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Abstract—The Hadoop framework has gained significant at-
tention from the scientific community due to its applicability
to large-scale data analysis in many areas. This analysis often
involves multiple stages of processing, which in turn, constitutes
a workflow. While some stages of a workflow are mandatory,
others are subject to the type of analysis to be done. In addition,
a workflow may possess data dependencies between stages that
must be enforced, and it may exhibit varying levels of sensitivity.
The resources needed for such data analysis can range from a
laptop to in-house clusters (or private cloud) to a public cloud.
Managing such workflows, while using such a gamut of computing
resources, is an unnecessarily arduous task for domain scientists.

To address the above challenges, we present Aeromancer, a
feature-rich workflow manager for running MapReduce-based
workflows that utilizes both client and cloud resources. Aero-
mancer offers an ensemble of features, including the simultaneous
use of client resources (e.g., on-premises clusters) and public cloud
resources; automatic data-dependency and data-transfer han-
dling; intra-flow, on-demand cluster provisioning; and support for
directed-acyclic graphs (DAGs). To demonstrate its functionality,
we apply Aeromancer to several bioinformatics pipelines, as part
of a “big data” case study in the life sciences, which seeks
to increase the adoption of hybrid computing environments,
including the emerging “client+cloud” computing model, for
running data-intensive workflows.

I. INTRODUCTION

Cloud computing offers a model where users have on-
demand access to computing capability without the institu-
tional overhead of establishing, operating, and updating one’s
own computing infrastructure. However, domain scientists are
often reluctant to embrace cloud computing as a “big data”
computing environment for a myriad of concerns, including
data security, data-transfer overhead, and ease of use, particu-
larly with respect to configuring and optimizing cloud-enabled
applications.

Large-scale data analysis can often be a complex process
that involves multiple stages. These stages, in turn, constitute a
specific workflow. For example, in bioinformatics, a workflow
for genomic variant analysis can encompass the following
stages: (1) error correction of raw genomic data, (2) alignment
of short reads to a reference genome, (3) local realignment,
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(4) marking of duplicates, (5) finding polymorphisms, and
so on. Managing such workflows, while simultaneously and
efficiently using in-house clusters and public clouds, for ex-
ample, is an arduous and daunting task for many domain
scientists. In fact, numerous books (e.g., [1], [2]) have been
dedicated just for developing the necessary computer skills in
bioinformatics. Our work acknowledges these challenges and
presents an easy-to-use workflow manager for running large-
scale, data-intensive workloads in the cloud. In this context,
a data-intensive workload refers not only to the volume of
data that is accessed from storage resources or transferred
via the network (I/O rate), but also to the processing of the
data (compute rate). Many scientific workloads are both I/O-
intensive and compute-intensive.

Hadoop is an open-source MapReduce realization that is
used for many such data-intensive workloads. Hadoop has
two major subsystems: the MapReduce framework and the
Hadoop Distributed File System (HDFS). The MapReduce
framework exposes two major primitives: map and reduce.
The map phase takes key-value pairs as inputs and translates
them into intermediate key-value pairs. The process continues
with reduce tasks that aggregate the results from each map
task. HDFS consists of a master Namenode process that
manages the filesystem namespace and a Datanode process
that runs on each cluster node and stores the file data in its
local filesystem. This architecture provides a simple model
for parallel data analysis, and hence, is often used to process
massive amounts of data in a distributed fashion on large-scale
commodity clusters.

While MapReduce provides a blueprint for a computing
environment that facilitates ease of execution, we identify
additional capabilities that are desirable in the management
of MapReduce-based workflows. Specifically, we motivate the
need for such capabilities below.

First, not all stages of a workflow are mandatory for every
run. Therefore, the manager should provide the flexibility of
selecting which stages to run (and not run) via an easy-to-use
interface.

