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Abstract—The MapReduce programming model simplifies
large-scale data processing on commodity clusters by having
users specify amap function that processes input key/value pairs
to generate intermediate key/value pairs, and areduce function
that merges and converts intermediate key/value pairs intofinal
results. Typical MapReduce implementations such as Hadoop
enforce barrier synchronization between the map and reduce
phases, i.e., the reduce phase does not start until all map tasks
are finished. In turn, this synchronization requirement cancause
inefficient utilization of computing resources and can adversely
impact performance.

Thus, we present and evaluate two different approaches to
cope with the synchronization drawback of existing MapReduce
implementations. The first approach, hierarchical reduction,
starts a reduce task as soon as a predefined number of map tasks
completes; it then aggregates the results of different reduce tasks
following a tree structure. The second approach, incremental
reduction, starts a predefined number of reduce tasks from
the beginning and has each reduce task incrementally reduce
records collected from map tasks. Together with our performance
modeling, we evaluate different reducing approaches with two
real applications on a 32-node cluster. The experimental results
have shown that incremental reduction outperforms hierarchical
reduction in general. Also, incremental reduction can speed-up
the original Hadoop implementation by up to 35.33% for the
wordcount application and 57.98% for the grep application. In
addition, incremental reduction outperforms the original Hadoop
in an emulated cloud environment with heterogeneous compute
nodes.

Index Terms—Distributed Computing, Cloud Computing,
MapReduce, Hadoop, Asynchronous processing.

I. I NTRODUCTION

Today, many commercial and scientific applications require
the processing of large amounts of data, and thus, demand
compute resources far beyond what can be provided by a
single commodity processor. To address this, various high-end
computing platforms — including supercomputers, graphics
processors, clusters of workstations, and cloud computing
environments — have been architected to facilitate parallel
processing at different scales. However, efficiently exploiting
the hardware parallelism provided by these platforms requires
parallel programming skills that are difficult to master by
common application developers. Even for well-trained experts,
the engineering and debugging of parallel applications canbe
time consuming.

MapReduce [4] is an effort that seeks to democratize par-
allel programing. Originally proposed by Google, MapReduce
has been used to process massive amounts of data in web

search engines on a daily basis. With the maturity of Hadoop,
an open-source MapReduce implementation, the MapReduce
programming model has been widely adopted and found effec-
tive in many scientific and commercial application areas such
as machine learning [2], bioinformatics [8], astrophysics[7]
and cyber-security [5]. Because of its ease of use and built-in
fault tolerance, MapReduce is also becoming one of the most
effective programming models in cloud computing environ-
ments, e.g., Amazon EC2 [1].

A MapReduce job consists of two user-provided functions:
map andreduce. As shown in Figure 1, the run-time system
creates concurrent instances of map tasks that split and process
the input data. The intermediate results generated by map tasks
are then copied to the reduce tasks, which in turn reduce
the intermediate results and produce the final output. In a
MapReduce system, all the above data is stored as key/value
pairs for efficient data indexing and partitioning.
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Fig. 1. MapReduce framework

Existing MapReduce implementations (e.g., Hadoop) en-
force a barrier synchronization between the map phase and
the reduce phase, i.e., the reduce phase only starts when all
map tasks are completed. There are two cases where this
barrier synchronization can result in serious resource under-
utilization. First, on heterogeneous environments, the faster
compute nodes will finish their assigned map tasks earlier,
but these nodes cannot proceed to the reduce processing until
all the map tasks are finished, thus wasting resources. The
resource heterogeneity can originate from different hardware



configurations or resource sharing through virtualization.1 Sec-
ond, even in homogeneous environments, a compute node may
not be fully utilized by the map processing because a map task
alternates between computation and I/O. Also, there is addi-
tional scheduling overhead between the execution of different
tasks. In this case, overlapping map and reduce processing can
considerably improve job response time, especially when the
number of map tasks is relatively large compared to the cluster
size. For instance, the number of map tasks of a MapReduce
job is typically configured to be 100 times the number of
compute nodes at Google [4].

In this paper, we focus on addressing the above synchro-
nization problem for a specific class of MapReduce jobs,
called recursively reducibleMapReduce jobs. For this type
of MapReduce jobs, a portion of the map results can be
reduced independently, and the partial reduced results canbe
recursively aggregated to produce global reduce results. One
example of such a job is word counting. More details about
recursively reducible MapReduce jobs will be discussed in
Section II-B.

