
A MapReduce Framework for Heterogeneous

Computing Architectures

Marwa K. Elteir

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

Wu-chun Feng, Chair

Heshan Lin

Ali Raza Ashraf Butt

Eli Tilevich

Xiaosong Ma

August 15, 2012

Blacksburg, Virginia

Keywords: Graphics Processing Unit, Heterogeneous Computing, Programming Models,

MapReduce, Atomics

Copyright 2012, Marwa K. Elteir

A MapReduce Framework for Heterogeneous Computing Architectures

Marwa K. Elteir

ABSTRACT

Nowadays, an increasing number of computational systems are equipped with heteroge-

neous compute resources, i.e., following different architecture. This applies to the level of

a single chip, a single node and even supercomputers and large-scale clusters. With its

impressive price-to-performance ratio as well as power efficiency compared to traditional

multicore processors, graphics processing units (GPUs) has become an integrated part of

these systems. GPUs deliver high peak performance; however efficiently exploiting their

computational power requires the exploration of a multi-dimensional space of optimization

methodologies, which is challenging even for the well-trained expert. The complexity of this

multi-dimensional space arises not only from the traditionally well known but arduous task

of architecture-aware GPU optimization at design and compile time, but it also arises in the

partitioning and scheduling of the computation across these heterogeneous resources. Even

with programming models like the Compute Unified Device Architecture (CUDA) and Open

Computing Language (OpenCL), the developer still needs to manage the data transfer be-

tween host and device and vice versa, orchestrate the execution of several kernels, and more

arduously, optimize the kernel code.

In this dissertation, we aim to deliver a transparent parallel programming environment for

heterogeneous resources by leveraging the power of the MapReduce programming model and

OpenCL programming language. We propose a portable architecture-aware framework that

efficiently runs an application across heterogeneous resources, specifically AMD GPUs and

NVIDIA GPUs, while hiding complex architectural details from the developer. To further

enhance performance portability, we explore approaches for asynchronously and efficiently

distributing the computations across heterogeneous resources. When applied to benchmarks

and representative applications, our proposed framework significantly enhances performance,

including up to 58% improvement over traditional approaches to task assignment and up to

a 45-fold improvement over state-of-the-art MapReduce implementations.

iii

Dedicated to my wonderful husband, Atef, for his endless love, support and understanding

iv

Acknowledgments

All praise be to God for giving me the patience and power to survive in my pursuit of

graduate studies.

I would like to thank many people, this dissertation would not be possible without their

help. First and foremost, I would like to thank my advisor, Dr. Wu-chun Feng, for his

continuous guidance, valuable advices and encouragements. I am also really grateful to him

for accepting me in the Synergy Lab and for allowing me to participate in the group meetings

while being remotely. This greatly helps me achieve sustainable progress during my graduate

study. I also owe a lot of thanks to my co-advisor, Dr. Heshan Lin, for his generous and

patient guidance. He has always been available at anytime to discuss my research progress.

He has taught me many important skills that had and will have great impact on me. I really

appreciate his effort and assistance.

I am thankful to my committee members: Dr. Ali R. Butt, Dr. Xiaosong Ma and Dr. Eli

Tilevich for their support, feedback, and flexibility when I was scheduling my preliminary

exam and my final defense between semesters.

I would like to thank all members of the Synergy Lab for their invaluable discussions during

the group meetings. These meetings have always been a source of inspiration. I especially

would like to thank Tom Scogland, Ashwin M. Aji, Umar Kalim, Konstantinos Krommydas,

Kenneth Lee, Lokendra Singh, Balaji Subramaniam, Shucai Xiao and Jing Zhang.

Very special thanks go to Dr. Sedki Riad and Dr. Yasser Hanafy for making the VT-MENA

program available for Egyptian students. It has been my great fortune to join this program.

Finally, I would like to thank the special ones. Thank you my wonderful husband for your

support and understanding, for taking care of our kids while I had to attend meetings and

v

concentrate on my work, and for always encouraging me during my hard times. I would like

to tell you that I could not make it without your support. I would like to thank my kids,

Nour and Ahmed, for bearing a busy mum, I’m really happy to reach this stage so I can

requite you. I would like to express my especial gratitude to my parents for all what they

did for me, for praying for me during my hard times, and for raising me up to have endless

trust that God must reward me for my efforts. Without this belief, I cannot survive until

this moment. I’d like to especially thank my mother for taking care of my kids and regularly

helping me to save me time to work on my PhD. I am also thankful to my twin sister Safa

and my dearest friends Amira Soliman and Dina Said for their love and support.

vi

Contents

Abstract ii

Dedication iv

Acknowledgments v

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Portable Architecture-Aware MapReduce Framework 3

1.1.1 Problem Statement . 3

1.1.2 Methodology and Contribution . 4

1.2 Optimized MapReduce Workflow . 6

1.2.1 Problem Statement . 6

1.2.2 Methodology and Contribution . 7

vii

1.3 Organization of the Dissertation . 8

2 Background and Related Work 10

2.1 GPU Architecture . 10

2.1.1 AMD GPU . 11

2.1.2 NVIDIA GPU . 12

2.2 GPU Programming Models . 13

2.2.1 CUDA . 13

2.2.2 OpenCL . 13

2.3 MapReduce Programming Model . 14

2.3.1 MapReduce on Large-Scale Clusters 15

2.3.2 MapReduce on Multicore CPUs . 16

2.3.3 MapReduce on GPUs . 17

2.3.4 MapReduce on Heterogeneous Architectures 18

2.3.5 MapReduce on Clusters of Accelerators 20

2.3.6 Limitations of Previous MapReduce Solutions 21

2.4 Other Runtime Solutions . 22

3 Optimized MapReduce Framework for AMD GPUs 25

3.1 Overview . 25

3.2 Quantifying the Impact of Atomic Operations on AMD GPUs 26

3.3 Software-Based Atomic Add . 30

viii

3.4 Implementation Details . 32

3.4.1 Data Structures . 32

3.4.2 Requesting Wavefront . 33

3.4.3 Coordinator Workgroup . 33

3.4.4 Discussion . 37

3.5 Model for Speedup . 38

3.6 Evaluation . 41

3.6.1 Micro Benchmarks . 42

3.6.2 MapReduce . 44

3.7 Chapter Summary . 48

4 StreamMR: An OpenCL MapReduce Framework for Heterogeneous De-

vices 51

4.1 Overview . 51

4.2 Design Overview . 52

4.2.1 Writing Output with Opportunistic Preprocessing 53

4.2.2 Grouping Intermediate Results with Atomic-Free Hash Tables 54

4.3 Implementation Details . 54

4.3.1 Map Phase . 55

4.3.2 Reduce Phase . 57

4.4 Optimizations . 60

ix

4.4.1 Map with Combiner . 61

4.4.2 Reduce with Combiner . 61

4.4.3 Optimized Hash Buckets . 62

4.4.4 Efficient Storing of Key/Value Sizes 62

4.4.5 Image Memory Input . 62

4.5 StreamMR APIs . 63

4.6 Discussion . 63

4.7 Evaluation . 65

4.7.1 Experimental Platform . 65

4.7.2 Workloads . 66

4.7.3 Comparison to Mars . 68

4.7.4 Comparison to MapCG . 69

4.7.5 Overflow Handling Overhead . 74

4.7.6 Impact of Using Image Memory . 77

4.7.7 Quantifying the Impact of the Scalability Optimization 78

4.8 Chapter Summary . 79

5 Optimized MapReduce Workflow 81

5.1 Overview . 81

5.2 Background . 82

5.2.1 Hadoop . 82

x

5.2.2 Recursively Reducible Jobs . 83

5.3 Hierarchical Reduction (HR) . 84

5.3.1 Design and Implementation . 84

5.3.2 Discussion . 85

5.4 Incremental Reduction (IR) . 86

5.4.1 Design and Implementation . 86

5.4.2 Discussion . 87

5.5 Analytical Models . 88

5.5.1 Case 1: Map Tasks ≤ 2 × Nodes Number 88

5.5.2 Case 2: Map Tasks > 2 × Nodes Number 90

5.6 Evaluation . 94

5.6.1 Overview . 94

5.6.2 Scalability with the Dataset Size . 95

5.6.3 Wordcount Performance . 97

5.6.4 Grep Performance . 100

5.6.5 Heterogeneous Environment Performance 101

5.7 Chapter Summary . 103

6 Conclusions 105

7 Future Work 109

7.1 CPU/GPU Co-scheduling . 109

xi

7.2 Automatic Compute and Data-Aware Scheduling on Fat Nodes 110

7.3 Energy Efficiency of GPU-based MapReduce Implementations 111

7.4 Extending Software Atomic Add Operation 112

Bibliography 114

xii

List of Figures

2.1 AMD GPU memory hierarchy . 12

3.1 A simple copy kernel with atomic add operation 27

3.2 Kernel execution time of the simple copy kernel 28

3.3 Performance of atomic-based MapReduce vs. Mars using Matrix Multiplication 29

3.4 Performance of atomic-based MapReduce vs. Mars using KMeans 29

3.5 High level illustration of handling the software atomic operation 30

3.6 Code snapshot of software atomic add operation 34

3.7 Code snapshot of coordinator workgroup function 36

3.8 The execution time of system and software-based atomic 43

3.9 The execution time of system and software-based atomic when associated with

memory transactions . 44

3.10 The execution time of Matrix multiplication using system and software-based

atomic operation . 46

3.11 The execution time of string match using system and software-based atomic 48

xiii

3.12 The execution time of map phase of KMeans using system and software-based

atomic operation . 49

4.1 Main data structures used in the map phase of StreamMR 55

4.2 Details of the hash table . 56

4.3 Steps for updating the hash table assuming wavefront of 6 threads, and t1, t3,

and t5 are the active threads . 57

4.4 (a) Keys associated to a specific hash entry in three hash tables, and (b) the

output of the master identification kernel . 58

4.5 (a) Keys associated to a specific hash entry of three hash tables, (b) the output

of the joining kernel, and (c) the output of the joining kernel when sorting is

applied . 60

4.6 Speedup of StreamMR over Mars using small, medium, and large datasets for

AMD Radeon HD 5870 . 70

4.7 Execution time breakdown of Mars and StreamMR using large dataset for

AMD Radeon HD 5870 . 70

4.8 Speedup of StreamMR over Mars using small, medium, and large datasets for

NVIDIA Fermi . 70

4.9 Execution time breakdown of Mars and StreamMR using large dataset for

NVIDIA Fermi . 71

4.10 Speedup of StreamMR over MapCG using small, medium, and large datasets

for AMD Radeon HD 5870 . 72

4.11 Execution time breakdown of MapCG and StreamMR using large dataset for

AMD Radeon HD 5870 . 72

xiv

4.12 Speedup of StreamMR over MapCG using small, medium, and large datasets

for NVIDIA Fermi . 73

4.13 Execution time breakdown of MapCG and StreamMR using large dataset for

NVIDIA Fermi . 73

4.14 Effect of global overflow on the speedup over Mars and MapCG using string-

match for AMD Radeon HD 5870 . 75

4.15 Effect of global overflow on the speedup over Mars and MapCG using string-

match for NVIDIA Fermi . 76

4.16 Effect of global overflow on the speedup over Mars and MapCG using word-

count for AMD Radeon HD 5870 . 76

4.17 Effect of global overflow on the speedup over Mars and MapCG using word-

count for NVIDIA Fermi . 76

4.18 Effect of local overflow on the Map kernel execution time of KMeans 77

4.19 Effect of scalability optimization (SO) of the reduce phase using wordcount

on AMD GPU . 78

4.20 Effect of scalability optimization (SO) of the reduce phase using wordcount

on NVIDIA GPU . 79

5.1 Hierarchical reduction with aggregation level equals 2 85

5.2 Incremental reduction with reduce granularity equals 2 86

5.3 Execution of MR and IR . 91

5.4 Execution of HR framework when m = 8n 92

5.5 Scalability with dataset size using wordcount and grep 96

xv

5.6 Performance of MR vs. IR using wordcount 97

5.7 CPU utilization throughout the whole job using wordcount 99

5.8 Number of disk transfers per second through the map phase using wordcount 99

5.9 Performance of MR, IR, and HR using grep 100

5.10 Performance in heterogeneous and cloud computing environments using word-

count . 102

xvi

List of Tables

4.1 StreamMR APIs . 64

4.2 Dataset sizes per application . 67

5.1 Parameters used in the performance model 89

5.2 MR, and IR performance measures . 98

5.3 Number of map tasks executed with every reduce task 98

5.4 MR, and IR performance with concurrent jobs 100

5.5 Characteristics of different queries . 101

xvii

Chapter 1

Introduction

Over the past few years, the graphics processing unit (GPU) has become a commodity

component of most computers. The success of the GPU as a computing resource comes

from its low cost, high computing power, and power efficiency compared to multicore CPUs.

Nowadays, we are moving towards greater heterogeneity along all levels of computing. At the

level of a single chip, fusing the CPU and the GPU on a single chip with one shared global

memory is a reality e.g., AMD Fusion [6], Intel Xeon Phi [38], and Nvidia’s Tegra chip [61]

for mobile phones which combines ARM processors with GeForce graphics cores. At the level

of a single node, the integration of heterogeneous computing resources including traditional

multicore CPU and accelerators such as GPUs in a single node has become mainstream

[78]. The heterogeneity even spans up to the level of supercomputers and clusters. For

the June 2012 list of the The TOP500 list [85], the fifth supercomputer is built from Intel

Xeon X5670 CPUs and NVIDIA 2050 GPUs. In addition, the National Science Foundation

announced HokieSpeed [10], a supercomputer consisting of 200+ GPU-accelerated nodes.

Each of the nodes is equipped with a dual socket Intel X5645 6C 2.40 GHz CPU and 2

NVIDIA Tesla M2050/C2050 GPUs (Fermi). This configuration enabled HokieSpeed to

debut as the greenest commodity in the U.S. on the Green500 in Novemeber 2011. These

1

emergent systems provide the necessary computing power required by high-performance

computing (HPC) applications from diverse domains including scientific simulation [22],

bioinformatics [75, 54], image analysis [26], and databases [60, 65].

Although several researchers have reported tremendous speedups from porting their applica-

tions to GPUs, harnessing the power of heterogeneous resources is still a significant challenge.

This is largely attributed to the complexities of designing optimized code for heterogeneous

architectures as well as the partitioning and scheduling of the computation among these

resources.

In this dissertation, we propose a framework for efficiently exploiting the computing power

within and across heterogeneous resources. Our overarching goal is to deliver a transpar-

ent parallel programming environment for heterogeneous resources. Towards achieving this

goal, we adopt a three-step approach. The first step involves developing a portable frame-

work across different compute resources including multicore CPUs and accelerators such as

NVIDIA GPUs, AMD GPUs, APUs, Cell, and FPGA. In particular, the developer should

write his code once, and then the framework transparently exploits the architecture details of

different devices to efficiently run this code. Letting these heterogeneous resources working

together to accelerate an application requires careful distribution of the computation. Thus,

in the second step, we focus on developing an efficient workflow that concurrently distributes

the computation among heterogeneous resources. Furthermore, since different applications

have different computing patterns and input/output characteristics, the framework should

dynamically identify the combination of resources that is best suited for the target appli-

cation based on its characteristics. Finally, in the third step, a performance model should

be derived to estimate the execution time of the application based on its computing and

input/output characteristics as well as the capabilities of the heterogeneous devices. Based

on this model, the framework should adaptively choose the appropriate set of resources to

execute a given application. In this dissertation, we leverage the power of the MapReduce

2

programming model to address the first and second steps. We leave the third step for future

work. For the first step, our case study focuses on the portability across AMD GPUs and

NVIDIA GPUs.

In the rest of this chapter, we provide the necessary context for understanding the research

performed in this dissertation. Specifically, Section 1.1 and 1.2 discuss the problems that we

seek to address, the research objectives, and the research contributions we make to address

the above first and second steps, respectively. Section 1.3 outlines the remainder of this

dissertation.

1.1 Portable Architecture-Aware MapReduce Frame-

work

1.1.1 Problem Statement

Fully exploiting the computational power of a graphics processing unit is a complex task that

requires exploring a multi-dimensional space [62, 8, 54, 73, 72], including proper adjustment

of the number of threads executing a kernel, making use of low-latency memories, e.g., local

memory and registers, avoiding divergence, coalescing memory accesses, using vector types,

and so on. This task is further exacerbated by the complexity of debugging and profiling

GPU kernels.

Although all graphics processors share the same high-level architecture i.e., made up of sev-

eral compute units, where each unit contains multiple processing elements executing in a

SIMD fashion, in addition to a hierarchical memory system, GPUs from different vendors

have their own characteristics. For example, the AMD GPU that we study adopts vector

cores instead of scalar ones. It also has two memory paths with significantly different band-

3

width; each specialized in handling specific memory transactions. Additionally, it contains

only one branch unit per processing element. Considering these subtle architecture details is

crucial for designing efficient code. Generally, different optimization methodologies [54] have

to be explored for different devices, thus complicating the task of designing an optimized

code for heterogeneous resources.

Programming models such as NVIDIA’s Compute Unified Device Architecture (CUDA) and

Open Computing Language (OpenCL) facilitate GPU programming. Although these pro-

gramming models enhance the programmability of GPUs, the developer still needs to manage

the data transfer between host and device and vice versa, orchestrate the execution of sev-

eral kernels, and more arduously optimize the kernel code. Higher-level programming models

like MapReduce can help to mask a lot of these complexities. It shows great success in hid-

ing complexities of programming large scale clusters of thousands of commodity computers

[41, 1]. Currently, there are several MapReduce implementations targeting other systems

[68, 17, 12], however all of them focus on multicore CPUs and NVIDIA GPUs. We lack a

MapReduce framework that targets parallel computing devices more generally, e.g., CPUs,

AMD GPUs and NVIDIA GPUs, while still delivering performance portability across other

heterogeneous devices, such as NVIDIA GPUs.

1.1.2 Methodology and Contribution

Our objective is three-fold: (1) facilitate programmability of heterogeneous resources, (2) ef-

ficiently exploit the computing power of heterogeneous resources, and (3) deliver functional

and performance portability across heterogeneous architectures. To achieve these goals we

leverage the MapReduce programming model and OpenCL programming language to design

and develop an efficient and portable framework across different resources. The MapReduce

programming model [41] offers high-level APIs to express the functionality of an applica-

4

tion and hide the architectural details of the underlying system, thus achieving the first

goal. Currently, OpenCL has been adopted by many processor vendors [8, 63, 34, 19], so

developing our framework using OpenCL achieves the portability goal. This portability is

just functional portability. To ensure performance portability, we propose and implement

efficient architecture-aware techniques to execute the MapReduce tasks. First, we consider

the architectural details of AMD GPUs since these GPUs have not been studied before in

the context of MapReduce, then we further optimize our framework to work efficiently on

other devices as well, such as NVIDIA GPUs.

In particular, we investigate the applicability of the state-of-the-art MapReduce designs to

AMD GPUs. These MapReduce designs depend on executing atomic-add operations to

coordinate output writing from thousands of concurrently running threads. Our investiga-

tions show that using global atomic operations can cause severe performance degradation on

AMD GPUs i.e., up to 69.4-fold slowdown [8]. This is attributed to the fact that including

atomic operations in the kernel forces all memory transactions in this kernel to follow a

slow memory path rather than a fast one. So the designed framework should completely

avoid the use of global atomic operations. Consequently, we design and implement [50] a

software-based atomic operation that does not impact the used memory path. Using this

software atomic operation, we implement a MapReduce framework that behaves efficiently

and significantly outperforms state-of-the-art MapReduce implementations on AMD GPUs.

The main shortcoming of the proposed software-based atomic is that it supports applications

running limited number of threads.

To address the limitation of the proposed software-atomic operation, we propose and im-

plement an atomic-free design for MapReduce, StreamMR [51], which can efficiently handle

applications running any number of threads. We introduce several techniques to completely

avoid the use of atomic operations. Specifically, the design and mapping of StreamMR

provides efficient atomic-free algorithms for coordinating output from different threads as

5

well as storing and retrieving intermediate results via distributed hash tables. StreamMR

also includes efficient support of combiner functions, a feature widely used in cluster-based

MapReduce implementations but not well explored in previous GPU-based MapReduce im-

plementations. StreamMR significantly outperforms the state-of-the-art implementation of

MapReduce, e.g., up to 45-fold faster than MapCG on AMD GPUs. We further optimize

StreamMR [48] to work efficiently on other heterogeneous devices that do not suffer from

the penalties associated with the use of atomic operations, e.g., NVIDIA GPUs. Specifically,

we propose a mechanism for improving the scalability of the reduce phase with the size of

the intermediate output. With the highly scalable reduce phase, StreamMR outperforms

MapCG on a NVIDIA GPU by up to 3.5-fold speedup.

1.2 Optimized MapReduce Workflow

1.2.1 Problem Statement

The traditional approach [41] for scheduling the map and reduce tasks across resources is to

force a barrier synchronization between the map phase and the reduce phase. So, the reduce

phase can only start when all map tasks are completed. There are several cases where

this barrier synchronization can result in serious resource underutilization. First, when

distributing the computation across heterogeneous resources whether within node or across

nodes, it is highly expected that the faster compute resources will finish their assigned map

tasks earlier, but these resources cannot proceed to the reduce processing until all the map

tasks are finished, thus wasting resources. Second, since different resources are appropriate

for different computations i.e., sequential code is suitable for CPU, while data-parallel code is

suitable for GPU, so for efficient execution of the map and reduce computation, we may end

up scheduling the map computation on one resource i.e., GPU, and the reduce computation

6

on another resource, i.e., CPU, which leaves the CPU unutilized during the map phase. Even

in homogeneous environments, we have noticed that a compute node/resource may not be

fully utilized by the map processing due to the fact that a map task alternates between

computation and data accessing. Based on the above, we have explored other approaches

for scheduling the map and reduce tasks across resources.