Second, not all stages of a workflow exhibit uniform com-
putational needs. Stages with more demanding computational
requirements can be spawned in the cloud, where large-scale
processing power is available, while stages with less demand-
ing computational needs can be run on in-house clusters, thus
saving money on cloud expenses. A workflow manager should
provide capability for adaptive choice of client/cloud resources
depending on computational needs.
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Third, not all stages of a workflow scale equally. For stages
that exhibit relatively poor scalability, performance might not
improve much despite an increase in compute resources. As
a consequence, cloud costs could be reduced or eliminated
by running on fewer nodes in the cloud or running on in-
house cluster resources, respectively. This, in turn, points to
the need for on-demand provisioning of compute resources in
a workflow.

Fourth, some stages might process sensitive data, and
hence, should be executed on private clusters for security pur-
poses. A workflow manager should support such adaptability
on the fly.

Fifth, special-purpose hardware, such as GPUs and FPGAs,
could accelerate computation in the cloud, but such hardware
may not be available in some cloud environments. A workflow
manager should be able to allocate such functionality on the
fly, when such resources are available.

Sixth, if some stages of a workflow can run in the
cloud while other stages on an in-house cluster, the work-
flow manager needs to enable the concurrent execution of
such stages, while abiding by any data dependencies between
stages. Furthermore, the workflow manager should facilitate
any necessary data transfers between the cloud and cluster
automatically.

Towards addressing the above issues, we present Aero-
mancer, a feature-rich workflow manager to configure and
monitor multi-stage MapReduce-based pipelines. Aeromancer
is built atop of an existing software Cloudgene [3], which
provides a graphical user-friendly interface to run a scientific
workflow either entirely on an in-house cluster or entirely on
public cloud. Additionally, Aeromancer offers a set of features
that address the above-mentioned scenarios. The feature set
includes the following:

1) Directed-acyclic graph (DAG) support for inter-stage
dependencies

2) Support for hybrid environments, i.e., client+cloud
resources

3) Automatic data transfers
4) Intra-flow on-demand cluster provisioning in the

cloud
5) Facilitating easy debugging;
6) Variability of workflow execution
7) Plugin support;
8) Data transfer optimizations

The rest of the paper is organized as follows. In section II,
we present an overview of related work and articulate how our
work differs. Section III describes the software architecture of
Aeromancer, whose main features are presented in detail in
section IV. Finally, in section V, we demonstrate the applica-
bility of Aeromancer in real-world scientific applications for
genomic data analysis.

II. RELATED WORK

Recently considerable amount of work has been done and
published in cloud computing and Hadoop-based workflow
management. We start our discussion with Cloudgene [3] on
which Aeromancer is built upon. Cloudgene was designed to

improve the usability of MapReduce programs in bioinformat-
ics. It is easy to configure and intuitive to use and provides a
graphical interface which is a much appreciated feature among
domain scientists. Cloudgene is designed using components
that are platform-independent like ExtJS[4], Restlet [5], and
JSON [6] and offers a rich set of features. Aeromancer
extends this feature set by introducing DAG-based support for
workflows with intra-stage data dependencies, facilitating the
usage of compute resources both in-house and in the cloud
simultaneously with automated data transfer, enabling per-
stage on-demand cluster provisioning, and many more features
mentioned later in the paper. Cloudgene will be discussed in
detail in the next section.

In addition to Cloudgene, there exist many software man-
agement systems for Hadoop-based pipelines. Kepler [7], one
of the earliest efforts to integrate with Hadoop, provides
an easy-to-use interface to compose, execute, and monitor
MapReduce applications in workflows. On the other hand,
Kepler requires low-level configuration that is not very intuitive
to use for domain scientists. In addition, Kepler does not
integrate with existing cloud providers and does not support
on-demand provisioning.

Commercial cloud providers, like Amazon and Microsoft,
provide their own workflow managers, Amazon EMR [8]
and Microsoft Azure HDInsight [9] with Oozie support [10],
respectively. Amazon EMR only manages its public cloud
resource and does not address hybrid environments. It also
does not provide support for data dependencies in applications.
Oozie is a workflow scheduler that is used to configure,
run, and monitor MapReduce jobs. However, it does not
implement automated data-dependency handling mechanisms
between client and cloud resource in a hybrid environment. In
both the cases, the onus falls upon the user to ensure that the
data is ready and available for the application to run.