The unique characteristic of recursively reducible MapRe-
duce jobs is that there is no inherent synchronization re-
quirement between the map phase and the reduce phase.
Consequently, we propose and compare two asynchronous
data-processing techniques to enhance resource utilization and
performance of MapReduce for recursively reducible jobs.
The first approach, hierarchical reduction (HR), overlaps map
and reduce processing at the inter-task level. This approach
starts a reduce task as soon as a certain number of map tasks
complete and aggregates partial reduced results followinga
tree hierarchy. The second approach, incremental reduction
(IR), exploits the potential of overlapping data processing and
communication within each reduce task. It starts a designated
number of reduce tasks from the beginning and incrementally
applies reduce function to the intermediate results accumulated
from map tasks.

We evaluate the proposed approaches with analytical models
and experiments on a 32-node cluster. The experimental results
demonstrate thatboth approaches can effectively improve the
MapReduce execution time — with the incremental reduction
approach consistently outperforming hierarchical reduction. In
particular, incremental reduction can outperform the original
Hadoop implementation by 35.33% for thewordcount appli-
cation and 57.98% for thegrep application.

The rest of the paper is organized as follows. Section II
provides background information about Hadoop and recur-
sively reducible MapReduce jobs. Section III presents the
design of the proposed approaches, in particular, hierarchical
reduction and incremental reduction. Section IV evaluatesthe
performance of the proposed approaches using an analytical
model. The experimental results are discussed in Section V.
Section VI presents the related work. Finally, Section VII
concludes the paper.

1Zahria et al. reported that there can be a 2.5-fold performance difference
among various virtual machine instances on Amazon EC2 [13].

II. BACKGROUND

Here we describe Hadoop, an open-source Java implemen-
tation of the MapReduce framework, as well as the notion of
recursively reducible jobs.

A. Hadoop

Hadoop can be logically segregated into two subsystems,
i.e., a distributed file system called HDFS and a MapReduce
run-time system. The MapReduce run-time system follows
a master-slave design. The master node is responsible for
managing submitted jobs, i.e., assigning map and reduce tasks
of every job to the available workers. By default, each worker
can run two map tasks and two reduce tasks simultaneously.

At the beginning of a job execution, the input data is split
and assigned to individual map tasks. When a worker finishes
executing a map task, it stores the map results as intermediate
key/value pairs locally. The intermediate results of each map
task will be partitioned and assigned to the reduce tasks
according to their keys. A reduce task begins by retrieving
its corresponding intermediate results from all map outputs
(called theshufflephase). The reduce task then sorts the col-
lected intermediate results and applies the reduce function to
the sorted results. To improve performance, Hadoop overlaps
the retrieving and sorting of finished map outputs with the
execution of newly scheduled map tasks.

B. Recursively Reducible Jobs

Word counting is a simple example of recursively reducible
jobs. The occurrences of a word can be counted first on
different splits of an input file, and those partial counts can
then be aggregated to produce the number of word occurrences
in the entire file. Other recursively reducible MapReduce
applications include association rule mining, outlier detection,
commutative and associative statistical functions, and soon.
In contrast, the square of the sum of values is an example
of a reduce function that isnot recursively reducible, because
(a + b)2 + (c + d)2 does not equal(a + b + c + d)2. However,
there are some mathematical approaches that can transform
such functions to benefit from our solution.

It is worth mentioning that there is acombiner function
provided in typical MapReduce implementations including
Hadoop. The combiner function is used to reduce key/value
pairs generated by asingle map task. The partially reduced
results, instead of the raw map output, are delivered to the
reduce tasks for further reduction. Our proposed asynchronous
data-processing techniques are applicable to all applications
that can benefit from the combiner function. The fundamental
difference between our techniques and the combiner function
is that our techniques optimize the reducing of key/value pairs
from multiple map tasks.

III. A SYNCHRONOUSMAPREDUCE DATA PROCESSING

In this section, we present the design details of our two
proposed asynchronous data-processing techniques: hierarchi-
cal reduction and incremental reduction.



A. Hierarchical Reduction (HR)

1) Design and Implementation:Hierarchical reduction
seeks to overlap the map and reduce processing by dynami-
cally issuing reduce tasks to aggregate partially reduced results
along a tree-like hierarchy. As shown in Figure 2, as soon
as a certain number (i.e., defined by the aggregation level
σH ) of map tasks are successfully completed, a new reduce
task is created and assigned to one of the available workers.
This reduce task is responsible for reducing the output of the
σH map tasks that are just finished. When all map tasks are
successfully completed and assigned to reduce tasks, another
stage of the reduce phase is started. In this stage, as soon as
a certainσH reduce tasks are successfully completed, a new
reduce task is created to reduce the output of theσH reduce
tasks. This process repeats until there is only one remaining
reduce task, i.e., when all intermediate results are reduced.
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Fig. 2. Hierarchical reduction with an aggregation level oftwo.

