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Abstract—The MapReduce programming model simplifies search engines on a daily basis. With the maturity of Hadoop,
large-scale data processing on commodity clusters by hadn an open-source MapReduce implementation, the MapReduce
users specify amap function that processes input key/value pairs programming model has been widely adopted and found effec-

to generate intermediate key/value pairs, and aeduce function tive i ientifi d ial licati 4
that merges and converts intermediate key/value pairs intdinal IVE In many scientific and commercial application areasisuc

results. Typical MapReduce implementations such as Hadoop @ Mmachine learning [2], bioinformatics [8], astrophydicl
enforce barrier synchronization between the map and reduce and cyber-security [5]. Because of its ease of use and ipuilt-

phases, i.e., the reduce phase does not start until all mapsks fault tolerance, MapReduce is also becoming one of the most

are finished. In tum, this synchronization requirement cancause  gffective programming models in cloud computing environ-
inefficient utilization of computing resources and can advesely
ments, e.g., Amazon EC2 [1].

impact performance.
Thus, we present and evaluate two different approaches to A MapReduce job consists of two user-provided functions:
cope with the synchronization drawback of existing MapRedge ) anqreduce. As shown in Figure 1, the run-time system
implementations. The first approach, hierarchical reductbn, . .
starts a reduce task as soon as a predefined number of map taskscrea_ltes concurrent !nstance§ of map tasks that split aregs0
completes; it then aggregates the results of different recee tasks the input data. The intermediate results generated by nsép ta
following a tree structure. The second approach, incremerdl are then copied to the reduce tasks, which in turn reduce
reduction, starts a predefined number of reduce tasks from the intermediate results and produce the final output. In a

the beginning and has each reduce task incrementally reduce \15nReduce system, all the above data is stored as key/value
records collected from map tasks. Together with our performance irs f ffici d indexi d L
modeling, we evaluate different reducing approaches withwo pairs for efficient data indexing and partitioning.

real applications on a 32-node cluster. The experimental mllts
have shown that incremental reduction outperforms hierardical
reduction in general. Also, incremental reduction can spegup

-
the original Hadoop implementation by up to 35.33% for the @ ﬁ o -
wordcount application and 57.98% for the grep application. In nput datasg
addition, incremental reduction outperforms the original Hadoop L, :
in an emulated cloud environment with heterogeneous compet @4’@ ;
nodes. \ ~
Index Terms—Distributed Computing, Cloud Computing, @%

MapReduce, Hadoop, Asynchronous processing. : -
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Today, many commercial and scientific applications require @Map ek @ Reduce task 3 Distbutec () Local Fit
the processing of large amounts of data, and thus, demand W File System ﬁ System

compute resources far beyond what can be provided by a
single commodity processor. To address this, various bigth- Fig. 1. MapReduce framework
computing platforms — including supercomputers, graphics
processors, clusters of workstations, and cloud computing
environments — have been architected to facilitate pdralle Existing MapReduce implementations (e.g., Hadoop) en-
processing at different scales. However, efficiently eitiplg force a barrier synchronization between the map phase and
the hardware parallelism provided by these platforms regui the reduce phase, i.e., the reduce phase only starts when all
parallel programming skills that are difficult to master bynap tasks are completed. There are two cases where this
common application developers. Even for well-trained etgpe barrier synchronization can result in serious resourcesund
the engineering and debugging of parallel applicationshman utilization. First, on heterogeneous environments, tratefa
time consuming. compute nodes will finish their assigned map tasks earlier,
MapReduce [4] is an effort that seeks to democratize pdmdt these nodes cannot proceed to the reduce processihg unti
allel programing. Originally proposed by Google, MapRezluall the map tasks are finished, thus wasting resources. The
has been used to process massive amounts of data in wetpurce heterogeneity can originate from different haréw

|. INTRODUCTION




configurations or resource sharing through virtualizati@ec- 1. BACKGROUND
ond, even in homogeneous environments, a compute node may,
not be fully utilized by the map processing because a map ta Iﬁ
alternates between computation and 1/0. Also, there is-ad
tional scheduling overhead between the execution of differ
tasks. In this case, overlapping map and reduce procesaimg & Hadoop
considerably improve job response time, especially when th . .
number of map tasks is relatively large compared to the etust Hadopp can be_ logically segregated into two subsystems,
size. For instance, the number of map tasks of a MapRedd‘@e’ a distributed file system called HDFS_ and a MapReduce
job is typically configured to be 100 times the number Jpn-time system. The MapReduce run-tlme_ system f(.)HOWS
a master-slave design. The master node is responsible for
compute nodes at Google [4]. . . X . L
In this paper, we focus on addressing the above Synchmanagmg submitted jobs, i.e., assigning map and reduks tas

rQ- : :
nization problem for a specific class of MapReduce jobgq every job to the available workers. By default, each worke

