present several techniques
aimed at optimizing the execution cost of SeqInCloud
in cloud environments.

3.1.1 Cost Optimization by Increasing Scala-
bility

SeqInCloud partitions the dataset by loci correspond-
ing to each MapReduce split rather than by contig.
This ensures high scalability and well-balanced work
distribution among mappers/reducers. The contig-
based partitioning heavily relies on the distribution of
reads across contigs in the input dataset. For exam-
ple, if the reads are clustered to a particular contig, the
mapper/reducer that is processing this contig runs for
a longer duration. This creates an imbalanced work-
load and skews the overall execution time, which in
turn, leads to underutilization of cluster resources. In
addition, contig-based partitioning imposes an upper
bound on scalability because it cannot scale beyond
the number of unique contigs in the input dataset, ir-
respective of the number of available cluster nodes.

3.1.2 Cost Optimization by Using Compres-
sion

SeqInCloud uses compression to optimize network
and storage costs in the cloud. It uses the
CRAM [11] format, which is a reference-based com-
pression mechanism that encodes and stores only
the difference between a read sequence and reference
genome. The CRAM toolkit [20], offered by the Eu-
ropean Nucleotide Archive, contains tools and inter-
faces that provide programmatic access for compres-
sion/decompression. In order to ensure sensitivity and
correctness of downstream analysis, SeqInCloud uses
lossless compression by preserving quality scores but
excluding unaligned reads as well as read names and
tags from each BAM record.

After aligning reads in parallel, each reducer
writes its BAM file to HDFS. This is followed by a par-
allel sort of the reads using the TotalOrderPartitioner
interface provided by the MapReduce framework. The
sorted BAM records are converted to CRAM format by
multiple reducers in parallel using the CRAM toolkit.
The CRAM files are then transferred to the cloud us-
ing the secure file transfer service provided by the HoA
framework. These CRAM files are typically 40% to
50% smaller than the BAM files, thus significantly re-
ducing network traffic and costs. Once the data trans-
fer is completed, a remote MapReduce job is triggered,

which uses multiple mappers to decompress CRAM
records to BAM records in parallel. The decompres-
sion results in a lossless BAM file, which is smaller than
the original BAM file, thus reducing storage costs.

From the above, compression is applicable under
two scenarios: (1) when the sequence alignment stage
is carried out using on-premise Hadoop resources and
the BAM file needs to be transferred to the cloud and
(2) when the final workflow result (i.e., the merged
BAM file) needs to be persistently stored in the Blob.
In the latter, instead of storing data in BAM format, it
can be stored either in CRAM or lossless BAM format,
thus bringing down the storage cost considerably.

It is worth noting that GATK 2.0 has introduced
a new walker ReduceReads, which performs a lossy
compression of the NGS BAM file and reduces its size
by 100-fold. The reduced BAM file has just the in-
formation necessary to make accurate SNP and in-
del calls using UnifiedGenotyper walker. Using the
CRAM format for compression has broader applica-
bility than GATK ReduceReads, as the lossless BAM
file can be used by other downstream analysis tools. In
addition to this, ReduceReads compression takes much
longer than CRAM compression (e.g., for a fragment
of the NA12878 dataset of size 754 MB, the Reduc-
eReads compression took 112 minutes vs. 10 minutes
for the CRAM compression).

3.1.3 Cost Optimization by Using Storage
Tiering

SeqInCloud uses different storage resources that are
available in the HoA environment, such as Azure Blob,
HDFS, and local filesystem. Blob is a Windows Azure
storage service that stores unstructured data in a
shared volume. Blob storage is both local- and geo-
replicated for disaster recovery.