The next set of closely related tools include workflow
managers for non-MapReduce-based workflows on cloud.
Clovr [11] delivers a portable virtual machine (VM) image that
provides several automated pipelines. Clovr VMs can utilize
either client or cloud resources, but not both simultaneously.
Clovr supports automatic provisioning of cluster resources
during pipeline execution and offers customizable VM images
that can execute on multiple platforms. Clovr is built using
different components like Ergatis [12], a workflow system and
Vappio [13], which is built on top of the Amazon EC2 API [14]
and is used for managing EC2 clusters. Clovr currently runs
on grid resources and is not MapReduce-enabled.

Galaxy [15] and Tavaxy [16] are two popular systems
for the design and execution of bioinformatics workflows.
Tavaxy combines Taverna [17] and Galaxy sub-workflows and
supports simultaneous use of local (client) infrastructure and
remote resources using web services and triggers. Galaxy
can be used in combination with a cloud resource manager
called CloudMan [18] to realize Galaxy Cloudman [19]. A
recent extension to Cloudman added support for Hadoop and
HTCondor [20] frameworks, and thus, is capable of ”providing
Hadoop as a Service,” similar to Microsoft Azure HDInsight.
Galaxy Cloudman allows users to launch several instances of
Galaxy on a cloud to run the same workflow across several
datasets. However, Galaxy does not provide native support for
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Hadoop workflows, in which MapReduce-based computations
in each stage are distributed across compute nodes.

III. DESIGN AND ARCHITECTURE OF AEROMANCER

Aeromancer builds atop Cloudgene and extends to its
functionality. Here we start by discussing the existing design
of Cloudgene, followed by a high-level overview of how its
architecture was modified in order to create Aeromancer.

A. Cloudgene Overview

Cloudgene consists of two independent modules, namely
Cloudgene-Cluster and Cloudgene-MapRed. Cloudgene-
Cluster provides the functionality to instantiate a cluster
using public cloud resources, in particular, Amazon EC2.
Exercising this functionality requires the user to provide the
cluster size, credentials, and other associated information. As
the Cloudgene-Cluster module is not part of Aeromancer’s
design, we do not discuss it any further in this paper.

The client side of Cloudgene is designed as a web ap-
plication that makes use of the JavaScript framework called
Sencha Ext JS. The server side utilizes the RESTful web
framework Restlet. The client and server communicate using a
platform-independent format for data interchange called JSON,
short for JavaScript Object Notation.

Cloudgene-MapRed gets installed automatically on a na-
menode of a Hadoop cluster, either in-house or provisioned
on the cloud via Cloudgene-Cluster. The user configures the
MapReduce job or a pipeline of jobs using a YAML file, which
we refer to as the manifest file, that should be written once
for each application. Cloudgene parses the manifest file and
dynamically creates a graphical web interface for the user. The
user may enter the relevant input data or application parameters
through this web portal to run a workflow. Once the parameter
values are provided and the job is submitted, the job parameters
and their corresponding values are communicated from the
client (browser) to the Cloudgene server.

Next, we present the design of Cloudgene’s job submission
module because it is a necessary prerequisite to understand the
design of Aeromancer. The job inputs submitted from the web
client are sent to the Cloudgene-MapRed server. The server
creates a job queue, where the jobs submitted by users are
enqueued in order, as specified in Fig.1.

Fig. 1. Cloudgene job submission architecture. Worker thread executes all
the stages in the job sequentially.