. . . . can run two map tasks and two reduce tasks simultaneously.
called recursively reducibleMapReduce jobs. For this type At the beginni f 2 iob tion. the input data i lit
of MapReduce jobs, a portion of the map results can be € beginning of a Job execution, the input data 15 spl

reduced independently, and the partial reduced resultsbeanand as_S|gned 0 |nd|V|d_uaI map tasks. When a wor_ker f|n|sh_es
xecuting a map task, it stores the map results as interteedia

recursively aggregated to produce global reduce results. . . .
y aggreg P 9 ?y/value pairs locally. The intermediate results of eadpm

example of such a job is word counting. More details abo ) e .
recursively reducible MapReduce jobs will be discussed ?Sk will ‘e partitioned and assigned to the reduce tasks

Section II-B according to their keys. A reduce task begins by retrieving
. - . : its corresponding intermediate results from all map owput
The unique characteristic of recursively reducible MapRe-
. : . : o called theshufflephase). The reduce task then sorts the col-
duce jobs is that there is no inherent synchronization re- . : ; :
. ected intermediate results and applies the reduce fumdtio
quirement between the map phase and the reduce phase. ;
€ sorted results. To improve performance, Hadoop overlap
Consequently, we propose and compare two asynchron%Js o . D .
. . L € retrieving and sorting of finished map outputs with the
data-processing techniques to enhance resource utiizatid .
) . - execution of newly scheduled map tasks.
performance of MapReduce for recursively reducible jobs:
The first approach, hierarchical reduction (HR), overlapgpmpg Recursively Reducible Jobs
and reduce processing at the inter-task level. This approac o ) ) ,
starts a reduce task as soon as a certain number of map tasggordhcountmg IS a smpfle examgle of rgcurswely Lle(:_uuble
complete and aggregates partial reduced results followindo_ﬁs' The (l)_ccurfrenc_es o f? word chan € C(_)ulnte irst on
tree hierarchy. The second approach, incremental reductfferent splits of an input file, and those partial counts ca
(IR), exploits the potential of overlapping data procegsind then be aggregated to produce the number of word occurrences

communication within each reduce task. It starts adeseigha{n the entire file. Other recursively reducible MapReduce

number of reduce tasks from the beginning and incrementaftjPlications include association rule mining, outlieredion,

applies reduce function to the intermediate results actate commutative and associative statistical functlons, andrso
from map tasks. In contrast, the square of the sum of values is an example

We evaluate the proposed approaches with analytical mod%isa reduce function that isot recursively reducible, because
s

2 2 2
and experiments on a 32-node cluster. The experimentdtse p+b)° + (ctd) d?ﬁs no:_eqlua(la +b +hc + Ctlr)1 't Howetver, f
demonstrate thatoth approaches can effectively improve the err(]a fare t.somet rr;)a efr.rt1 ? ca approla(i_ es that can franstorm
MapReduce execution time — with the incremental reducti ch tunctions 1o benetit from our solution.

approach consistently outperforming hierarchical reidactn It 1S wo.rth mgn'uomng that there IS aomblqer fu.nctlon_
particular, incremental reduction can outperform the ingy Provided in typical MapReduce implementations including

Hadoop implementation by 35.33% for ta@rdcount appli- Ha_doop. The combin_er function is used to re_duce key/value
cation and 57.98% for thgrep application. pairs generated by single map task. The partially reduced

. . . r?sults, instead of the raw map output, are delivered to the
The rest of the paper is organized as follows. Section | .
L’j;rduce tasks for further reduction. Our proposed asyncusn
t

ere we describe Hadoop, an open-source Java implemen-
on of the MapReduce framework, as well as the notion of
cursively reducible jobs.

provides background information about Hadoop and rec ta-processing techniques are applicable to all apiitat

sively reducible MapReduce jobs. Section Il presents t at can benefit from the combiner function. The fundamental

design of the proposed approaches, in particular, hieickch . . . .
gn brop bp . pa i difference between our techniques and the combiner fumctio
reduction and incremental reduction. Section IV evalu#tes .

performance of the proposed approaches using an analytl atpat our technigues optimize the reducing of key/valuespa

model. The experimental results are discussed in Section {pm multiple map tasks.