Although conceptually the reduce tasks are organized as a
balanced tree, in our implementation a reduce task at a given
level does not have to wait for all of the tasks at the previous
level to finish. In other words, as soon as a sufficient number
of tasks (i.e.,σH ) from the previous level becomes available,
a reduce task from the subsequent level can begin. Such a
design can reduce the associated scheduling overhead of HR.

2) Discussion: One advantage of HR is that it can par-
allelize the reduction of a single reducing key across multi-
ple workers, whereas in the original MapReduce framework,
the reduction of a key is always handled by one worker.
Therefore, this approach is suitable for applications with
significant reduce computation per key. However, HR incurs
extra communication overhead in transferring the intermediate
key/value pairs to reduce tasks at different levels of the tree
hierarchy, which can adversely impact the performance as the
depth of the tree hierarchy increases. Other overheads include
the scheduling cost of reduce tasks generated on the fly.

The fault-tolerant design of the original Hadoop needs to be
modified to accommodate HR. In particular, theJobTracker
should keep track of all created reduce tasks, in addition
to the tasks assigned to be reduced by these reduce tasks.
Whenever a reduce task fails, another copy of this task should
be created, and the appropriate tasks should be assigned again
for reduction.

B. Incremental Reduction (IR)

1) Design and Implementation:Incremental reduction aims
to start the reduce phase as early as possible within a reduce
task. Specifically, the number of reduce tasks are defined at
the beginning of the job similar to the original MapReduce
framework. Within a reduce task, as soon as a certain amount
of map outputs are received, the reduction of these outputs
starts and the results are stored locally. The same process
repeats until all map outputs are retrieved.
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Fig. 3. Incremental reduction with an reduce granularity oftwo.

In Hadoop, a reduce task consists of three stages. The
first stage, named shuffling, copies the task’s own portion of
intermediate results from the output of all map tasks. The
second stage, named sorting, sorts and merges the retrieved
intermediate results, according to their keys. Finally, the third
stage applies the reduce function to the values associated
with each key. To enhance the performance of the reduce
phase, the shuffling stage is overlapped with the sorting stage.
More specifically, when the number of in-memory map outputs
reaches a certain threshold,mapred.inmem.merge.threshold,
these outputs are merged and the results are stored on-disk.
When the number of on-disk files reaches another threshold,
io.sort.factor, another on-disk merge is performed. After all
map outputs are retrieved, all on-disk and in-memory files are
merged, and then the reduction stage begins.

In our IR implementation, we make use ofio.sort.factor
and mapred.inmem.merge.threshold. When the number of in-
memory outputs reaches themapred.inmem.merge.threshold
threshold, they are merged and the merging results are stored
on the disk. When the number of on-disk outputs reaches
the io.sort.factorthreshold, the incremental reduction of these
outputs begins and the reducing results are stored instead of
the merging results. When all map outputs are retrieved, the
in-memory map outputs are reduced along with the stored re-
ducing results. The final output data is written to the distributed
file system. The entire process is depicted in Figure 3.

2) Discussion: IR incurs less overheads than HR for two
reasons. First, the intermediate key/value pairs are transmitted



once from the map to reduce tasks instead of several times
along the hierarchy. Second, all of the reduce tasks are created
at the start of the job, and hence, the scheduling overhead is
reduced.

In addition to the communication cost, the number of writes
to local and distributed file system are the same (assuming the
same number of reduce tasks) for both the original MapReduce
and IR. Therefore, IR can outperforms the original MapReduce
when there is sufficient overlap between the map and reduce
processing.

The main challenge of IR is to select the right threshold that
triggers an incremental reduce operation. Too low a threshold
will result in unnecessarily frequent I/O operations, while
too high a threshold will not be able to deliver noticeable
performance improvements. Interestingly, a similar decision,
i.e., the merging threshold, has to be made in the original
Hadoop implementation as well. Currently we provide a run-
time option for users to control the incremental reduction
threshold. In the future, we plan to investigate self-tuning of
this threshold for long-running MapReduce jobs.

It is worth noting that since the map and reduce tasks in
this approach are created in the same manner as in Hadoop,
the fault-tolerant scheme of Hadoop works in IR as well.

