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Characterization and Exploitation of GPU Memory Systems

Kenneth S. Lee

(ABSTRACT)

Graphics Processing Units (GPUs) are workhorses of modern performance due to their abil-
ity to achieve massive speedups on parallel applications. The massive number of threads that
can be run concurrently on these systems allow applications which have data-parallel compu-
tations to achieve better performance when compared to traditional CPU systems. However,
the GPU is not perfect for all types of computation. The massively parallel SIMT architec-
ture of the GPU can still be constraining in terms of achievable performance. GPU-based
systems will typically only be able to achieve between 40%-60% of their peak performance.
One of the major problems affecting this effeciency is the GPU memory system, which is
tailored to the needs of graphics workloads instead of general-purpose computation.

This thesis intends to show the importance of memory optimizations for GPU systems. In
particular, this work addresses problems of data transfer and global atomic memory con-
tention. Using the novel AMD Fusion architecture, we gain overall performance improve-
ments over discrete GPU systems for data-intensive applications.The fused architecture sys-
tems offer an interesting trade off by increasing data transfer rates at the cost of some raw
computational power. We characterize the performance of different memory paths that are
possible because of the shared memory space present on the fused architecture. In addi-
tion, we provide a theoretical model which can be used to correctly predict the comparative
performance of memory movement techniques for a given data-intensive application and sys-
tem. In terms of global atomic memory contention, we show improvements in scalability
and performance for global synchronization primitives by avoiding contentious global atomic
memory accesses. In general, this work shows the importance of understanding the memory
system of the GPU architecture to achieve better application performance.

This work was supported in part by the NSF Center for High-Performance Reconfigurable
Computing (CHREC).
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Chapter 1

Introduction

1.1 Motivation

Graphics Processing Units (GPUs) are an exemplar of modern trends in high performance

computing and supercomputing environments, in which massive parallelism through simpler,

more energy-efficient processing units reign supreme over complex traditional CPU systems.

Three of the top ten supercomputers in the world leverage GPU technology for the majority

of their performance [1]. In addition to their use in supercomputers, GPUs have benefited

scientific and high performance computation in desktop systems. Because of the ubiquity of

GPUs in commodity systems, the use of General-Purpose Computation on Graphical Pro-

cessing Units (GPGPU) gives even modest desktop systems a large amount of computational

power.

The GPU has three distinct benefits over traditional homogeneous processing systems.

Firstly, the immense computational power that is possible with a single GPU is much greater

than is possible with a single CPU, or even multi-CPU systems. Figure 1.1 shows the com-

1
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Figure 1.1: Comparison of Peak Single Precision Floating Point Performance

parative performance of both NVIDIA and AMD GPUs when compared to an Intel CPU

device showing the performance discrepancy between CPUs and GPUs. Secondly, the en-

ergy efficiency of GPU systems, as noted by performance per watt achievable is traditionally

better than CPU-based systems. Finally, the cost to performance ratio, partially driven by

the size of the commodity GPU market, is far better than CPU systems. These benefits are

achieved through the extensive use of the Single-Instruction Multiple-Data (SIMD) paradigm

throughout the architecture of the GPU.

Although the GPU is capable of achieving tremendous performance, it is not a panacea for

all programming woes. It is quite difficult, and for most realistic cases impossible, to write an

application which leverages all of the raw compute power that the GPU can provide. Figure

1.2 shows the performance efficiency of the top 100 fastest supercomputers when running the

LINPACK application. As the graph shows, the relative efficiency of accelerated systems

is around 40%-60% for the majority of those systems. On the other hand, CPU-based

supercomputers achieve upwards of 80% effeciency. There are many reasons that cause this

relatively low efficiency for GPU-accelerated systems, including issues in the memory system,

compute system, and the programming system. For this work we will focus our efforts on

addressing the issues of the memory system, specifically addressing the problems of data
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Figure 1.2: LINPACK Performance Efficiency of the Top 100 Fastest Supercomputers

transfers and global memory contention.

As an example of the impact of data transfer overhead on performance, we show the percent-

age of overall application time spent on the three stages of computation: data transfer to

the GPU, data transfer from the GPU, and kernel execution for a vector addition algorithm.

The results from this application based on these stages is shown in Figure 1.3. From this

graph, we find that less than 5% of the overall application time is spent performing useful

work, kernel execution. Over 95% of the application’s execution is spent performing data

transfers. Because of the large cost of data transfers, it often is not worth the effort to

perform these types of data-intensive computations on the GPU.

The AMD Fusion is a novel architecture designed to eliminate the PCIe bottleneck. This

architecture places the CPU and GPU on the same die, replacing the PCIe interconnect with

an on-die, high-speed memory controller and providing a shared memory system between

the CPU and GPU. This architecture therefore offers the opportunity to greatly reduce the

costs of data transfers for GPGPU applications. However, memory access patterns on this

new architecture can be quite complex, so an exploration and characterization of memory

movement and data paths is required to fully optimize performance on this system.
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Vector Add Time by Stage 

Device to Host

Host to Device

Kernel Execution

Figure 1.3: Percentage Time per Stage of Computation for the VectorAdd Application

In addition to improving out-of-core memory system performance, via improved data trans-

fer, we also investigated the in-core problem of global memory contention on GPU memory.

We look at an instantiation of this problem in terms of global synchronization primitives

on GPU systems. Taking into account the problem of memory contention, we create two

novel distributed synchronization primitives and compare them against existing approaches.

By eliminating the overhead associated with this global memory contention, we are able to

improve the overall performance of these primitives.

We show in this work that a better understanding of the memory system and data transfer

characteristics of a given architecture can lead to the exploitation of that architecture to

achieve better performance over traditional approaches. We describe the ideas of this work

both for the AMD Fusion architecture, in terms of eliminating PCIe overhead, and for all

GPU systems by achieving better performance for global synchronization primitives through

the reduction of memory contention on that system.
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1.2 Related Work

The use of GPUs to accelerate computation of applications has been well documented in the

community of graphics [43, 16, 2], bioinformatics [31, 12, 5], and many other fields [33, 24].