Section VI presents the related work. Finally, Section VIl |;; A sYNCHRONOUSMAPREDUCE DATA PROCESSING

concludes the paper. ] ) ) )
In this section, we present the design details of our two

1Zahria et al. reported that there can be a 2.5-fold perfoomatifference proposed ?‘SynCthnous data-proces;mg technlquesr(ﬂnera
among various virtual machine instances on Amazon EC2 [13]. cal reduction and incremental reduction.



A. Hierarchical Reduction (HR) B. Incremental Reduction (IR)

1) Design and ImplementationHierarchical reduction 1) Design and Implementationncremental reduction aims
seeks to overlap the map and reduce processing by dynatuistart the reduce phase as early as possible within a reduce
cally issuing reduce tasks to aggregate partially reduesdlts task. Specifically, the number of reduce tasks are defined at
along a tree-like hierarchy. As shown in Figure 2, as sodhe beginning of the job similar to the original MapReduce
as a certain number (i.e., defined by the aggregation levelmework. Within a reduce task, as soon as a certain amount
o) of map tasks are successfully completed, a new redugfemap outputs are received, the reduction of these outputs
task is created and assigned to one of the available workestarts and the results are stored locally. The same process
This reduce task is responsible for reducing the output ef thepeats until all map outputs are retrieved.
oy map tasks that are just finished. When all map tasks are
successfully completed and assigned to reduce tasks,enoth

stage of the reduce phase is started. In this stage, as soon as"" pha% @ @ @ @@

a certainoy reduce tasks are successfully completed, a new
Write final output|
—_— —_—_— <
<]

reduce task is created to reduce the output ofdphereduce

tasks. This process repeats until there is only one rentinin ‘
reduce task, i.e., when all intermediate results are ratluce
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In Hadoop, a reduce task consists of three stages. The
Fig. 2. Hierarchical reduction with an aggregation levelob. first stage, named shuffling, copies the task’s own portion of
intermediate results from the output of all map tasks. The
Although conceptually the reduce tasks are organized asecond stage, named sorting, sorts and merges the retrieved
balanced tree, in our implementation a reduce task at a givatermediate results, according to their keys. Finallg, third
level does not have to wait for all of the tasks at the previossage applies the reduce function to the values associated
level to finish. In other words, as soon as a sufficient numbeith each key. To enhance the performance of the reduce
of tasks (i.e.o ) from the previous level becomes availablephase, the shuffling stage is overlapped with the sortingesta
a reduce task from the subsequent level can begin. SuciMare specifically, when the number of in-memory map outputs
design can reduce the associated scheduling overhead of HRches a certain thresholthapred.inmem.merge.threshpld
2) Discussion: One advantage of HR is that it can parthese outputs are merged and the results are stored on-disk.
allelize the reduction of a single reducing key across multiVhen the number of on-disk files reaches another threshold,
ple workers, whereas in the original MapReduce framewori,sort.factor another on-disk merge is performed. After all
the reduction of a key is always handled by one workemap outputs are retrieved, all on-disk and in-memory files ar
Therefore, this approach is suitable for applications wittmerged, and then the reduction stage begins.
significant reduce computation per key. However, HR incursIn our IR implementation, we make use mf.sort.factor
extra communication overhead in transferring the inteiiated and mapred.inmem.merge.thresholyhen the number of in-
key/value pairs to reduce tasks at different levels of tlee trmemory outputs reaches thmapred.inmem.merge.threshold
hierarchy, which can adversely impact the performance es threshold, they are merged and the merging results aredstore
depth of the tree hierarchy increases. Other overheadsdaclon the disk. When the number of on-disk outputs reaches
the scheduling cost of reduce tasks generated on the fly. theio.sort.factorthreshold, the incremental reduction of these
The fault-tolerant design of the original Hadoop needs to lmeitputs begins and the reducing results are stored instead o
modified to accommodate HR. In particular, thebTracker the merging results. When all map outputs are retrieved, the
should keep track of all created reduce tasks, in additiommemory map outputs are reduced along with the stored re-
to the tasks assigned to be reduced by these reduce tadksing results. The final output data is written to the distied
Whenever a reduce task fails, another copy of this task ghoiile system. The entire process is depicted in Figure 3.
be created, and the appropriate tasks should be assignied aga2) Discussion: IR incurs less overheads than HR for two
for reduction. reasons. First, the intermediate key/value pairs are riméiresl



: - Parameters | Meaning
once from .the map to reduce tasks instead of several times - Number of map Tasks
along the hierarchy. Second, all of the reduce tasks ar¢ettea n Number of nodes
at the start of the job, and hence, the scheduling overhead is k Total number of intermediate key/
reduced value pairs
. L . r Number of reduce tasks of the