IV. A NALYTICAL MODELS

Here we derive analytical models to compare the perfor-
mance of the original MapReduce (MR) implementation of
Hadoop and the augmented implementations with hierarchical
reduction (HR) and incremental reduction (IR) enhancements.
Table I presents all the parameters used in the models.

Without loss of generality, our modeling assumes the num-
ber of reduce tasksr is smaller than the number of execution
slots2n. In fact, the Hadoop documentation recommends that
95% of the execution slots is a good number for the number
of reduce tasks for typical applications. However, our analysis
can be easily generalized to model the cases where there
are more reduce tasks than the number of execution slots.
Furthermore, the model assumes that the number of map tasks
m is greater than the number of available execution slots in
the cluster2n (recall that there are two execution slots per
node by default). When the number of map tasks is less than
the number of execution slots, all map tasks are executed in
parallel and completed simultaneously, so there is no way to
overlap map and reduce phases.

For simplicity, we consider two different cases. The first
case assumes that there is a high degree of overlap between the
map and reduce procedures, where the processing (including
retrieving, merging, and sorting) of almost all intermediate
results in a reduce task can be overlapped with map computa-
tions. The second case, representing a low degree of overlap
between the map and reduce procedures, assumes that the
processing of only a portion of intermediate results in a reduce
task can be overlapped with map computations.

A. MR

The execution of the original Hadoop can be illustrated by
the left part of Figure 4. When the overlapping degree is high,

Parameters Meaning
m Number of map tasks
n Number of nodes
k Total number of intermediate key/

value pairs
r Number of reduce tasks of the

MR framework
tm Average map task execution time
trk Average execution time of reducing

values of a single key
σH Aggregation level used in HR
C Communication cost per key/value pair
CMR Communication cost fromm map

tasks tor reduce tasks in MR
CHR Communication cost from the assigned

σH map tasks to a reduce task in HR

TABLE I
PARAMETERS USED IN THE PERFORMANCE MODEL

the merging phase of MR can be eliminated. So, the total
time becomesMap time + Reduce time, assuming the final
stage merging is neglected.
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For low degree of overlap, if the reduce tasks occupy all
nodes i.e., the number of reduce tasks (r) is larger than or
equal ton, only a portion of the merging of the intermediate
results can be overlapped with the map computation, and the
total time can be expressed by Equation (1), whereo represents
the reduction in the merging time.

TMR = Map time+ (Merge time− o) + Reduce time (1)

However, when the reduce tasks do not occupy all nodes, more
merging can be overlapped with the map computations due to
the load balancing effect i.e., the nodes with running reduce
tasks process a smaller number of map tasks compared to
the other nodes. This is because Hadoop uses greedy task
scheduling; the nodes without running reduce tasks process
map tasks faster, and in turn, are assigned more map tasks.
As a result, theMap time is increased and the merging time
is decreased as shown in Equation (2), wherel represents
the load balancing effect,o′ represents the overlapping effect,
and o′ > o. As r increases,l and o′ keeps decreasing, until
reaching 0 ando respectively whenr = n (Equation (1)).

TMR = (Map time+l)+(Merge time−o′)+Reduce time(2)



B. HR

For hierarchical reduction, map and reduce processing at
different stages can be overlapped, as shown in Figure 5. To
compare the performance of HR with that of MR, we consider
more detailed modeling.

For HR, when all map tasks are finished, the remaining com-
putations are to reduce the un-reduced map tasks in additionto
combining the results of this reducing stage with other partial
reduced results. Specifically, the total execution time of MR,
and HR can be represented by the following equations, where
C′

MR
is the communication required to retrieve the remaining

map outputs since MR’s communication is overlapped with the
map computations, ands is the remaining number of reduce
stages in the HR’s hierarchy:

TMR = Map time+ C′

MR
+ ⌈

k

r
⌉log(⌈

k

r
⌉) + trk × ⌈

k

r
⌉ (3)

THR = Map time+(CHR +
σHk

m
log(

σHk

m
)+ trk×

σHk

m
)×s

(4)
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Fig. 5. Execution of HR framework whenm = 8n

Assuming every map task produces a value for each given
key, thenC′

MR
is k×2n

r×m
× C, then CHR is σHk

m
× C, and

CHR equalsσHr

2n
×C′

MR
, where C is communication cost per

key/value pair. By substitutingCHR in Equation (4) by the
previous value, the equation becomes:

THR = Map time+

(
σHr

2n
× C′

MR
+

σH

m
× (klog(

σHk

m
) + ktrk)) × s

(5)

When the overlapping degree is high,s can be replaced by
(logσH

(2n) + 1) in Equation (5), which represents the reduc-
tion of the map tasks of the final stage. Moreover, the merging
time can be eliminated from Equation (3). So, for significantly
largem, the reducing part of Equation (5) is smaller than that
of Equation (3). If this term occupies a significant portion
of the total time of MR, and the communication overhead is
small, then HR will behave better than MR as we will see in
the experimental evaluation. However, when the overlapping
degree is low,s can be very deep, and the performance of HR
can be worse than MR.