In addition to single applications, benchmark suites such as OpenCL and the 13 Dwarfs[15],

Rodinia [10], and SHOC [13] use GPUs as their main hardware accelerator. The main body

of work, in terms of GPU applications, shows that the GPU is quite effective at generating

speedups by leveraging the massive number of lightweight threads that the GPU is able to

provide.

While the GPU has been able to achieve large speedups on many different types of applica-

tions, the GPU has not become a silver bullet for the entirety of the computing landscape.

One of the major drawbacks found by using GPUs is that of data transfers. Datta et al.

[14] show that for a stencil buffering application, a highly data-parallel graphics application,

the performance difference with and without data transfers is as much as 24-fold. There are

numerous other applications that claim large improvements over CPU systems only because

they do not include data transfer times as part of the overall execution time, and when these

costs are included, many of those applications show similar or worse performance compared

to traditional CPU systems [30]. In addition, Volkov and Demmel [39] also cite data transfer

performance as a large source of overhead when using GPU-accelerated systems. Harrison

and Waldron [20] cite the problem of data transfer on application performance when using

shaders for general-purpose computing on the GPU.

A few systems have been created to try to automatically handle communication and data

transfer between the host and device for GPU systems, but none of the work is able to

address the underlying problem of the PCIe bottleneck. Jablin et al. [23] present the CPU-

GPU Communication Manager (CGCM), which can automatically perform data transfers
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for the system and optimize the performance of those transfers. The CUBA [17] and Maestro

[34] frameworks also present systems which automatically perform data transfer for the user,

greatly reducing the risks of error for the application. These systems were developed to

improve productivity for the developer, and not necessarily to improve data transfer rates.

The new AMD Fusion architecture, described by [8] and [18], is a novel architecture released

by AMD in 2011. The shared memory system and consequent hardware memory paths of the

APU have been shown by Boudier and Sellers [7]. This new architecture has been shown by

Daga et al. [11] to improve the data transfer performance for some applications, thereby im-

proving overall application performance when compared to traditional GPU systems. They

find that although the APU may be computationally underpowered, the amount of time

saved from data transfers more than makes up for this difference in at least one application.

In addition to the work of Daga et al., Spafford et al. [35] have shown the impact of AMD

Fusion when compared to discrete architectures, and discuss some of the advantages and

disadvantages of this system. Finally, the work of Hetherington et al. [21] use the novel

APU architecture for work on the Memcached algorithm and show improved performance

when using the APU system.

Many researchers have sought to model the execution times of given kernels in order to better

understand optimization principles on the system. Developing an exact theoretical model to

predict the performance of a kernel on a GPU is very difficult because of the massive number

of threads that interact with each other as well as hide the latency of memory operations.

To this point there have been two main methods for producing a model for the GPU: (i)

the building of a theoretical model based on information about the hardware and runtime

systems and (ii) the creation a model based on performance characteristics after running the

application. As part of the former method of generating a model, Zhang and Owens [42]

present a theoretical model for GPUs based on work-flow graphs to fairly accurately predict
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performance of GPU applications. Hong and Kim [22] present a detailed theoretical model

to predict performance with a percentage error up to 5.3% of overall runtime performance.

Baghsorkhi et al. [6] also present a theoretical model of the GPU system, which is able to

fairly accurately predict real application performance. By using microbenchmarks to base

their model, Wong et al. [40] further understand the inner workings of the GPU and use

those findings to predict future performance with a predictive model. Kerr et al. [25] run a

suite of 25 GPU applications and use the results of instrumentation of those runs to create

a performance prediction model. None of the models presented here adequately discuss the

impact of data transfer as part of the execution time. Instead the authors focus on kernel

execution time alone.

In addition to previous work in modeling and data transfer performance, we investigated

related work for synchronization primitives. Volkov et al. [39] presented a theoretical barrier

implementation for GPU computation, but this work was never implemented on a real device.

Another barrier was developed by Xiao and Feng [41] which featured both lock-based and

lock-free algorithms for barriers based on the CUDA framework. Cederman and Tsigas

[9] present non-blocking queuing algorithms for use in the octree application, showing the

validity of the persistent threading approach and using shared memory queues.

The researchers of [38, 2] use simple spin-lock algorithms on real GPU systems. These locks

show good performance and motivate some of the reasons for using global synchronization

primitives on GPU systems. Stuart and Owens [37] also implement a spin lock as well as

another variation of a lock and two common semaphore implementations. We use these

implementations in our work to compare our non-contentious synchronization primitives

against.
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1.3 Contributions

The goal of this thesis is to promote the understanding of the GPU memory system and

exploit that architecture to achieve better application performance. We have motivated the

problem of the GPU’s memory system in Section 1.1. Many of the problems present in the

GPU architecture are also found throughout the heterogeneous computing field and are not

just limited to GPU computing. We show that by leveraging the memory system to improve

(i) data transfer and (ii) global memory contention we can achieve speedups and improve

the compute efficiency of our applications. A brief description of each of these contributions

is given below.

Data Transfer: We discuss the costs of data transfer as a major source of overhead for

discrete GPU computing. Then we present the new AMD Fusion architecture and the

trade offs on that architecture, specifically the trade off between improved data trans-

fer performance and worsened kernel execution performance. We also investigate new

techniques for data movement on the Fusion platform, each with different character-

istics and performance implications. Using the AMD Fusion’s improved data transfer

bandwidths we are able to greatly improve the performance of data-intensive appli-

cations over discrete GPU systems due to the PCIe bottleneck. Finally, we present

a theoretical model which is able to accurately predict comparative performance of

different memory movement techniques for a given device. For this work we have pub-

lished both a poster [29] and a conference proceedings [28] to validate our work. We

have also prepared a publication submission for a journal extending our work on this

topic.

Global Memory Contention: We discuss the problem of memory contention in previous

and modern GPU systems. Memory contention occurs when multiple threads attempt
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to access the same element in global memory. For some architectures, this contention

can cause accesses to be serialized, reducing the overall throughput of the system. We

look at global synchronization primitives as an application where global memory con-

tention can greatly limit performance. We show the performance impact of memory

contention for different GPU and APU systems through microbenchmarking and pro-

vide ways of circumventing these performance penalties. In doing so, we present novel

distributed global lock and semaphore algorithms for use in GPU computations. For

this work we have prepared a conference proceeding, but have not yet submitted our

work for publication.