In addition to the communication cost, the number of writes MR framework
to local and distributed file system are the same (assuming th tm Average map task execution time
same number of reduce tasks) for both the original MapReduce bk cgﬁrggife;‘esciﬂg?enlfge of reducing
and IR. Therefore, IR can outperforms the original MapReduc o Aggregation level used in HR
when there is sufficient overlap between the map and reduce c Communication cost per key/value pajir
processing Cumr Communication cost fromn map

ol . . tasks tor reduce tasks in MR

.The ma|n.challenge of IRis to select. the right threshold that Cur Communication cost from the assignad
triggers an incremental reduce operation. Too low a thiesho op map tasks to a reduce task in HR
will result in unnecessarily frequent I/O operations, whil TABLE |
too high a threshold will not be able to deliver noticeable PARAMETERS USED IN THE PERFORMANCE MODEL

performance improvements. Interestingly, a similar denis ihe merging phase of MR can be eliminated. So, the total

i.e., the merging threshold, has to be made in the origingl,e becomesMiap time + Reduce timeassuming the final
Hadoop implementation as well. Currently we provide a 'URtage merging is neglected.

time option for users to control the incremental reduction
threshold. In the future, we plan to investigate self-tgnaf MR R
this threshold for long-running MapReduce jobs.

It is worth noting that since the map and reduce tasks in }
this approach are created in the same manner as in Hadoop,
the fault-tolerant scheme of Hadoop works in IR as well.

First stage of map tasks {

Overlapped
computations

IV. ANALYTICAL MODELS

Here we derive analytical models to compare the perfor-
mance of the original MapReduce (MR) implementation of
Hadoop and the augmented implementations with hierarchica
reduction (HR) and incremental reduction (IR) enhancement
Table | presents all the parameters used in the models.

Without loss of generality, our modeling assumes the num-
ber of reduce tasks is smaller than the number of execution
slots2n. In fact, the Hadoop documentation recommends that
95% of the execution slots is a good number for the number
of reduce tasks for typical applications. However, our gsial
can be easily generalized to model the cases where ther&or low degree of overlap, if the reduce tasks occupy all
are more reduce tasks than the number of execution sldiedes i.e., the number of reduce task} i¢ larger than or
Furthermore, the model assumes that the number of map tagigal ton, only a portion of the merging of the intermediate
m is greater than the number of available execution slots figsults can be overlapped with the map computation, and the
the cluster2n (recall that there are two execution slots pelotal time can be expressed by Equation (1), whempresents
node by default). When the number of map tasks is less thié@e reduction in the merging time.
the number of execution.slots, all map tasks are executed inTMR — Map time-+ (Merge time— o) + Reduce time (1)
parallel and completed simultaneously, so there is no way to
overlap map and reduce phases. However, when the reduce tasks do not occupy all nodes, more

For simplicity, we consider two different cases. The firgherging can be overlapped with the map computations due to
case assumes that there is a high degree of overlap betweeerihf load balancing effect i.e., the nodes with running reduc
map and reduce procedures, where the processing (includidgks process a smaller number of map tasks compared to
retrieving, merging, and sorting) of almost all intermeeiathe other nodes. This is because Hadoop uses greedy task
results in a reduce task can be overlapped with map compugaheduling; the nodes without running reduce tasks process
tions. The second case, representing a low degree of overa@p tasks faster, and in turn, are assigned more map tasks.
between the map and reduce procedures, assumes thatA®e result, theMap timeis increased and the merging time
processing of only a portion of intermediate results in aioed is decreased as shown in Equation (2), whenepresents
task can be overlapped with map computations. the load balancing effect/ represents the overlapping effect,

A MR ando’ > o. As r increases] and o’ keeps decreasing, until

) o ) reaching 0 and respectively when = n (Equation (1)).
The execution of the original Hadoop can be illustrated by

the left part of Figure 4. When the overlapping degree is highl mr = (Map time+)+(Merge time-o’)+Reduce time(2)

Write to disk

\ ’
v
e e
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Map phase Merge phase | Reduce phase
1

Copy and merge ! Copy, merge, and reduce

Fig. 4. Execution of MR and IR



B. HR C. IR

For hierarchical reduction, map and reduce processing atrhe execution of IR relative to MR is represented by
different stages can be overlapped, as shown in Figure 5. figure 4. Particularly, when the overlapping degree is high
compare the performance of HR with that of MR, we considgfie final merging, and reducing phase of IR can be eliminated.
more detailed modeling. So the total execution time can be representedviap time

For HR, when all map tasks are finished, the remaining COMy comparing this to MR, we can conclude that IR behaves

putations are to reduce the un-reduced map tasks in adtitioetter than MR especially when the reducing time of MR is
combining the results of this reducing stage with otheriglrt gigpificant.

reduced results. Specifically, the total execution time &M ko |ow overlapping degree, if is larger thann, then

ar/1d HR can be represented by the following equations, Whefgging and reducing of only a portion of the intermediate
Cur s the communication required to retrieve the remainingsts can be overlapped with the map computations, and the
map outputs since MR’s communication is overlapped with thgi5| time can be expressed by Equation (6). Whereand

map computations, andis the remaining number of reduce,, represents the reduction in the merging and reducing time
stages in the HR’s hierarchy: respectively.