The enqueued job can be a simple MapReduce job or a
MapReduce pipeline consisting of multiple MapReduce jobs
or stages. A job-queue thread repeatedly polls the job queue
for the arrival of new jobs. As soon as a new job arrives,

the job-queue thread spawns a worker thread and associates
the worker thread with the newly arrived job. The worker
thread dequeues the job and submits it for execution using the
available cluster resources. Based on this design, the execution
of different jobs are independent and can be processed in
parallel by different worker threads. The worker thread writes
the job status periodically to a database, which the Cloudgene
server queries during the monitoring of the submitted jobs
from the client interface. The above design, however, has the
following shortcomings:

• In a hybrid environment, where users have in-house
clusters in addition to the public cloud resources,
Cloudgene cannot utilize both sets of resources simul-
taneously. It can only lbe configured to use one cluster
at a time.

• Cloudgene does not support DAG-based MapReduce
pipelines. With the current design, the execution of
different stages of the MapReduce pipeline is always
sequential.

• The user must ensure that data dependencies are met
before executing various stages within a MapReduce
pipeline.

B. Overview of the Aeromancer Architecture

Aeromancer is currently designed to work with the Mi-
crosoft Azure cloud. Its modular design, however, enables easy
integration with other cloud providers, if desired. Future work
section includes more detailed discussion of this aspect.

Aeromancer provides platform as a service (PaaS) for big
data applications running on public clouds. like Azure HDIn-
sight [44], which is a Windows implementation of Apache
Hadoop, so user don’t need to worry about the entire software
stack from the operating system to the application software
typical to IaaS. At the same time Aeromancer can be easily
deployed on in-house cluster having Hadoop installed, which is
rather a rule than exception for company or academic clusters,
thus allowing to make use from already existing resources.

Aeromancer has the minimal requirement of having a
single-node, on-premises Hadoop configuration. The mod-
ified Cloudgene-MapRed server, hereafter referred to as
Aeromancer-mapred server, runs on the head node of the
on-premises cluster and acts as a driver for the workflow
management system. It is responsible for (1) controlling the
provisioning of cloud resources, (2) processing workflow
DAGs for both control and data dependencies (3) spawning
local/remote MapReduce jobs and (4) automatically transfer-
ring data between the client and cloud resources to ensure data
dependency between different stages of the pipeline. Similar
to Cloudgene, the user configures the workflow in a manifest
file. The web client module generates graphical wizards to take
input from the user. The input is passed to the Aeromancer-
mapred server running in the local on-premises cluster. The
Aeromancer-mapred server then drives the pipeline execution
towards completion. A high-level overview of Aeromancer
architecture is shown in Fig.2 The below section discuss the
implementation of the features offered by Aeromancer.
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Fig. 2. High level architecture of Aeromancer

Fig. 3. DAG configuration fragment of manifest file

IV. FEATURE-WISE IMPLEMENTATION DETAILS

A. DAG support for inter-stage dependencies

AeroMancer creates a DAG to model the inter-stage de-
pendencies in the workflow. In order to support this feature,
the users should be capable of specifying the dependency
information between different stages within a MapReduce
pipeline. This support is implemented by using the following
additional parameters to the manifest file (Fig.3).

1) The alias parameter is used to associate each stage
in the pipeline with a name. The dependency infor-
mation can be specified using the alias value of each
stage.

2) The dependency parameter specifies the control and
data dependency information of each stage in the
pipeline, if applicable. The value of this parameter
specifies a single or a list of alias, which corresponds
to other stages in the pipeline that needs to complete
before this stage can start its execution.

Once the user submits a job, which corresponds to a MapRe-
duce pipeline, the Aeromancer implementation parses the
dependency information for each stage in the pipeline and
constructs a directed acyclic dependency graph. The vertex

corresponds to a stage in the pipeline and the edges specify
the dependency between stages. Only those stages that are
enabled by the user at runtime are part of this graph. The
dependency graph is constructed by the server thread as soon
as the user submits a new job. This job is then enqueued
into the job queue. In the traditional Cloudgene architecture,
a worker thread dequeues the job and runs the corresponding
pipeline in a sequential fashion. In Aeromancer, the worker
thread instead queries a DAG processor for the next set of
candidate stages to run. Refer to Fig.4. The DAG processor
processes the constructed dependency graph and returns the
set of vertices or stages that have an in-degree of zero. An in-
degree of zero implies that all data and control dependencies
are met for that stage. These stages can then run in parallel
using both the client and cloud resources simultaneously. Once
a particular stage in the pipeline completes, the corresponding
vertex is removed from the dependency graph and the worker
thread immediately queries the DAG processor for the next set
of eligible stages to run.