By paying attention to the unique memory model of the GPU, we achieve speedups for

applications which were previously impossible. For a data-intensive application, such as

vector addition, we achieve a 2.5-fold speedup over a traditional discrete GPU by using the

newer APU architecture, a computationally less powerful architecture. Similarly, we were

able to achieve a more than 3-fold performance speedup using our novel distributed locking

mechanism on the NVIDIA GTX 280 by avoiding global memory contention.

Fundamental Contributions: We do not know if GPUs or the new APU architecture

will persist in the coming years. However, even if the AMD Fusion is rendered obsolete

and is replaced by some newer and better architecture, the problem of data transfers for

heterogeneous platforms will still persist as a major problem in their ability to achieve

maximum performance efficiency. In addition, contentious memory accesses are, and

will continue to be, a common problem for massively threaded applications. Under-

standing the issues present in the memory system and how the underlying architecture

either aids or complicates these issues will greatly benefit application developers for

these kinds of systems.
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1.4 Document Overview

The rest of this thesis is organized as follows. Chapter 2 presents background information

about (i) GPU computing in general, including an overview and comparison of both discrete

GPU and fused APU platforms as well as an overview of the OpenCL framework used in

this thesis work and (ii) a summary of the memory system problems that are addressed in

this work. In Chapter 3 we present the problem of data transfers as well as a solution to

greatly reduce the costs of these transfers. We also present four methods of data transfer

on fusion architectures and perform a characterization of them based on four data-intensive

applications. Finally, we present a theoretical performance prediction model and a compar-

ison of fused and discrete GPU architectures for these data-intensive applications. Chapter

4 presents our work on global synchronization primitives, in which we develop novel locking

and semaphore algorithms which avoid global memory contention in order to improve per-

formance and scalability. Finally, in Chapter 5 we give a brief summary of our approaches

on improving memory performance for heterogeneous architectures and discuss future work

which can be performed using this thesis as a basis.



Chapter 2

Heterogeneous Computation

In this chapter we describe an overview of heterogeneous computing systems as well as the

specific architectures of discrete and fused GPUs used in this work. We also discuss the

problems associated with the memory system on heterogeneous platforms and their impact

on application performance.

2.1 Graphics Processing Units

This section discusses the architectures of the APU and GPU. We present a detailed ar-

chitectural overview of the various systems we used. We then compare and contrast the

architectures of these systems and analyze the impacts on application performance. A brief

overview of the OpenCL framework, used exclusively in this work, and the terminology from

that framework is also described in this section.

11
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Figure 2.1: CPU and GPU Memory Systems

2.1.1 Discrete Graphics Processing Units

The GPU was, as its name implies, originally designed for rendering graphics efficiently

to the screen. Graphics workloads are extremely data parallel and in order to facilitate

faster rendering speeds more and more threads were added to the architecture to increase

the throughput of this parallel workload. As graphics demands became more complex, the

graphics pipeline became programmable through the use of shading languages. At this

point, the originally very specific graphics hardware had become much more flexible and

could be used for general-purpose computing. Because of this history, the GPU has a unique

architecture when compared to traditional CPU architectures. A simplified architectural

diagram is given in Figure 2.1 showing the similarities and differences of CPU and GPUs.

The CPU and the GPU were designed with very different goals in mind. The CPU’s architec-

ture is optimized to reduce latency of any given operation. As a general-purpose processor,

the CPU acts as a jack of all trades in terms of performance for sequential applications.

An example of this can be seen in the CPU’s memory system. In order to deal with very

high latency access times to memory, the CPU developed a cache hierarchy to reduce the

expected time to memory access. This provides the illusion to the user of having a very fast
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and large memory. On the other hand, the GPU is an architecture based upon increasing the

throughput of data-parallel applications. The GPU traditionally has no caching of global

memory (though this has changed with some of the newer GPU architectures), and instead

will aggressively perform context switching to hide the latency of these operations. The

result of this architecture in the GPU allows it to achieve better throughput than a CPU

system for data-parallel workloads.

A GPU is made up of multiple compute units, which are somewhat analogous to CPU cores,

albeit far more simple than a modern CPU core. Each of these compute units contains

processing elements that are responsible for running multiple threads in a lock-step fashion.

In the GPU model, multiple threads execute the same instruction on every clock cycle. This

model of computation is known as Single Instruction Multiple Thread (SIMT) computation.

While the GPU typically does not have an intricate caching scheme like the CPU, the GPU

still has a very unique memory system. The memory system is made up of four different

partitions of memory, each of which has its own performance and size characteristics. The

global memory space is shared by all of the threads on the device. That is, every thread is

allowed to read or write from the global memory space. Accesses to this memory have the

highest latency, typically around 400 cycles. Closely related to global memory is the constant

memory, which is at the same level as global memory but is read-only, allowing the GPU to

aggressively cache this memory. On each compute unit, there is a set of memory which can

only be accessed by threads on that compute unit. This memory is called local memory and

can be accessed with far lower latency than global memory (typically around 1-3 cycles).

The GPU’s local memory is used as a user-defined cache of global memory. Finally, each

thread has private memory which consists of a register file containing the state of the thread,

specifically local variables. The register file is rather large and shared on a compute unit, so

the size of private memory for a thread can impact the number of threads that can be run
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concurrently on a compute unit.

2.1.2 Fused Accelerated Processing Units

Accelerated Processing Units (APUs), such as AMD Fusion and Project Denver from NVIDIA,

offer an integrated CPU and GPU system on the same die. Because Project Denver has not

yet been released, we will focus our discussion on the AMD Fusion. We anticipate that

the majority of the discussion about AMD Fusion will also apply to NVIDIA’s competing

system. A comparison of the a typical discrete GPU system versus a fused APU system is

shown in Figure 2.2.

The main focus of the APU is to integrate the CPU and GPU on the same die, thus elim-

inating most of the PCIe overhead when performing heterogeneous computation. Instead

of accessing the device through the PCIe interconnect, the APU instead communicates be-

tween devices using a high performance memory controller. The AMD Fusion APU also has

a shared memory between the CPU and GPU which is facilitated by this high performance

memory controller. This memory system is still partitioned, but both devices on the APU

can access either partitions of memory.