1.2.2 Methodology and Contribution

We aim at improving the resource utilization by efficiently distributing the map and reduce

tasks across the heterogeneous resources. Our solution starts by initially assigning the map

tasks to the resources, and then improving the resource utilization through overlapping the

computation of the map and reduce phases. Specifically, we propose two approaches to

cope with such heterogeneity [49]. The first proposed approach is the hierarchical reduction,

which overlaps map and reduce processing at the inter-task level. It starts a reduce task as

soon as a certain number of map tasks complete and aggregates partially reduced results

following a tree hierarchy. This approach can be effective when there is enough overlap

between map and reduce processing. However, it has some limitations due to the overhead

of creating reduce tasks on the fly, in addition to the extra communication cost of transferring

the intermediate results along the tree hierarchy. To cope with this overhead, we proposed

an incremental reduction approach, where all reduce tasks are created at the start of the

job, and every reduce task incrementally reduces the received map outputs. Both approaches

can effectively improve the MapReduce execution time. The incremental reduction approach

consistently outperforms hierarchical reduction and the traditional synchronous approach.

Specifically, incremental reduction can outperform the synchronous implementation by up to

58%. As a part of this investigation, we derive a rigorous performance model that estimates

the speedup achieved from each approach.

7

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows: in Chapter 2, we present some back-

ground and discuss the related work. In Chapter 3, we present our investigations towards de-

veloping MapReduce implementation for AMD GPUs. In Chapter 4, we propose StreamMR,

across-platform MapReduce implementation optimized for heterogeneous devices. We ex-

plore two different approaches for distributing map and reduce tasks among different re-

sources in Chapter 5. In Chapter 6, we conclude the dissertation. Finally, we discuss

potential future projects in Chapter 7.

8

This page intentionally left blank.

9

Chapter 2

Background and Related Work

2.1 GPU Architecture

All GPU devices share the same high-level architecture. They contain several SIMD units;

each has many cores. All cores on the same SIMD unit execute the same instruction sequence

in a lock-step fashion. All SIMD units share one high-latency, off-chip memory called global

memory. Host CPU transfers the data to global memory through a PCI-e path. There is also

a low-latency, on-chip memory that is shared by all cores in every SIMD unit named local

memory. In addition to the local and global memory, there are two special types of memories

i.e., image memory and constant memory that are also shared by all compute units. Image

memory is a high-bandwidth memory region whose reads may be cached. Constant memory

is a memory region storing data that are allocated/initialized by the host and not changed

during the kernel execution. Access to constant memory is also cached. Below, we present

the main differences between AMD and NIVDIA GPU architectures.

10

2.1.1 AMD GPU

For the AMD GPU, each core within the SIMD unit is a VLIW processor containing five

processing elements, with one of them capable of performing transcendental operations like

sine, cosine, and logarithm. So, up to five scalar operations can be issued in a single VLIW

instruction. Double-precision, floating-point operations are executed by connecting two or

four processing elements. Each core also contains one branch execution unit that handles

branch instructions. This makes AMDGPUs very sensitive to branches in the kernel, whether

divergent or not.

As shown in Figure 2.1, for the AMD Radeon HD 5000 series of GPUs, the local memory,

Local Data Store (LDS), is connected to L1 cache. Several SIMD units share one L2 cache

that is connected to the global memory through a memory controller. There are two inde-

pendent paths for memory access: FastPath and CompletePath [8]. The bandwidth of the

FastPath is significantly higher than the CompletePath. Loads and stores of data whose size

is multiple of 32 bits are executed through the FastPath, whereas advanced operations like

atomics and sub-32 bit data transfers are executed through the CompletePath.

Executing a memory load access through the FastPath is performed by a single vertex fetch

(vfetch) instruction. In contrast, a memory load through the CompletePath requires a multi-

phase operation and thus can be multiple times slower to the AMD OpenCL programming

guide [8]. The selection of the memory path is done automatically by the compiler. The

current OpenCL compiler maps all kernel data into a single unordered access view. Con-

sequently, including a single atomic operation in a kernel may force all memory loads and

stores to follow the CompletePath instead of the FastPath, which can in turn cause severe

performance degradation of an application as discovered by our work [50]. Note that atomic

operations on variables stored in local memory do not impact the selection of memory path.

11

SIMD Engine
LDS, Registers

Compute Unit to Memory X-bar

Global Memory Channel

L1 Cache

L2 Cache Write Cache

Atomic Path C
o

m
p

le
te

P
at

h

F
as

tP
at

h

Figure 2.1: AMD GPU memory hierarchy

2.1.2 NVIDIA GPU

For an NVIDIA GPU and Fermi in particular [64], each core within each SIMD unit con-

tains two processing elements, one for executing integer operations, and another one for

floating-point operations. Thus each core can perform one single-precision Fused Multiply

Add (FMA) operation in each clock cycle and one double-precision FMA in two clock cycles.

In addition, each SIMD unit has 4 Special Functions Units (SFUs) to handle transcenden-

tal and other special operations such as sine, cosine, and logarithm. Only four of these

operations can be issued per cycle in each SIMD unit. So, compared to the AMD GPU,

the NVIDIA GPU needs more cycles to execute double-precision, floating-point operations

and special operations. Fermi GPU has a chip-level scheduler named GigaThread scheduler

which enables Fermi to execute multiple concurrent kernels, a feature that is unique to Fermi

GPU.

12

2.2 GPU Programming Models

GPUs are originally designed for data-parallel, graphics-based applications. However, the

introduction of some programming models have made general-purpose computing on GPUs

(i.e., GPGPU) possible [28]. These programming models are NVIDIA’s Compute Unified

Device Architecture (CUDA)[62], AMD’s Brook [7], and OpenCL [31]. Here we present the

most commonly used models.

2.2.1 CUDA

CUDA [62] is the first programming model proposed and developed by NVIDIA to support

general-purpose computing on NVIDIA GPUs. It provides a set of extensions to C program-

ming language to differentiate between the functions running on host and device. Using

CUDA terminology, the device code is called a kernel and it must be launched to the device

before execution. The kernel runs as a multithreaded program, with threads grouped into

blocks. Each block is assigned to one SIMD unit; however a SIMD unit can run multiple

blocks concurrently. A group of threads named warp is scheduled together; the scheduling

of these warps to the physical SIMD units is done at runtime by CUDA thread scheduler.

CUDA only supports synchronization between threads of the same block. To synchronize all

threads, another kernel must be launched.

2.2.2 OpenCL

OpenCL [31] is a programming model that aims at supporting heterogeneous computing.

It was initially developed by Apple, and then submitted to Khronos Group to develop its

specification, which released in 2008. Currently, most major processor vendors released an

OpenCL implementation for their products including NVIDIA[63], AMD[8], IBM[34], and

13

Intel[19]. For AMD GPUs, OpenCL becomes its main programming language.

Using OpenCL terminology, each thread of a kernel is called a workitem and executed on a

single core. Multiple workitems are organized into a workgroup. One or more workgroups can

run concurrently in a SIMD unit. The resource scheduler executes each workgroup as several

wavefronts (a wavefront is similar to the warp concept in CUDA). To hide memory latency,

it switches between the wavefronts whenever anyone is waiting for a memory transaction

to complete. Also synchronization primitive is provided to synchronize threads in a single

workgroup only.

2.3 MapReduce Programming Model

MapReduce is a high-level programming model aims at facilitating parallel programming by

masking the details of the underling architecture. Programmers need only to write their ap-

plications as two functions: the map function and the reduce function. All of the input and

outputs are represented as key/value pairs. Implementing a MapReduce framework involves

implementing three phases: the map phase, the group phase, and the reduce phase. Specifi-

cally, the MapReduce framework first partitions the input dataset among the participating

parties (e.g. threads). Each party then applies the map function to its assigned portion and

writes the intermediate output (map phase). The framework groups all of the intermediate

outputs by their keys (group phase). Finally, one or more keys of the grouped intermediate

outputs are assigned to each party, which will carry out the reducing function and write out

the result key/value pairs (reduce phase).

MapReduce was first proposed by Google [41] in 2004. It seeks to simplify parallel program-

ming on large-scale clusters of computers. The success of MapReduce on porting scientific

and engineering application to large-scale cluster motivated other MapReduce implementa-

14

tions on different platforms. In the following, we discuss different MapReduce implementa-

tions categorized based on the target platform.

2.3.1 MapReduce on Large-Scale Clusters

Several research efforts have been done to enhance the performance of the original MapRe-

duce and add more functionality. In [69] a programming language named Sawzall was built

over MapReduce framework. It aims at automatically analyzing a huge distributed data

files. The main difference between it and the standalone MapReduce framework is that it

distributes the reduction in a hierarchical topology-based manner. The reduction is per-

formed first per machine, followed by reduction per rack, followed by final global reduction.

Furthermore, in [33], the authors believe that the original MapReduce framework is limited

to be used with applications like relational data processing. So they presented a modified

version of the MapReduce named MapReduceMerge framework which works exactly the

same as the original framework, however the reduce workers produce a list of key/values

pairs that are transmitted to the merge workers to produce the final output.

Moreover, Valvag et al. [87] developed a high-level declarative programming model and its

underlying runtime, Oivos, which aims at handling the applications that require running sev-

eral MapReduce jobs. This framework has two main advantages compared with MapReduce.

First, it handles the overhead associated with such type of applications including monitoring

the status and progress of each job, determining when to re-execute a failed job or start

the next one, and specifying a valid execution order for the MapReduce jobs. Second, it re-

moves the extra synchronization when these applications are executed using the traditional

MapReduce framework, i.e., every reduce task in one job should complete before any of the

map tasks in the next job can start.

Steve et. al, [76] realized that the loss of intermediate map outputs may result in a significant

15

performance degradation. Although using HDFS (Hadoop Distributed File System) improves

the reliability, it results in considerably increasing the job’s completion time. As a result,

they proposed some design ideas for a new intermediate data storage system.

Zahria et al. [52] proposed another speculative task scheduler named LATE (Longest Ap-

proximate Time to End) to cope with several limitations of the original Hadoop’s scheduler.

It aims at improving the response time of the jobs by speculating the tasks that are ex-

pected to finish late. It is mainly applicable to heterogeneous environments or virtualized

data centers like Amazon EC2 [4].

Condie et al. [86] extended the MapReduce architecture to work efficiently for online jobs

in addition to batches. Instead of materializing the intermediate key/value pairs within

every map task, they proposed pipelining these data directly to the reduce tasks. They

further extended this pipelined MapReduce to support interactive data analysis through

online aggregation, and continuous query processing.

2.3.2 MapReduce on Multicore CPUs

Phoenix [18] is the first implementation for MapReduce on small-scale multicore and mul-

tiprocessor systems. The Phoenix runtime system forces barrier synchronization between

the map and reduce phases. It dynamically schedules the map and reduce tasks to the

cores, thereby achieving balance among the cores. To enable locality, Phoenix adjusts the

granularity of the map and reduce tasks so that the data manipulated by each task fits in

the L1 cache. The reported performance is very close to a manually optimized pthreads

code, however the scalability is limited. The next generation of Phoenix [68] enhances the

scalability on large-scale systems with NUMA characteristics by adapting the runtime to

be NUMA-aware. The grouping of the intermediate results in Phoenix is done by hashing

technique instead of sorting. To the best of our knowledge, they are the first to propose

16

hashing for the grouping phase of MapReduce.

Recently Hong et. al [17] proposed a portable implementation for MapReduce, MapCG, that

can run efficiently in both CPU and GPU. The key contribution in the CPU implementation

is the use of an efficient memory allocator that greatly reduces the number of calls tomalloc().

This is important especially for applications emitting large intermediate and final output.

2.3.3 MapReduce on GPUs

Mars [12] is the first MapReduce implementation on GPUs. One of the main challenges of

implementing MapReduce on GPUs is to safely write the output to a global buffer without

conflicting with output from other threads. Mars addresses this by calculating the exact

write location of each thread. Specifically, it executes two preprocessing kernels before the

map and reduce phases. The first kernel counts the size of the output from each map/reduce

thread by executing the map/reduce function without writing the generated output to the

global buffer. The second kernel is a prefix summing that determines the write location

of each thread. Each thread then reapplies the map/reduce function and safely writes the

intermediate/final output to the predetermined location in the global buffer. After the

map phase, Mars groups the intermediate output by their keys using bitonic sort. After

similar preprocessing kernels (counting and prefix summing), the reduce phase starts, where

every thread reduces the values associated with certain key and finally writes the generated

key/value pair to the final output. One main disadvantage of Mars’ preprocessing design

is that the map and reduce functions need to be executed twice. Such a design was due

to the fact that atomic operations were not supported on the GPUs at the time Mars was

developed.

Recently Hong et al. proposed MapCG [17], an implementation for MapReduce on both

CPU and GPU. Its GPU implementation depends on using atomic operations to safely write

17

the intermediate and final output. Also, MapCG designed a memory allocator to allocate

buffers from the global memory for each warp. Moreover, MapCG uses hash tables to group

intermediate output from map function, which is shown to be more efficient than the sorting

used in Mars.

There is another study on accelerating MapReduce on GPUs [25] that is orthogonal to our

work. In [25], Ji et al. proposed several techniques to improve the input/output performance

by using shared memory as a staging area. They also depend on atomic operations to

coordinate the writing of the output to the global buffers. The sorting technique is exploited

to group the intermediate results. Our investigation shows that MapReduce implementations

that depend on global atomic operations [17, 25] can cause severe performance degradation

on AMD GPUs.

Instead of implementing MapReduce as a runtime framework on GPUs [12, 17, 25], the

authors of [13] implemented a code generation framework that generates the application code

from two user-defined functions, i.e., map and reduce function. To facilitate the deployment

of this framework on GPUs, several constraints are forced on the map and reduce phases. The

size of the intermediate output is assumed to be known; in addition each map function only

produces one output. Also, the reduce function should be associative to enable a hierarchical

reduction phase. All of these constraints limit the applicability of this framework.

2.3.4 MapReduce on Heterogeneous Architectures

Here we discuss the implementations of MapReduce on the Cell Broadband Engine (Cell BE)

and CPU/GPU co-processing based implementations. Cell BE [81] is an example of hetero-

geneous computing resource. It contains one general-purpose Power Processing Element

(PPE), and eight Synergistic Processing Elements (SPE), each has SIMD unit.

There are two implementations for MapReduce on Cell BE [47, 9]. Both implementations

18

exploit the PPE to control the MapReduce runtime, i.e., task instantiation, task scheduling,

data transfer, and synchronization. The actual map and reduce computations are handled

by homogeneous cores, i.e., SPEs, so the challenges of managing different heterogeneous

cores are not handled in these implementations. To handle applications with nondetermin-

istic output size, the work in [47] uses an approach similar to the one proposed by [17, 25].

Specifically, the PPE is responsible for allocating memory for all SPEs, a mechanism that

requires significant communication and synchronization between the PPE and SPEs. On

the other hand, [9] uses a SPE-centric approach similar to Mars’ counting phase [12], where

every SPE runs a run-ahead map task to measure the buffer needed by each task. Two dif-

ferent mechanisms are proposed to schedule the tasks: (1) overlapping tasks across adjacent

MapReduce stages [47] and (2) enforcing a barrier between any two stages citepapa-icpp10-

cellmapreduce. Along with the dynamic scheduling of tasks, the barrier approach balances

the tasks among SPEs and minimizes the control overhead, thereby achieving better perfor-

mance.

CPU/GPU coprocessing MapReduce implementations are proposed in [89, 17]. In [89], the

map and reduce tasks are statically distributed among the CPU and GPU so that the data

assigned to GPU is S times larger than that assigned to CPU, where S is the speedup of the

GPU over CPU. In [17], the co-processing details are not presented. Both implementations

do not report significant improvement over the GPU-only implementation. It should be

noted that using CPUs with a larger number of cores and better scheduling mechanism, the

performance may be improved [26, 83].

In [58], Linderman et al. proposed a MapReduce framework named Merge that can automat-

ically distribute the computation across multiple heterogeneous resources. It also provides

a predicate dispatch-based library for managing function variant for different architectures.

Although the framework is generic and can support any architecture, it does not take into

account the data transfer overhead when making scheduling decisions. All of the results

19

reported show a significant speedup when using multiple CPUs and one integrated GPU

(Intel Graphics Media Accelerator X3000). Other discrete GPUs need to be tested to show

the scalability of the framework.

2.3.5 MapReduce on Clusters of Accelerators

Several studies focus on enabling MapReduce in a cluster of accelerators, i.e., GPUs, Cells, or

both. GPMR [40] is a MapReduce implementation for a cluster of GPUs. The CPU in each

node is responsible for scheduling the map and reduce phases on the GPU and managing the

communication with other nodes. The design of GPMR is concerned mainly with minimizing

the communication cost between different GPUs through the use of combiner and local

reduction. GPMR also introduces several application-specific optimizations to improve the

program performance.

In [67], a Monte Carlo simulation is formulated using Massive Unordered Distributed (MUD)

formalism. This enables running it as a MapReduce application on a cluster of GPUs, lever-

aging Hadoop [1] and NVIDIA CUDA. The evaluation shows that 4-node GPU cluster can

achieve more than 4-fold speedup compared to Hadoop cluster of 62 nodes. Although try-

ing to architect a general framework, MITHRA, to handle any MapReduce application, the

grouping phase is not implemented, thus limiting the generality of the framework. Also the

user should provide a CUDA implementation of their map and reduce functions, knowledge

of GPU programming and optimization. It should be noted that the same idea of leveraging

Hadoop to enable MapReduce on a cluster of GPUs was explored by the Mars’s authors in

[89].

In [45, 46], a scalable MapReduce implementation is proposed for a cluster of accelerators,

i.e., GPUs and Cells. The implementation follows a centralized approach to manage all nodes;

so a single manager is responsible for assigning the MapReduce tasks to all accelerators and

20

merging the results into the final output. For better scalability, several handler threads

are launched in the manager; each handles one accelerator. To cope with accelerators of

different capabilities, the manager dynamically adjusts the granularity of the assigned tasks

by monitoring the accelerator performance to tasks of different sizes. This implementation

adopts existing MapReduce implementations [12, 47] to run the assigned tasks on the GPU

and Cell. So, it only targets NVIDIA GPUs i.e., there is no support for AMD GPUs. Also,

the MapReduce computations are handled by the accelerators only; the CPUs control their

attached accelerators, thus leaving some resources unutilized.

2.3.6 Limitations of Previous MapReduce Solutions

Despite of the diverse MapReduce implementations existing in the literature, none of these

efforts target AMD GPUs. All of them target either multicore CPUs, Cells, or NVIDIA

GPUs. The architecture of AMD GPUs has unique characteristics that require revisit-

ing the existing MapReduce implementations to attain the expected performance. Also,

the MapReduce implementations on heterogeneous resources do not exploit the computing

power of general-purpose cores. In [47, 9], the PPE is only used to control the execution,

and the actual computations are distributed among SPEs. Although this is acceptable for

Cells, it is not the case for multicore CPUs that are expected to have 10s of cores [35, 36].

The CPU/GPU coprocessing implementation of MapReduce is not deeply studied in the lit-

erature. CPU should act as an active member in the computation by processing part of the

map and reduce tasks. Furthermore, each of the above implementations targets a specific

platform and is optimized for its architecture, having one implementation that is portable

among different platforms is another challenge.

21

2.4 Other Runtime Solutions

Over the past few years, there have been many efforts to address the challenges of program-

ming heterogeneous resources. In [30], a runtime supported programming and execution

model named Harmony is proposed. Starting from an application code, Harmony builds an

acyclic dependency graph of the encountered kernels. It then uses dynamic mapping to map

each kernel to the heterogeneous resources. Although a single kernel can be mapped to the

CPU and the GPU concurrently, it is not clear how the ratio of CPU-to-GPU computation

is adjusted. Also, to be able to run a given kernel on different architectures, the programmer

should implement it using different languages, i.e., C for CPU kernels and CUDA for GPU

kernels. StartPU [14], on the other hand, aims at more generally studying the problem. It

provides a uniform interface to support implementing different scheduling algorithms, and

then allowing the user to use the most appropriate strategy. This approach may be effi-

ciently handle different classes of applications; however it places additional purden on the

programmer. To adjust the task granularity, StarPU supports either using a pre-calibration

run or dynamically adapting the ratio at runtime. Qilin [15] proposes a runtime system that

depends on adaptive dynamic mapping to map the code to the computing resources, either

GPU or CPU or both. It conducts training for the first time a program is run and curve

fitting to adjust the ratio of computations assigned to CPU vs. GPU. Also the programmer

should provide two versions of the kernel; one in thread building blocks (TBB) for CPU and

one in CUDA for GPU. In [59], Michela Becchi et. al. propose a runtime system that targets

legacy kernels. It uses a performance model to estimate the execution time of a certain func-

tion call on both CPU and GPU, based on profiling information obtained from runs with

different data sizes. The runtime also optimizes the data transfer by deferring all transfer

until necessary. Although this system takes into account the data transfer overhead, it does

not utilize it to guide the scheduling decision. Also, a function call is either executed on CPU

or GPU i.e., no co-processing of a single function on both CPUs and GPUs is supported.

22

Recently, Scogland et al. [83] extend OpenMP for accelerators to enable porting an existing

OpenMP code to heterogeneous environments. It provides new OpenMP directives for the

programmer to indicate the code region to be parallelized across the heterogeneous cores.

At runtime, the performance of CPU to GPU on different number of iterations is used to

adjust the ratio between the CPU-to-GPU work.

There are three main shortcomings of these previous solutions. First, none of them consider

the data transfer overhead while making the scheduling decision, which can greatly impact

the performance especially for discrete GPUs. Second, all of them target NVIDIA GPUs,

none of them support AMD GPUs. Finally, except for [83], the programmer should provide

two implementations; one to run on CPU and other one to run on GPU.

23

This page intentionally left blank.

24

Chapter 3

Optimized MapReduce Framework for

AMD GPUs

3.1 Overview

Currently, all existing MapReduce implementations on GPUs focus on NVIDIA GPUs. So

the design and optimization techniques in these implementations may not be applicable

to AMD GPUs, which have a considerably different architecture than NVIDIA ones as dis-

cussed in Chapter 2. For instance, State-of-the-art MapReduce implementations on NVIDIA

GPUs [17, 25] rely on atomic operations to coordinate execution of different threads. But as

the AMD OpenCL programming guide notes [8], including an atomic operation in a GPU

kernel may cause all memory accesses to follow a much slower memory-access path, i.e., Com-

pletePath, as opposed to the normal memory-access path, i.e., FastPath, even if the atomic

operation is not executed. Our results show that for certain applications, the atomic-based

implementation of MapReduce can introduce severe performance degradation, e.g., a 28-fold

slowdown on AMD GPUs.