B. Support for hybrid environments

As discussed earlier, Cloudgene uses a worker thread per
MapReduce pipeline and executes all the stages sequentially,
using either the client or cloud resources. In order to run
multiple stages in parallel using both client and cloud resources
simultaneously, Aeromancer introduces the step queue, in
addition to the job queue in Cloudgene. The step queue sits
below the DAG processor and enables asynchronous execution
of stages using distributed resources. The set of candidate
vertices or stages determined by the DAG processor is fed into
this step queue, by the worker thread, for execution. The step
queue is periodically polled by a step queue thread. As soon
as a vertex or stage is queued, the step queue thread spawns
a sub-worker thread for this stage and then continues polling.
This results in an asynchronous thread processing each stage of
the pipeline in parallel. As a result, multiple stages can be run
independently and simultaneously using the desired resources
provided by the user. The functionality of how the hybrid cloud
support provided by Aeromancer is demonstrated on Fig.4. The
sub-worker thread uses Apache Templeton [21] or WebHCat
interface to spawn local or remote MapReduce jobs. Templeton
provides a REST-based interface for launching both normal
and streaming MapReduce jobs. The job launch via WebHCat
returns a job ID (Job ID of the Templeton controller job),
which can be used to query the status of running jobs.

C. Automatic data transfers

Aeromancer implements automatic data-dependency han-
dling for MapReduce pipelines. In traditional Cloudgene, it
is the users responsibility to ensure that the data is available
either by manually importing the data or by having the data
available from the output of the previous stage. In order to
provide this support in Aeromancer, the users should specify
the input and output dataset required for each stage in the
MapReduce pipeline. This support is implemented using the
following two extensions in the manifest file, as shown in
Fig.5.

1) The stepinput parameter, which is used to specify the
input dataset (file or directory) required by each stage
in the pipeline. The input data should be prefixed with
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Fig. 4. DAG and Hybrid Support for Aeromancer

Fig. 5. Fragment of manifest file with data-dependency configuration

the appropriate access scheme (hdfs or asv) based on
where the data is currently available (HDFS or blob).
Blob [22] is a storage service from Microsoft.

2) The stepoutput parameter, which is used to specify
the output data (file or directory) produced by each
stage in the pipeline. The output data gets automat-
ically prefixed with the appropriate access scheme
based on where stage is configured to run.

Aeromancer parses the stepinput and stepoutput values and
initializes a global table with this information. This table
contains the name of the data and the current location of the
data (client, cloud or both). The sub-worker thread consults this
table before launching the MapReduce job corresponding to a
particular stage in the pipeline. Based on the execution location
(either client or cloud) of a stage, the required dataset might
be already available in the correct location or Aeromancer
automatically transfers it to the correct location.

D. Intra-flow on-demand cluster provisioning on cloud

Aeromancer provides the feature of per-stage on-demand
cluster provisioning. The main driver behind Aeromancer is
the Aeromancer-mapred server that runs in the client cluster
and implements this feature. The number of datanodes to be
provisioned can be passed as an input to the Aeromancer in-

Fig. 6. Snapshot of Aeromancer’s interface for on-demand provisioning

terface as shown on Fig.6. For each stage that the user chooses
to run on cloud, Aeromancer runs Windows Powershell scripts
to check if the cluster has already been provisioned on Azure
HDInsight. If not, Aeromancer uses another Powershell script
to provision the cluster of size given as an input by the user.
Through its interface, Aeromancer also provides the choice of
deleting the cluster after the stage has been executed. This fea-
ture has currently been implemented only for Microsoft Azure
HDInsight and hence works only in Windows environment.