We present a detailed architecture of the APU in Figure 2.3. In addition to just adding the

CPU and GPU on the same die, the AMD Fusion architecture includes the addition of two

components designed to improve the coupling between CPU and GPU. The first addition to

the architecture is the Write Combiner. This component is designed to improve the write

speeds of the CPU to the device memory partition. The Write Combiner acts as a large

buffer to reduce the number of memory transactions when writes are performed. The second

major component that has been added is the Unified North Bridge (UNB). This component

has two major responsibilities with respect to the AMD Fusion’s memory system. Firstly,
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(a) GPU System (b) APU System

Figure 2.2: Comparisons of GPU and APU systems

the UNB will perform translation from virtual GPU memory addresses to the shared physical

addresses where the data is located. Secondly, the UNB is responsible for memory arbitration

on the APU, ensuring that all writes get committed to the device memory properly.

2.1.3 Test Systems

Here we discuss the individual test systems that we use for this thesis work. We give a

detailed discussion on the specific architectures of each of these devices and how the different

architectures might impact the performance of each system. Table 2.1 gives an overview of

the different discrete GPU systems and Table 2.2 shows the fused APU systems we used.

The AMD Radeon 5000-Series GPUs, also known as the Evergreen family, was released by

ATI in late 2009. These GPUs feature the Terascale 2 Architecture which was produced to

support DirectX 11. The AMD Radeon HD 5870 device is part of this family of GPUs. The

6000-Series from AMD, known as the Northern Island family, did not undergo any major

architectural changes from the 5000-Series, but instead simply includes support for multiple
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NVIDIA GTX 280 NVIDIA Tesla 2075 AMD Radeon HD 5870 AMD Radeon HD 7970
Name NVIDIA Low NVIDIA High AMD Low/Discrete AMD High

Compute Units 30 14 20 32
Stream Processors 240 448 1600 2048

GPU Frequency 1296 Mhz 1147 Mhz 850 Mhz 925 Mhz
Max Work-group Size 512 1024 256 256

Device Memory 1 GB 6 GB 512 MB 3 GB
Local Memory 16 KB 48 KB 32 KB 32 KB

Memory Bus Type GDDR3 GDDR5 GDDR5 GDDR5
Cache Type None Read/Write None Read/Write

Cache Line Size 0 128 0 64
Cache Size 0 229376 0 16384

Table 2.1: Discrete GPU Systems

AMD Zacate E-350 AMD Llano A8-3850
Name Zacate Llano

Compute Units 2 5
Stream Processors 80 400

GPU Frequency 492 MHz 600 MHz
Max Work-group Size 256 256

Device Memory 512 MB 512 MB
Local Memory 32 KB 32 KB

Memory Bus Type DDR3 DDR3
Cache Type None None

Cache Line Size 0 0
Cache Size 0 0

CPU Clock Freq 1.6 GHz 2.9 GHz

Table 2.2: Fused APU Systems



Kenneth S. Lee Chapter 2. Heterogeneous Computation 17

graphical outputs. The GPU cores in both fused architectures are based on this family. The

Zacate machine is based on the Radeon HD 6310 GPU, and the Llano cores are based on

Radeon HD 6550D system.

The AMD 7000-Series, referred to as the Southern Islands family of GPUs, represents a large

departure from the previous AMD architectures. The traditional graphics-based compute

units were replaced with the more general-purpose Graphics Cores Next (GCN) architecture

[3]. One of the major changes brought about by this architecture is the elimination of Very

Long Instruction Word (VLIW) execution. This allows more general-purpose applications to

achieve greater utilization of the GPU hardware. The GCN architecture is shown in Figure

2.4. In addition to the reorganization of the individual compute units, the Southern Islands

architecture also includes a coherent L2 cache for all of the global memory. This coherency

allows for the device to page CPU memory and will create a tighter integration of CPUs and

GPUs in future systems.

The GT 200 architecture, present on the NVIDIA GTX 280, represents the first iteration

of NVIDIA’s Tesla architecture. This architecture is based on Scalable Processor Arrays

(SPAs). Compute units are grouped by threes into Thread Processing Clusters (TPCs).

These TPCs contain a L1 cache to improve the speed of global memory reads. The NVIDIA

Tesla GPUs also greatly increase the performance of atomic read, write, and exchange op-

erations when compared to previous generation of graphics-oriented hardware.

The Fermi architecture represents the second iteration of the Tesla architecture. Present in

the Tesla C2000 Series of GPUs, this compute-oriented architecture includes a configurable

L1 cache, and a 768 KB L2 cache of global memory. This L1 cache can be beneficial

for many compute-oriented applications where a user-defined caching scheme is impossible.

In addition, Fermi also includes faster atomic operations, achieving as high as a 20-fold

improvement when compared to the previous generation of Tesla architectures.
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Figure 2.4: An Overview of the Graphics Cores Next (GCN) Architecture [3].

One of the major differences between the discrete GPU systems and the fused GPU systems

is the type of memory used for GPGPU computation. For the discrete systems GDDR3 or

GDDR5 is used, while normal DDR3 is used for APUs. GDDR3 memory is based on DDR2

memory, but includes faster read and write speeds and lower voltage requirements. GDDR5

is based on the DDR3 memory system, but also includes error checking, better performance

for GPU workloads and lower power requirements. On the other hand, DDR3 memory has

lower latency operations and performs more prefetching than GDDR memory, which is more

helpful for single-threaded CPU workloads.

In the following sections we will investigate how these diverse architectures impact the overall

performance of our applications, specifically investigating how the memory systems impact

performance.
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2.2 OpenCL

OpenCL is a open framework for heterogeneous computing. Developed originally by Apple,

OpenCL is now an open standard under the Khronos Group [26]. This framework allows the

same application code to be run on any parallel computing device which supports OpenCL,

including GPUs, APUs, FPGAs, CPUs and more. OpenCL provides a familiar C-like syntax

for parallel computing on the GPU, providing a major improvement in productivity over

shading languages, like GLSL [27], or previous GPGPU languages, such as Brook+ [36].