25

Although Mars [12] is an existing atomic-free implementation of MapReduce on GPUs, it

has several disadvantages. First, Mars incurs expensive preprocessing phases (i.e., redundant

counting of output records and prefix summing) in order to coordinate result writing of

different threads. Second, Mars sorts the keys to group intermediate results generated by

the map function, which has been found inefficient [17].

In this chapter, we propose a MapReduce implementation for AMD GPUs. The main design

goal is to avoid the use of global atomic operations. To achieve this goal, we start by

developing an efficient software-based atomic operation that can efficiently and safely update

a shared variable, and at the same time, does not affect the performance of other memory

transactions. This software-based atomic operation is then used to develop an efficient

MapReduce framework for AMD GPUs.

The rest of this chapter is organized as follows: In Section 3.2, we have quantified the

performance impact of atomic operations to simple kernels and MapReduce implementations,

respectively. The design of our software-based atomic add is described in Section 3.3 and

3.4. In Section 3.5, we have derived a model of kernel speedups brought by our software

atomic operations. Performance evaluations are then presented in Section 3.6. We conclude

in Section 3.7.

3.2 Quantifying the Impact of Atomic Operations on

AMD GPUs

We seek to quantify the performance impact of atomic operations on memory access time,

we run the simple kernel code, shown in Figure 3.1, on the Radeon HD 5870 GPU. The code

includes only two instructions; the first is an atomic add operation to a global variable, and

the second is a memory transaction that reads the value of the global variable and writes it

26

to an element of an array.

__kernel void Benchmark (__global uint *out,
 __global uint *outArray)

{
 int tid = get_global_id(0);

 // Safely incrementing a global variable
 atom_add(out,tid);

 /* Writing the value of the global variable

 to an array element */
 outarray[tid]=*out;
}

Figure 3.1: A simple copy kernel with atomic add operation

We measure the kernel execution time of three versions of the aforementioned kernel, as

shown in Figure 3.2. The first version contains only the atomic operation. The second

contains only the memory transaction. The third contains both. Ideal represents the sum

of the execution times of the atomic-only and the memory transaction-only versions.

By analyzing the ISA code, we found that the number of CompletePath memory accesses

is 0 and 3 for the second and third versions, respectively. As a result, the memory access

time increases significantly by 2.9-fold and 69.4-fold for 8 and 256 workgroups, respectively,

when including the atomic operation. Note that, as the number of memory transactions

in the kernel increases, the impact of accessing the memory through the CompletePath is

exacerbated, as discussed in Section 3.6.

The above results suggest that using atomic operations can severely impact the memory

access performance. To quantify the performance impacts of using atomic operations in

MapReduce implementations on an AMD Radeon HD 5870 GPU. We first implement a

basic OpenCL MapReduce framework based on Mars. In its original design, Mars uses

preprocessing kernels, i.e., counting and prefix summing kernels, to calculate the locations

of output records in global memory for each thread. We add a feature that allows threads

in different wavefronts to use atomic operations (instead of using preprocessing kernels) to

compute the output locations.

27

0

50000

100000

150000

200000

250000

300000

350000

8 12 16 24 32 48 64 96 128

Number of Worgroups

K
er

n
el

 e
xe

cu
tio

n
 ti

m
e

(n
se

c)

Atomic

Memory

Memory with Atomic

Figure 3.2: Kernel execution time of the simple copy kernel

We compare the performance of the basic OpenCL MapReduce implementation (named

Mars) and the atomic-based implementation (named AtomicMR), focusing on the execu-

tion time of two MapReduce applications: Matrix Multiplication (MM) and KMeans (KM).

Specifically, we run MM for matrix sizes of 256 X 256, 512 X 512, and 1024 X 1024, and KM

for number of points 4K, 16K, 64K. As shown in Figure 3.3 and Figure 3.4, the performance

of atomic-based MapReduce framework is significantly worse than Mars. More specifically,

the average slowdown is 28-fold and 11.3-fold for Matrix Multiplication and KMeans, re-

spectively. These results suggest that atomic-based MapReduce implementations are not

suitable for AMD Radeon HD 5000 series.

It is worth noting that, our atomic-based implementation uses atomic operations at the gran-

ularity of a wavefront, i.e., one master thread in the wavefront is responsible for allocating

more buffer for all threads in this wavefront. In KMeans and Matrix Multiplication, each

map thread writes to the global buffer once, so atomic operation is called once per wavefront

by a master thread. This implementation using atomics at the wavefront level fairly mimics

the map phase of the MapCG[17] implementation.

28

Figure 3.3: Performance of atomic-based MapReduce vs. Mars using Matrix Multiplication

Figure 3.4: Performance of atomic-based MapReduce vs. Mars using KMeans

29

3.3 Software-Based Atomic Add

Implementing atomic add on GPUs is tricky because of the lack of efficient synchronization

primitives on GPUs. One straightforward approach uses a master-slave model to coordinate

concurrent updates at the granularity of threads. As shown in Figure 3.5, three arrays, i.e.,

address array, increment array, and shared variable array, are maintained in global memory.

Each thread executing the software atomic add operation writes the increment values to a

shared variable to the increment array and the address of the shared variable to the address

array. Note that storing the address of a shared variable enables support for multiple shared

variables in a kernel. A dedicated master/coordinator thread, which can be run in a separate

workgroup, continuously spins on the address array. Once the master thread detects any

thread executing the atomic operation, it updates the corresponding shared variable using

the address and the increment value stored. Once the update is finished, the master thread

resets the corresponding element of the address array to 0, signaling the waiting thread,

busy waits on its corresponding element until the update is finished. Since only one thread

is doing the update, the atomicity is guaranteed.

t1

t2

t3

t4

t5

t6

t7

T8

t0

R
eq

u
es

ti
n

g
 th

re
ad

s

Master/ Coordinator
thread

Address/
Increment Arrays

Shared variables

Step1
Step2

Step3

Step1: Requesting thread registers the address and the increment
 of the shared variables.
Step2: Coordinator thread reads the registered addresses and increments
 and generates the global increment of each unique address.
Step3: Coordinator thread safely updates the shared variables

Figure 3.5: High level illustration of handling the software atomic operation

30

However, in this basic implementation described above, the master thread can easily become

a performance bottleneck because of the serialization of update calculation as well as the

excess number of global memory accesses. In addition, maintaining one element per thread in

the address and increment arrays can incur space overhead for a large number of threads. To

address these issues, we introduce a hierarchal design that performs coordination at the level

of wavefronts and parallelizes the update calculation across the current threads executing the

software atomic add. Specifically, the increment array maintains one element per wavefront,

so does the address array. Each wavefront first calculates a local sum of the increment

values requested by the participant threads in the fast local memory,1 then it stores the

local sum to the increment array in the global memory. The first workgroup is reserved as

the coordinator workgroup. Threads in the coordinator workgroup read the address and

increment arrays in parallel and collaboratively calculate the update value. Note that the

coordinator workgroup does not participate in the kernel computation, otherwise deadlocks

may occur when threads diverge in the coordinator group. Such a hierarchical design can

greatly reduce global memory transactions as well as parallelize the update computation.

One challenge in the hierarchal design is to support divergent kernels, in which case not

all threads participate in the software atomic add. In this case, care must be taken to

avoid potential deadlocks and race conditions. As we will explain in Section 3.4, we use

system-provided atomic operations on local variables to coordinate between threads within

a wavefront, leveraging the fact that atomic operations on local variables will not force

memory access to take the CompletePath.

To guarantee that the coordinator will always be executed, our current implementation

assumes that the number of workgroups used in the kernel does not exceed the maximum

number of concurrently running workgroups. For the Radeon HD 5870, we have found

that for a simple kernel, each compute unit (of the 20 compute units) can run up to seven

1Local memory in OpenCL is equivalent to shared memory in CUDA.

31

workgroups, so the maximum number of workgroups supported by our implementation in

this case is 140. This value can be easily calculated following a similar methodology to

the one proposed by the CUDA occupancy calculator [21]. While we leave support for an

arbitrary number of workgroups for future work, the current design is useful in practice by

adopting a large number of threads.

3.4 Implementation Details

By default, the atomic add operation returns the old value of the global variable just before

executing the atomic operation. To support this feature, in addition to the hierarchical

design described above, an old value of the shared variable is returned to each wavefront,

which then calculates a return value for each participating thread with backtracking.

3.4.1 Data Structures

Four global arrays are used in our implementation. The number of elements of each array

equals the number of wavefronts of the kernel, so each wavefront reads or writes to its corre-

sponding element of these arrays. The first array is theWavefrontsAddresses array; whenever

a wavefront executes an atomic operation to a shared variable, it writes the address of this

variable to its corresponding element in this array. The second array is the WavefrontsSums

array, which holds the increment of every wavefront to the shared variable. The third array

is the WavefrontsPrefixsums array, which contains the old value of the global variable just

before executing the atomic operation and is used by the requesting wavefront to generate

the return value from the atomic add operation, i.e., to mimic the system-provided atomic.

The final array is the Finished array. Whenever a wavefront finishes its execution, it sets its

corresponding element of this array to one.

32

3.4.2 Requesting Wavefront

Any thread executing our software-based atomic add operation passes through four steps, as

shown in Figure 3.6. In the first step, the thread collaborates with other threads concurrently

executing the atomic add operation to safely increment the wavefront’s increment using local

atomic add (line 13, 15, 16, and 18). In the second step, only one thread called the dominant

thread writes the increment and address of the shared variable to the global memory (lines

22-26), i.e., WavefrontsSums, and WavefrontsAddresses, respectively. Since threads of any

wavefront may diverge, the atomic operation may not be executed by all threads in the

wavefront. Consequently, instead of fixing the first thread of the wavefront to write to the

global memory, the first thread executing the local atomic add operation is chosen to be

the dominant thread (line 14, 15, 17, and 18). In the third step, the thread waits until the

coordinator workgroup handles the atomic operation and resets the corresponding element of

the WavefrontssAddresses array (lines 29-32). Once this is done, the WavefrontsPrefixsums

array contains the prefix sum of this wavefront, and every thread in the wavefront then

generates its prefix sum and returns (line 36).

3.4.3 Coordinator Workgroup

For convenience, the functionality of the coordinator workgroup is described assuming the

number of wavefronts of the kernel equals the number of threads of the coordinator work-

group. However, the proposed atomic operation handles any number of wavefronts that

is less than or equals the maximum number of concurrent wavefronts. Each thread of the

coordinator workgroup is responsible for handling atomic operations executed by a specific

wavefront. All threads in the coordinator group keep executing four consequent steps until

all other wavefronts are done.

As shown in Figure 3.7, in the first step (lines 16-19), each thread loads the status of its

33

1 int software_atom_add(__global int *X, int Y,
2 __local int *LocalSum, __local int *ThreadsNum,
3 __global int *WavefrontsAddresses,
4 __global int *WavefrontsSum,
5 __global int *WavefrontsPrefixsum)
6 {
7 //Get the wavefront global and local ID
8 int wid = get_global_id(0) >> 6;
9 int localwid = get_local_id(0) >> 6;
10
11 /* Safely incrementing the wavefront increment and
12 threads number */
13 LocalSum [localwid] = 0;
14 ThreadsNum [localwid] = 0;
15 mem_fence (CLK_LOCAL_MEM_FENCE);
16 int threadSum = atom_add(&LocalSum [localwid],Y);
17 int virtualLid = atom_inc(&ThreadsNum [localwid]);
18 mem_fence(CLK_LOCAL_MEM_FENCE);
19
20 /* The first thread only writes the sum back to the
21 global memory */
22 if (virtualLid == 0) {
23 WavefrontsSum[wid] = LocalSum[localwid];
24 WavefrontsAddresses [wid] = X;
25 }
26 mem_fence(CLK_GLOBAL_MEM_FENCE);
27
28 //Wait until the coordinator handles this wavefront
29 while(1) {
30 mem_fence(CLK_GLOBAL_MEM_FENCE);
31 if (WavefrontsAddresses [wid] == 0) break;
32 }
33
34 /* Generate the retrun value and re-initialize the
35 variables */
36 int ret = WavefrontsPrefixSum[wid] + threadSum;
37 if (virtualLid == 0) {
38 LocalSum [localwid] = 0;
39 ThreadsNum [localwid] = 0;
40 mem_fence(CLK_LOCAL_MEM_FENCE);
41 }
42 return ret;
43 }

Figure 3.6: Code snapshot of software atomic add operation

34

wavefront into the local memory. The thread lid reads the status of the wavefront lid. More

specifically, it reads WavefrontsAddresses[lid], and WavefrontsSums[lid] and stores these

variables into the local memory, i.e., Address[lid] and LocalSum[lid], respectively, as shown

in lines 16, and 17. All threads are then synchronized (line 19) before the next step to ensure

that the status of all wavefronts have been loaded.

In the second step (lines 23-36), the prefix sum of each wavefront and the increment of each

unique address are generated. Each thread lid checks whether the wavefront lid executes

the atomic operation or not by examining the address Address[lid] (line 23). If it is the

only wavefront executing atomic operation to this address, the prefix sum is simply the

value of this address (line 34), and the increment is the wavefront’s increment represented

by LocalSum[lid]. If there are several wavefronts concurrently executing atomic add for this

address, the prefix sum of each wavefront and the increment of this address are generated

using local atomic add operation, i.e., atomic add to a local memory variable (lines 25-33).

Note that the increment of the first of these wavefronts called dominant wavefront holds the

increment of this address and the other wavefronts increments are set to zero (line 29) to

ensure correctly incrementing the shared variable. All threads are again synchronized (line

36) to ensure that the increments of all wavefronts are used to calculate the increments of

the global variables.

In the third step (lines 40-46), the global variables are safely updated and the blocked wave-

fronts are released. Specifically, each thread lid checks whether the wavefront lid executes

the atomic operation or not by examining the address Address[lid] again (line 40). If it is a

requesting wavefront, the thread lid sets WavefrontsAddresses[lid] to zero (line 44) to release

this wavefront. If it is a dominant wavefront, its global variable is safely updated (line 41).

Also, the local address and increment of this workgroup are reinitialized (line 42, and 43).

Finally, each thread re-evaluates the termination condition by calculating the number of the

finished wavefronts (lines 50-54). If all wavefronts are done, the thread terminates.

35

1 void AtomicCoordinator(__local int *Address,
2 __local int *LocalSums,
3 __global int *WavefrontsAddresses,
4 __global int *WavefrontsSums,
5 __global int *WavefrontsPrefixsums,
6 __global int *Finished)
7 {
8 //Get thread ID in workgroup, and number of wavefronts
9 int lid = get_local_id(0);
10 int wavefrontsPerWorkgroup = get_local_size(0) >> 6;
11 int wavefrontsNum = get_num_groups(0) *
12 wavefrontsPerWorkgroup;
13
14 while (1) {
15 //1- Read the status of the wavefronts
16 Address[lid] = WavefrontsAddresses [lid];
17 LocalSum[lid] = WavefrontsSums[lid];
18 __global int * X = (__global int*)Address[lid];
19 barrier(CLK_LOCAL_MEM_FENCE);
20
21 /* 2- Safely generate the wavefronts prefixsums and
22 the increment of each unique variable */
23 if ((lid < wavefrontsNum) && (Address[lid] > 0)){
24 int replaced = 0;
25 for (int k = 1; k < lid ; k++){
26 if (Address[lid] == Address[k]) {
27 int temp = atom_add(&LocalSum[k], LocalSum[lid]);
28 WavefrontsPrefixSum[lid] = *X + temp;
29 LocalSum[lid] = 0;
30 Replaced = 1;
31 break;
32 }
33 }
34 if (replaced == 0) WavefrontsPrefixsum[lid] = *X;
35 }
36 barrier(CLK_LOCAL_MEM_FENCE);
37
38 /* 3- Safely increment the global variable and
39 release the blocked wavefronts */
40 if (Address[lid] > 0) {
41 if (LocalSum[lid] > 0) *X += LocalSum[lid];
42 Address[lid] = 0;
43 LocalSum[lid] = 0;
44 WavefrontsAddresses [lid] = 0;
45 }
46 mem_fence(CLK_GLOBAL_MEM_FENCE);
47
48 //4- Check for exiting
49 int count = 0;
50 for(int i = wavefrontsPerWorkgroup; i <
51 wavefrontsNum; i++)
52 if (Finished[i] == 1) count++;
53 if (count == wavefrontsNum - wavefrontsPerWorkgroup)
54 break; //All wavefronts are done
55 }
56 }

Figure 3.7: Code snapshot of coordinator workgroup function

36

3.4.4 Discussion

We have taken great care in our design to ensure its correctness. Within a requesting wave-

front (Figure 3.6), one design challenge is to select the dominant thread in divergent kernels.

Since all threads within a wavefront are executed in a lock-step manner, using atom inc on

a variable in local memory can guarantee only one thread is chosen as the dominant thread.

Our implementation also maintains separate local sums for different wavefronts; if a local

sum is shared between wavefronts, a race condition can occur when threads from different

wavefronts try to update the same local sum.

Another design challenge is to ensure that data is correctly exchanged between different

workgroups. According to [88] and [75], the correctness of implementing a GPU primitive

that requires inter-workgroup communication cannot be guaranteed until a consistency model

is assumed. Xiao et al. [75] solved that by using threadfence() function that ensures the

writes to global memory by any thread is visible to threads in other blocks (i.e., workgroup in

OpenCL). OpenCL does not have an equivalent to the threadfence function. The mem fence

function in OpenCL only ensures that the write of a thread is visible to threads within the

same workgroup. Fortunately, mem fence guarantees the order that the memory operations

are committed [31]. That means, for two consecutive memory operations A and B issued by

a thread to a variable in the global memory, if mem fence is called between them, once B is

visible to threads in other workgroups, A will be visible as well because A is committed to the

global memory before B. The correctness of our implementation in data exchange between

different workgroups is achieved by the memory consistency provided by mem fence.

Finally, although our implementation allows different wavefronts to concurrently execute

atomic operation to different variables, threads within the same wavefront should concur-

rently execute the atomic operation to the same variable, since the status of each wavefront

is represented by only one element in the global arrays. We believe that this requirement

37

can be satisfied by restructuring the code and utilizing the shared memory.

3.5 Model for Speedup

In this section, we derive a model representing the speedup of our software-based atomic over

the system-provided atomic for both divergent and non-divergent kernels. For simplicity, this

model assumes that there is only one wavefront per workgroup.

In general, any GPU kernel involves three main steps; reading the input data from the

global memory, doing some computations, and writing the results back to the global memory.

The first and third steps are memory accesses, the second step can be divided into general

computations and atomic-based computations. So the total execution time of atomic-based

kernels is composed mainly of three components: memory access time, atomic execution

time, and computation time. The software-based atomic operation affects only the first and

second terms. The total execution time can be represented as:

T = tm +
n∑

i=1

tai + tc (3.1)

Where tm is the memory access time, ta is the atomic execution time, n is the number of

calls to atomic operation in the kernel, and tc is the computation time.

For simplicity, we ignore the possible overlapping between the computation and memory

accesses. The memory access time depends on the used path whether i.e., complete path or

fast path, however the atomic execution time depends on the threads divergence. Assuming

the kernel executes c, and f memory transactions through the complete and fast path respec-

tively, and time to execute each transaction is tcomp or tfast for CompletePath and FastPath,

respectively. Then equation 3.1 can be represented as:

38

T = (c. tcomp + f. tfast) +
n∑

i=1

tai + tc (3.2)

When our software-based atomic is used instead of the system-provided atomic, the first

and the second term of equation 3.2 are affected. For the first term, all of the memory

accesses except for stores of non-32 bit data are executed through the fast path. Then the

memory access time becomes (c + f + o).tfast, where o is the extra memory transactions

executed by the requesting and coordinator workgroups. So the memory access speedup can

be represented as:

Sm =
c. tcomp+f. tfast
(c+f+o).tfast

=
c. x. tfast+f. tfast

(c+f+o).tfast

= c. x+f

c+f+o

(3.3)

Where Sm is the memory access speedup, x = tcomp

tfast
is the speedup of a single memory access

when using fast path relative to the complete path. Since including a single system-provided

atomic in the code may force most of the memory accesses to follow the complete path, so f is

very small compared to c and can be removed from equation 3.3, so Sm becomes x
1+ o

c

. Since

x is significantly larger than one [8], then if o is less than c, the memory access speedup using

our software atomic becomes significantly larger than one. For memory-bound applications,

where the memory access time represents a major factor of the total execution time, using

our atomic can significantly speedup the performance as the experiments have shown.

To derive the speedup of atomic operations, we need to consider the details of handling

atomic operations using system-based and software-based approaches. Executing one system-

provided atomic operation concurrently by several threads is done serially, and hence requires

39

N · t1, where N is the number of threads concurrently executing the atomic operation. For

non-divergent kernels, N equals the total number of threads in the kernel. Moreover, t1 is the

time to modify a global variable through the CompletePath. By neglecting the computations

embedded within the atomic operation, t1 can be replaced with tcomp, where tcomp is the time

to execute a memory transaction through the CompletePath. So, the time required to execute

the system-provided atomic, tasystem , can be represented as:

tasystem = N · tcomp (3.4)

Executing a software-based atomic operation can be represented by:

tasoftware
= tRWGI + tCWG + tRWGP (3.5)

Where tRWGI is the time needed for the requesting workgroup to generate its increment

and updates the global arrays (section 3.4.2), TCWG is the time required by the coordinator

workgroup to generate the prefix sums and update the shared variables (section 3.4.3), and

finally tRWGP is the time needed by the requesting workgroup to generate the prefix sum

and return from the atomic operation (section 3.4.2).