C. IR

The execution of IR relative to MR is represented by
Figure 4. Particularly, when the overlapping degree is high,
the final merging, and reducing phase of IR can be eliminated.
So the total execution time can be represented byMap time.
By comparing this to MR, we can conclude that IR behaves
better than MR especially when the reducing time of MR is
significant.

For low overlapping degree, ifr is larger thann, then
merging and reducing of only a portion of the intermediate
results can be overlapped with the map computations, and the
total time can be expressed by Equation (6). Whereom and
or represents the reduction in the merging and reducing time
respectively.

TIR = Map time+ (Merge time− om) + (Reduce time− or)
(6)

To compare this with Equation (2), we consider the details
of the overlapping computations in MR and IR. The main
difference is that IR performs reducing after merging and
writes the results of reduce rather than the results of merge
to disk. Assuming the reduce function changes the size of the
input by a factor ofx and the reduce function is linear, then
the overlapped computations of MR (OMR) and IR (OIR)
can be represented by the following equations, whereI is
the size of intermediate key/value pairs to be merged and
reduced during the map phase,IlogI is the average number
of compare operations executed during the merge,ps is the
processor speed,ds is the disk write speed.

OMR =
IMRlogIMR

ps

+
IMR

ds

(7)

OIR =
IIRlogIIR + IIR

ps

+
IIR × x

ds

(8)

Given the same overlapping degree, ifx < 1, which is
valid for applications like wordcount, grep, linear regression
etc., then IR is able to conduct more merging in addition to
reducing overlapped with map computations. So, the merging
and reducing terms in equation 6 is less than the same terms
in equation 1. So, IR can behave better than MR given the
reduce computations is signifiant as illustrated by Figure 4.
On the other side, ifx ≥ 1 as in sort application, then the
performance of IR highly depends on the complexity of the
reduce function compared to the merging, in addition to the
size of the intermediate key/value pairs.

By applying the previous analysis to the case wherer < n,
we can conclude that IR can behave better than MR in this
case given also the reducing time occupies a significant portion
of the total execution time.

V. EXPERIMENTAL ANALYSIS

In this section, we present a rigorous performance evalu-
ation of our proposed techniques. The details of the system
configurations are given along with the conducted experiments.



A. Experimental Platform

We ran our experiments on System X at Virginia Tech, com-
prising Apple Xserve G5 compute nodes with dual 2.3GHz
PowerPC 970FX processors, 4GB RAM, and 80GB hard
drives. The compute nodes are connected with a Gigabit Eth-
ernet interconnection. Each node is running the GNU/Linux
operating system with kernel version 2.6.21.1. The proposed
approaches are developed based on Hadoop 0.17.0.

B. Overview

We use two applications i.e.,wordcountand grep in the
experiments. Wordcount is an application that parses a doc-
ument or a number of documents, and produces for every
word the number of its occurrences. Grep accepts a document
or a number of documents and an expression as input, and
it matches this expression along the whole documents and
produces the number of occurrences for every match.

We first aim at studying the scalability of the different
reducing approaches in terms of the dataset size. Next, we seek
to understand the reasons of performance difference between
different approaches by profiling the behaviors of wordcount
and grep under various configurations. Finally, we evaluate
various reducing approaches on emulated cloud environments.

The major performance metric in all experiments is the total
execution time in seconds. Moreover, for a fair comparison,
we follow the guidance given in the Hadoop documentation re-
garding the number of map and reduce slots per node as well as
the thresholds that control the frequency of merging and sort-
ing intermediate results (i.e.,mapred.inmem.merge.threshold
and io.sort.factoras discussed in Section III-B). Furthermore,
we enable the combiner function in all experiments In addition,
the aggregation level of the hierarchical reduction approach is
set to 4, which produces the best results on the 32-node cluster.
Before executing an experiment, we flush the Linux file system
cache by having each node read a dummy file that is larger
than the size of the memory. This avoids the I/O performance
inconsistency caused by the Linux file caching.