E. Facilitating easy debugging

Aeromancer supports running the entire MapReduce
pipeline using the local client resources before offloading it
to the cloud. This is similar to the support offered by local
Oozie runner. This feature ensures that the pipeline runs to
completion without issues before provisioning cloud resources.
A successful dry run before the actual execution is highly
advantageous as it enables one to debug any library, congura-
tion or data availability related issues locally before moving
the computation to the cloud. Provisioning cloud resources
and then debugging issues incurs unnecessary cost for idle
resources.

F. Variability of workflow execution

With the existing design of Cloudgene, the execution of
all stages in a MapReduce pipeline is mandatory. Moreover,
the entire pipeline executes either on a private cluster or in
a public cloud. Aeromancer provides user with the flexibility
to enable/disable different stages in a MapReduce pipeline at
runtime. In addition, it enables user to specify the execution
location of each stage in the pipeline, either the client-cluster
or cloud resources. The input data for a stage could either be
the output of its previous stage or should be made available by
the user in an appropriate location. This feature can be very
useful when results of a particular stage are already known
and someone wants to reuse them for downstream stages.

G. Plugin support

Certain functionalities for instance data preprocessing be-
fore transfer which need not functionally be a part of a
particular workflow but an additional feature of the framework,
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Fig. 7. Aeromancer data transfer flowchart

can be added as a plugin support. This can be achieved by
having a common stub in the Aeromancer code with some
common interfaces exported. These interfaces are implemented
in specific libraries. For instance, to support data encryp-
tion and compression before transfer, the Aeromancer code
will have stubs one for encryption/decryption and one for
compression/decompression. User can have their own encryp-
tion/decryption or compression/decompression library linked
to the framework. The modules from the user-specific library
will automatically get invoked and will be used to transform
the data before and reverse-transform after transfer happens.
Implementation of this feature is currently under development.

H. Data transfer optimizations

Aeromancer optimizes data transfers from client to cloud
and vice versa using MapReduce. In addition, MapReduce
can be used to optimize the user-defined transformations that
are defined by plugins. Using MapReduce for data transfers
and transformations results in higher utilization of cluster re-
sources. It also gives us the aggregate bandwidth and aggregate
processing capacity of the cluster to transfer and transform
data, respectively. The algorithm is presented in the flowchart
on Fig.7.

V. CASE STUDY

We have tested the functionality of Aeromancer by inte-
grating several MapReduce-based bioinformatics pipelines, as
our group is most familiar with this area, but there are no
reasons to limit the use of Aeromancer to bioinformatics only.
The tests were carried using Microsoft Azure HDInSight as
public cloud which is a PaaS-based big data solution powered
by a Windows implementation of Apache Hadoop. HDInsight
provides the flexibility of provisioning a cluster with as many
datanodes as desired, each datanode being a Virtual Machine
with 4 cores. For storing data on cloud, Windows Azure blob
services was used [22]. Blob storage is a service for storing
large amounts of unstructured data in the cloud accessed via
http[s]. Data stored in blob storage containers is accessed using
ASV URI (asv://) or WASB URI (wasb://).

For the in-house cluster two different environments were
experimented upon: a Linux cluster with 8+1 nodes and a Win-
dows cluster with a single-node Hadoop setup on a Windows

Fig. 8. SeqInCloud workflow

8 machine. The machine had Powershell installed and cmdlets
were used to communicate and manage the HDInsight cluster
on cloud.

Summarizing actions described in section 3 in order to
create a workflow and manage it with Aeromancer one needs
to (1) define each stage of the workflow as an independent
Hadoop application, (2) create a YAML file with runtime
configuration and cloud provider information, then (3) launch
the GUI generated by Aeromancer based on the YAML file, (4)
using the GUI choose i/o files and define parameters’ values
for the upcoming run, and (5) start the workflow.