Since the wavefront’s increment is calculated using atomic add operation to shared memory

(lines 13-18 in Figure 3.6), then tRWGI can be represented by 2 ·Nc · tl + 2 · tfast, where Nc

is the number of threads per workgroup concurrently executing the atomic; tl is the time to

modify a variable in the shared memory; and tfast is the time to execute memory transaction

through the FastPath. And 2 · tfast is the time for writing the address and the increment

to the global arrays (line 22-26 in Figure 3.6). Moreover, tCWG can be represented by

5 · tfast+Ncwg · tl+
Nwg

2
· tl, the first term corresponds to reading the workgroups increments,

and addresses, writing the prefix sums to the global memory, updating the workgroup’s

address and shared variable. The second term corresponds to the time needed to generate

the global increment using atomic add operation to the shared memory (line 27 in Figure

40

3.7), where Ncwg is the number of concurrent workgroups executing the atomic operation.

The third term is time needed to check the value of local addresses (lines 25 and 26 in Figure

3.7), where Nwg

2
is the average number of comparisons until reaching the dominant wavefront.

Finally, tRWGP equals 2 · tfast because it requires only reading the address and the prefix

sum from the global memory.

From the above discussion:

tasoftware

= ((2 ·Nc +Ncwg +
Nwg

2
) · xl + 9) · tfast (3.6)

where xl=
tl

tfast
and it is less than one by definition. For non-divergent kernels, we can

substitute N in equation 3.4 with Nc ·Ncwg and tcomp by x·tfast,where x = tcomp

tfast
is the speedup

of a single memory access when using FastPath relative to the CompletePath. Then tasystem

can be represented by:

tasystem = Nc ·Ncwg · x · tfast (3.7)

By comparing equation 3.6 by equation 3.7, we can see that the atomic operations speedup

tasystem
tasoftware

increases significantly as the number of workgroups increases. Furthermore, for

divergent kernels, the speedup is smaller than that of non-divergent kernels, because tasystem

is proportion to the number of threads concurrently executing the atomic operation, but

tasoftware
remains almost the same.

3.6 Evaluation

All of the experiments are conducted on a 64-bit server with Intel Xeon e5405 x2 CPU and

3GB RAM. The attached GPU device is ATI Radeon HD 5870(Cypress) with 512MB of

41

device memory. The server is running the GNU/Linux operating system with kernel version

2.6.28-19. The test applications are implemented using OpenCL 1.1 and built with AMD

APP SDK v2.4.

In all experiments, three performance measures are collected. The first is the total execution

time in nano-seconds. The second is the ratio of FastPath to CompletePath memory trans-

actions, and the third is the ALU:Fetch ratio that indicates whether the kernel is memory-

bound or compute-bound. Stream kernel analyzer 1.7 is used to get the second and third

metrics. For the second metric, the equivalent ISA code of the OpenCL kernel is generated,

then all memory transaction are counted. MEM RAT, and MEM RAT CACHELESS trans-

actions are considered as CompletePath and FastPath transactions respectively [8]. Note

that these metrics do not capture runtime information. For instance, the absolute numbers

of memory transactions following different paths are not revealed by these metrics. Each

run is conducted using 64, 128, and 256 threads per workgroup, and the best performance

is used to generate the graphs.

We conduct two sets of experiments to evaluate the performance of our software-based

atomic. The first set uses micro benchmarks to generally show the benefits of using the

software-based atomic on AMD GPU. And the second set evaluates the performance impact

of using atomic operations in MapReduce design. To achieve this, we first implement a base-

line MapReduce framework based on Mars. We then implement a single-pass output writing

design using atomic operations. The atomic operations are applied in both the thread level

and the wavefront level.

3.6.1 Micro Benchmarks

The first micro benchmark aims at identifying the overhead of executing the system-provided

atomic operation. The code of this microbenchmark is simple. Each thread only executes

42

the atomic operation to increment a global variable by the global index of the thread. The

kernel does not include any memory transaction, for our goal is to measure the overhead of

executing the atomic operation by itself.

0

20000

40000

60000

80000

100000

120000

140000

160000

2 4 8 16 32 64 128

Workgroups

K
er

n
el

 e
xe

cu
ti

o
n

 t
im

e
(n

se
c)

atom_add software_atom_add

Figure 3.8: The execution time of system and software-based atomic

As shown in Figure 3.8, for small numbers of workgroups, (e.g., less than 32 workgroups),

the performance of our software-based atomic is slower than the system-provided atomic

by 0.5 fold on the average. As the number of workgroups increases, the speedup of our

atomic increases until reaching 1.9 folds for 128 workgroups. This can be explained by the

model discussed in Section 3.5. As indicated in equations 3.6 and 3.7, the execution time

of the system atomic operation increases linearly with the number of concurrent threads.

However, the execution time of the software-based atomic is proportional to the number of

concurrent wavefronts. Consequently, as the number of workgroups increases, our atomic

add implementation can significantly outperforms the system one.

The second micro benchmark aims at studying the impact of atomic operations on the

performance of the memory transactions. The code of this micro benchmark looks very

similar to the previous one, with another memory instruction being added.

As shown in Figure 3.9, the speedup of our atomic add implementation with regard to the

system-provided atomic add operation increases significantly as the number of workgroups

43

0

50000

100000

150000

200000

250000

300000

350000

4 8 16 32 64 128
Workgroups

K
er

n
el

 e
xe

cu
ti

o
n

 t
im

e
(n

se
c)

atom_add software_atom_add

Figure 3.9: The execution time of system and software-based atomic when associated with

memory transactions

grows. This is due to that the performance of CompletePath is much worse than FastPath.

Although our atomic add implementation performs more loads and stores to global memory

compared to the system atomic add. Also, the ratio of complete to FastPath transactions

is 3:0 and 0:10 for the system-provided atomic add and our software-based atomic add,

respectively.

3.6.2 MapReduce

We use three test applications that are commonly used in other MapReduce studies such

as Mars and MapCG. These applications involve both variable and fixed sized output. in

addition one of them execute only the map phase and the others executes both map and

reduce phases. These applications include:

• Matrix Multiplication (MM). MM accepts two matrices X and Y as input and

outputs matrix Z. Each element zi,j in Z is produced by multiplying every element

in row i of X with the corresponding element in column j of Y and summing these

44

products. The MapReduce implementation of MM includes only the map phase, where

each map task is responsible for calculating one element of the output matrix. Since

all map threads access the same number of elements of X and Y and executes the

same number of operations, then matrix multiplication is an example of non-divergent

kernels whose threads execute the atomic operation at the same time.

• String Match (SM) SM searches an input keyword in a given document and outputs

all matching locations. The MapReduce implementation of SM includes only the map

phases. Each map task reads a chunk of the input document, character by character,

and outputs the locations of any found matching words. String match is an example

of divergent kernels.

• KMeans (KM): KM is an iterative clustering algorithm. Each iteration takes a set

of input points and a set of clusters, assigns each point to a closest cluster based on

the distance between the point and the centroid of the cluster, and recalculates the

clusters after. The iteration is repeated until clustering results converge (In our results

we run only one iteration). The MapReduce implementation of KM include both map

and reduce phases. The map function attaches the assigned points to their closest

clusters, and the reduce function calculates the new coordinates of a cluster based on

the attached points. Note that, KMeans also is an example of non-divergent kernels

whose threads execute the atomic operation at the same time.

Matrix multiplication performance is shown in Figure 3.10. As we can see, the speedup of

using software-based atomic add over the system atomic add increases as the input matrices

get larger. Specifically, the speedup improves from 0.62 folds for a 8X8 input to 13.55 folds

for a 256X256 input. The main reason is that for larger inputs, there will be more memory

access, exacerbating the memory performance of using CompletePath. By analyzing the

ISA, we realize that the ratio of the FastPath to CompletePath memory accesses is 30:0 and

45

3:28 for software-based atomic and system-provided atomic implementations, respectively.

Note that, since the number of workgroups is constrained by the maximum number of concur-

rent workgroups, for matrices of dimensions greater than 64X64, every thread manipulates

several elements in the output matrix instead of one element.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

8X8 16X16 32X32 64X64 128X128

Matrix Dimension

K
er

n
el

 E
xe

cu
ti

o
n

 T
im

e
(n

se
c)

PerThread Atomic PerWavefrontAtomic software_atom_add

0

5E+07

1E+08

2E+08

2E+08

128X128 256X256

Figure 3.10: The execution time of Matrix multiplication using system and software-based

atomic operation

For String Match, we run String match using a dataset of size 4 MB [66] to search different

keywords. For each keyword, we vary the number of workgroups from 32 to 128. As shown in

Figure 3.11, the performance of the software-based atomic is better than that of the system-

provided atomic in almost all cases for the first three queries. More specifically, the average

speedup is 1.48 folds.

Two reasons contribute to this small speedup compared to the other MapReduce applica-

tions; first, measuring the ALU:Fetch ratio indicates that this application is compute-bound

since the ratio is highly greater than one i.e., 17.55. Second, string match is an example

of divergent kernels where the atomic operation speedup is not significant as shown by the

model in section 3.5.

46

Note that, for the fourth query, the performance of our atomic is significantly worse than

the system-provided atomic. This query returns significantly higher number of matches

compared to the other queries. Specifically, the number of matches is 7, 87, 1413, and 20234

for first, second, third, and fourth query respectively. A larger number of matches requires

more memory transactions to write the matches as well as more computations. We realize

that writing the matches are done through the FastPath even when system-provided atomic

is used, so increasing the number of matches only contributes to increase of the compute-

boundness of the application. Note that the number of read operations is the same for four

queries. In other words, the software atomic approach does help improve the memory read

performance, thus we observe performance improvements for the first and second queries with

less computation. For the fourth query, with more amounts of computation, the overhead

incurred by the software atomic approach for writing results start to offset the benefit of

using FastPath for read accesses.

By analyzing the ISA of both kernels using the software-based atomic and the system-

provided atomic, we realize that the ratio of FastPath to CompletePath memory accesses is

12:0 and 1:19 for the software-based atomic and the system-provided atomic, respectively.

This result also reveals one important fact that is not explicitly mentioned in the AMD

OpenCL Guide [8]; although in [8], they mentioned that non-32 bits memory transaction

are executed through the CompletePath, in the kernel that uses the software-based atomic,

all transactions are executed through the FastPath although input file is read character by

character. In-depth mapping of OpenCL kernel instructions to ISA instructions have shown

that only stores of char are executed through the CompletePath (loads of char are executed

through the FastPath).

For KMeans, we run it for different number of points ranging from 512 to 8192. As shown

in Figure 3.12, the speedup gets improved from 15.52 folds for 512 points to 67.3 folds for

8192 points. Again, this is because of there are more memory accesses for larger inputs,

47

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

32 64 12
8 32 64 12
8 32 64 12
8 32 64 12
8

Q1 Q2 Q3 Q4

Workgroups

K
er

n
el

 E
xe

cu
ti

o
n

 T
im

e
(n

se
c)

atom_add software_atom_add

Figure 3.11: The execution time of string match using system and software-based atomic

amortizing the overhead of the software atomic add.

Although the performance of executing the system-provided atomic operation may be better

than the performance of the software-based atomic in case of divergence as illustrated by the

model in section 3.5, the results show that the performance of per thread atomic implementa-

tion of MapReduce almost equals the per wavefront atomic implementation for both matrix

multiplication and KMeans. This returns to the high number of memory accesses in theses

kernels which makes the execution time of this atomic operations insignificant compared to

the memory access time.

3.7 Chapter Summary

In this chapter, we first quantify the effects of using the system-provided atomic operations

on the performance of simple kernels and MapReduce implementations using AMD GPUs.

48

0

5000000

10000000

15000000

20000000

25000000

512 1024 2048 4096 6144

Number of Points

K
er

n
el

 e
xe

cu
ti

o
n

 t
im

e
(n

se
c)

PerThread Atomic PerWavefrontAtomic software_atom_add

0

1E+07

2E+07

3E+07

4E+07

8192

Figure 3.12: The execution time of map phase of KMeans using system and software-based

atomic operation

Then we propose a novel software-based atomic operation that can significantly improve

the performance of memory-bound kernels. Using this software-based atomic operation,

we have developed an efficient MapReduce implementation for AMD GPUs. We evaluate

this MapReduce framework using three applications that follow different divergence patterns

and ALU:Fetch ratio. The experimental results show that for memory-bound kernels, our

software-based atomic add can deliver an application kernel speedup of 67-fold compared to

one with a system-provided atomic add. The main shortcoming of the proposed software-

based atomic is that it supports limited number of workgroups. In the next chapter, we

propose an atomic-free design for MapReduce that can efficiently handle applications running

any number of workgroups.

49

This page intentionally left blank.

50

Chapter 4

StreamMR: An OpenCL MapReduce

Framework for Heterogeneous Devices

4.1 Overview

To address the limitations of the MapReduce implementation introduced in Chapter 3, we

propose StreamMR, an atomic-free MapReduce framework optimized for AMD GPUs. The

design and mapping of StreamMR provides efficient atomic-free algorithms for coordinating

output from different threads as well as storing and retrieving intermediate results via hash

tables. StreamMR also includes efficient support of combiner functions, a feature widely used

in cluster MapReduce implementations but not well explored in previous GPU MapReduce

implementations.

Using OpenCL, StreamMR can run on any OpenCL-enabled device. Although OpenCL

offers code portability across heterogeneous devices, achieving performance portability re-

mains a challenging problem due to the architectural differences between different devices.

To cope with this problem, we propose other optimizations especially in the reduce phase,

51

for StreamMR to behave efficiently on other devices not suffering from penalties of using

atomic operations. As a proof of concept, we evaluate the optimized version of StreamMR

on NVIDIA GPUs, which shows StreamMR efficiency compared to state-of-the-art MapRe-

duce implementations. The resulting MapReduce implementation is an efficient and portable

framework across heterogeneous devices; such framework can be viewed as the initial ground-

work towards achieving our ultimate goal.

The rest of this chapter is organized as follows: In Section 4.2 and 4.3, we present the

design and implementation details of StreamMR. We discuss the optimization mechanisms

in Section 4.4 and 4.6. In Section 4.5, we provide details about the APIs exposed by our

implementation. We present the results and discussions in Section 4.7. Finally, Section 4.8

concludes the chapter.

4.2 Design Overview

In light of the discussion in the previous chapter, our MapReduce implementation should

completely avoid the use of atomic operations to ensure efficient memory access, through the

FastPath, on AMD GPUs. We also believe that being atomic-free improves the scalability

of the framework with the still increasing number of cores per device, and thus, beneficial

for NVIDIA GPUs as well.

Specifically, there are two major design issues in a MapReduce runtime framework on GPUs:

1) how to efficiently and correctly write output from the large number of threads to the global

memory and 2) how to efficiently group intermediate results generated by the map function

according to their keys.

52

4.2.1 Writing Output with Opportunistic Preprocessing

As mentioned above, using global atomic operations in the MapReduce framework can incur

severe performance penalties on AMD GPUs. While Mars implementation does not employ

atomic operations, it requires expensive preprocessing kernels to coordinate output from

different threads to the global memory. In particular, the computation in the counting

kernel is repeated in the actual compute (map or reduce) kernel; this redundant computation

results in wasted compute resources.

StreamMR introduces a two-pass atomic-free algorithm that enables different threads to ef-

ficiently write their output to the global memory. Specifically, each workgroup maintains a

separate output buffer in global memory. In the first pass, these output buffers are preallo-

cated according to a user-defined size. Each workgroup independently writes the output to

its own buffer without synchronizing with other workgroups. When the preallocated buffer

is full, the compute kernel (map or reduce) switches to a counting procedure that only counts

the sizes of different output records (without actually writing them), similar to the Mars

design. In the second pass, an overflow buffer is allocated for the workgroups that use up

their preallocated buffer in the first pass, using the sizes computed in the counting procedure.

A separate kernel is then launched to handle the unwritten output of the first pass.

The StreamMR output design eliminates the need for global atomic operations. It can also

greatly save the preprocessing overhead compared to Mars. For applications with output sizes

that can be easily estimated, e.g., Matrix Multiplication and KMeans, the counting procedure

and the second pass can be skipped altogether, yielding the most efficient execution. That is,

the preprocessing only happens opportunistically. For applications with output sizes that are

hard to predict, StreamMR saves the counting computation corresponding to preallocated

buffers during the first pass, whereas Mars performs the redundant counting computation for

all output. In addition, in StreamMR, we record the output size per workgroup as opposed

53

to recording output size per thread in Mars, thus improving the prefix summing performance

(as fewer size records need to be dealt with in the prefix summing).

4.2.2 Grouping Intermediate Results with Atomic-Free Hash Ta-

bles

Like MapCG, StreamMR organizes the intermediate output generated by the map phase us-

ing hash tables. However, MapCG uses atomic operations on global variables, e.g., compare-

and-swap, to implement the hash table, which will incur performance penalty caused by

the slow CompletePath on AMD GPUs. To address this issue, StreamMR maintains one

hash table per wavefront, thus removing the need of using global atomics to coordinate up-

dates from different workgroups to the hash table. Also, as explained in the next section,

StreamMR leverages the lock-step execution of threads in a wavefront as well as atomic

operations on local variables (i.e., variables stored in the local memory) to implement safe

concurrent updates to the hash table of each wavefront. During the reduce phase, a reduce

thread reduces the intermediate output associated with a specific entry in all hash tables,

i.e., hash tables of all wavefronts.

4.3 Implementation Details

In StreamMR, each workgroup maintains four global buffers as shown in Figure 4.1. Among

these buffers, Keysi and V aluesi store keys and values of intermediate results. HTi is the

hash table of wavefront i. Figure 4.2 depicts the details of the hash table design. Each

entry in the hash table contains two pointers to the head and tail of a linked list (hash

bucket) stored in KV Listi. The head pointer is used to explore the elements stored in a

hash bucket, and the tail pointer is used when appending a new element. Each element in

54

KV Listi associates every key to its value, and it contains a pointer to the next element in

the linked list.

WF1

WG1

WF2 WF3

WG2

WF4 WF5

WG3

WF6

Keys1 Values1 Keys2 Values2 Keys3 Values3

WG:Workgroup WF:Wavefront HT:HashTable KVList:KeysValuesLinkedList

KVList1 KVList2 KVList3

HT1 HT2 HT3 HT4 HT5 HT6

Figure 4.1: Main data structures used in the map phase of StreamMR

4.3.1 Map Phase

Initially, every map thread executes the map function on its assigned input key/value pair.

A map thread then collaborates with other threads on the same workgroup i to determine its

write location on the global buffers, i.e., Keysi, V aluesi, and KV Listi without conflicting

with other threads in the same workgroup. This can be efficiently done using the system-

provided atomic operations on local variables, leveraging the fact that atomic operations on

local variables does not force memory access to follow the CompletePath.

To safely update the hash table HTi, a single entry of the hash table should be updated by

only one thread in the workgroup, this thread is named master thread. Before the master

thread updates the hash table, all threads in the workgroup should be synchronized. However,

since the threads of the workgroup may diverge based on the input characteristics, deadlock

can occur during the synchronization. To address this issue, we decide to use one hash table

per wavefront, so all threads in a wavefront are synchronized by the lock-step execution.

55

.

.

.

.

.

.

.

.

.

Hash Table
KeysValues Linked List

Keys

Values

1 2 4

3

5

1, 2: Pointers to the head and tail of the linked list
 associated with the hash entry i.
3: Offset and size of the key
4: Offset and size of the value
5: Pointer connecting the elements of the linked list

1

2

3

i

Figure 4.2: Details of the hash table

All threads of a wavefront use three auxiliary arrays stored in shared memory to coordinate

concurrent updates to the hash table of this wavefront. The first array is HashedKeys.

Thread i writes the hash of its key to its corresponding entry HashedKeys[i]. The second

array is Slaves, which is used to identify themaster thread of each hash entry. The third array

KeyValListId is used by the master thread to update the links on the linked list associated

with the hash entry. In updating the hash table, all threads in the wavefront go through

three steps as shown in Figure 4.3. First, all active threads in the wavefront write the hash

of their keys to the HashedKeys array and the index of the inserted record to KV Listi to

the KeyValListId array. Second, every thread reads the hash keys of all other threads, and

the first thread with a certain hash key is considered as a master thread. For example, if

thread t1, t3 and t5 all have the same key, then t1 will be marked as the master thread.

Finally, the master thread t1 reads the indices of its slave threads, i.e., KeyValListId[3], and

KeyValListId[5], and then it updates the tail of the hash entry HashedKeys[1] to refer to the

slave records, in addition to updating the links of these records to form the extended linked

list as shown in Figure 4.2.

Note that, storing the map output into hash tables is only needed for applications with

56

t0 t1 t2

t3

t4

t5

KeyValListId HashedKeys

S
te

p
1

t0 t1 t2

t3

t4

t5

t0 t1 t2

t3

t4

t5

Slaves

0 1 1

0 1 1

S
te

p
2

S
te

p
3

Step1: Active threads in the wavefront update their corresponding entries in
 HashedKeys and KeyValListId.
Step2: Active threads read all hashed keys to determine which thread will be
 a master thread and update the Slaves array.
Step3: The master thread i reads the KeyValListId of the slave threads and
 updates the hash table entry = HashedKeys[i]

Wavefront Threads

Figure 4.3: Steps for updating the hash table assuming wavefront of 6 threads, and t1, t3,

and t5 are the active threads

reduce phase. For applications with map only phase like Matrix Multiplication, the map

output is written directly to the shared global buffer i.e., Keysi, V aluesi, and KV Listi.

Specifically, threads in a workgroup collaborate using atomic operations to local variable for

each thread to write in a separate location without incurring conflicts. This differs from

MapCG [17] where writing to the hash table and launching of the reduce phase is required

for all applications.

4.3.2 Reduce Phase

Reducing the key/value pairs from different hash tables is not a trivial task. Since a single

hash entry may contain different keys for different hash tables as depicted in Figure 4.4(a),

care must be taken to insure all keys are handled.

57

Specifically, a single reduce thread should be assigned to every unique key, to reduce the

associated values. To identify this thread, we run a kernel (named master identification

kernel) with number of threads equals the total number of entries of all hash tables i.e.,

number of entries per hash table × number of hash tables. Each thread examines a single

hash entry in hash table i, passes through all associated keys, and compares every key to

keys associated with the same hash entry in previous hash tables i.e., hash table 0 to i-1. If

an equivalent key exists in a previous hash table, this key is marked as a slave key, otherwise

it is marked as a master key as shown in Figure 4.4(b). The reduce kernel is then launched

with the same number of threads as the master identification kernel. Every thread handles a

single hash entry, passes through all associated keys, only when the key is a master key, the

thread reduces the values attached to this key in all subsequent hash tables. Finally, similar

to the map phase, threads in the same workgroup collaborate using the system-provided

atomic operations on local variables to write their final key/value pairs to the global buffers.