. k k k
T = Map time+ Chyp + [—1log([1) + e X [21 B) 7, — Map time+ (Merge time— o) + (Reduce time- o,.)

(6)
B . ok ok ok To compare this with Equation (2), we consider the details
Thr =Map timet (Crp + m log( m ) Htrk X m )35 ot the overlapping computations in MR and IR. The main

(4) difference is that IR performs reducing after merging and
writes the results of reduce rather than the results of merge
to disk. Assuming the reduce function changes the size of the

Stage 2 input by a factor ofr and the reduce function is linear, then

the overlapped computations of MRO{;z) and IR O;gr)

can be represented by the following equations, wheris

Stage 4 the size of intermediate key/value pairs to be merged and

reduced during the map phaspg! is the average number

0 AR R My of compare operations executed during the mergeis the

processor speed, is the disk write speed.

Stage 1

“1

CHR+D- k(t,+log(a k)){ o Stage 3
m m I

| Map phase

s Inrloglvr | Ivr
| Reduc phast OMR = + d (7)
DPs s
777777777777777777 I]Rlo Irr + 1R Irr X x
| | Orp = 2% + (8)
Fig. 5. Execution of HR framework whem = 8n Ds ds

Assuming every map task produces a value for each givEiven the same overlapping degree, 4if < 1, which is

key, thenC’,, . is k>><<2n % C, then Cpyp is 22k % ¢, and valid for appli_cations like wordcount, grep, _Iinegr regﬁe_nﬂ
S 5 etc., then IR is able to conduct more merging in addition to

Crr equalsZirt x (', Where C is communication cost pe . g ) )
key/value pair. By substituting’s » in Equation (4) by the reducing o_verlapped.wnh map computatlons. So, the merging
previous value, the equation becomes: gnd redL_Jcmg terms in equation 6 is less than the same terms
in equation 1. So, IR can behave better than MR given the
reduce computations is signifiant as illustrated by Figure 4
i ) On the other side, ift > 1 as in sort application, then the
gHT Chr+ 9H o (klog( A )+ ktyg)) X s performance of IR highly depends on the complexity of the
m

g
(2= JHP
m m . . . i,
. e reduce function compared to the merging, in addition to the
When the overlapping degree is highgan be replaced by size of the intermediate key/value pairs.

(logsy (2n) 4+ 1) in Equation (5), which represents the reduc- By applying the previous analysis to the case wheren,

tion of the map tasks of the final stage. Moreover, the merging. .on conclude that IR can behave better than MR in this

time can be ellmlngted from Equatlpn (3). .SO’ for signifigant case given also the reducing time occupies a significanioport
largem, the reducing part of Equation (5) is smaller than th%tf the total execution time

of Equation (3). If this term occupies a significant portion
of the total time of MR, and the communication overhead is
small, then HR will behave better than MR as we will see in
the experimental evaluation. However, when the overlappin In this section, we present a rigorous performance evalu-
degree is lows can be very deep, and the performance of HRtion of our proposed techniques. The details of the system
can be worse than MR. configurations are given along with the conducted experimen

Tur = Map timet

V. EXPERIMENTAL ANALYSIS
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A. Experimental Platform

We ran our experiments on System X at Virginia Tech, com-
prising Apple Xserve G5 compute nodes with dual 2.3GHz
PowerPC 970FX processors, 4GB RAM, and 80GB hard
drives. The compute nodes are connected with a Gigabit Eth-
ernet interconnection. Each node is running the GNU/Linux
operating system with kernel version 2.6.21.1. The progose N s 42ggregaton | [a-chfaz ]

approaches are developed based on Hadoop 0.17.0. Wordcount Grep
Setting

©c o
o ©

1 ] oMR
1 mR
— OHR

© o
N B
,

o

16GB | 64GB | 16GB | 64GB lGGB‘ 64GB | 16GB | 64GB

Normalized execution time

B. Overview

We use two applications i.ewordcountand grep in the
experiments. Wordcount is an application that parses a doc-
ument or a number of documents, and produces for eveny - 1o,

. (for 16GB input). The scalability of IR attributes
word the number of its occurrences. Grep accepts a documen : :
. . 0 Iwo reasons that provide more room for overlapping map
or a number of documents and an expression as input, an

. . . apré)cessmg and reduce computations. First, as the dafaset s
it matches this expression along the whole documents an

inCreases, the map phase has to perform more 1/0O. Second,
produces the number of occurrences for every match.