C. Scalability with the Dataset Size

In this experiment, we aim at studying the scalability of
the three reducing approaches with regard to the size of the
input dataset. We run wordcount and grep using data sets
of two different sizes, i.e., 16GB and 64GB. For wordcount,
the number of reduce tasks was set to 4 and 8 (a broader
range were used in Section V-D). For grep, we use a query
that produces results of moderate size. The performance of
queries generating various sizes of output will be investigated
in Section V-E.

As shown in Figure 6, generally, as the size of the input
dataset increases, the performance improvement of IR over
MR increases. Specifically, for wordcount, as the size of the
input increases to 64GB, IR outperforms MR by 34.5% and
9.48% instead of 21% and 5.97% for 16GB input using 4 and
8 reduce tasks, respectively. In addition, for grep, increasing
the input size to 64GB improves IR’s performance gain over
MR; IR is better than MR by 16.2% (for 64GB input) instead

0

0.2

0.4

0.6

0.8

1

16GB 64GB 16GB 64GB 16GB 64GB 16GB 64GB

4 8 4 aggregation
level

[a-c]+[a-z.]+'

Wordcount Grep
Setting

N
o

rm
al

iz
ed

 e
xe

cu
tio

n
 ti

m
e 

MR

IR

HR

Fig. 6. Scalability with dataset size using wordcount and grep

of 7.1% (for 16GB input). The scalability of IR attributes
to two reasons that provide more room for overlapping map
processing and reduce computations. First, as the dataset size
increases, the map phase has to perform more I/O. Second,
for 64 GB, the number of map tasks increases from 256 to
1024, thus increasing the scheduling overhead.

Similarly, the performance improvement of HR over MR
increases by 9.96% for wordcount as the size of input dataset
increases. However, the speedup of HR over MR decreases (by
4.13%) for grep when larger input is used. This is because the
extra communication cost caused by the increase of input data
can be compensated by the corresponding increase in the map
processing time in wordcount but not grep.

Since the normal Mapreduce jobs process large amounts of
input data, all of the subsequent experiments will use input
datasets of 64 GB.

D. Wordcount Performance

In a cluster of 32 nodes, we run wordcount on a dataset
of size 64 GB. The number of map tasks is set to 1024,
and the number of reduce task is varied from 1 to 64. As
shown in Figure 7, as the number of reduce tasks increases,
IR’s improvement over MR decreases. Specifically, for one
reduce task, IR behaves better than MR by 35.33%. When
the number of reduce tasks is increased to 4, IR behaves
better by 34.49%. As the number of reduce tasks increases,
the processing time of a reduce task decreases, thus providing
little room for overlapping the map and reduce processing.
Specifically, when the number of reduce tasks is 32, a reduce
task only consume a mere 6.83% in the total execution time
as shown in table II.
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Fig. 7. Performance of MR vs. IR using wordcount



Reduce Tasks Incremental merges Reduce Time Map Time
1 46 11736 2690
4 55 1699.5 2732
8 13 524 2787
16 2 315 2845
32 0 210 2865

TABLE II
MR AND IR EXECUTION PROFILE.

Reduce Tasks MR IR
1 21 21
4 22 25 + 1S
8 26 + 2S 28
16 30 + 2S 28 + 2S
32 31 32

TABLE III
NUMBER OF MAP TASKS EXECUTED ON A CODE WITH REDUCE TASK(S)

RUNNING. SMEANS A SPECULATIVE TASK.

Furthermore, IR achieves its best performance at 4 reduce
tasks because this provides the best compromise between level
of parallelism controlled by the number of reduce tasks and
overlapping map with reduce. Specifically, in this case, IR
conducts 55 incremental merges overlapped with the map
computations compared to 0 merges with 32 reduce tasks, as
shown in Table II. As a result, the nodes executing a reduce
task executes 26 map tasks instead of 32 map tasks in case
of 32 reduce tasks, recall theload balancing effectdiscussed
in section IV. Specifically, when only a small portion of the
nodes are executing reduce tasks, these nodes will have less
resources to spend on the map processing, and thus more map
tasks are “pushed off” to the other nodes without reduce tasks.

The best performance is achieved at 32 and 4 reduce tasks
for MR, and IR respectively. With the best performance for
both MR and IR, IR is better by 5.86%.