K1 K1 K3 K1 K2 K3 K1 K2

HT1 HT2 HT3

1 0 1 0 1 0 0 0

(a) Hash Entries

 (b) Master Keys

Figure 4.4: (a) Keys associated to a specific hash entry in three hash tables, and (b) the

output of the master identification kernel

For applications with perfect hashing functions, the master identification kernel can be

skipped. Thus the reduce kernel is directly invoked with number of threads equals the

number of hash entries in one hash table. And every thread reduces the values of a specific

hash entry in all hash tables. StreamMR can switch between the previous implementations

according to the specification of the application provided by the programmer.

Experiments show that the above design incurs significant overheads for applications gener-

58

ating large number of intermediate key/value pairs like wordcount. However, these overheads

are amortized by the efficient memory access through the FastPath on AMD GPUs. On other

devices not suffering from memory access penalties, these overheads may not be amortized.

So, we optimize the reduction algorithm as detailed in Section 4.3.2.1 to scale well with the

size of the intermediate output and the number of wavefronts (hash tables) of the map phase,

which is expected to increase with the input dataset size.

4.3.2.1 Scalability Improvement

To avoid passing back and forth through the hash tables generated from the map phase,

we initially link all hash tables into a single master hash table. Consequently, we efficiently

reduce the values attached to every unique key by passing only through the entries of the

master hash table.

Basically, the optimized reduce phase executes two kernels. The first kernel (named joining

kernel) joins all hash tables together into only one hash table (named master hash table).

And the second kernel (named reducing kernel) applies the user-defined reduce function to

every unique key attached to the master hash table.

In particular, the joining kernel is launched with number of threads equals the number of

hash entries per hash table. Where every thread i is responsible for linking the key/value

pairs attached to hash entry i of hash tables 1 to n to the same hash entry of hash table 0

(master hash table). Note that, the complexity of this kernel is function of the number of

hash tables generated from the map phase. To improve the load balancing and scalability of

this kernel, we expose more parallelism, by separating it into two kernels. In the first kernel,

each thread links the key/value pairs attached to a certain hash entry from only a specific

number of hash tables. The second kernel is then launched to link all already linked pairs

to hash table 0. Experiments show that this two-level joining can significantly improve the

59

reducing performance by more than 6-fold speedup.

K3

K1 K1 K3 K1 K2 K3 K1 K2

HT1 HT2 HT3

(a) Hash Entries

K1 K1 K3 K1 K2 K1 K2

HT1 HT2 HT3

(b) Hash Entries after Joining

K2 K1 K1 K1 K1 K2 K3 K3

HT1 HT2 HT3

(c) Hash Entries after Joining and Sorting

Figure 4.5: (a) Keys associated to a specific hash entry of three hash tables, (b) the output

of the joining kernel, and (c) the output of the joining kernel when sorting is applied

For the reducing kernel, it is also launched with number of threads equals the number of

hash entries per hash table. Every thread i reduces the values associated to every unique

key within hash entry i of the master hash table. As shown in Figure 4.5(b), this requires

passing through the linked list several times, one for every unique key. To mitigate this,

we keep the keys sorted within every linked list while inserting them in the map phase and

joining them in the reduce phase as shown in Figure 4.5(c) and explained in Section 4.4.3.

Experiments show that the above approach is more efficient than the redundancy-based

approach described in our previous work [51], especially for applications generating large

number of intermediate key/value pairs. We quantify the benefits from the optimized reduc-

tion design compared to the initial design in Section 4.7.

4.4 Optimizations

StreamMR provides several optimizations in addition to the basic design.

60

4.4.1 Map with Combiner

If the combiner function is available, the map phase can be modified so that instead of

writing the map output directly to the global buffer, only one combined value is written

per key. Specifically, the master thread generates the combined value of the slave threads,

and updates the hash table accordingly. Since the map outputs are combined before being

written to the global buffer, the number of global memory transactions can be significantly

reduced.

In StreamMR, keys and values produced by the slave threads are written to the shared

memory to improve the combining performance. For keys/values with variable sizes, the

available shared memory may not be sufficient to hold the output from all threads in the

memory. Upon such an overflow, the number of active threads per wavefront is reduced from

64 threads (in case of AMD Radeon HD 5870 GPU) to 32 threads. Threads from 0 to 31

continue their processing and threads from 32 to 64 remains idle. When the first half of

threads complete their processing, the other half starts. While processing the active threads,

the used sizes are compared to the allocated sizes. If the overflow occurs again, the number

of active threads is reduced to 16 threads, and so on until the used sizes fit the available

shared memory. The overhead of this mechanism will be evaluated in Section 4.7.

4.4.2 Reduce with Combiner

To further improve the reduce performance, the reduction can be applied on-the-fly. That

is, instead of generating a list of values for every unique key, the combiner function can

be applied directly to reduce every two values, thus avoiding the memory accesses required

to generate and read the list of values. So instead of executing two joining kernels and

one reducing kernel, combining is applied while linking the hash entries, thus avoiding the

reducing kernel. Such a design allows more parallelism to be exploited during the reduction

61

because reducing a single hash entry is parallelized.

4.4.3 Optimized Hash Buckets

For efficient traversal of the linked list attached to each hash entry, within the reducing

kernel, we maintain the list sorted while inserting the elements in the map phase and linking

them in the reduce phase. This can significantly reduces the number of memory accesses

especially for applications generating large number of intermediate outputs. Experiments

have shown that this optimization can improve the reduce performance by more than 2.5-fold

speedup.

To further improve the traversal performance; we maintain another pointer in the linked

list to connect sublists of different keys. That is, instead of traversing every element in the

linked list, only the first elements of these sublists are traversed.

4.4.4 Efficient Storing of Key/Value Sizes

We have realized that the storage requirement of the key/value sizes, shown in Figure 4.2,

is linear with the number of key/value pairs. For applications with fixed key/value size, it is

enough to store only one key/value size for all pairs. In StreamMR, we enable this feature

according to the specification of the application, thus reducing the time required to store

and retrieve the output pairs.

4.4.5 Image Memory Input

This optimization aims at improving memory access performance. When the input dataset

is bound to the texture memory, the L1 and L2 texture caches can help reduce access to the

62

global memory. When the input dataset is heavily reused by the kernel, we have found that

this optimization can significantly improve performance on AMD GPUs.

4.5 StreamMR APIs

StreamMR exposes few APIs, shown in Table 4.1, that are similar to the APIs offered by

existing MapReduce implementations. Some of them are user-defined that need to be imple-

mented by the programmer and two of them are provided by the framework to coordinate

the writing of the output to the global buffer i.e., emitIntermediate and emit. Only when

the combiner feature is enabled, combine and combineSize functions should be implemented.

4.6 Discussion

One limitation of using a separate buffer for each wavefront is that it can cause inefficient

memory utilization, especially when the size of the initial buffer is too large. This limitation

can be alleviated for applications with relatively predictable output sizes. The multi-buffer

design may also cause inefficiency when the final output is copied back to the host memory.

Assuming the allocated output buffers for all workgroups are stored in contiguous memory

locations in the global memory, there are two options for transferring the final output back

to the host memory. The first option is to copy only the used buffer from each workgroup.

This requires multiple transfers i.e., one per workgroup. The second option is to copy all

allocated buffers using only one transfer. In this case other unneeded buffers will be copied

as well. Experiments have shown that the second option is more efficient, since it requires

communicating with the host only once. However, the second option is still less perfect.

To cope with this limitation, we keep track of the size of the output generated by each

workgroup, and allocate one contiguous buffer for all workgroups. A final kernel is then

63

User-defined functions

void map(global void* inputDataset, global void* key, global
void* value)
Applies the map function to an input

key/value pair

void reduce(global void * key, valueListItem * ValueList, global
char* interKeys, global char* interValues)
Reduces a list of values

uint hash(void* key, uint keySize)
Returns the hashing of a given key

uint KeyEqual(void * key1, uint key1Size, void * key2, uint key2Size)
Compares two keys. Returns 1 if they are equal,

2 if key1 > key2, and 3 if key2 > key1

void combine(void * value1, void* value2, int stage)
Combines two values. Combines value2 into

value1 if stage is 0, Initializes value1 by

value2 if stage is 1, and applies postprocessing

to value1 if stage is 2

int combineSize()
Returns the expected size of the combined value

System-provided functions

void emitIntermediate(void * key, uint keySize, void * value,)
uint valueSize)
Emits an intermediate key/value pair

void emit(void * value, uint valueSize)
Emits a final value

Table 4.1: StreamMR APIs

64

launched to copy the output from the separate buffers into the contiguous buffers. Thus,

only the useful output is copied back to the host. Experiments have shown that this approach

provides the best performance.

4.7 Evaluation

In this section, we evaluate the performance of StreamMR against Mars and MapCG using

four sets of experiments. In the first and second set, four representative applications are used

to show the speedup over Mars and MapCG respectively. In the third set, the overheads

of the overflow handling mechanisms i.e., global and local overflow are quantified. The

effectiveness of using the Image memory is studied in the fourth experiment. Finally, we

quantified the benefits of the scalable reduce design presented in Section 4.3.2.1.

4.7.1 Experimental Platform

All experiments were run on two servers - one equipped with AMD GPU and another one

equipped with NVIDIA GPU. The first server is a 64-bit server with an Intel Xeon E5405 x2

CPU (2.00GHz) and 3GB of RAM. The equipped GPU is ATI Radeon HD 5870 (Cypress)

with 1024MB of device memory. The server is running the GNU/Linux operating system

with kernel version 2.6.28-19 and fglrx 8.84.5 GPU driver. The second server is a 64-bit server

with an Intel Celeron E3300 x2 CPU (2.50GHz) and 2GB of RAM. The equipped GPU is

NVIDIA Tesla C2050 (Fermi) with 3071MB of device memory. The server is running the

GNU/Linux operating system with kernel version 2.6.32-5 and GPU driver version 285.05.33.

All frameworks and testing applications are implemented with OpenCL 1.1 and compiled

with AMD APP SDK v2.5.

65

4.7.2 Workloads

We use four test applications that are commonly used in other MapReduce studies such

as Mars and MapCG. These applications involve both variable and fixed sized output, in

addition two of them execute only the map phase and the others executes both map and

reduce phases. These applications include:

• Matrix Multiplication (MM). MM accepts two matrices X and Y as input and

outputs matrix Z. Each element zi,j in Z is produced by multiplying every element

in row i of X with the corresponding element in column j of Y and summing these

products. The MapReduce implementation of MM includes only the map phase, where

each map task is responsible for calculating one element of the output matrix.

• String Match (SM) SM searches an input keyword in a given document and outputs

all matching locations. The MapReduce implementation of SM includes only the map

phases. Each map task reads a chunk of the input document, character by character,

and outputs the locations of any found matching words.

• KMeans (KM): KM is an iterative clustering algorithm. Each iteration takes a set

of input points and a set of clusters, assigns each point to a closest cluster based on

the distance between the point and the centroid of the cluster, and recalculates the

clusters after. The iteration is repeated until clustering results converge (In our results

we run only one iteration). The MapReduce implementation of KM include both map

and reduce phases. The map function attaches the assigned points to their closest

clusters, and the reduce function calculates the new coordinates of a cluster based on

the attached points. Note that the combiner function is enabled for both map and

reduce phases in StreamMR in our experiments.

• WordCount (WC): WC is commonly used to study the performance of MapReduce

66

implementation. It accepts an input file and outputs the number of occurrences of each

word in this file. The MapReduce implementation of WC includes both map and reduce

phases. The map function reads the assigned portion of the input file, and outputs

one as the number of occurrences of every emitted word. The reduce function accepts

the values of a specific word and outputs only one value representing the number of

occurrences of this word in the whole file. Note that the combiner function is enabled

for both map and reduce phases in StreamMR in our experiments. Also to have same

hash collisions for the hash table of StreamMR and MapCG, we allocate the same

number of hash entries.

For each one of the testing applications, we use three input datasets, i.e., Small (S), Medium

(M) and Large (L) whose sizes are given in Table 4.2. The main performance metric is the

total execution time, measured from the transformation of the input from host to device to

copying the output back to the main memory. The speedup of X over Y is defined as the

total execution time of Y divided by the total execution time of X. We repeat each run five

times and report the average speedup when the variance of the runs is negligible, otherwise

we report the confidence intervals in addition to the average speedup and repeat each run

at least ten times. For each MapReduce framework, we try all possible workgroup sizes, and

report the best results only. We also assume the size of the hash table is large enough to

retain the characteristics of the hashing functions.

Applications Dataset Size
Wordcount(WC) S: 10MB, M: 40MB, L: 80MB
MatrixMultiplication(MM) S: 256, M: 512, L:1024
KMeans(KM) S: 8192 points, M: 32768, L: 131072
StringMatch(SM) S: 16MB, M: 64MB, L: 100MB

Table 4.2: Dataset sizes per application

67

4.7.3 Comparison to Mars

We first evaluate the performance of StreamMR against Mars with four test applications.

In order to execute the same implementation of Mars, which is originally implemented in

CUDA, on AMD and NVIDIA GPUs, we have reimplemented Mars 1 with OpenCL. The

bitonic sort and scan algorithms available in the AMD APP SDK are used to implement the

sorting and scanning phases of Mars.

As shown in Figure 4.6 and Figure 4.8, StreamMR outperforms Mars for almost all testing

applications with speedups between 0.9 to 3.5 for AMD GPU and between 1.1 to 10.0 for

NVIDIA GPU. For applications with the map phase only, i.e. MM and SM, the advantage

of StreamMR comes from the reduced preprocessing overhead (counting and prefix summing

phases as detailed in Chapter 2). To better understand the performance gain of StreamMR

over Mars, we break down the execution time of the large input dataset into five phases,

i.e., preprocessing, map, group, reduce, and copy result (from GPU to CPU), as shown in

Figure 4.7 and Figure 4.9. To get normalized times, the execution times of each phase is

divided by the total execution time of the corresponding Mars run. For MM, the Mars

preprocessing overhead is 5.7% and 4.9% of the total execution time in Mars for AMD GPU

and NVIDIA GPU respectively. Since the output size is fixed, the preprocessing time of

MM is negligible in StreamMR. As a consequence, StreamMR outperforms Mars by 1.02

and 1.14 times on the average for AMD GPU and NVIDIA GPU respectively. On the other

side, in SM, since the size of the output is variable, Mars preprocessing phases, especially

the counting phase consumes significant portion of the total execution time. Specifically,

the counting phase passes through the whole file and searches for matches to accurately

determine the size of the output of each map task. These preprocessing phases represent

49.5% and 40.1% of the total execution time of Mars on the average for AMD GPU and

NVIDIA GPU respectively. So our framework better improves the performance by 1.86-fold

1Mars version 2 released on 10th November 2009

68

and 1.58-fold speedup on the average for AMD GPU and NVIDIA GPU respectively.

For KM, as shown in Figure 4.7 and 4.9, although the overhead of Mars preprocessing kernels

is small i.e., 5.8% of the total time, the speedup of our framework over Mars is high i.e.,

2.53-fold and 2.66-fold speedup on the average for AMD and NVIDIA GPUs respectively.

Particularly, the 95-confidence interval is [1.9,2.3], [2,2.2] and [2.9, 3.9] for small, medium

and large datasets respectively for AMD GPU. This performance can be attributed to two

reasons; first, the efficiency of the hashing-based grouping over sorting-based one which

results in reducing the number of accesses to the global memory. Second, the larger number

of threads contributing in the reduce phase through the joining kernel and the combiner

function which results in improving the reduce time.

For WC, StreamMR achieves 3.41-fold and 8.66-fold speedup on the average compared to

Mars for AMD and NVIDIA GPUs respectively as shown in Figure 4.6 and Figure 4.8. This

comes mainly from avoiding the time-consuming sorting phase of Mars, that consumes more

than 50% and 90% of the total execution time for AMD and NVIDIA GPUs respectively as

shown in Figure 4.7 and Figure 4.9. In addition, StreamMR reduces the size of intermediate

output due to the use of the combiner function, thus significantly reducing the number of

accesses to the global buffer especially because WC generates large number of intermediate

output.

4.7.4 Comparison to MapCG

As we discussed earlier, state-of-the-art MapReduce frameworks in CUDA use atomic oper-

ations to coordinate the output from different threads. To fairly evaluate atomic-based

MapReduce designs on AMD as well as NVIDIA GPU, we implemented MapCG using

OpenCL. Specifically, in the map phase, all threads collaborate using global atomic opera-

tions i.e., atomic-add and atomic-compare-and-swap to write the intermediate output into

69

Figure 4.6: Speedup of StreamMR over Mars using small, medium, and large datasets for
AMD Radeon HD 5870

Figure 4.7: Execution time breakdown of Mars and StreamMR using large dataset for AMD
Radeon HD 5870

Figure 4.8: Speedup of StreamMR over Mars using small, medium, and large datasets for
NVIDIA Fermi

70

Figure 4.9: Execution time breakdown of Mars and StreamMR using large dataset for
NVIDIA Fermi

global buffers and group this output using a single hash table. In our implementation, we set

the size of the hash table to the aggregate sizes of the hash tables used in StreamMR. Instead

of calling global atomic operation each time a thread writes to a global buffer, MapCG uses

memory allocator. Only a single thread per wavefront executes global atomic-add operation

to reserve certain bytes from the global buffer, then all threads in a wavefront collaborate

using atomic-add operation to local memory to consume this reserved buffer. In our imple-

mentation, we reserve the maximum possible global buffer to avoid possible overflow in the

allocated global buffers. Note that, In MapCG, grouping the output using the hash table is

necessary even for applications without reduce phase like Matrix Multiplication. Finally, in

the reduce phase, we assign each hash entry to a single thread to generate the final output.

As we discussed in Chapter 2, atomic operations on AMD GPUs can force all memory

accesses to use a slow CompletePath instead of the normal FastPath, thus can result in severe

performance degradation for memory-bound applications. StreamMR addresses this issue

with an atomic-free design. As shown in Figure 4.10 and Figure 4.11, for MM, StreamMR

significantly outperforms MapCG, i.e., with an average speedup of 28.7-fold. It turns out

that the ALU:Fetch ratio (measured by AMD APP Kernel Analyzer v1.8) of MM is 0.19.

Such a low ALU:Fetch ratio suggests that MM is indeed a memory-bound application. On

the other hand, the ALU:Fetch ratio of SM is very high, i.e. 4.94, suggesting that SM is

71

more compute-bounded. Consequently, StreamMR improves the performance over MapCG

by 1.8-fold speedup on the average for SM.

Figure 4.10: Speedup of StreamMR over MapCG using small, medium, and large datasets
for AMD Radeon HD 5870

Figure 4.11: Execution time breakdown of MapCG and StreamMR using large dataset for
AMD Radeon HD 5870

Although NVIDIA GPUs do not incur severe penalty from using atomic operations, the

results shown in Figure 4.12 and Figure 4.13 suggests that StreamMR behaves better than

MapCG by 1.1-fold speedup on the average for both MM and SM on NVIDIA GPU. This

returns to the fact that StreamMR executes only map phase, however MapCG groups the

intermediate output into a hash table and executes reduce phase to trace the size of the

generated output in addition to the normal map phase.

72

Figure 4.12: Speedup of StreamMR over MapCG using small, medium, and large datasets
for NVIDIA Fermi

Figure 4.13: Execution time breakdown of MapCG and StreamMR using large dataset for
NVIDIA Fermi

73

For KM, the average speedup of StreamMR over MapCG is 9.3-fold on AMD GPU. Partic-

ularly, the 95-confidence interval is [5.7,7.1], [5.7, 6.3] and [13.1, 17.7] for small, medium and

large datasets respectively. Again, one of the reasons is that KM is also memory-bounded,

as indicated by an ALU:Fetch ratio of 0.42 for its map kernel. In addition, the map phase

of KM contributes to more than 80% of the total execution time as shown in Figure 4.11.

For NVIDIA GPU, StreamMR behaves better than MapCG by 2.9-fold speedup on the av-

erage. This performance is attributed to the use of combiner within the map phase, which

significantly reduces the number of accesses to the global memory, and thus improves the

execution time of the map phase as shown Figure 4.13. In addition to exploiting more par-

allelism in the reduce phase through the use of the two-level joining kernel, thus improving

the reduction time.

For WC, most of the execution time is spent in the map phase as shown in Figure 4.11

and Figure 4.13. Specifically, the map phase of WC contributes to 94% and 84% of the

total execution time for AMD and NVIDIA GPU respectively. With the use of combiner

in the StreamMR, the number of intermediate key/value pairs is reduced significantly, thus

improving WC performance over MapCG by 3.9-fold and 1.7-fold speedup for AMD GPU

and NVIDIA GPU respectively. The better performance of StreamMR on AMD GPU is

attributed to the memory-boundness of the map kernel of WC with ALU:Fetch ratio of 0.67,

in addition to the large number of intermediate output in WC which further exacerbates the

overhead of using the CompletePath within MapCG.

4.7.5 Overflow Handling Overhead

In this experiment, we aim at quantifying the overhead of the overflow handling mechanisms

i.e., global and local buffers overflow. For MM, since the size of the output is deterministic,

then the overflow can be avoided. For SM and WC, there is a high probability for the global

overflow to occur since the size of the output is nondeterministic and depends on the input

74

file (and the keyword for SM). For KM, if the local buffer is not set appropriately, a local

overflow may be encountered.

We run SM using large-size dataset and varied the global buffer size to study the effect of

global overflow on the performance. We reduce the size of the preallocated output buffer, so

overflow occurs, and another map kernel is executed. The overflow percentage is the ratio

between the number of matches emitted by the second map kernel and the total number of

matches. As shown in Figure 4.14, for AMD GPU, the speedup of StreamMR over Mars

decreases from 1.99 to 1.53 when the percentage of overflow reaches 53%. As the overflow

percentage increases to 93%, the speedup drops further to 1.18. The same behavior is

noticed for NVIDIA GPUs as shown in Figure 4.15. This is because StreamMR will incur

more and more counting overhead as the overflow percentage increases. However, the above

performance results also suggest the overhead of global overflow is tolerable.