OpenCL shares many traits with its major competitor, CUDA [32]. While CUDA is able to

provide more advanced hardware features for its users (dynamic parallelism, GPU to GPU

communication, etc.), CUDA is not an open standard and can only be used with NVIDIA

GPU architectures. Because our work extends into AMD APUs and GPUs, we use OpenCL

to ensure portability to those systems.

We will now present a brief overview of the OpenCL system, depicted in Figure 2.5. An

OpenCL platform consists of multiple devices. Each of these devices represents an different

heterogeneous device, such as a CPU, GPU, or APU. Each of these devices consist of multiple

compute units(CUs) as well as an OpenCL context. The compute units are responsible for

the computational power of the device. The OpenCL context is responsible for managing

memory buffers on the device, as well as its work-queue.

Individual threads of execution in OpenCL are referred to as work-items. These work-items

are then grouped into work-groups. Work-groups can collaborate through the use of local

synchronization primitives as well as shared access to the local memory on the compute unit.

In order to facilitate this collaboration between work-items, the entire work-group is pinned

to the same compute unit. Multiple work-groups may be placed on the same compute unit

and use the shared resources on the compute unit. However, threads from different work-
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Figure 2.5: An Overview of the OpenCL Framework

groups cannot collaborate with each other to the same extent as work-items in the same

work-group.

OpenCL does not guarantee any specific mapping of work-groups to compute units and this

behavior should be treated as a black box. Work-groups should be able to run independently

from the other work-groups running a given kernel. In many cases, however, increased com-

munication between work-groups can be beneficial to the performance of certain applications.

2.3 GPU Architecture Inefficiencies

GPU architectures contain a large amount of raw compute power. This is due to their SIMT-

based architecture which is able to perform useful work on large numbers of threads at once.

However, GPU systems are typically only able to achieve between 40% and 60% of their

peak performance for general-purpose applications. Many of the architectual features that

support this raw compute power actually limit performance efficiency of general-purpose
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applications.

We break down the problems contributing to the low performance efficiency of GPU systems

into three major categories: Compute System, Programming System, and Memory System.

Problems with the Compute System of the GPU mostly deal with improving the throughput

of computation within a compute unit. These types of issues would include occupancy,

divergent branching, and VLIW utilization. Problems in the Programming System can

arise both in terms of the overhead associated with the runtime system or also the amount

of programmer effort required to optimize a given application for the GPU architecture.

Finally, the Memory System represents problems having to do with the movement or flow

of memory in the system. Problems of this sort include data transfer and global memory

contention as well as caching, coalesced memory accesses, and local memory bank conflicts.

We focus our efforts for this thesis work on the Memory System, and specifically the problems

of data transfer and global atomic memory contention. We present these two problems in

greater detail in the following subsections.

2.3.1 Data Transfer

The PCI-Express (PCIe) interconnection is used as the path for data transfer between the

CPU and GPU in discrete GPU systems. To perform computations on the GPU, the data

from the host must be sent to the GPU over the PCIe bus and then the results of the

computation are then returned back to the host over the PCIe bus. These two data transfers

introduce a very large overhead cost for GPGPU computations, and can be so large to

otherwise prohibit the application from achieving a speedup over CPU systems. The reason

for this is based on the same principles as Amdahl’s law [4]. The data transfers over the PCIe

bus are considered part of the sequential application time. No matter how much speedup a
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Figure 2.6: Comparisons of Contentious and Non-contentious Memory Accesses

GPU achieves on the parallel portion, the application performance will still be bounded by

the sequential overhead of data transfers.

In addition to the theoretical problems of achievable speedup with data transfers to and

from the device in GPGPU computing, we find that the speed of data transfer over PCIe

is extremely slow. A single core sending data through the OpenCL framework is only able

to achieve about 1.5 GB/s bandwidth to and from the device. For applications in which a

large amount of data needs to be sent to and from the device, the costs of data transfer can

become a substantial percentage of application execution time. Even for applications that

still achieve speedups over CPU-based systems, the costs of data transfer to and from the

device can still be extremely costly.

2.3.2 Global Memory Contention

We investigate the problem of global memory contention as a bottleneck of GPGPU applica-

tion performance. Memory contention occurs on the GPU when multiple threads, specifically

from separate work-groups, attempt to access the same data element in the global memory

space. This can potentially result in those accesses being serialized. This serialization is
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present in coherent memory systems in order to ensure correct ordering of reads and writes

to the memory. Figure 2.6 shows the difference between contended and non-contended global

memory accesses on the GPU. In the case of atomic operations, the problem is exacerbated

because by definition multiple atomic accesses to the same data must be sequentialized.

For this work we will investigate the problem of contention for global synchronization prim-

itives on the GPU. These algorithms typically rely on busy-waits and spinning on a single

value to ensure mutual exclusion. However, by having all work-groups busy-wait on a single

value, a tremendous amount of memory contention occurs. This contention greatly reduces

the overall speed and efficiency of those systems. A new method of synchronization primi-

tives is needed, which can eliminate the contentious accesses without introducing significant

overhead.

2.4 Contributions

In this section we outline the contributions of our work in addressing the problems laid out

in the previous section.

2.4.1 Data Transfer

Using the novel fused CPU+GPU architecture, we are able to greatly reduce the amount of

time required for data transfers in GPGPU applications. The elimination of the need for

the PCIe interconnect allows read and write speeds to exceed those which are still bound by

the PCIe bus. However, this increase in compute capability is also accompanied with less

compute power than can be found on a discrete GPU system. Therefore, while the problem

of the PCIe bottleneck has been solved, we must then address the trade off in terms of lost
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compute capability.

We show that the Fusion architecture can greatly reduce the amount of time spent performing

data transfers instead of performing useful work. We perform a comparison to a traditional

discrete GPU system and show that while the discrete GPU system has more computational

power, the Fusion system is able to outperform it for certain data-intensive applications

because of the improved data transfer speeds.