On the other side, using an aggregation level of 4, HR
behaves better than MR with 8 reduce tasks by 5.13%. We
changed the aggregation level from 2 to 8 as shown in Figure 7.
The best performance is achieved for the aggregation level 4,
when a best balance is achieved between the overlap of map
and reduce processing and the reduce overhead. For example,
with an aggregation level of 2, a reduce operation can be
triggered sooner, but the reducing hierarchy is also deeper.
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Fig. 8. CPU utilization throughout the whole job using wordcount

To better understand the benefits of the incremental reduc-
tion approach, we measured the CPU utilization throughout the
job execution, and the number of disk transfers per second
during the map phase for both MR and IR. As shown in

Concurrent jobs MR Execution Time IR Execution Time
(seconds) (seconds)

1 3107.5 2925.5
2 6064 5687
3 9025.5 8303

TABLE IV
MR AND IR PERFORMANCE WITH CONCURRENT JOBS.

Figure 8 and 9, the CPU utilization of IR is greater than MR
by 5% on the average. In addition, the average disk transfersof
IR is less than MR by 2.95 transfers per second. This attributes
to the smaller amount of data written to disk by IR, because
it reduces the intermediate data before writing it back to disk.
In doing so, IR also reduces the size of data read from disk
at the final merging and reducing stage.
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Fig. 9. Number of disk transfers per second through the map phase using
wordcount.

To conclude, for any number of reduce tasks, IR achieves
either better or same performance as MR. And the best
performance for IR is achieved using only 4 reduce tasks,
This means that IR is more efficient in utilizing the available
resources. So, we expect IR to achieve better performance
when several jobs are running at the same time, or with larger
amounts of reduce processing. Particularly, when running three
concurrent jobs of wordcount, the best configuration of IR
behaves better than the best configuration of MR by 8.01%
instead of 5.86% as shown in table IV.

E. Grep Performance

In a cluster of 32 nodes, we run grep on a dataset of 64
GB. The number of map tasks is set to 1024, and the number
of reduce tasks is set to the default value i.e., one. Grep runs
two consecutive jobs; one returns for each match the number
of its occurrence, and the other is a short job that inverts the
output of the previous job so that the final output will be sorted
based on occurrence of the matches instead of alphabetically.
In this experiment, we focus on the first longer job. We used
five different queries each produces a different number of
matches and hence different numbers of intermediate and final
key/value pairs.

As shown in Figure 10, IR and HR deliver very similar
performance. In addition, for the first query, all reducing ap-
proaches have the same performance. For subsequent queries,
HR and IR outperform MR, and the performance improvement
of HR/IR over MR increases along with the number of
matches.
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Fig. 10. Performance of MR, IR, and HR using grep.

Query Reduce Time Intermediate Data Size
(seconds) (records)

a+[a-z.]+ 135 37,285,680
[a-b]+[a-z.]+ 250 55,897,216
[a-c]+[a-z.]+ 351 78,196,736
[a-d]+[a-z.]+ 742 113,039,360
[a-i]+[a-z.]+ 1569 306,921,472

TABLE V
CHARACTERISTICS OF DIFFERENT QUERIES

F. Heterogeneous Environment Performance

Nowadays data centers are becoming incrementally hetero-
geneous, due to the use of virtualization and/or machines from
different generations. In this experiment, we aim at studying
the robustness of MR, HR, and IR to the heterogeneity of
the target cluster. In a cluster of 32 nodes, we manually slow
down several nodes i.e., 10 nodes to mimic a heterogeneous
cluster We continuously rundd commandto convert and write
a large file (e.g. 5.7 GB) to disk in order to slow down a given
node. This approach was used in a related study by Zahria et
al. [13].

We expect in these environments, the map phase time gets
longer due to the effects of the slow nodes. So, if the reduce
tasks are appropriately assigned to the fast nodes, then utilizing
the extra map time in reduce computations could improve the
performance of the proposed approaches. Using wordcount,
we run MR, and IR with the best configuration achieved in
Section V-D i.e., 32 reduce tasks for MR and 4 reduce tasks
for IR. As shown in Figure 11, when the reduce tasks are
assigned to the fast nodes, IR becomes better than MR by
10.33% instead of 5.86%. However, when they are randomly
assigned, IR becomes better than MR by only 2.32%. This is
expected because the I/O and computing resources available
for reduce tasks in this case are limited, preventing IR from
taking advantage of overlap between the map and reduce
processing. We argue that if the heterogeneity originates from
different generations of hardware or from virtualization,it is
possible to identify the fast nodes and assign more reduce
tasks to these nodes.

Note that HR’s performance drops significantly when run-
ning in the heterogeneous environment. This can be attributed
to the large number of generated reduce tasks in HR. In
addition, it is indeterministic where these tasks will be run,
so it is not possible to avoid the effect of the slow nodes.