We first aim at studying the scalability of the differen or 64 GB, the number of map tasks increases from 256 to

. . . 024, thus increasing the scheduling overhead.
reducing approaches in terms of the dataset size. Next,eke se . . .
. Similarly, the performance improvement of HR over MR
to understand the reasons of performance difference betwee . .
. o . increases by 9.96% for wordcount as the size of input dataset
different approaches by profiling the behaviors of worddoun
. ) . ; Increases. However, the speedup of HR over MR decreases (by
and grep under various configurations. Finally, we evaluaje

0 i . o
various reducing approaches on emulated cloud envirorxa’nent‘13 ) for grep when larger input is used. This is because the

. _ . . ef<tra communication cost caused by the increase of inpat dat
The major performance metric in all experiments is the total L .
execution time in seconds. Moreover, for a fair comparisoﬁan be c;ompens_ated by the corresponding increase in the map
we follow the guidance given in the Hadoop documentation rgfoc;essmg time in wordcount bL.Jt not grep.

garding the number of map and reduce slots per node as well aglnce the normal Mapreduce jobs process Iargg amoulnts of
the thresholds that control the frequency of merging ant so'rnpUt data, all of the subsequent experiments will use input
ing intermediate results (i.emapred.inmem.merge.threshol atasets of 64 GB.

andio.sort.factoras discussed in Section 11I-B). Furthermorep \wordcount Performance

we enable the combiner function in all experiments In additi

the aggregation level of the hierarchical reduction apgnda " @ cluster of 32 nodes, we run wordcount on a dataset
set to 4, which produces the best results on the 32-nodeclust! Sizé 64 GB. The number of map tasks is set to 1024,
Before executing an experiment, we flush the Linux file systefiid the number of reduce task is varied from 1 to 64. As
cache by having each node read a dummy file that is |ar%?%pwn in Figure 7, as the number of reduce tasks increases,

than the size of the memory. This avoids the /0 performant@S improvement over MR decreases. Specifically, for one
inconsistency caused by the Linux file caching. reduce task, IR behaves better than MR by 35.33%. When

the number of reduce tasks is increased to 4, IR behaves
C. Scalability with the Dataset Size better by 34.49%. As the number of reduce tasks increases,
In this experiment, we aim at studying the scalability oin€ processing time of a reduce task decreases, thus prgvidi

the three reducing approaches with regard to the size of {fie room for overlapping the map and reduce processing.
input dataset. We run wordcount and grep using data 5§[|§ecifica||y, when the number of reduce tasks is 32, a reduce
of two different sizes, i.e., 16GB and 64GB. For wordcountask only consume a mere 6.83% in the total execution time
the number of reduce tasks was set to 4 and 8 (a broa@&rshown in table II.

range were used in Section V-D). For grep, we use a query

Fig. 6. Scalability with dataset size using wordcount anepgr

. 216000
that produces results of moderate size. The performance o émoo,
queries generating various sizes of output will be inveséd 812000 1
in Section V-E. 210000 1 aMR
. . . . = 8000
As shown in Figure 6, generally, as the size of the input |z ¢ | "R

OHR

dataset increases, the performance improvement of IR ove| 3 4000 -
MR increases. Specifically, for wordcount, as the size of the 5 2000
input increases to 64GB, IR outperforms MR by 34.5% and ]
9.48% instead of 21% and 5.97% for 16GB input using 4 and Number of reduce tasks aggregation level
8 reduce tasks, respectively. In addition, for grep, insireg Settings

the input size to 64GB improves IR’s performance gain over

MR; IR is better than MR by 16.2% (for 64GB input) instead Fig. 7. Performance of MR vs. IR using wordcount

Total e




Reduce Tasks| Incremental merges | Reduce Time | Map Time Concurrent jobs | MR Execution Time | IR Execution Time
1 46 11736 2690 (seconds) (seconds)
4 55 1699.5 2732 1 3107.5 2925.5
8 13 524 2787 2 6064 5687
16 2 315 2845 3 9025.5 8303
32 0 210 2865 TABLE IV
TABLE Il MR AND IR PERFORMANCE WITH CONCURRENT JOBS