In addition to our comparison to a discrete GPU, we investigate different methods of data

movement on the Fusion architecture. These data movement schemes leverage the shared

memory between the CPU and the GPU. In addition to comparing some of the more intuitive

movement methods, we also present a novel method for memory movement which is able to

consistently perform well for our data-intensive application suite. This method exploits the

fastest bandwidth paths on the architecture while avoiding bandwidth bottlenecks.

Finally, we present a theoretical model which can be used to accurately predict the best

memory movement technique for a given data-intensive application and compute device.

This model takes data transfer times into account and also the adjusted kernel bandwidths

depending on the type of memory movement. We use this model to accurately predict

performance for two of our applications.

2.4.2 Global Memory Contention

For our work, we first address the problem of global memory contention by performing mi-

crobenchmark analysis to understand the performance impact between contentious and non-

contentious memory accesses on our platforms. Using this information, we produced novel

distributed locking and distributed semaphore implementations for global synchronization.

We show that although these new algorithms have increased overhead when compared to
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other approaches, the amount of time saved by eliminating the contentious accesses produces

an overall application speedup for some systems.

We also investigate the use of synchronization primitives in real applications through our

example application, octree. We find that the global synchronization primitives are able to

outperform kernel launching techniques on at least one of our architectures.



Chapter 3

AMD Fusion Memory Optimizations

In this chapter, we investigate the specific architectural features of the APU and use those

features to greatly reduce the cost of data movement on the APU system when compared to

traditional GPU systems.

3.1 APU Architecture Features

As denoted in Section 2.1.2, the AMD Fusion architecture has many new architectural fea-

tures which allow for a more tightly integrated CPU/GPU system. In this section we will

discuss how these features can be exploited to increase the performance of data transfers.

We first present an overview of how reading and writing to various memory partitions can

occur on the Fusion architecture, and then discuss four ways of accessing data for GPGPU

computation.

26
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Figure 3.1: CPU Accesses. Reads are denoted by solid lines, and writes by dashed lines.

3.1.1 Memory Paths

Here we discuss the memory paths available by both the CPU and the GPU to access memory

on the AMD Fusion architecture. We will also discuss the pros and cons of using different

memory paths when compared to traditional memory movement techniques. The different

memory access paths on the APU are depicted in Figure 3.1 and Figure 3.2.

We will first describe accesses on the APU from the CPU. These access paths are shown

in Figure 3.1. Accessing host memory from the CPU is done in exactly the same way as a

CPU-only system. Reads and writes to memory go through a cache hierarchy until finally

committing the read or write into the system memory. Reads and writes from the CPU to

device memory take different paths on the AMD Fusion. Writes to the device memory will

be sent to the write combiner, which acts as a hardware buffer. When enough writes have

been accumulated, one large transaction will be sent to the UNB to be finally committed

into the device memory. Because of the write combiner, writes from the CPU to device
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Figure 3.2: GPU Accesses. The Radeon Memory Bus (Garlic Route) is shown with a solid
line, and the Fusion Compute Link (Onion Route) is shown with a dashed line.

memory have a very high bandwidth. Reads by the CPU of device memory, on the other

hand, are very slow. These reads are uncached and not prefetched, which causes this path

to have very low bandwidth.

On the Fusion architecture, all GPU reads and writes must occur through the UNB in order

to perform address translation and to arbitrate memory accesses. The read and write paths

for the GPU are shown in Figure 3.2. For accesses to device memory or to uncached host

memory, reads and writes both will go straight through the UNB to the system memory.

This path of memory access is referred to as the Radeon Memory Bus (Garlic Route). On

the other hand, if the access is to cacheable host memory, the UNB must snoop on the

caches of the CPU to ensure coherency on the CPU memory. Afterwards the access waits

for arbitration in the UNB before the final commit to system memory. This path is referred

to as the AMD Fusion Complete Link (Onion Route) and has a lower bandwidth when

compared to the Garlic Route.



Kenneth S. Lee Chapter 3. AMD Fusion Memory Optimizations 29

char ∗ h ar r ; // I n i t a l i z e d Host Array
cl mem d ar r ; // Already crea ted dev i ce b u f f e r

c lEnqueueWriteBuffer (commands , d arr , CL TRUE, 0 , s i z e , h arr , 0 , NULL, NULL) ;
//Run Kernel . . .
c lEnqueueReadBuffer (commands , d arr , CL TRUE, 0 , s i z e , h arr , 0 , NULL, NULL) ;

(a) Buffer Copying

char ∗ h ar r ; // I n i t a l i z e d Host Array
cl mem d ar r ; // Already crea ted dev i ce b u f f e r

i n t e r r ;

void ∗ d map = clEnqueueMapBuffer (commands , d arr , CL TRUE,
CL MAP WRITE, 0 , s i z e , 0 , NULL, NULL, &e r r ) ;

memcpy(d map , h arr , s i z e ) ;
e r r = clEnqueueUnmapMemObject (commands , d arr , d map , 0 , NULL, NULL) ;
//Run Kernel . . .
d map = clEnqueueMapBuffer (commands , d arr , CL TRUE,

CL MAP READ, 0 , s i z e , 0 , NULL, NULL, &e r r ) ;
memcpy( h arr , d map , s i z e ) ;
e r r = clEnqueueUnmapMemObject (commands , d arr , d map , 0 , NULL, NULL) ;

(b) Map/Unmap

Figure 3.3: Data Movement on the APU with OpenCL

In order to use these techniques in an application, different calls to the OpenCL framework

must be made. Traditionally, calles to clEnqueueReadBuffer and clEnqueueWriteBuffer

would suffice. However, when performing writes directly to host memory or device memory

without copying, we must use the clEnqueueMapBuffer interface. By mapping buffers we are

able to use the zero-copy interface for AMD Fusion, in which mapping and unmapping buffers

are done without performing a copy of memory. Examples of the use of both interfaces with

OpenCL are given in Figure 3.3.
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Figure 3.4: Memory Movement Technqiues

3.1.2 Memory Techniques

Based on the hardware memory paths described above, we developed four different memory

techniques for the movement of data in a GPGPU application. We give an overview of these

paths below and illustrate them in Figure 3.4.