A. Integrating SeqInCloud pipeline

A major share of experiments was done using the SeqIn-
Cloud [23] pipeline which is a highly scalable parallel im-
plementation of a popular genetic variants discovery pipeline
recommended by Broad Institute [24] and built with various
analysis tools, including BWA [25], GATK [26] and Picard
[27]. The choice of SeqInCloud for our experiments was biased
by the fact that it is a multistage MapReduce pipeline with a
good mix of inter-dependent and mutually-independent stages.
SeqInCloud seamlessly integrates all the stages with Hadoop.
SeqInCloud starts with the Alignment stage, which uses dis-
tributed implementation of BWA (Fig.8). The aligned reads are
sorted, merged, and fed into a Local Realignment stage, which
uses the RealignerTargetCreator and IndelRealigner walkers
from GATK. This is followed by Mark Duplicates, Count
Covariates and Base Quality Recalibration with Genotyping
stages, which are responsible for the identification and filtering
of structural variants. Finally, the found variants are combined
in CombineVariants stage and distributed fragments with re-
aligned reads are merged in one single file in Merge Alignment
Files stage. The SeqInCloud pipeline takes FASTQ files with
raw reads as an input and emits both structural variants in
VCF format and analysis ready reads in BAM format as an
output. SeqInCloud was run as a whole pipeline as well as
in parts by selecting only certain stages. The alignment stage
can be run separately using different choice of aligners and
the SeqInCloud pipeline can be started by Aeromancer from
the Local Realignment stage.
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Fig. 9. A snippet of the manifest file for SeqInCloud. Fields: dependency -
for DAG support, runlocation for hybrid resources, stepinput and stepoutput
for automatic data transferring

Described below is the exhibition of Aeromancer’s features
using SeqinCloud.

1) On-demand provisioning: Usually a cost of the cloud
services is proportional to the number of CPU-hours, measured
as wall time multiplied by the number of provisioned compute
instances. Based on profiling the execution time of SeqInCloud
stage by stage, we observed that the scalability of different
stages varied significantly. For example, for input BAM file of
size 840MB we found that the reasonable number of compute
nodes to provision is: 1 node for stages 1, 5 and 6, 2 nodes for
stage 2, and 5 nodes for stages 3 and 4. The resulting wall time
was 73 minutes plus time for cluster re-provisioning, while it
took 153 CPU-minutes. In comparison with running the stages
using all the 5 nodes and consuming a 69 minutes of wall-time
and 349 CPU-minutes, using only the reasonable number of
nodes halved the paid CPU-minutes with a negligible increase
in wall time.

2) DAG and Hybrid Cloud Support: The stages in SeqIn-
Cloud are sequential in nature except the last stage where the
merging of the BAM output (”.bam” fragments) and merging
of variant output (”.vcf” files) can be run simultaneously.
The merging of the BAM fragments is done by a single
process that runs on the head node of the cluster. Moving
this computation to the cloud does not help as the scale of
the cluster is immaterial here. However, running the Combine
Variants stage using large-scale resources like the cloud will
be beneficial. This is a good example of hybrid resource usage
as the merging of BAM fragments and merging of variant files
will run simultaneously using both client and cloud resources.
A snippet of the YAML file for this configuration is shown on
Fig.9.

3) Automatic Data-Dependency Handling: Let us assume
that the Base Quality Recalibration and Genotyping stage
is configured to run using on-premise resources. The Merge
alignment files step is configured to run using on-premise
resources, and the Combine variants step is configured to run
on cloud resources. As, shown in a snippet of the manifest file
(Fig.9) input and output parameters for these stages, stepinput
and stepoutput respectively, take values, which marked with a $
sign from a user via the generated user interface. As described
earlier Aeromancer parses the manifest file and initializes
a global table. Initially, the global table looks as shown in
Fig.10a. After stage s1 completes, the DAG processor returns
s2, s3 as the candidate stages to run. As configured by user,
s2 will be run on client resources and s3 on cloud resources.
The data-dependency module parses stepinput and stepoutput
parameters and triggers the data transfer as required. In our

Fig. 10. a) Data-dependency table with the initial values; b) Data-dependency
table after data transferring

case, the stage s2 has all the required data available at the
client. But for stage s3, the input needs to be transferred to the
cloud before the stage could run. The data-dependency module
makes use of the MapReduce framework to transfer data in
parallel to the cloud. After the completion of data transferring,
the global table is changed as shown in Fig.10b.