To measure the read and write throughput of
the local FS, Blob, and HDFS, we benchmarked the
systems and, as expected, found that the local FS
performed far better than the other two storage re-
sources. Blob has higher write throughput than HDFS
(3x), and HDFS has higher read throughput than Blob
(1.4x). MapReduce can directly process the files that
are available in blobs, except for the case where a blob
is used as an input stream and the record reader seeks
a wide offset range. Due to this exception in HoA envi-
ronment, the blob can only be used in the later stages
of the workflow. For better throughput, the blob needs
to be provisioned in the same region as the compute
nodes.

We have defined three storage mappings, which
use different combinations of storage resources for in-
put/output in the workflow. The “All HDFS” map-
ping uses only HDFS, the “All Blob” mapping uses



Blobs wherever possible, and the “Mix” mapping is
structured as in Fig. 3. This is done so that the best-
suited storage resource based on the requirement of
each stage and throughput is chosen for Input/Output.
For example, local FS cannot be used in places where
the data needs to be persistent after the completion of
a job. In this case, the blob is the preferred storage to
store the final persistent output of the workflow due
to its higher write throughput and durability (when
compared to HDFS).

 
Table Recalibration 

I/P: HDFS 

Merge BAM 

I/P: HDFS 

O/P: Blob 

 
Unified Genotyper 

I/P: Local 

Merge BAM 

I/P: HDFS 

O/P: Blob 

Figure 3: Feasible Input/Output Storage Resource
for the “Mix” Mapping.

4 Results and Evaluation

We have evaluated SeqInCloud on a 32-node
Azure cluster, where each node is a medium Hadoop
on Azure (HoA) instance. The medium instance is pro-
visioned as a virtual machine with two cores, 3.5 GB
of RAM, and 500 GB of disk space. For the rest of
the paper, we will refer to each VM as a compute
node. The compute nodes run Windows Server 2008
R2 Enterprise and Hadoop 0.20.203. The MapReduce
cluster is configured with 64 map slots and 32 reduce
slots. All experiments were run with a default HDFS
block size of 256 MB. We used the following datasets
from 1000 Genomes Project [21] in our experiments:
a 6-GB BAM file (NA12878) mapped to chr20 and
an 11-GB (NA21143) and 30-GB (NA10847) BAM file
mapped to an entire reference genome. The known
variants database used for count covariates stage is
dbsnp 135.b37.

4.1 Baseline Performance vs. SeqInCloud
Performance

SeqInCloud partitions the input data by loci for
the entire workflow. This results in maximal utiliza-
tion of cloud resources. Fig. 4 shows total execution
time (in minutes) for local realignment, quality recal-
ibration, and genotyper stages in the workflow, using

contig- and loci-based partitioning. Contig-based par-
titioning serves as the baseline and uses local FS for
input/output. In general, existing parallel GATK im-
plementations use contig based partitioning and rely
on shared storage systems like Network File System
(NFS) to access the input/output data. Due to the
lack of shared storage in HoA cloud environment, we
used the following procedure to obtain the baseline re-
sults. The entire BAM file and the reference genome
were distributed to the local FS of all cluster nodes,
and each node was dynamically assigned with a set of
unique contigs. The baseline time corresponds to the
parallel time taken by the nodes to complete the above
specified stages for its assigned contig.

445 

222 

160 

195 

0

50

100

150

200

250

300

350

400

450

500

NA12878 (Chr 20) NA21143

Ti
m

e
 (

m
in

u
te

s)
 

Baseline SeqInCloud

Figure 4: Comparison of Baseline and SeqIn-
Cloud Execution Time of Major Workflow Stages for
Datasets NA12878 and NA21143.

As discussed in Section 3, the baseline run for
the single contig NA12878 dataset utilizes only a sin-
gle cluster node for the IndelRealigner and CountCo-
variate stages, thus affecting scalability and accruing
usage cost for idle resources. As a result, the run time
of SeqInCloud is nearly 2.7-fold faster than the base-
line run time for the NA12878 dataset. In the case of
the NA21143 dataset, where sequences are aligned to
the entire genome, SeqInCloud ran 12% faster than the
baseline. The performance improvement here is not as
significant because the total number of cluster nodes
(32) or map slots (64) is less than the number of con-
tigs (84). We would see an increasing improvement in
performance as we keep increasing the number of clus-
ter nodes/map slots beyond 84, which is the baseline
upper bound on scalability for the NA21143 dataset.