MR AND IR EXECUTION PROFILE

Figure 8 and 9, the CPU utilization of IR is greater than MR

Reduce Tasks MR IR - ’
1 21 21 by 5% on the average. In addition, the average disk transfers
4 22 25+18 IR is less than MR by 2.95 transfers per second. This at&gut
¥ 2231 2 to th I t of data written to disk by IR, b
16 30 + 25 | 28 + 25 to the smaller amount of data written to disk by IR, because
32 31 32 it reduces the intermediate data before writing it back skdi
TABLE Il In doing so, IR also reduces the size of data read from disk

NUMBER OF MAP TASKS EXECUTED ON A CODE WITH REDUCE TAS(S)

at the final merging and reducing stage.
RUNNING. SMEANS A SPECULATIVE TASK.

N
o

Furthermore, IR achieves its best performance at 4 reduce
tasks because this provides the best compromise betwesin lev g 30
of parallelism controlled by the number of reduce tasks and 8 £ BIR
overlapping map with reduce. Specifically, in this case, IR g §10 B MR
conducts 55 incremental merges overlapped with the map = .

computations compared to 0 merges with 32 reduce tasks, as

shown in Table Il. As a result, the nodes executing a reduce

task executes 26 map tasks instead of 32 map tasks in case

of 32 reduce tasks, recall thead balancing effectliscussed Fig. 9. Number of disk transfers per second through the maselusing

in section IV. Specifically, when only a small portion of the"erdcount

nodes are executing reduce tasks, these nodes will have less

resources to spend on the map processing, and thus more mafp conclude, for any number of reduce tasks, IR achieves

tasks are “pushed off” to the other nodes without reducestasRither better or same performance as MR. And the best
performance for IR is achieved using only 4 reduce tasks,

The best performance is achieved at 32 and 4 reduce tadkés means that IR is more efficient in utilizing the avaikabl
for MR, and IR respectively. With the best performance fdiesources. So, we expect IR to achieve better performance
both MR and IR, IR is better by 5.86%. when several jobs are running at the same time, or with larger
On the other side, using an aggregation level of 4, H@mounts of reduce processing. Particularly, when runriregt

behaves better than MR with 8 reduce tasks by 5.13%. \g&ncurrent jobs of wordcount, the best configuration of IR

changed the aggregation level from 2 to 8 as shown in Figuredehaves better than the best configuration of MR by 8.01%

The best performance is achieved for the aggregation leveliastead of 5.86% as shown in table IV.

when a best balance is achieved between the overlap of map

and reduce processing and the reduce overhead. For examplegrep performance

with an aggregation level of 2, a reduce operation can be

triggered sooner, but the reducing hierarchy is also deeperin a cluster of 32 nodes, we run grep on a dataset of 64

GB. The number of map tasks is set to 1024, and the number

of reduce tasks is set to the default value i.e., one. Grep run

two consecutive jobs; one returns for each match the number

1 4 8 16
Number of reduce tasks

32

> 00 of its occurrence, and the other is a short job that invers th
o2 zg i BR output of the previous job so that the final output will be edrt
© N . .
& S 40 B MR based on occurrence of the matches instead of alphabgticall
© 28 1 In this experiment, we focus on the first longer job. We used

five different queries each produces a different number of
matches and hence different numbers of intermediate anld fina
key/value pairs.

As shown in Figure 10, IR and HR deliver very similar
performance. In addition, for the first query, all reducing a

To better understand the benefits of the incremental redyeeaches have the same performance. For subsequent gueries
tion approach, we measured the CPU utilization throughwut tHR and IR outperform MR, and the performance improvement
job execution, and the number of disk transfers per secoofl HR/IR over MR increases along with the number of
during the map phase for both MR and IR. As shown imatches.

1 4 8 16
Number of reduce tasks

32

Fig. 8. CPU utilization throughout the whole job using wardnot



c
4000 . § 4000 |
3000 £ 3500 —
EMR
| IR .E 3000 -

Total execution time
(seconds)

2000 = 2500 A [ |EIR
[m]
HR £ 2000 1 H|oHR
1000 3
3 1500 —
x
04 3 1000 - -
]
(o]
e

atfa-z]+' [a-b]+[a-z]+ [a-c]+a-z]+ [a-d]+[a-z]+' [a-i]+[a-z]+

Query

Homogenous 10 slow - fast 10 slow 32 slow

reduce .
Setting

Fig. 10. Performance of MR, IR, and HR using grep.
Fig. 11. Wordcount performance in homogeneous and heteeogs

Query Reduce Time | Intermediate Data Size environments. In the second setting, 10 nodes are slowed,dowl the reduce
(seconds) (records) tasks are scheduled on the fast nodes. Currently, whereaddsks will be
at[a-z.]+ 135 37,285,680 run in HR is not controllable.
[a-b]+[a-z.]+ 250 55,897,216
[a-c]+[a-z.]+ 351 78,196,736
a-d]+[a-z.]+ 742 113,039,360 . .
[[a_i]]Jr[[a_z_]]Jr 1569 306.921 472 mance because of virtualization, we slow down 32 nodes and
TABLE V repeat the experiment. As we can see, IR still outperforms MR
CHARACTERISTICS OF DIFFERENT QUERIES by 7.14%.