B. Other workflows

Aeromancer has also been experimented with two other
popular bioinformatics workflows for genome assemly, namely
Contrail [29] and CloudBrush [28].

Contrail uses Hadoop for de novo assembly of large
genomes from short sequencing reads. de novo assemblers
are usually memory and compute intensive. Contrail relies on
Hadoop to iteratively transform an on-disk representation of
the assembly graph, allowing an in depth analysis even for
large genomes. Contrail workflow consists of several stages,
but currently only three of them are available [30]: (1) Con-
verting FastQ files into AVRO format files, (2) building the de
Bruijn graph, (3) QuickMerge. Contrail has been successfully
integrated in Aeromancer and tested on various sizes of input
datasets. The second stage of Contrail ran into I/O failures
when using multiple nodes, even when launching directly
without Aeromancer, and this restricted us to provision only
a single node. Aeromancer’s on-demand provisioning feature
was used to provision multiple nodes for first and third stages
and a single node for second stage to complete the execution
without failures. Some pre-processing stages, like extension of
short reads and error correction may also be added to the de
novo assembly pipeline with Aeromancer upon the availability
of corresponding MapReduce implementations.

CloudBrush is a newer distributed genome assembler
based on string graphs and MapReduce framework. Cloud-
Brush workflow consists of two main phases, namely Graph
Construction and Graph Simplification. Graph Construction
includes four stages: (1) retaining non-redundant reads as
vertices, (2) finding pairwise overlaps between reads, (3) edge
adjustment and (4) reducing transitive edges. For Graph Sim-
plification, (5) path compression, (6) tip and bubble removal,
and (7) low coverage node removal stages are mandatory. In
[28] it is noticed that Graph Construction phase takes signifi-
cantly more time than Graph Simplification, but on the other
hand with an increase in the number of nodes, the computation
time of Graph Construction decreases substantially, while the
Graph Simplification phase scales only slightly. On-demand
provisioning feature of Aeromancer allows one to choose only
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reasonably required number of cloud nodes for each stage.
Graph Simplification phase also can be optionally offloaded to
a local cluster.

VI. CONCLUSION AND FUTURE WORK

Our future plans with Aeromancer include (1) support of
different cloud-providers: Since Aeromancer is a ExtJS and
REST-based server implementation, the majority of its features
are platform-independent, such as DAG support, hybrid cloud
support and variability of workflow. As such and to facilitate
broader adoption, Aeromancer is architected in a modular
fashion so that it is easier to extend to a variety of other cloud
provider environments. Currently, the only aspects of Aero-
mancer that are specific to Microsoft HDInsight are the data-
management interface and the on-demand cloud provisioning
interface. The former uses the Azure Blob API to make the
data available in the Azure Blob for running MapReduce jobs.
The latter uses the Azure management API to provision cloud
resources. Thus, in order to extend Aeromancer to other cloud
environments, the data-management interface and on-demand
cloud provisioning interface specific to cloud-providers need to
be instantiated. (2) Extension of Aeromancer to support a mix
of MapReduce and non-MapReduce stages in a workflow (3)
Enhance Aeromancer with the ability to predict the compute
resources needed for each stage of the workflow based on its
input data size and provide intelligent suggestions for the user
about the optimal choice of location and size of cluster to run
the workload. This suggestion should take into consideration
the predicted computation needs, network costs, storage costs
and client and cluster configurations.

Aeromancer is easy to use and hides from domain scientists
the complexity of MapReduce job management, resource allo-
cation and data transferring. The combination of its different
features makes Aeromancer a superior tool for management
of MapReduce based workflows and we believe that our work
will increase the adoption of cluster and cloud resources for
data-intensive applications in scientific domains.
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