4.2 Evaluation of Scalability

We evaluate the strong-scaling behavior of SeqIn-
Cloud by doubling the number of virtual cores and
measuring run time for a fixed workload size. We
study scalability using the 24.3-GB NA10847 dataset



(lossless compressed). The MapReduce split size was
set to the HDFS block size of 256 MB. The number
of virtual cores was varied between 8, 16, 32, and 64.
Fig. 5 shows the run time of the major time-consuming
stages in the workflow, i.e., IndelRealigner, Count-
Covariate, TableRecalibration and UnifiedGenotyper.
SeqInCloud exhibits near-linear scaling until 32 cores,
after which the number of map waves becomes too
small to observe much performance improvement.

0

50

100

150

200

250

300

350

8 16 32 64

Ti
m

e
 (

in
 m

in
u

te
s)

 

No. of Virtual Cores 

Indel Realigner Count Covariate TabRec+UnifGen

Figure 5: Execution Time of the Major Stages in
SeqInCloud for the 24.3 GB NA10847 Dataset.

In SeqInCloud, strong scaling depends on two ma-
jor factors:

• Number of Map Waves, which is given by the
number of map tasks divided by the total num-
ber of map slots in the cluster. Due to the fixed
workload requirement of strong scaling, the num-
ber of map task remains the same, as we scale
up/down the number of virtual cores. However,
as we double the number of virtual cores, the num-
ber of map slots also doubles, and this halves the
number of map waves. Since SeqInCloud does not
depend on the nature of the input dataset and the
map tasks almost run for the same duration, the
number of map waves is one of the major compo-
nents that determines scalability of SeqInCloud.
From our strong-scaling numbers, we observe that
doubling the number of virtual cores results in di-
minishing returns when the number of map waves
becomes smaller (less than 3). This result serves
as a guideline, as it enables one to know the max-
imum number of cluster nodes to be provisioned
to ensure maximum resource utilization, and in
turn, to optimize resource usage cost.

• Number of Reducers, which is set to 9/10 of
the number of reduce slots in the cluster to have
a single reduce wave. As we double the number of
virtual cores, the number of reduce slots also dou-
bles. However, due to the fixed workload size, the
size of data that needs to be written by each re-
ducer halves. Thus, the time taken by the reduce
phase halves when we double the cluster size.

4.3 Evaluation of Storage Savings Due to
Compression

We evaluated the cost savings due to compression
on a 14-node on-premise Hadoop cluster, where each
node consisted of two quad-core Intel Xeon E5462 pro-
cessors with 8 GB of RAM. The sequence alignment
and sorting stage in the workflow were carried out
using these on-premise resources. As discussed ear-
lier, using the CRAM format instead of BAM reduces
the amount of data transferred to the cloud by 40%
to 50%. But, this improvement in the data transfer
time comes with an additional overhead of compres-
sion from BAM to CRAM at on-premise and decom-
pression from CRAM to lossless BAM at the cloud4.
This overhead should be considered while evaluating
the impact on workflow performance when using the
CRAM format instead of the BAM format. Here, the
workflow performance refers to the time taken to run
the entire workflow including the data transfer, com-
pression and decompression time, if any. The workflow
performance is said to break-even, when the perfor-
mance using BAM format is equal to the performance
using CRAM format.

While using CRAM format, the workflow per-
formance reaches break-even, when the sum of com-
pression and decompression time equals the delta im-
provement in the data transfer time. At break-even,
we only observe storage savings without any impact
on workflow performance. The storage savings corre-
spond to the percentage reduction in the size of the
lossless BAM file when compared with the original
BAM file. For the datasets used in our experiments, we
achieved break-even when using four to six on-premise
nodes. When the number of on-premise nodes was
greater than the number of nodes used for achieving
break-even, we observed an improvement in the work-
flow performance. Conversely, when the number of
on-premise nodes was lesser, we observed a dip in the
workflow performance.