The Default memory movement technique is the most typical technique used in GPGPU

computation. This technique is depicted in Figure 3.4a. The input data for the computation

begins on the host-side memory buffer. This data is copied over from the host memory to the

device memory, which is then computed on by the GPU. During computation, the resultant

output data set is created on the device’s memory buffer. This is then copied back to the

host memory. At this point, the CPU is free to read the resultant data from the host buffer.

This memory access technique requires two memory copies, both to and from the device,

which can be quite expensive depending on the application.

Instead of copying the data to and from the device, we can instead keep all of the memory

on the host side and then let the GPU access the host memory directly. This technique is

called CPU-Resident and is depicted by Figure 3.4b. In this case, the CPU will write the

input data set to the host memory, and then the GPU will compute directly on that memory.
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After the kernel computation, the resultant data will already be on the CPU-side buffer.

In contrast to the CPU-Resident case, we present the GPU-Resident case, in which all

of the data is kept on the device buffer. This technique is shown in Figure 3.4c. In this

technique, the input data set will be written directly to the device memory. The kernel will

also output to the device memory and the CPU will read the results from the device memory

after execution.

Because of the very slow CPU read speeds from the GPU-Resident memory case, we devel-

oped the Mixed memory movement technique. This technique begins in a similar way to

the GPU-Resident case, where the input data is written directly to the device memory. After

this occurs, the kernel will execute and produce a result on the device memory partition.

Then this output data is copied over to the host memory, in the same way as the Default

case, and then is read directly by the CPU. Using this technique, we never need to read data

directly from the device buffer by the CPU, but instead read data from a host-side buffer.

In doing so, we are able to achieve higher read bandwidth.

3.2 Methodology

In this section, we describe the experimental methodology for our characterization of memory

movement on the AMD Fusion architecture.

3.2.1 Experimental Setup

For this work we used two AMD Fusion architectures (E-350 Zacate and A8-3850 Llano) and

also performed a comparison to a discrete GPU architecture (AMD Radeon HD 5870). We

will refer to this GPU as the “Discrete” system. An overview of the different systems that
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we used is given in Table 2.1 and Table 2.2. The Zacate architecture is not very powerful in

terms of either CPU or GPU and represents one of the first iterations of the AMD Fusion

architecture. Compared to the Discrete system, both the Llano and Zacate systems are

outmatched when it comes to GPU compute power. The Discrete GPU has 4 times more

compute units than the Llano system and 10 times more than Zacate. The compute units

for the Discrete machine are faster than either other system. In addition, the 5870 also

has a faster memory bus (GDDR5 vs DDR3). However, despite this apparent difference in

compute performance, we endeavor to show that the improvements of data transfer rates for

the Fusion systems will allow them to outperform the Discrete system.

All of the systems that we use for these experiments use the Windows 7 Operating system

and are using OpenCL version 1.2 through the AMD APP SDK v2.6. Different CPUs can

alter the system’s memory bandwidth, so we will use the same CPU for both Discrete and

Llano Systems. That is, we will use the CPU present in the Llano system for the Discrete

system’s CPU.

3.2.2 Microbenchmarks

To characterize the bandwidths of the different memory paths on the different architectures,

we will use the BufferBandwidth benchmark found in the AMD APP SDK. We will measure

each of the different paths as well as the default transfer speed. The BufferBandwidth

benchmark will fairly accurately measure the bandwidth across different memory paths.

This is done by performing multiple reads or writes in a kernel and then determining the

average time per read. Having the average time per read and the size of each of those reads,

we can then estimate the bandwidth over that memory path.

In addition to our bandwidth benchmark, we also analyzed the differences between the Garlic
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and Onion Routes in terms of effective kernel read and write bandwidth. To accomplish this,

we will also run our BufferBandwidth application using these two routes to further analyze

the performance impacts of the Garlic and Onion Routes. These routes are only able to

be utilized for the CPU-Resident memory movement case. To use the Onion Route we

will pass the CL MEM READ WRITE flag when creating the buffer and we will pass either the

CL MEM READ ONLY or CL MEM WRITE ONLY flags for the Garlic Route.

3.2.3 Applications

For this work we will look at five different applications, four data-intensive applications

and one compute-intensive application. The four data-intensive applications are VectorAdd,

Scan, Reduce, and Cyclic Redundancy Check (CRC), and the compute-intensive application

is Matrix Multiplication (MatMul). We give an overview of the different characteristics of

our applications in Table 3.1. In addition, we give a description of each of the applications

below.

The VectorAdd application performs a simple vector addition ~C = ~A + ~B on two input

vectors and one output vector all of length n. Each thread in our implementation is respon-

sible for computing a single value of the output vector, performing two global memory reads,

and one global memory write.

The Scan application computes an exclusive prefix sum vector for the vector ~V of length n.

The prefix sum can be defined as Xi =
∑

k<i Vk, to produce the output vector ~X of length

n. This algorithm performs two reduce-like operations to produce the result, following the

computational model of [19].

The Reduce application will compute the sum of an input vector ~V of length n. This

application returns only a single value which contains the sum of the vector. Each work-
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Application VectorAdd Scan Reduce CRC MatMul
Input Data Size (bytes) 8N 4N 4N N 2N2

Output Data Size (bytes) 4N 4N 1 N N2

Kernel Reads (bytes) 8N 4N 129
128

N N N3

Kernel Writes (bytes) 4N 4N 1
128

N 1
256

N N2

Table 3.1: Memory Characterization Benchmark Applications

group will reduce a portion of the input array based on the size of the work-group and then

write the sum back to a global memory array. This application requires multiple kernel

launches to completely reduce the array to a single value.

The CRC application is a realistic error detection algorithm which is used in networking

applications to detect burst errors. Each thread in this kernel will perform one read from

global memory and then will read from constant memory log(n) times. Finally a work-

group reduction will be performed and a single write to global memory will occur for each

work-group.

Finally, the MatMul application will perform a matrix multiplication on two square input

matrices with sides of length n. The output data is a matrix of size n2. This application

will perform n3 reads and n2 writes to global memory. This application is compute intensive

because of the high amount of computation that occurs compared to the amount of data

transfered.

3.3 Results

This section presents the results of our experiments which were described in the previous

section.