To simulate a cloud environment with slower I/O perfor-
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Fig. 11. Wordcount performance in homogeneous and heterogeneous
environments. In the second setting, 10 nodes are slowed down, and the reduce
tasks are scheduled on the fast nodes. Currently, where reduce tasks will be
run in HR is not controllable.

mance because of virtualization, we slow down 32 nodes and
repeat the experiment. As we can see, IR still outperforms MR
by 7.14%.

VI. RELATED WORK

Several research efforts have been done to enhance the
MapReduce framework. Sawzall is a programming language
built on top of MapReduce [9]. It aims at automatically
analyzing huge distributed data files. The main difference
between Sawzall and the standalone Mapreduce framework
is that Sawzall distributes the reduction in a hierarchical
topology-based manner. In [10], the authors improved the
performance of Google’s MapReduce framework by pipelining
disk and network I/O. Particularly, they aimed at streaming
intermediate data as it is generated and uses local storage as
a write-ahead log for network transfer. In [12], the authors
believe that the original MapReduce framework is limited
in supporting applications like relational data processing. So
they presented a modified version of the MapReduce named
MapReduceMerge, where the reduce workers produce a list of
key/values pairs that are transmitted to a set of merge workers
for further processing.

Moreover, Valvag et al. developed a high-level declarative
programming model and its underlying runtime, Oivos, which
aims at handling applications that require running several
MapReduce jobs [11]. This framework has two main advan-
tages compared with MapReduce. First, it reduces the over-
heads associated with such type of applications that includes
monitoring the status and progress of each job, determining
when to re-execute a failed job or start the next one, and
specifying a valid execution order for the MapReduce jobs.
Second, it removes the extra synchronization when these
applications are executed using the traditional MapReduce
framework, i.e., every reduce task in one job should complete
before any of the map tasks in the next job can start.

Steve et al. realized that the loss of intermediate map out-
puts may result in a significant performance degradation [6].
And although using HDFS (Hadoop Distributed File System)
improves the reliability, it results in considerably increase in
the job completion time. As a result, they proposed some



design ideas for a new intermediate data storage system.
Zahria et al. [13] proposed a speculative task scheduling
named LATE (Longest Approximate Time to End) to cope
with several limitations of the original Hadoop’s scheduler in
heterogeneous environments such as Amazon EC2[1].

Finally, Condie et al. [3] recently extended the MapReduce
architecture to work efficiently for online jobs in additionto
batch jobs. Instead of materializing the intermediate key/value
pairs within every map task, they proposed pipelining these
data directly to the reduce tasks. They further extended this
pipelined MapReduce to support interactive data analysis
through online aggregation, and continuous query processing.

To conclude, our proposed solutions are orthogonal to the
above extensions to MapReduce framework and can comple-
ment their improvements.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we designed and implemented two approaches
to reduce the overhead of the barrier synchronization between
the map and reduce phases of Hadoop, an open source
implementation of MapReduce. In addition, we evaluated
the performance of these approaches against Hadoop using
analytical model and experiments on a 32-node cluster.

The first proposed approach is the hierarchical reduction,
which overlaps map and reduce processing at the inter-task
level. It starts a reduce task as soon as a certain number of map
tasks complete and aggregates partial reduced results following
a tree hierarchy. This approach can be effective when there is
enough overlap between map and reduce processing. However,
this approach has some limitations due to the overheads of
creating reduce tasks on the fly, in addition to the extra
communication cost of transferring the intermediate results
along the tree hierarchy. To cope with these overheads, we
proposed the incremental reduction approach, where all reduce
tasks are created at the start of the job, and every reduce
task incrementally reduces the received map outputs. The
experimental results have shown that this approach consis-
tently outperforms the hierarchical reduction approach and the
original Hadoop implementation.

In the future, we plan to evaluate our techniques to a
broader class of applications. We will also investigate in
generalizing our techniques to support applications whichare
not recursively reducible in their original form. Finally,we
will evaluate the performance of the proposed techniques on
real cloud environments.

DISCLAIMER

This paper is based on version 0.17.0 of Hadoop. We com-
pleted the major design and development of our approaches in
June 2009. Recently, we found that in concurrence with our
project development, Hadoop extended the implementation of
the original combiner function, using a design similar to the
incremental reduction (IR) approach proposed in our paper.

In the most recent version of Hadoop, the combiner function
is triggered in a reduce task during the in-memory merge of
map outputs. In our design, the incremental reduction occurs

at both in-memory merge and on-disk merge. We also present
an alternative design, i.e., hierarchical reduction. Finally, in
addition to our proposed designs, we presented a rigorous
performance evaluation and analytical analysis of incremental
reduction (IR) and hierarchical reduction (HR).
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