Table 1: Performance Improvement and Storage Sav-
ings for NA10847, NA21143 and NA12878 Datasets
due to Compression using a 14-node On-Premise
Hadoop Cluster.

Factor NA10847 NA21143 NA12878
Performance 34.5% 21 % 23 %

Storage savings 20.3 % 16.3 % 43 %

Table 1 shows the improvement in workflow per-
formance and storage savings when using the CRAM
format instead of the BAM format. Here the number

4The compression and decompression is achieved using inter-
faces from the CRAM toolkit.



of on-premise nodes (14) is greater than the break-even
number of nodes (4-6). The performance improvement
varies across datasets, as the efficacy of compression
while using reference based compression mechanisms
like CRAM, largely depends on the nature of align-
ments in the input BAM file. The nature of align-
ments refers to factors like the number of perfectly
aligned reads, the length of read names, the number
of tags, the number of unaligned reads etc. This de-
termines the improvement in workflow performance, as
it influences the compression, decompression and data
transfer times. The decompression at the cloud results
in a lossless BAM file, which has trimmed read names
and does not contain tags, unaligned reads etc., when
compared with the originial BAM file. As a result, the
storage savings also varies across datasets.

4.4 Evaluation of Performance Due to
Storage Tiering

We evaluated the performance of SeqInCloud
using different combinations of storage resources to
identify the right mix that delivers the best perfor-
mance. The results correspond to the execution time
of SeqInCloud from TableRecalibration until the fi-
nal merge stage and compares the “All blob” and
“Mix” mappings with the “All HDFS” mapping. The
improved runtime of “Mix” or “All Blob” mapping
in Fig. 6 is due to the higher write throughput of
the blob/local filesystem. For the TableRecalibration
and UnifiedGenotyper stages, the “All Blob” mapping
showed an improvement of 20% . For the Merge Vari-
ant stage, “Mix” and “All Blob” mappings showed
an improvement of 29%. For the Merge BAM stage,
“Mix” mapping showed an improvement of 26.4%. Fi-
nally, the overall run time of “All Blob” mapping
is better than the other two mappings. “All Blob”
showed a performance improvement of 20% and “Mix”
showed a performance improvement of 19% over “All
HDFS” mapping.

5 Conclusion

In this paper, we present SeqInCloud, our highly
scalable implementation of a popular genome analysis
pipeline based on GATK, on the Windows Azure plat-
form. We evaluate the strong-scaling behavior of Se-
qInCloud by varying the number of virtual cores from
8 to 64 and observe that SeqInCloud scales nearly lin-
early. SeqInCloud optimizes network and storage costs
with the help of a compressed sequence format, i.e.,
CRAM. It also optimizes the I/O throughput by in-
telligently mapping various data onto different storage
resources on Azure according to their characteristics.

74 

24 

38.06 

65 

17 

28 

59 

17 

32 

0

10

20

30

40

50

60

70

80

TR + UG Merge Variant Merge BAM

Ex
e

cu
ti

o
n

 t
im

e
 (

in
 m

in
u

te
s)

 

Workflow Stage 

All HDFS

Mix

All Blob

Figure 6: Execution Time of “All HDFS”, “Mix” and
“All Blob” Mappings.

SeqInCloud is easy to configure and does not require
installation of any additional packages. In the future,
we plan to provide flexibility for the users to customize
the workflow. We intend to bundle SeqInCloud as a
virtual machine image and offer it to the community
via public cloud storage services like Azure Blob.