Figure 4.14: Effect of global overflow on the speedup over Mars and MapCG using string-
match for AMD Radeon HD 5870

For WC, using large-size dataset, we varied the allocated global buffer to force different

percentages of overflow. Upon an overflow, another map kernel is launched to handle the

overflowed records. Executing another map kernel, generates more hash tables that are

handled by the reduce phase, thus increasing the execution time of the reduce phase. As

shown in Figure 4.16 and Figure 4.17, the speedup of StreamMR over Mars decreases from

3.45 to 3.04 and from 10.04 to 8.71 for AMD and NVIDIA GPUs respectively when the

75

Figure 4.15: Effect of global overflow on the speedup over Mars and MapCG using string-
match for NVIDIA Fermi

Figure 4.16: Effect of global overflow on the speedup over Mars and MapCG using wordcount
for AMD Radeon HD 5870

Figure 4.17: Effect of global overflow on the speedup over Mars and MapCG using wordcount
for NVIDIA Fermi

76

percentage of overflow reaches almost 100%.

For KM, we varied the allocated local buffer, so instead of running all threads per wavefront

concurrently, they run on two and four consecutive iterations. As a result, the map kernel

execution time increases as shown in Figure 4.18. Specifically, the speedup compared to

overflow-free case is 0.91 and 0.76 for two and four consecutive iterations respectively.

Figure 4.18: Effect of local overflow on the Map kernel execution time of KMeans

4.7.6 Impact of Using Image Memory

In this experiment, we evaluate the effect of using texture memory instead of global memory

to store the input dataset. Since the data retrieved from the texture memory are cached,

we expect applications with data locality to benefit from this feature. MM is an example

of such applications since a single row/column is accessed by several map threads. For SM,

KM and WC, since each thread works in a different piece of input data, texture caching may

not be beneficial.

For MM, we have found that using texture memory to store the input matrices, improves

the performance of the map kernel significantly. More specifically, the speedup of the map

kernel over non-texture map kernel is 4.89 and 3.56 for 256 X 256 and 512 X 512 matrices

respectively on AMD GPU. Although the use of the image memory is not listed within

the major optimizations for new versions of NVIDIA GPUs [54], we have found that it can

77

improve the performance of the map kernel of matrix multiplication by 2.9-fold speedup for

256 X 256 matrices on NVIDIA Fermi GPUs.

4.7.7 Quantifying the Impact of the Scalability Optimization

In this experiment, we quantify the benefits of the scalable reduce design presented in Sec-

tion 4.3.2.1 compared to the initial design. As discussed before, this optimization targets

applications producing large number of intermediate records and hash tables like wordcount.

So in this experiment, we run wordcount using three version of the reduce phase. the first

one is the initial design that requires passing through the hash tables multiple times. The

second one is the optimized reduce phase involving one joining kernel and one reduction ker-

nel. The third one is also optimized reduce phase but with two-level joining. Since combiner

function exists for wordcount, we directly apply combining during joining, thus avoiding the

need for a separate reduction kernel.

As shown in Figure 4.19 and 4.20, using the basic-optimized reduce phase slightly reduces

the reduction time. However, it allows exposing more parallelism through the use of the

two-level joining, thus significantly improving the reduction time by 10.08 and 12.89-fold

speedup for AMD GPU and NVIDIA GPU, respectively.

Figure 4.19: Effect of scalability optimization (SO) of the reduce phase using wordcount on
AMD GPU

78

Figure 4.20: Effect of scalability optimization (SO) of the reduce phase using wordcount on
NVIDIA GPU

4.8 Chapter Summary

In this chapter, we designed StreamMR, an OpenCL atomic-free implementation of MapRe-

duce optimized for heterogeneous devices. Through atomic-free mechanisms for output writ-

ing and shuffling, StreamMR significantly outperforms MapCG on AMD GPUs. Specifically,

StreamMR behaves better than MapCG by 10.9-fold speedup on the average (up to 44.5-fold

speedup). By avoiding the time consuming preprocessing phases and sorting when group-

ing intermediate results, StreamMR outperforms Mars on AMD GPUs by 2.21-fold on the

average (up to 3.5-fold speedup).

Through highly scalable and optimized reduce phase, StreamMR can outperforms MapCG

and Mars on NVIDIA GPUs as well. Particularly, StreamMR behaves better than MapCG

and Mars by 1.7-fold speedup (up to 3.5-fold speedup) and 3.85-fold speedup (up to 10.04-

fold speedup), respectively.

79

This page intentionally left blank.

80

Chapter 5

Optimized MapReduce Workflow

5.1 Overview

Having an efficient and portable MapReduce implementation, the next step towards achiev-

ing our overarching goal is to explore how to efficiently co-schedule the map and reduce

tasks among different resources within node and across nodes. The traditional approach is

to enforce a barrier synchronization between the map phase and the reduce phase, i.e., the

reduce phase can only start when all map tasks are completed. For heterogeneous resources,

it is highly expected that the faster compute resources will finish their assigned map tasks

earlier, but these resources cannot proceed to the reduce processing until all the map tasks

are finished, thus resulting in waste of resources.

In this chapter, we propose and compare two asynchronous data-processing techniques to

enhance resource utilization and performance of MapReduce for a specific class of MapReduce

jobs, called recursively reducible MapReduce jobs. For this type of MapReduce jobs, a

portion of the map results can be reduced independently, and the partial reduced results can

be recursively aggregated to produce global reduce results. More details about recursively

reducible MapReduce jobs will be discussed in Section 5.2. Our first approach, hierarchical

reduction (HR), overlaps map and reduce processing at the inter-task level. This approach

81

starts a reduce task as soon as a certain number of map tasks complete and aggregates partial

reduced results using a tree hierarchy. The second approach, incremental reduction (IR),

exploits the potential of overlapping data processing and communication within each reduce

task. It starts a designated number of reduce tasks from the beginning and incrementally

applies reduce function to the intermediate results accumulated from map tasks.

Implementing the incremental reduction approach requires running the map and reduce tasks

concurrently on each resource. Additionally, the intermediate output need to be regularly

pipelined to the resource during the execution of the reduce task. With the current specifica-

tion and implementation of OpenCL 1, concurrently running more than one kernel on GPUs

is not supported. Additionally, it is not possible to transfer data from the host memory to

the device memory while executing a kernel. So as a proof-of-concept and to be able to study

the scalability of the proposed approaches with the number of resources, we have evaluated

our approaches against the traditional one using Hadoop [1], an open-source MapReduce

implementation.

The rest of this chapter is organized as follows: Section 5.2 discusses background information

about Hadoop and recursively reducible MapReduce jobs. Section 5.3 and 5.4 describe the

design of the proposed approaches including the hierarchical and incremental reduction.

Section 5.5 evaluates the performance of the proposed approaches using an analytical model.

The experimental results are discussed in Section 5.6. We conclude in Section 5.7.

5.2 Background

5.2.1 Hadoop

Hadoop is an open-source Java implementation of the MapReduce framework. It can be

logically segregated into two subsystems, i.e., a distributed file system called HDFS and a

1OpenCL 1.1, implemented through AMD APP SDK v2.5

82

MapReduce runtime. The MapReduce runtime follows a master-slave design. The master

node is responsible for managing submitted jobs, assigning the map and reduce tasks of

every job to the available workers. By default each worker can run two map tasks and two

reduce tasks simultaneously.

At the beginning of a job execution, the input data is split and assigned to individual map

tasks. When a worker finishes executing a map task, it stores the map results as intermediate

key/value pairs locally. The intermediate results of each map task will be partitioned and

assigned to the reduce tasks according to their keys. A reduce task begins by retrieving

its corresponding intermediate results from all map outputs (called the shuffle phase). The

reduce task then sorts the collected intermediate results and applies the reduce function to

the sorted results. To improve performance, Hadoop overlaps the copy and sort of finished

map outputs with the execution of newly scheduled map tasks.

5.2.2 Recursively Reducible Jobs

Word counting is a simple example of recursively reducible jobs. The occurrences of a word

can be counted first on different splits of an input file, and those partial counts can then

be aggregated to produce the number of word occurrences in the entire file. Other recur-

sively reducible MapReduce applications include association rule mining, outlier detection,

commutative and associative statistical functions etc. In contrast, the square root of sum of

values is an example of reduce function that is not recursively reducible, because (a+ b)2 +

(c+ d)2 does not equal (a+ b+ c+ d)2. However, there are some mathematical approaches

that can transform such functions to benefit from our solution.

It is worth mentioning that there is a combiner function provided in typical MapReduce

implementations including Hadoop. The combiner function is used to reduce key/value pairs

generated by a single map task. The partially reduced results, instead of the raw map output,

83

are delivered to the reduce tasks for further reducing. Our proposed asynchronous data

processing techniques are applicable to all applications that can benefit from the combiner

function. The fundamental difference between our techniques and the combiner function is

that our techniques optimize the reducing of key/value pairs from multiple map tasks.

5.3 Hierarchical Reduction (HR)

5.3.1 Design and Implementation

Hierarchical reduction seeks to overlap the map and reduce processing by dynamically issuing

reduce tasks to aggregate partially reduced results along a tree-like hierarchy. As shown in

Figure 5.1, as soon as a certain number (i.e., defined by the aggregation level σH) of map

tasks are successfully completed, a new reduce task will be created and assigned to one of

the available workers. This reduce task is responsible for reducing the output of the σH map

tasks that are just finished. When all map tasks are successfully completed and assigned to

reduce tasks, another stage of the reduce phase is started. In this stage, as soon as a certain

σH reduce tasks are successfully completed, a new reduce task will be created to reduce the

output of the σH reduce tasks. This process repeats until there is only one remaining reduce

task, i.e., when all intermediate results are reduced.

Although conceptually the reduce tasks are organized as a balanced tree, in our implemen-

tation a reduce task at a given level does not have to wait for all of the tasks at the previous

level to finish. In other words, as soon as a sufficient number of tasks (i.e., σH) from the

previous level becomes available, a reduce task from the subsequent level can begin. Such a

design can reduce the associated scheduling overhead of HR.

84

m1 m3 m2 m5 m4 m6

r1 r2 r3 r4

r8

r5
r7

m7

DFS

Write final output

Reduce phase

Map phase

m1

r5

Map task

Reduce task

m8

Figure 5.1: Hierarchical reduction with aggregation level equals 2

5.3.2 Discussion

One advantage of HR is that it can parallelize the reduction of a single reducing key across

multiple workers, whereas in the original MapReduce framework (MR), the reduction of a key

is always handled by one worker. Therefore, this approach is suitable for applications with

significant reduce computation per key. However, HR incurs extra communication overhead

in transferring the intermediate key/value pairs to reduce tasks at different levels of the tree

hierarchy, which can adversely impact the performance as the depth of the tree hierarchy

increases. Other overheads include the scheduling cost of reduce tasks generated on the fly.

For the fault tolerance scheme, it should be modified to recover the failure of reduce tasks.

In particular, the JobTracker should keep track of all created reduce tasks, in addition to the

tasks assigned to be reduced by these reduce tasks. Whenever, a reduce task fails, another

copy of this task should be created and the appropriate tasks should be assigned again for

reduction. Each reduce task materializes its output locally, so it will post this output again

to the new task.

85

5.4 Incremental Reduction (IR)

5.4.1 Design and Implementation

Incremental reduction aims at starting the reduce phase as early as possible within a reduce

task. Specifically, the number of reduce tasks are defined at the beginning of the job similar

to the original MapReduce framework. Within a reduce task, as soon as a certain amount

of map outputs are received, the reduction of these outputs starts and the results are stored

locally. The same process repeats until all map outputs are retrieved.

m1 m3 m2 m5 m4 m6

r1 r2 r3 r4

m7

DFS

m

r5

Map task

Reduce task

DFS DFS DFS

Write final output

LFS LFS

DFS

Assigned map output

Reduce computation

m8
Map phase

Reduce phase

Figure 5.2: Incremental reduction with reduce granularity equals 2

In Hadoop, a reduce task consists of three stages. The first stage, named shuffling, copies

the task’s own portion of intermediate results from the output of all map tasks. The second

stage, named sorting, sorts and merges the retrieved intermediate results according to their

keys. Finally, the third stage applies the reduce function to the values associated with each

key. To enhance the performance of the reduce phase, the shuffling stage is overlapped with

the sorting stage. More specifically, when the number of in-memory map outputs reaches a

certain threshold, mapred.inmem.merge.threshold, these outputs are merged and the results

86

are stored on-disk. When the number of on-disk files reaches another threshold, io.sort.factor,

another on-disk merge is performed. After all map outputs are retrieved, all on-disk and

in-memory files are merged, and then the reduction stage begins.

In our IR implementation, we make use of io.sort.factor and mapred.inmem.merge.threshold.

When the number of in-memory outputs reaches to themapred.inmem.merge.threshold thresh-

old, they are merged and the merging results are stored on the disk. When the number of

on-disk outputs reaches to the io.sort.factor threshold, the incremental reduction of these

outputs begins and the reducing results are stored instead of the merging results. When all

map outputs are retrieved, the in-memory map outputs are reduced along with the stored

reducing results. The final output data is written to the distributed file system. The entire

process is depicted in Figure 5.2.

5.4.2 Discussion

IR incurs less overheads than HR for two reasons. First, the intermediate key/value pairs are

transmitted once from the map to reduce tasks instead of several times along the hierarchy.

Second, all of the reduce tasks are created at the start of the job and hence the scheduling

overhead is reduced.

In addition to the communication cost, the number of writes to local and distributed file

system are the same (assuming the same number of reduce tasks) for both MR and IR.

Therefore, IR can outperforms MR when there is sufficient overlap between the map and

reduce processing.

The main challenge of IR is to choose the right threshold that triggers an incremental re-

duce operation. Too low a threshold will result in unnecessarily frequent I/O operations,

while too high a threshold will not be able to deliver noticeable performance improvements.

Interestingly, a similar decision, i.e., the merging threshold, has to be made in the original

87

Hadoop implementation as well. Currently we provide a runtime option for users to control

the incremental reduction threshold. In the future, we plan to investigate self-tuning of this

threshold for long running MapReduce jobs.

It is worth noting that since the map and reduce tasks in this approach are created by the

same manner as in Hadoop, then the fault tolerance scheme of Hadoop works well.

5.5 Analytical Models

In this section, we derive analytical models to compare the performance of the original

MapReduce (MR) implementation of Hadoop, and the augmented implementations with hi-

erarchical reduction (HR) and incremental reduction (IR) enhancements. Table 5.1 presents

all the parameters used in the models. We group our discussion according to the relation-

ship between the number of map tasks m and the number of available execution slots in the

cluster 2n (recall that there are two execution slots per node by default).

Without loss of generality, our modeling assumes the number of reduce tasks r is smaller

than the number of execution slots 2n. In fact, the Hadoop documentation recommends

that 95% of the execution slots is a good number for the number of reduce tasks for typical

applications. However, our analysis can be easily generalized to model the cases where there

are more reduce tasks than the number of execution slots.

5.5.1 Case 1: Map Tasks ≤ 2 × Nodes Number

When the number of map tasks is less than the number of execution slots, all map tasks are

executed in parallel and completed simultaneously. Assuming the execution time of each map

task is the same, the map phase will finish after tm. And since m ≤ 2n means working with

small dataset, we can assume that the communication cost is small, so MR and IR cannot

overlap the copying with other reduce computations. Particularly, The execution time of the

88

Parameters Meaning
m Number of map tasks
n Number of nodes
k Total number of intermediate key/

value pairs
r Number of reduce tasks of the

MR framework
tm Average map task execution time
trk Average execution time of reducing

values of a single key
σH Aggregation level used in HR
C Communication cost per key/value pair
CMR Communication cost from m map

tasks to r reduce tasks in MR
CHR Communication cost from the assigned

σH map tasks to a reduce task in HR

Table 5.1: Parameters used in the performance model

reduce phase is the same for MR and IR, however HR has different reduce computations.

MR / IR For the original Hadoop implementation, and incremental reduction, the reduce

phase finishes after CMR+ ⌈k
r
⌉log⌈k

r
⌉+ trk×⌈k

r
⌉. Where the first term is the communication

cost, the second term is the merging time, and the third term is the reducing time. Hence

the total execution time:

TMR = tm + CMR + ⌈
k

r
⌉log⌈

k

r
⌉+ trk × ⌈

k

r
⌉ (5.1)

HR For hierarchical reduction, after all map tasks are finished, the reduce phase begins by

initiating m
σH

reduce tasks, where σH is the used aggregation level. When these reduce tasks

are finished, the outputs from every σH reduce tasks are assigned to another reduce task and

so on until all outputs are reduced. So, we need logσH
(m) stages to finish the reduce phase,

where every stage executes in CHR + σHk

m
log(σHk

m
) + tr ×

σHk

m
, where the first term is the

communication cost, and the second term is the merging time . Moreover, for simplicity, we

assume a linear reduce function, i.e., if it takes t to reduce the values of a single key from m

map tasks, then it takes x× t
m

to reduce the values from x map tasks. So the total execution

89

time:

THR = tm + (CHR +
σHk

m
log(

σHk

m
) + tr ×

σHk

m
)× logσH

(m) (5.2)

By comparing equations 5.1 and 5.2, we can conclude that when m ≤ 2n, there is always

a configuration for MR to behave better than HR. Specifically, by neglecting the communi-

cation cost, and setting r to 2n, THR becomes longer than TMR, This is expected because

all map tasks are finished at the same time and there is no way to overlap map and reduce

phases.

5.5.2 Case 2: Map Tasks > 2 × Nodes Number

When there are more map tasks than the execution slots, the map tasks are executed in

several stages. In addition, the execution of the reduce tasks can be overlapped with the

map computations based on the CPU utilization of the map tasks which we call the over-

lapping degree. We consider two different cases based on the overlapping degree. The first

case corresponds to high overlapping degree i.e., copy and merge (merge and reduce in IR)

of almost all retrieved intermediate key/value pairs can be overlapped with the map compu-

tations. The second case corresponds to low overlapping degree i.e., merging (merging and

reducing in IR) of only a portion of the intermediate results can be overlapped. It is worth

noting that as the number of map tasks increases, the corresponding number of idle slots

between the execution of these map tasks (i.e., scheduling overhead) increases, which in turn

increases the overlapping degree.

Throughout this section the total execution time is based on the following equation:

T = Maptime+Mergetime+Reducetime (5.3)

MR For the original Hadoop implementation, when the overlapping degree is high, the

merging phase of MR in Figure 5.3 can be eliminated. So the total time becomes Maptime+

Reducetime, assuming the final stage merging is neglected.

90

Map phase Merge phase Reduce phase

MR

Decrease in total time

First stage of map tasks

Overlapped
computations

Write to disk

IR

Copy, merge, and reduce Copy and merge

Figure 5.3: Execution of MR and IR

For low overlapping degree, if the reduce tasks occupy all nodes i.e., the number of reduce

tasks (r) is larger than or equals n, then merging of only a portion of the intermediate

results can be overlapped with the map computations, and the total time can be expressed

by equation 5.4. Where o represents the reduction in the merging time.

TMR = Maptime+ (Mergetime− o) +Reducetime (5.4)

However, when the reduce tasks do not occupy all nodes, more merging can be overlapped

with the map computations due to the load balancing effect i.e., the nodes executing reduce

tasks execute smaller number of map tasks compared to the other nodes. As a result, the

Map time is increased and the merging time is decreased as shown in equation 5.5, where

(l) represents the load balancing effect, o’ represents the overlapping effect, and o’ > o.

As r increases, l and o’ keeps decreasing, until reaching 0 and o respectively when r = n

(equation 5.4).

TMR = (Maptime+ l) + (Mergetime− o′) +Reducetime (5.5)

HR For hierarchical reduction, map and reduce processing at different stages can be over-

lapped as shown in Figure 5.4. To compare HR’s performance with MR, we consider more

91

detailed modeling like the previous section.

For HR, When all map tasks are finished, the remaining computations is to reduce the

un-reduced map tasks. In addition to combining the results of this reducing stage with

other partial reduced results. Specifically, the total execution time of MR, and HR can be

represented by the following equations, where s is the remaining number of stages of HR’s

hierachy:

TMR = Maptime+ CMR + ⌈
k

r
⌉log(⌈

k

r
⌉) + trk × ⌈

k

r
⌉ (5.6)

THR = Maptime+ (CHR +
σHk

m
log(

σHk

m
) + trk ×

σHk

m
)× s (5.7)

 tm

Stage 3

Stage 2

Stage 1

Map phase

Stage 4 s

))log((
m

k
t

m

k
C rHR

σσ ++

Reduce phase

Figure 5.4: Execution of HR framework when m = 8n

Assuming every map task produces a value for each given key, then CMR is k
r
×C, then CHR

is σHk

m
×C, and CHR equals σHr

m
×CMR, where C is Communication cost per key/value pair.

By substituting CHR in equation 5.7 by the previous value the equation becomes:

THR = Maptime+
σH

m
× (rCMR + klog(

σHk

m
) + ktrk)× s (5.8)

When the overlapping degree is high, s can be replaced by (logσH
(2n) + 1) in equation 5.8,

which represents the reduction of the map tasks of the final stage. Moreover, the merging

92

time can be eliminated from equation 5.6. So for significantly large m, the communication

part, and the reducing part of the equation is smaller than that of equation 5.6. If these

terms occupy significant portion of the total time of MR, then HR will behave better than

MR as we will see in the experimental evaluation. However, when the overlapping degree is

low, s can be very deep, and the performance of HR can be worse than MR.

IR For incremental reduction, when the overlapping degree is high, the merging, and re-

ducing phase of IR in Figure 5.3 can be eliminated. So the total time becomes Maptime,

assuming the final stage merging and reducing is neglected. Definitely, IR can behave better

than MR, and HR in this case, especially when the reducing time of MR is significant.

For low overlapping degree, if r is larger than n, then merging and reducing of only a portion

of the intermediate results can be overlapped with the map computations, and the total time

can be expressed by equation 5.9. Where om and or represents the reduction in the merging

and reducing time respectively.