V1. RELATED WORK

F. Heterogeneous Environment Performance
9 Several research efforts have been done to enhance the

Nowadays data centers are becoming incrementally hetekapReduce framework. Sawzall is a programming language
geneous, due to the use of virtualization and/or machiroes fr built on top of MapReduce [9]. It aims at automatically
different generations. In this experiment, we aim at stogyi analyzing huge distributed data files. The main difference
the robustness of MR, HR, and IR to the heterogeneity bktween Sawzall and the standalone Mapreduce framework
the target cluster. In a cluster of 32 nodes, we manually slaw that Sawzall distributes the reduction in a hierarchical
down several nodes i.e., 10 nodes to mimic a heterogenemjsology-based manner. In [10], the authors improved the
cluster We continuously rudd commando convert and write performance of Google’s MapReduce framework by pipelining
a large file (e.g. 5.7 GB) to disk in order to slow down a givedisk and network 1/O. Particularly, they aimed at streaming
node. This approach was used in a related study by Zahrigrgermediate data as it is generated and uses local stosge a
al. [13]. a write-ahead log for network transfer. In [12], the authors

We expect in these environments, the map phase time getdieve that the original MapReduce framework is limited
longer due to the effects of the slow nodes. So, if the redutesupporting applications like relational data procegsiBo
tasks are appropriately assigned to the fast nodes, tHeaingfi they presented a modified version of the MapReduce named
the extra map time in reduce computations could improve thMapReduceMerge, where the reduce workers produce a list of
performance of the proposed approaches. Using wordcolkgy/values pairs that are transmitted to a set of merge werke
we run MR, and IR with the best configuration achieved ifor further processing.

Section V-D i.e., 32 reduce tasks for MR and 4 reduce tasksMoreover, Valvag et al. developed a high-level declarative
for IR. As shown in Figure 11, when the reduce tasks apgogramming model and its underlying runtime, Oivos, which

assigned to the fast nodes, IR becomes better than MR diyhs at handling applications that require running several
10.33% instead of 5.86%. However, when they are randomyapReduce jobs [11]. This framework has two main advan-
assigned, IR becomes better than MR by only 2.32%. Thistisges compared with MapReduce. First, it reduces the over-
expected because the /O and computing resources availdideds associated with such type of applications that ieslud

for reduce tasks in this case are limited, preventing IR fromonitoring the status and progress of each job, determining
taking advantage of overlap between the map and redugken to re-execute a failed job or start the next one, and
processing. We argue that if the heterogeneity originatas f specifying a valid execution order for the MapReduce jobs.
different generations of hardware or from virtualizatiinis Second, it removes the extra synchronization when these
possible to identify the fast nodes and assign more reduggplications are executed using the traditional MapReduce
tasks to these nodes. framework, i.e., every reduce task in one job should coreplet

Note that HR’s performance drops significantly when rurbefore any of the map tasks in the next job can start.
ning in the heterogeneous environment. This can be atibut Steve et al. realized that the loss of intermediate map out-
to the large number of generated reduce tasks in HR. pats may result in a significant performance degradation [6]
addition, it is indeterministic where these tasks will be,ru And although using HDFS (Hadoop Distributed File System)
so it is not possible to avoid the effect of the slow nodes. improves the reliability, it results in considerably inase in

To simulate a cloud environment with slower 1/0O perforthe job completion time. As a result, they proposed some



design ideas for a new intermediate data storage systeatbothin-memory merge and on-disk merge. We also present
Zahria et al. [13] proposed a speculative task scheduliag alternative design, i.e., hierarchical reduction. lymnan
named LATE (Longest Approximate Time to End) to copaddition to our proposed designs, we presented a rigorous
with several limitations of the original Hadoop’s schedidle performance evaluation and analytical analysis of increale

heterogeneous environments such as Amazon EC2[1].
Finally, Condie et al. [3] recently extended the MapReduce

architecture to work efficiently for online jobs in additiao

batch jobs. Instead of materializing the intermediate e

reduction (IR) and hierarchical reduction (HR).
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