Acknowledgments

This work was supported in part by NSF CCF-
1048253, as part of the NSF Computing in the Cloud
Program with Microsoft. Any opinions, findings, and
conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily
reflect the views of NSF or Microsoft. We thank NSF
for funding this project and Microsoft for providing
us the hardware to run our experiments and for their
timely help in resolving technical issues faced by us.

References

[1] Scott D. Kahn, “On the Future of Genomic Data,” in
SCIENCE, vol. 331, 2011, pp. 728–729.

[2] Heng Li et al., “Fast and accurate long-read align-
ment with BurrowsWheeler transform,” Bioinformat-
ics, vol. 26, no. 5, pp. 589–595, 2009.

[3] McKenna A et al., “The Genome Analysis Toolkit: a
MapReduce framework for analyzing next-generation
DNA sequencing data.” Genome Research, vol. 20, pp.
1297–1303, 2010.

[4] DePristo M et al., “A framework for variation dis-
covery and genotyping using next-generation DNA se-
quencing data,” Nature Genetics, vol. 43, no. 5, pp.
491–498, 2011.

[5] Microsoft, “Windows Azure.” [Online]. Available:
www.windowsazure.com/en-us



[6] Luca Pireddu et al., “MapReducing a genomic se-
quencing workflow,” in MapReduce ’11 Proceedings of
the second international workshop on MapReduce and
its applications. ACM, 2011, pp. 67–74.

[7] Hugo Y K Lam et al., “Detecting and annotating ge-
netic variations using the HugeSeq pipeline,” Nature
Biotechnology, vol. 30, no. 3, pp. 226–229, 2012.

[8] Broad Institute, “GATK Queue.” [Online].
Available: http://gatkforums.broadinstitute.org/
discussion/1306/overview-of-queue

[9] The Apache Software Foundation, “Hadoop.” [On-
line]. Available: http://hadoop.apache.org

[10] Heng Li et al., “The Sequence Alignment/Map format
and SAMtools,” Bioinformatics, vol. 25, no. 16, pp.
2078–2079, 2009.

[11] Markus Hsi-Yang Fritz et al., “Efficient storage of high
throughput DNA sequencing data using reference-
based compression,” Genome Research, vol. 21, pp.
734–740, 2011.

[12] Ben Langmead et al., “Searching for SNPs with cloud
computing,” Genome Biology, vol. 10, no. 11, p. R134,
2009.

[13] Ben Langmead et al., “Cloud-scale RNA-sequencing
differential expression analysis with Myrna,” Genome
Biology, vol. 11, no. 8, p. R83, 2010.

[14] Langmead B et al., “Ultrafast and memory-efficient
alignment of short DNA sequences to the human

genome,” Genome Biology, vol. 10, no. 3, p. R25,
2009.

[15] Li R et al., “SNP detection for massively paral-
lel whole-genome resequencing,” Genome Research,
vol. 19, no. 6, pp. 1124–32, 2009.

[16] Luca Pireddu et al., “SEAL: a distributed short read
mapping and duplicate removal tool,” Bioinformatics,
vol. 27, no. 15, pp. 2159–2160, 2011.

[17] Maria Fischer et al., “SIMPLEX: Cloud-Enabled
Pipeline for the Comprehensive Analysis of Exome Se-
quencing Data,” PLoS ONE, vol. 7, no. 8, 2012.

[18] Dong Xie, “Bioinformatics On Windows.” [Online].
Available: http://bow.codeplex.com/releases

[19] Matti Niemenmaa et al., “Hadoop-BAM: directly ma-
nipulating next generation sequencing data in the
cloud,” Bioinformatics, vol. 28, no. 6, pp. 876–877,
2012.

[20] European Nucleotide Archive, “CRAM Toolkit.” [On-
line]. Available: http://www.ebi.ac.uk/ena/about/
cram toolkit

[21] The 1000 Genomes Project Consortium, “A map of
human genome variation from population-scale se-
quencing,” Nature, vol. 467, no. 7, pp. 1061–1073,
2010.