TIR = Maptime+ (Mergetime− om) + (Reducetime− or) (5.9)

To compare this with equation 5.5, we consider the details of the overlapping computations

in MR and IR. The main difference is that IR performs reducing after merging and writes

the results of reduce rather than the results of merge to disk. Assuming the reduce function

changes the size of the input by a factor of x and the reduce function is linear, then the

overlapped computations of MR and IR can be represented by the following equations,

where I is the size of intermediate key/value pairs to be merged and reduced during the map

phase, (IlogI) is the average number of compare operations executed during the merge, Ps

is the processor speed, ds is the disk write speed, and ps is very smaller than ds:

OMR =
IMRlogIMR

Ps

+
IMR

ds
(5.10)

OIR =
IIRlogIIR + IIR

Ps

+
IIR × x

ds
(5.11)

93

Given the same overlapping degree, if x < 1, which is valid for several applications like

wordcount, grep, linear regression,... etc, then IR is able to conduct more merging in addition

to reducing overlapped with map computations. So, the merging and reducing terms in

equation 5.9 is less than the same terms in equation 5.4. So, IR can behave better than

MR given the reduce computations is significant as illustrated by Figure 5.3. Note that, the

cores’s speed of the recent multicore machines advances in a higher rate compared to the

disk speed. In addition, this speed is further reduced by the contention among the cores on

the disk I/O, so IR may behave better in these emerging architectures. On the other side, if

x ≥ 1, then the performance of IR highly depends on the complexity of the reduce function

compared to the merging.

By applying the previous analysis to the case where r < n, we can conclude that IR can

behave better than MR in this case also given the reducing time occupies a significant portion

of the total execution time.

5.6 Evaluation

In this section, we present performance evaluations of our proposed techniques. Our exper-

iments are executed on System X at Virginia Tech, comprised of Apple Xserve G5 compute

nodes with dual 2.3GHz PowerPC 970FX processors, 4GB of RAM, 80 GByte hard drives.

The compute nodes are connected with a Gigabit Ethernet interconnection. Each node

is running the GNU/Linux operating system with kernel version 2.6.21.1. The proposed

approaches are developed based on Hadoop 0.17.0.

5.6.1 Overview

We have conducted four sets of experiments in order to study the performance of our ap-

proaches from different perspective. All of the experiments are conducted using wordcount

94

and grep applications. Wordcount is an application that parses a document or a number

of documents, and produces for every word the number of its occurrence. Grep accepts a

document or a number of documents and an expression; it matches this expression along

the whole documents and produces for every match the number of its occurrence. In the

first experiment, we aim at studying the scalability of the different reducing approaches

with the dataset size. In the second and third experiment, we deeply analyzed the perfor-

mance of wordcount and grep. Finally, another experiment has been conducted to study the

robustness of the three approaches to the heterogeneity of the target environment.

The major performance metric in all experiments is the total execution time in seconds.

Moreover, For a fair comparison, we follow the guidance given in the Hadoop documentation

regarding the number of map and reduce slots per node, the io-sortfactor, and the merge-

threshold. In addition, the aggregation level of the hierarchical reduction approach is set to

4 which also produces the best results for 32 nodes cluster. Furthermore, the granularity of

intermediate-result merges in MR and the incremental reductions in IR is the same in all

experiments. Finally, we flushed the cache before running any job to ensure the accuracy of

our results.

5.6.2 Scalability with the Dataset Size

In this experiment, we aim at studying the scalability of the three reducing approaches

with the size of the input dataset. We run wordcount and grep using 16GB and 64GB. For

wordcount, the number of reduce tasks was set to 4, and 8, a broader range were used in

experiment 5.6.3. For grep, we used an average query that produces results of moderate size,

the performance of different queries was investigated in experiment 5.6.4.

As shown in Figure 5.5, generally, as the size of the input dataset increases, the performance

improvement of IR over MR increases. Specifically, for wordcount, as the size of the input

95

0

0.2

0.4

0.6

0.8

1

16GB 64GB 16GB 64GB 16GB 64GB 16GB 64GB

4 8 4 aggregation
level

[a-c]+[a-z.]+'

Wordcount Grep
Setting

N
o

rm
al

iz
ed

 e
xe

cu
tio

n
 ti

m
e

(s
ec

o
n

d
s) MR

IR

HR

Figure 5.5: Scalability with dataset size using wordcount and grep

increases to 64GB, IR gets better than MR by 34.5% and 9.48% instead of 21% and 5.97%

in case of 16GB for 4 and 8 reduce tasks respectively. In addition, for grep, increasing

the dataset size, improves IR’s performance over MR i.e., IR is better than MR by 16.2 %

instead of 7.1% for 16GB. The scalability of our approaches attributes to two reasons; first,

as the dataset size increases, the map phase has to perform more IO. Second, for 64 GB, the

number of map tasks increases from 256 to 1024, thus increasing the scheduling overheads.

Both reasons results in providing more room for overlapping map with reduce computations.

Although the performance improvement of HR over MR with 16 reduce tasks increases by

9.96% for wordcount as the input dataset size increases, it decreases by 4.13% for grep. This

is because of the extra communication cost involved with the increase of the dataset size.

Which can be compensated by the long map phase time of wordcount i.e., 2801 seconds

(average of the three cases shown in Figure 5.5) compared to only 1177 seconds for grep.

Since the normal Mapreduce jobs, processes huge amount of input data, all of the subsequent

experiments are performed using input dataset of size 64 GB.

96

5.6.3 Wordcount Performance

In a cluster of 32 nodes, we run wordcount on a dataset of size 64 GB, the number of

map tasks was set to 1024, and the number of reduce task was varied from 1 to 64. As

shown in Figure 5.6, as the number of reduce tasks increases, IR’s improvement decreases.

Specifically, for one reduce task, IR behaves better than MR by 35.33%. When the number

of reduce tasks is increased to 4, IR behaves better by 34.49%. As the number of reduce

tasks increases, the processing time of a reduce task decreases, thus providing little room for

overlapping the map and reduce processing. Specifically, when the number of reduce tasks

is 32, a reduce task only consume a mere 6.83% in the total execution time as shown in

table 5.2. In addition, during the map phase, most of the resources of any node are utilized

by the map tasks i.e., 32 map tasks compared to only 21 in case of 1 reduce task As shown

in table 5.3, so IR cannot perform any incremental merges.

0

2000

4000

6000

8000

10000

12000

14000

16000

1 4 8 16 32 64 2 4 8

Number of reduce tasks aggregation level

Settings

T
o

ta
l e

xe
cu

tio
n

 ti
m

e
(s

ec
o

n
d

s)

MR

IR

HR

Figure 5.6: Performance of MR vs. IR using wordcount

Furthermore, IR achieves its best performance at 4 reduce tasks because this provides the

best compromise between level of parallelism controlled by the number of reduce tasks and

overlapping map with reduce. Specifically, in this case, IR conducts 55 incremental merges

overlapped with the map computations compared to 0 in case of 32 reduce tasks as shown

in table 5.2. As a result, the nodes executing a reduce task executes 26 map tasks instead of

97

Reduce Tasks Incremental merges Reduce Time Map Time
1 46 11736 2690
4 55 1699.5 2732
8 13 524 2787
16 2 315 2845
32 0 210 2865

Table 5.2: MR, and IR performance measures

Reduce Tasks MR IR
1 21 21
4 22 25 + 1S1

8 26 + 2S 28
16 30 + 2S 28 + 2S
32 31 32

Table 5.3: Number of map tasks executed with every reduce task

32 map tasks in case of 32 reduce tasks; recall the Load balancing effect discussion in section

5.5.

The best performance is achieved at 32 and 4 reduce tasks for MR, and IR respectively.

With the best performance for both MR and IR, IR is better by 5.86%.

On the other side, using an aggregation level of 4, HR behaves better than MR with 8

reduce tasks by 5.13%. We changed the aggregation level from 2 to 8 as shown in Figure

5.6, however the best performance is achieved at 4, because it provides the best compromise

between the depth of the hierarchy and the waiting time. For example, with aggregation

level of 2, the waiting time until triggering a reduce task is minimum, however, the overhead

of the hierarchy in terms of its depth and the communication cost is high.

To better understand the benefits of the incremental reduction approach, we measured the

CPU utilization throughout the job execution, and the number of disk transfers per second

during the map phase for both MR and IR. As shown in Figure 5.7 and 5.8, the CPU

utilization of IR is greater than MR by 5% on the average. In addition, the average disk

1Speculative Map Task

98

0
20
40
60
80

100
120

1 4 8 16 32
Number of reduce tasks

O
ve

ra
ll

C
P

U

u
til

iz
at

io
n

IR

MR

Figure 5.7: CPU utilization throughout the whole job using wordcount

transfers of IR is less than MR by 2.95 transfers per second. This returns to the smaller

amount of data written to disk by IR, since it reduces the intermediate data before writing

it back to disk. This in turn reduces the size of data read from disk at the final merging and

reducing stage.

0

10

20

30

40

1 4 8 16 32
Number of reduce tasks

T
ra

n
sf

er
s

p
er

se

co
n

d
s

IR

MR

Figure 5.8: Number of disk transfers per second through the map phase using wordcount

To conclude, for any number of reduce tasks, IR achieves either better or same performance

as MR. And the best performance for IR is achieved using only 4 reduce tasks, This means

that IR is more efficient in utilizing the available resources. So, we expect IR to achieve

better performance when several jobs are running at the same time, or with larger amounts

of reduce processing. Particularly, when running three concurrent jobs of wordcount, the

best configuration of IR behaves better than the best configuration of MR by 8.01% instead

of 5.86% as shown in table 5.4.

99

Concurrent jobs MR Execution Time IR Execution Time
(seconds) (seconds)

1 3107.5 2925.5
2 6064 5687
3 9025.5 8303

Table 5.4: MR, and IR performance with concurrent jobs

5.6.4 Grep Performance

In a cluster of 32 nodes, we run grep on a dataset of size 64 GB, the number of map tasks

was set to 1024, and the number of reduce tasks was set to the default i.e., one. Grep runs

two consecutive jobs; one returns for each match the number of its occurrence, and the other

is a short job that inverts the output of the previous job so that the final output will be

sorted based on occurrence of the matches instead of alphabetically. In this experiment, we

focus on the first longer job. We used five different queries each produces different number

of matches and hence intermediate and final key/value pairs.

0

1000

2000

3000

4000

5000

a+[a-z.]+' [a-b]+[a-z.]+' [a-c]+[a-z.]+' [a-d]+[a-z.]+' [a-i]+[a-z.]+'

Query

T
o

ta
l e

xe
cu

tio
n

 ti
m

e
(s

ec
o

n
d

s)

MR

IR

HR

Figure 5.9: Performance of MR, IR, and HR using grep

As shown in Figure 5.9, IR’s and HR’s performance are almost the same. In addition, for

the first query, all reducing approaches have the same performance. For subsequent queries,

the performance of HR and IR gets better. Specifically, for the second query, IR behaves

better than MR by 12.2%. IR’s performance keeps increasing until reaching 30.2 % and

100

Query Reduce Time Intermediate Data Size
(seconds) (records)

a+[a-z.]+ 135 37,285,680
[a-b]+[a-z.]+ 250 55,897,216
[a-c]+[a-z.]+ 351 78,196,736
[a-d]+[a-z.]+ 742 113,039,360
[a-i]+[a-z.]+ 1569 306,921,472

Table 5.5: Characteristics of different queries

57.98% for the fourth and fifth query, respectively. This returns to two reasons; first the

increased number of matches as shown by the number of intermediate key/value pairs in

table 5.5. Which in turn results in increasing the sorting and reducing computations of MR

from 135 seconds for query1 to 1569 seconds for query5 as shown also in table 5.5. And

hence overlapping these computations with the map phase as in HR and IR has higher effect

on the overall performance.

Furthermore, the performance of HR gets worse than IR for higher queries i.e., fourth and

fifth query. The main reason is that HR generates large number of reduce tasks following tree

structure. In addition, the output from any reduce task needs to be sent to the subsequent

reduce tasks, so as the size of intermediate key/value pairs increases, the communication

overhead increases as well. So for applications producing large number of intermediate

results, IR will behave better than HR.

5.6.5 Heterogeneous Environment Performance

Nowadays data centers are becoming incrementally heterogeneous; either due to the use of

virtualization technology or machines from different generations. In this experiment, we aim

at studying the robustness of MR, HR, and IR to the heterogeneity of the target cluster.

In a cluster of 32 nodes, we manually slowed down several nodes i.e., 10 nodes to mimic

a heterogeneous clusters having nodes with different generations. We continuously run dd

command to convert and write a large file (e.g. 5.7 GB) to disk in order to slow down a

101

given node. This approach was used by Zahria et al. in [52].

We expect in these environments, the map phase time gets longer due to the effects of the

slow nodes. So, if the reduce tasks are appropriately assigned to the fast nodes, then utilizing

the extra map time in reduce computations could improve the performance of the proposed

approaches. Using wordcount, we run MR, and IR with the best configuration achieved in

experiment 5.6.3 i.e., 32 reduce tasks for MR and 4 reduce tasks for IR. As shown in Figure

5.10, when the reduce tasks are assigned to the fast nodes, IR becomes better than MR by

10.33% instead of 5.86%. However, when they are randomly assigned, IR becomes better

than MR by only 2.32%. This is expected since the IO and computing resources available

for reduce tasks in this case become limited, so IR cannot efficiently overlap map with

reduce computations. We argue that if the heterogeneity originates from different hardware

generations, or from virtualization, it is easy to identify the fast nodes and assign more

reduce slots to these nodes, so we can guarantee the improved performance.

0

500

1000

1500

2000

2500
3000

3500

4000

4500

5000

Homogenous 10 slow - fast
reduce

10 slow 32 slow

Setting

T
o

ta
l e

xe
cu

tio
n

 ti
m

e
(s

ec
o

n
d

s)

MR

IR

HR

Figure 5.10: Performance in heterogeneous and cloud computing environments using word-
count

Moreover, HR’s performance drops significantly when running in heterogeneous environment,

this returns to the large number of generated reduce tasks. In addition, it is undeterministic

where these tasks will be run, so it is not possible to avoid the effect of the slow nodes.

102

In a typical cloud computing environments, the computing and io performance of the nodes

is lower than what we have in System x. So, we slowed down the 32 nodes to mimic a cloud

computing environment. Specifically, using wordcount, IR’s performance slightly improves

i.e., it is better than MR by 7.14% instead of 5.86% for the homogeneous setting. However,

it is less than the performance of heterogeneous setting i.e., 10.33%. The reason is that the

reduce tasks get affected by the slow nodes in addition to the map tasks.

5.7 Chapter Summary

In this chapter, we designed and implemented two approaches to reduce the overhead of the

barrier synchronization between the map and reduce phases of typical MapReduce imple-

mentations. In addition, we evaluated the performance of these approaches using analytical

model and experiments on a 32-node cluster. The first proposed approach is the hierarchical

reduction, which overlaps map and reduce processing at the inter-task level. It starts a re-

duce task as soon as a certain number of map tasks complete and aggregates partial reduced

results following a tree hierarchy. This approach can be effective when there is enough over-

lap between map and reduce processing. However, this approach has some limitations due

to the overheads of creating reduce tasks on the fly, in addition to the extra communication

cost of transferring the intermediate results along the tree hierarchy. To cope with these

overheads, we proposed the incremental reduction approach, where all reduce tasks are cre-

ated at the start of the job, and every reduce task incrementally reduces the received map

outputs. The experimental results demonstrate that both approaches can effectively improve

the MapReduce execution time; with the incremental reduction approach consistently out-

performing hierarchical reduction and the traditional synchronous approach. In particular,

incremental reduction can outperform the synchronous implementation by 35.33% for the

wordcount application and 57.98% for the grep application

103

This page intentionally left blank.

104

Chapter 6

Conclusions

Heterogeneity becomes the trend in designing today’s systems; starting from a single chip [6,

37], passing through a single node [79, 78], and ending with large-scale clusters and clouds [85,

42]. Harnessing the computing power of all available heterogeneous resources in the system

is a challenging task. In this dissertation, we aim at efficiently facilitating this task within

and across resources. Specifically, we leverage the power of MapReduce programming model

and OpenCL programming language to achieve our goals. We start with investigating the

efficiency of existing MapReduce designs on AMD GPUs, an architecture that is not studied

before using previous GPU-based MapReduce implementations. Based on our investigations,

we propose an architecture-aware MapReduce implementation targeting AMD GPUs. Due to

existing limitations in the OpenCL specifications, our implementation enforces constraint on

the number of running threads, thus limiting the utilization of the device. In the second part

of this dissertation, we design and implement an efficient MapReduce implementation not

only targeting AMD GPUs but also other heterogeneous devices like NVIDIA GPUs. To the

best of our knowledge, this is the first portable MapReduce implementation that outperforms

state-of-the-art MapReduce implementations on heterogeneous devices. In the third part,

we move one step further towards achieving our goal and explore how to efficiently distribute

the map/reduce tasks across multiple resources. The major contributions and conclusions

105

of the three parts are summarized below.

Our investigations reveal that state-of-the-art MapReduce designs are not appropriate for

AMD GPUs. These MapReduce designs depend on executing atomic-add operations to co-

ordinate output writing from thousands of concurrently running threads. We realize that

atomic operations incur significant overheads i.e., up to 69.4-fold slowdown on AMD GPUs,

since it enforces all memory transactions in the kernel to follow a slow CompletePath rather

than a fast FastPath. Consequently, we design and implement a software-based atomic oper-

ation that does not impact the used memory path. Using this software atomic operation, we

implement a MapReduce framework that behaves efficiently and outperforms state-of-the-

art MapReduce implementations on AMD GPUs. Specifically, we evaluate this MapReduce

framework using three applications that follow different divergence and memory access pat-

terns. The experimental results show that for memory-bound kernels, our software-based

atomic add can deliver an application kernel speedup of 67-fold compared to one with a

system-provided atomic add. The main shortcoming of the proposed software-based atomic

is that it supports limited number of threads.

To address the limitations of the proposed software-atomic operation, we propose and im-

plement an atomic-free design for MapReduce, StreamMR, that can efficiently handle ap-

plications running any number of threads. We introduce several techniques to completely

avoid the use of atomic operations. Particularly, the design and mapping of StreamMR pro-

vides efficient atomic-free algorithms for coordinating output from different threads as well

as storing and retrieving intermediate results via distributed hash tables. StreamMR also

includes efficient support of combiner functions, a feature widely used in cluster MapRe-

duce implementations but not well explored in previous GPU MapReduce implementations.

StreamMR significantly outperforms the state-of-the-art implementation of MapReduce i.e.,

MapCG by a speedup of between 1.4 to 45. We further optimize StreamMR to work effi-

ciently on other heterogeneous devices not suffering from the penalties associated with the

106

use of atomic operations like NVIDIA GPUs. Specifically, we propose a mechanism for im-

proving the scalability of the reduce phase with the size of the intermediate output. With

the highly scalable reduce phase, StreamMR outperforms MapCG on NVIDIA GPU by up

to 3.5-fold speedup.

This dissertation also explores how to efficiently distribute the map/reduce tasks among

several resources. The traditional approach is to enforce a barrier synchronization between

the map phase and the reduce phase, i.e., the reduce phase can only start when all map tasks

are completed. For heterogeneous resources, it is highly expected that the faster compute

resources will finish their assigned map tasks earlier, but these resources cannot proceed to

the reduce processing until all the map tasks are finished, thus resulting in waste of resources.

We propose two approaches to cope with such heterogeneity; the first proposed approach is

the hierarchical reduction, which overlaps map and reduce processing at the inter-task level.

It starts a reduce task as soon as a certain number of map tasks complete and aggregates

partial reduced results following a tree hierarchy. This approach can be effective when there

is enough overlap between map and reduce processing. However, it has some limitations due

to the overheads of creating reduce tasks on the fly, in addition to the extra communication

cost of transferring the intermediate results along the tree hierarchy. To cope with these

overheads, we proposed the incremental reduction approach, where all reduce tasks are

created at the start of the job, and every reduce task incrementally reduces the received map

outputs. Both approaches can effectively improve the MapReduce execution time; with the

incremental reduction approach consistently outperforming hierarchical reduction and the

traditional synchronous approach. Specifically, incremental reduction can outperform the

synchronous implementation by up to 57.98%. As a part of this investigation, we derive a

rigorous performance model that estimate the speedup achieved from each approach.

107

This page intentionally left blank.

108

Chapter 7

Future Work

In the previous chapters, we presented our efforts towards implementing a MapReduce frame-

work that efficiently exploit all resources existed in today’s fat nodes. Specifically, we dis-

cussed how to implement an efficient MapReduce framework that is portable across het-

erogeneous devices. We also explored how to efficiently distribute map/reduce tasks across

several resources concurrently. We view the work done in this thesis as groundwork for other

potential projects. We discuss them in this chapter.

7.1 CPU/GPU Co-scheduling

Nowadays, most servers and even desktops have at least one GPU in addition to a multi-

core CPU. Concurrently exploiting the computing power of these devices is a challenging

task. Programmer has to write two versions of an application - one for CPU and another

one for GPU. To achieve efficient performance, the code should be optimized to match the

architecture of each target device. Appropriately partitioning and scheduling the compu-

tation across these devices present another challenge. Fortunately, MapReduce frameworks

can help hiding all of these complexities. Most existing efforts [12, 89, 17] that implement

MapReduce frameworks to concurrently utilize the CPU and the GPU only report marginal

109

speedup compared to using only one resource. This performance can be mainly attributed

to the overheads of transferring input/output between the CPU and the GPU. With the

emergence of the fused architectures [6, 37], the CPU and GPU now share a common global

memory. One promising research direction is to investigate the potential of this architecture.

Specifically, we need to extend StreamMR framework discussed in Chapter 4 to concurrently

make use of the CPU and the GPU. Grouping the map output via distributed hash tables,

in addition to the highly scalable reduce phase, makes StreamMR good candidate for the

co-scheduling.

7.2 Automatic Compute and Data-Aware Scheduling

on Fat Nodes

Current servers do not equipped with only one CPU and one GPU, the trend now is the

fat nodes [78, 79] that have more than one multi-core CPU and GPU whether fused or dis-

crete. One crucial question that needs to be answered is which resources are suitable for a

given application and how to efficiently distribute the computation among these resources.

The answer to this question depends on the running application and the available resources.

Specifically, the system should dynamically analyze the characteristics of the running ap-

plication and the capabilities of the heterogeneous resources. This information should be

plugged into a performance model to determine the set of heterogeneous resources to leverage

and the ratio of computation assigned to each resource.

A few research efforts proposed the dynamic use of performance models to assign the com-

putations to the heterogeneous resources [30, 14, 15, 59]. They generally base on running

the application (either through pre-calibration run or through actual execution) and collect-

ing several profiling information like the performance on different resources using tasks of

different sizes. None of them consider the overhead of data transfer among the resources on

110

their models, despite the fact that the memory transfer alone can slow down the application

execution by 2 to 50x [16]. Since all of them target legacy or general code, it is not clear how

much input and output produced by each kernel, and how these data will be used afterward.

On the other side, we can leverage the power of MapReduce programming model to quantify

the overhead of the data transfer. With MapReduce programming model, we can easily

predict the size of the intermediate/final output and the flow of this output along the het-

erogeneous resources. Specifically, at the start of the application, our framework can execute

a pre-calibration run. In this run, few map tasks and reduce tasks are assigned to the het-

erogeneous computing resources. Based on the execution time of each task, the transfer time

of the input/output, the size of the input data set, and the size of the intermediate/final

output, the performance model makes a decision regarding the best computing resources to

run the target application and the granularity of the tasks assigned to each resource.

7.3 Energy Efficiency of GPU-based MapReduce Im-

plementations

Although the energy efficiency of MapReduce implementations for CPU and clusters of

CPUs has been studied by many researchers [84, 91, 90, 56, 92], to the best of our knowledge

there is no equivalent studies for MapReduce implementations on GPUs. For GPU-based

MapReduce implementation to be candidate for harnessing the computational power of the

GPU devices in large-scale clusters and clouds, the energy efficiency of these implementa-

tions should be well studied. Most of the current MapReduce implementations for GPUs

focus on achieving maximum speedup. It is as important to investigate for different GPU

architectures, which implementation is the most energy-efficient.

111

7.4 Extending Software Atomic Add Operation

In Chapter 3 we proposed a software implementation for atomic-add operations that signif-

icantly improves the memory access performance of memory-bound applications on AMD

GPUs. For compute-bound applications, it is unclear when our software-based atomic op-

eration can be beneficial. We need to investigate a set of guidelines to decide when to use

our software-based atomic operation. Also to address the limitations of supporting a small

number of workgroups, we need to study other approaches for implementing the atomic op-

erations that support any number of workgroups. One potential solution is making use of

the CPU rather than dedicating the first workgroup to be the coordinator.

112

This page intentionally left blank.

113

Bibliography

[1] Hadoop. http://hadoop.apache.org/core/.

[2] Mars Source Code. http://www.cse.ust.hk/gpuqp/Mars.html, Nov 16, 2009.

[3] A. Matsunaga, M. Tsugawa and J. Fortes. CloudBLAST: Combining MapReduce and

Virtualization on Distributed Resources for Bioinformatics. Microsoft eScience Work-

shop, 2008.

[4] Amazon.com. Amazon Elastic Compute Cloud. http://www.amazon.com/gp/browse.

html?node=201590011.

[5] AMD. The Industry-Changing Impact of Accelerated Computing. AMD White Paper,

2008.

[6] AMD. The AMD Fusion Family of APUs. http://www.amd.com/us/products/

technologies/fusion/Pages/fusion.aspx, 2011.

[7] AMD. Stream Computing User Guide. http://www.ele.uri.edu/courses/ele408/

StreamGPU.pdf, December 2008.

[8] AMD. OpenCL Programming Guide rev1.03. http://developer.amd.com/gpu_

assets/ATI_Stream_SDK_OpenCL_Programming_Guide.pdf, June 2010.

114

[9] Anastasios Papagiannis and Dimitrios S. Nikolopoulos. Rearchitecting mapreduce for

heterogeneous multicore processors with explicitly managed memories. In 39th Inter-

national Conference on Parallel Processing, pages 121 –130, sept. 2010.

[10] Advanced Research Computing at Virginia Tech. HokieSpeed (Seneca CPU-GPU).

http://www.arc.vt.edu/resources/hpc/hokiespeed.php.

[11] D. D. Redell B. N. Bershad and J. R. Ellis. Fast Mutual Exclusion for Uniprocessors.

In 5th international conference on Architectural support for programming languages and

operating systems, pages 223–233. ACM, 1992.

[12] Bingsheng He, Wenbin Fang, Naga K. Govindaraju, Qiong Luo, and Tuyong Wang.

Mars: a MapReduce Framework on Graphics Processors. In 17th International Con-

ference on Parallel Architectures and Compilation Techniques, pages 260–269. ACM,

2008.

[13] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. A map reduce framework

for programming graphics processors. In Workshop on Software Tools for MultiCore

Systems, 2008.

[14] Cdric Augonnet, Samuel Thibault, Raymond Namyst and Pierre-Andr Wacrenier.

StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Archi-

tectures. In Euro-Par Parallel Processing, 2009.

[15] Chi-Keung Luk, Sunpyo Hong and Hyesoon Kim. Qilin: Exploiting Parallelism on

Heterogeneous Multiprocessors with Adaptive Mapping. In Microarchitecture, 2009.

MICRO-42. 42nd Annual IEEE/ACM International Symposium on, pages 45 –55, dec.

2009.

[16] Chris Gregg and Kim Hazelwood. Where is the Data? Why you Cannot Debate CPU

vs. GPU Performance Without the Answer. In Proceedings of the IEEE International

115

Symposium on Performance Analysis of Systems and Software, ISPASS ’11, pages 134–

144, Washington, DC, USA, 2011. IEEE Computer Society.

[17] Chuntao Hong, Dehao Chen, Wenguang Chen, Weimin Zheng and Haibo Lin. MapCG:

Writing Parallel Program Portable Between CPU and GPU. In 19th International

Conference on Parallel Architectures and Compilation Techniques, pages 217–226. ACM,

2010.

[18] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos

Kozyrakis. Evaluating MapReduce for Multi-core and Multiprocessor Systems. In IEEE

13th International Symposium on High Performance Computer Architecture, pages 13–

24, 2007.

[19] Intel Corporation. Intel OpenCL SDK. http://software.intel.com/en-us/

articles/vcsource-tools-opencl-sdk/, 2011.

[20] NVIDIA Corporation. NVIDIA GPU Computing Developer Home Page. http: //

developer. nvidia. com/ object/ gpucomputing. html .

[21] NVIDIA CUDA. CUDA Occupancy Calculator. http: // news. developer. nvidia.

com/ 2007/ 03/ cuda_ occupancy_ .html , 2007.

[22] D. P. Playne, K. A. Hawick and A. Leist. Mixing multi-core CPUs and GPUs for scien-

tific simulation software. Technical Report Technical Report CSTN-091, Computational

Science Technical Note, 2009.

[23] E. W. Dijkstra. Solutions of a Problem in Concurrent Programming Control. Commu-

nications of the ACM, 8(9):569, 1965.

[24] Douglas Thain, Todd Tannenbaum and Miron Livny. Distributed Computing in Prac-

tice: the Condor Experience: Research Articles. Concurr. Comput. : Pract. Exper.,

17(2-4):323–356, 2005.

116

[25] Feng Ji and Xiaosong Ma. Using Shared Memory to Accelerate MapReduce on Graph-

ics Processing Units. In IEEE 25th International Parallel and Distributed Processing

Symposium, 2011.

[26] George Teodoro, Tahsin M. Kurc, Tony Pan, Lee Cooper, Jun Kong, Patrick Widener

and Joel H. Saltz. Accelerating Large Scale Image Analyses on Parallel CPU-GPU

Equipped Systems. Center for Comprehensive Informatics, Emory University, Technical

Report CCI-TR-2011-4, 2011.

[27] Christopher Joseph Goddard. Analysis and Abstraction of Parallel Sequence Search.

Master’s thesis, Virginia Polytechnic Institute and State University, 2007.

[28] gpgpu.org. GPGPU Developer Resources. http: // gpgpu. org/ developer .

[29] Grant Mackey, Saba Sehrish, John Bent, Julio Lopez, Salman Habib and Jun Wang.

Introducing MapReduce to High End Computing. In Petascale Data Storage Workshop

Held in conjunction with SC08, 2008.

[30] Gregory F. Diamos and Sudhakar Yalamanchili. Harmony: an Execution Model and

Runtime for Heterogeneous Many Core Systems. In 17th international symposium on

High performance distributed computing, HPDC ’08, pages 197–200, New York, NY,

USA, 2008. ACM.

[31] Khronos Group. The Khronos Group Releases OpenCL 1.0 Specification. http: //

www. khronos. org/ news/ press/ releases , 2008.

[32] Henry Wong, Anne Bracy, Ethan Schuchman, Tor Aamodt, Jamison Collins, Perry

H. Wang, Gautham Chinya, Ankur Khandelwal Groen, Hong Jiang and Hong Wang.

Pangaea: a Tightly-Coupled IA32 Heterogeneous Chip Multiprocessor. In 17th interna-

tional conference on Parallel architectures and compilation techniques, PACT ’08, pages

52–61, New York, NY, USA, 2008. ACM.

117

[33] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao and D. Stott Parker. Map-Reduce-

Merge: Simplified Relational Data Processing on Large Clusters. In ACM SIGMOD

International Conference on Management of Data, pages 1029–1040, New York, NY,

USA, 2007. ACM.

[34] IBM. IBM OpenCL Development Kit for Linux on Power v0.3. https://www.

ibm.com/developerworks/community/groups/service/html/communityview?

communityUuid=80367538-d04a-47cb-9463-428643140bf1, 2011.

[35] Intel. Intel Many Integrated Core Architecture. http://www.intel.com/

content/www/us/en/architecture-and-technology/many-integrated-core/

intel-many-integrated-core-architecture.html.

[36] Intel. Single-Chip Cloud Computer . http://techresearch.intel.com/

ProjectDetails.aspx?Id=1, 2009.

[37] Intel. Intel Sandy Bridge. http://software.intel.com/en-us/articles/

sandy-bridge/, 2011.

[38] Intel. Intel Xeon Phi. http://www.intel.com/content/www/us/en/

high-performance-computing/high-performance-xeon-phi-coprocessor-brief.

html, 2011.

[39] Jean-pierre Goux, Sanjeev Kulkarni, Jeff Linderoth and Michael Yoder. An Enabling

Framework for Master-Worker Applications on the Computational Grid. In Cluster

Computing, pages 43–50. Society Press, 2000.

[40] Jeff A. Stuart and John D. Owens. Multi-GPU MapReduce on GPU Clusters. In IEEE

25th International Parallel and Distributed Processing Symposium, 2011.

[41] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large

Clusters. In 6th Symposium on Operating Systems, Design, and Implementation, 2004.

118

[42] Jeffrey S. Vetter, Richard Glassbrook, Jack Dongarra, Karsten Schwan, Bruce Loftis,

Stephen McNally, Jeremy Meredith, James Rogers, Philip Roth, Kyle Spafford and

Sudhakar Yalamanchili. Keeneland: Bringing heterogeneous gpu computing to the

computational science community. In Computing in Science and Engineering, 2011.

[43] L. Lamport. A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer

Systems, 5(1):1–11, 1987.

[44] Huan Liu and Dan Orban. GridBatch: Cloud Computing for Large-Scale Data-Intensive

Batch Applications. In 8th IEEE International Symposium on Cluster Computing and

the Grid, pages 295–305, 2008.

[45] M. Mustafa Rafique, Ali. R. Butt and Dimitrios S. Nikolopoulos. Designing Accelerator-

Based Distributed Systems for High Performance. In 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing, pages 165 –174, May 2010.

[46] M. Mustafa Rafique, Ali. R. Butt and Dimitrios S. Nikolopoulos. A capabilities-aware

framework for using computational accelerators in data-intensive computing. Journal

of Parallel and Distributed Computing, 71:185–197, February 2011.

[47] Marc de Kruijf and Karthikeyan Sankaralingam. Mapreduce for the Cell Broadband

Engine Architecture. IBM Journal of Research and Development, 53(5):10–1, 2009.

[48] Marwa Elteir, Heshan Lin and Wu-chun Feng. StreamMR: An OpenCL MapReduce

Framework for Heterogeneous Graphics Processors. To be submitted to IEEE Transac-

tions on Parallel and Distributed Systems.

[49] Marwa Elteir, Heshan Lin, and Wu-chun Feng. Enhancing MapReduce via Asyn-

chronous Data Processing. In IEEE 16th International Conference on Parallel and

Distributed Systems, pages 397–405. IEEE, 2010.

119

[50] Marwa Elteir, Heshan Lin and Wu-chun Feng. Performance Characterization and Op-

timization of Atomic Operations on AMD GPUs. In IEEE Cluster, 2011.

[51] Marwa Elteir, Heshan Lin, Wu-chun Feng and Tom Scogland. StreamMR: An Optimized

MapReduce Framework for AMD GPUs. In IEEE 17th International Conference on

Parallel and Distributed Systems, 2011.

[52] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz and Ion Stoica.

Improving MapReduce Performance in Heterogeneous Environments. In USENIX Sym-

posium on Operating Systems Design and Implementation, 2008.

[53] Mayank Daga, Ashwin Aji and Wu-chun Feng. On the Efficacy of a Fused CPU+GPU

Processor (or APU) for Parallel Computing. In Symposium on Application Accelerators

in High-Performance Computing, 2011.

[54] Mayank Daga, Tom Scogland and Wu-chun Feng. Architecture-Aware Mapping and

Optimization on a 1600-Core GPU. In 17th IEEE International Conference on Parallel

and Distributed Systems, Tainan, Taiwan, 2011.

[55] Maged M. Michael. High Performance Dynamic Lock-Free Hash Tables and List-Based

Sets. In 14th annual ACM symposium on Parallel algorithms and architectures, pages

73–82. ACM, 2002.

[56] Michael Cardosa, Aameek Singh, Himabindu Pucha and Abhishek Chandra. Exploit-

ing Spatio-Temporal Tradeoffs for Energy-Aware MapReduce in the Cloud. In Cloud

Computing (CLOUD), 2011 IEEE International Conference on, pages 251 –258, july

2011.

[57] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:

Distributed Data-Parallel Programs from Sequential Building Blocks. In 2nd ACM

120

SIGOPS/EuroSys European Conference on Computer Systems, pages 59–72, New York,

NY, USA, 2007. ACM.

[58] Michael Linderman, Jamison Collins, Hong Wang and Teresa Meng. Merge: a Program-

ming Model for Heterogeneous Multi-Core Systems. In 13th international conference on

Architectural support for programming languages and operating systems, ASPLOS XIII,

pages 287–296, New York, NY, USA, 2008. ACM.

[59] Michela Becchi, Surendra Byna, Srihari Cadambi and Srimat Chakradhar. Data-Aware

Scheduling of Legacy Kernels on Heterogeneous Platforms with Distributed Memory. In

22nd ACM symposium on Parallelism in algorithms and architectures, SPAA ’10, pages

82–91, New York, NY, USA, 2010. ACM.

[60] Naga Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin and Dinesh Manocha. Fast

Computation of Database Operations using Graphics Processors. In ACM SIGMOD

international conference on Management of data, 2004.

[61] NVIDIA. NVIDIA Tegra APX Series. http://www.nvidia.com/object/product_

tegra_apx_us.html.

[62] NVIDIA. NVIDIA CUDA Programming Guide-2.2. http://developer.download.

nvidia.com/compute/cuda/2.2/toolkit/docs/, 2009.

[63] NVIDIA. NVIDIA OpenCL Implementation. http://developer.nvidia.com/opencl,

2009.

[64] David Patterson. The Top 10 Innovations in the New NVIDIA Fermi Architecture, and

the Top 3 Next Challenges. NVIDIA Whitepaper, 2009.

[65] Peter Bakkum and Kevin Skadron. Accelerating SQL Database Operations on a GPU

with CUDA. In Third Workshop on General-Purpose Computation on Graphics Pro-

cessing Units, 2010.

121

[66] Wikimedia Foundation project. English-language Wikipedia. http: // download.

wikimedia. org/ , 2010.

[67] R. Farivar, A. Verma, E. M. Chan and R. H. Campbell. MITHRA: Multiple Data

Independent Tasks on a Heterogeneous Resource Architecture. In IEEE International

Conference on Cluster Computing and Workshops, pages 1 –10, 31 2009-sept. 4 2009.

[68] Richard M. Yoo, Anthony Romano, and Christos Kozyrakis. Phoenix Rebirth: Scalable

MapReduce on a Large-Scale Shared-Memory System. In IEEE International Sympo-

sium on Workload Characterization, pages 198–207. IEEE, 2009.

[69] Rob Pike, Sean Dorward, Robert Griesemer and Sean Quinlan. Interpreting the Data:

Parallel Analysis with Sawzall. Sci. Program., 13(4):277–298, 2005.

[70] S. Chen and S. Schlosser. Map-Reduce Meets Wider Varieties of Applications Meets

Wider Varieties of Applications. Technical Report IRP-TR-08-05, Intel Research, 2008.

[71] Michael Schatz. Cloudburst: Highly Sensitive Read Mapping with MapReduce. Bioin-

formatics, 25:1363–1369, 2009.

[72] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi, Sain-Zee

Ueng, John A. Stratton and Wen-mei W. Hwu. Program Optimization Space Pruning

for a Multithreaded GPU. In Proceedings of the 6th annual IEEE/ACM international

symposium on Code generation and optimization, CGO ’08, pages 195–204, New York,

NY, USA, 2008. ACM.

[73] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B.

Kirk and Wen-mei W. Hwu. Optimization Principles and Application Performance

Evaluation of a Multithreaded GPU using CUDA. In Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and practice of parallel programming, PPoPP ’08,

pages 73–82, New York, NY, USA, 2008. ACM.

122

[74] Shubhabrata Sengupta, Mark Harris, Yao Zhang and John D. Owens. Scan Primitives

for GPU Computing. In 22nd ACM SIGGRAPH/EUROGRAPHICS symposium on

Graphics hardware, pages 97–106. Eurographics Association, 2007.

[75] Shucai Xiao and Wu-chun Feng. Inter-Block GPU Communication via Fast Barrier

Synchronization. In IEEE 24th International Parallel and Distributed Processing Sym-

posium, pages 1–12. IEEE, 2010.

[76] Steven Y. Ko, Imranul Hoque, Brian Cho and Indranil Gupta. On Availability of Inter-

mediate Data in Cloud Computations. In 12th Workshop on Hot Topics in Operating

Systems, 2009.

[77] J. A. Stuart and J. D. Owens. Message Passing on Data-Parallel Architectures. In IEEE

23th International Parallel and Distributed Processing Symposium, pages 1–12. IEEE

Computer Society, 2009.

[78] Supermicro. A+ Server 1022GG-TF. http://www.supermicro.com/Aplus/system/

1U/1022/AS-1022GG-TF.cfm.

[79] Supermicro. Shattering the 1U Server Performance Record. http://www.supermicro.

com/products/nfo/files/GPU/GPU_White_Paper.pdf, 2009.

[80] Suryakant Patidar and P. J. Narayanan. Scalable Split and Gather Primitives for the

GPU. Technical report, Tech. Rep. IIIT/TR/2009/99, 2009.

[81] T. Chen, R. Raghavan, J. N. Dale and E. Iwata. Cell broadband engine architecture

and its first implementation - a performance view. IBM Journal of Research and De-

velopment, 51(5):559 –572, Sept. 2007.

[82] Thomas E. Anderson, Henry M. Levy, Brian N. Bershad and Edward D. Lazowska. The

Interaction of Architecture and Operating System Design, volume 26. ACM, 1991.

123

[83] Thomas Scogland, Barry Rountree, Wu-chun Feng, and Bronis de Supinski. Heteroge-

neous Task Scheduling for Accelerated OpenMP. In IEEE 26th International Parallel

and Distributed Processing Symposium, 2012.

[84] Thomas Wirtz and Rong Ge. Improving MapReduce Energy Efficiency for Computation

Intensive Workloads. In Green Computing Conference and Workshops (IGCC), 2011

International, pages 1 –8, july 2011.

[85] top500.org. TOP 10 Sites for November 2011 . http://www.top500.org/lists/2011/

11, 2011.

[86] Tyson Condie, Neil Conway, Peter Alvaro, Joseph Hellerstein, Khaled Elmeleegy and

Russell Sears. MapReduce Online. Technical Report UCB/EECS-2009-136, University

of California at Berkeley, 2009.

[87] Steffen Valvag and Dag Johansen. Oivos: Simple and Efficient Distributed Data Pro-

cessing. In IEEE 10th International Conference on High Performance Computing and

Communications, pages 113–122, Sept. 2008.

[88] Vasily Volkov and James W. Demmel. Benchmarking GPUs to Tune Dense Linear

Algebra. In International Conference for High Performance Computing, Networking,

Storage and Analysis, pages 1–11. IEEE, 2008.

[89] Wenbin Fang, Bingsheng He, Qiong Luo and Naga K. Govindaraju. Mars: Accelerating

MapReduce with Graphics Processors. IEEE Transactions on Parallel and Distributed

Systems, 22(4):608 –620, April 2011.

[90] Willis Lang and Jignesh M. Patel. Energy Management for MapReduce Clusters. Proc.

VLDB Endow., 3(1-2):129–139, September 2010.

[91] Yanpei Chen, Archana Ganapathi and Randy H. Katz. To Compress or not to Compress

- Compute vs. IO Tradeoffs for Mapreduce Energy Efficiency. In Proceedings of the first

124

ACM SIGCOMM workshop on Green networking, Green Networking ’10, pages 23–28,

New York, NY, USA, 2010. ACM.

[92] Yanpei Chen, Sara Alspaugh, Dhruba Borthakur and Randy Katz. Energy Efficiency for

Large-Scale MapReduce Workloads with Significant Interactive Analysis. In Proceedings

of the 7th ACM european conference on Computer Systems, EuroSys ’12, pages 43–56,

New York, NY, USA, 2012. ACM.

125