Kenneth S. Lee Chapter 3. AMD Fusion Memory Optimizations 35

3.3.1 Microbenchmarks

The results of our BufferBandwidth benchmarks are shown in Table 3.2. These results

seem to validate our claims about the improved data transfer speeds of the new Fusion

architectures. We see improved data transfer performance across the board for these novel

architectures.

When looking at the Discrete GPU performance for our data transfer bandwidths, we notice

that all of the transfers which go across partitions are bounded by the same speeds which

are achievable when copying buffers to and from host and device. This is because all of those

reads must actually transfer the data over the PCIe interconnect. This helps motivate the

need for a fused architecture.

As we predicted, we see terrible bandwidth performance of all of the devices for reads of the

device memory from the CPU. This is because these reads are uncached and not prefetched,

leading to terrible performance. It is interesting to see that the performance for the Discrete

system was also so bad, since the data has to be copied over from the host anyway, but this

is likely done to ensure correct behavior in the drivers for all of the different architectures.

We can see the impact of the Write Combiner for the Llano and Zacate machines in the CPU

write bandwidths to the device buffer. Both devices are able to write at higher bandwidths

than they are able to write to host memory. This is due to the few number of memory

transactions that need to occur across this path.

At first glance, it would appear that the Discrete GPU greatly outperforms the fused architec-

tures in GPU to device buffer bandwidths. However, the reason for most of this performance

difference can be related back to the larger number of compute units on the Discrete archi-

tecture. When we normalize the results based on number of cores, we find that the Discrete

architecture has only double the performance of the Llano reads and a 72% increase of write
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performance. The remaining difference can be explained both by the different memory bus

and the faster GPU core clock speeds on the Discrete system.

Transfer Type Zacate Llano Discrete
Host Buffer → Device Buffer 1.15 GB/s 2.61 GB/s 1.25 GB/s
Host Buffer ← Device Buffer 1.18 GB/s 3.17 GB/s 1.39 GB/s
CPU ← Host Buffer (Read) 0.75 GB/s 5.67 GB/s 5.64 GB/s
CPU → Host Buffer (Write) 1.75 GB/s 5.46 GB/s 5.44 GB/s
GPU ← Host Buffer (Read) 6.49 GB/s 16.26 GB/s 1.46 GB/s
GPU → Host Buffer (Write) 3.66 GB/s 4.96 GB/s 1.28 GB/s
CPU ← Device Buffer (Read) 0.01 GB/s 0.01 GB/s 0.01 GB/s
CPU → Device Buffer (Write) 1.98 GB/s 7.49 GB/s 1.52 GB/s
GPU ← Device Buffer (Read) 6.75 GB/s 17.54 GB/s 128.74 GB/s
GPU → Device Buffer (Write) 4.78 GB/s 14.31 GB/s 98.60 GB/s

Table 3.2: BufferBandwidth Benchmark Results for Zacate, Llano, and Discrete systems.
The first two rows of data represent the transfer time between the host and device memory
buffers, which is over the PCIe bus for discrete GPU systems. The remaining rows represent
the read and write performance of the specified processor directly on the specified memory
buffer.

We also show the performance of the Onion and Garlic routes as they impact performance.

The results from the BufferBandwidth application for these paths are shown in Table 3.3.

The table shows that using the Onion route incurs a penalty in terms of kernel read perfor-

mance, a 58% performance decrease. Because of this, we will use the Garlic route whenever

possible for our applications.

Access Type Zacate Llano
Read (Garlic) 4.88 GB/s 16.30 GB/s
Read (Onion) 2.80 GB/s 6.81 GB/s
Write (Garlic) 2.14 GB/s 4.98 GB/s
Write (Onion) 2.16 GB/s 4.97 GB/s

Table 3.3: Garlic vs. Onion Route Performance

3.3.2 Applications

In this section we present the results of our benchmark applications using all four of the

memory movement techniques. Figure 3.5 shows the results of the Llano system and Figure
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3.6 shows the same results on the Zacate system.

With respect to the GPU-Resident memory, we see that for applications where there is a

large or moderate amount of data to return to the host (VectorAdd and Scan), the low

bandwidth of the CPU reads of device memory completely destroy the performance of those

applications. However, for applications which do not send much memory back to the host,

the improved CPU write speed and fast kernel speeds allow the technique to perform very

well in comparison to the others. It is very important, therefore, to carefully analyze the

amount of data that is to be returned to the host before using the GPU-Resident memory

technique.

In terms of our performance results, we notice an interesting data point for the GPU-Resident

performance data. At smaller data sizes, 20 MiB elements for VectorAdd and 30 MiB ele-

ments for Scan and Reduce, the performance of data transfers from the device to host slightly

improve, and at the same time the performance of the kernel decreases slightly. The point at

which the performance shifts is when the working set of the application becomes larger than

256 MiB. Before this point, we notice reduced data transfer performance but improved kernel

execution. We theorize that there might be an additional partition on the device memory

which gives better kernel memory bandwidth at the cost of access speed by the CPU. The

Mixed data movement case also realizes this kernel performance degradation, but not the

data transfer improvement. While this behavior can lead to better or worse performance

depending on the application, we find that the comparative performance remains about the

same because of the very low bandwidth of reads by the CPU to device memory for either

of these two cases.

The CPU-Resident memory movement technique is almost the opposite of the GPU-Resident

case. Across the board, kernel performance of this technique lags behind other techniques.

On the other hand, the performance of data transfers are comparable or slightly better than
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Figure 3.5: Llano Application Performance
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some of the other techniques. This indicates that for applications which perform many global

memory accesses, it would be best to avoid this technique.

The Mixed memory movement technique shows surprisingly good performance for all of

the applications, showing either the best performance or second best performance for every

application. Using the Mixed case we are able to achieve best performance in terms of CPU

write speeds as well as the fastest kernel memory access speeds for the low cost of a data

transfer of the result.

3.3.3 Device Comparison

Here we present a comparison between the discrete and fused architectures. We used the

best performing memory movement technique for each device and application. Table 3.4

shows the techniques we used. Figure 3.7 shows the results of the comparison.

Application Zacate Llano Discrete
VectorAdd Mixed Mixed Default
Scan Mixed Mixed Default
Reduce Mixed Mixed Default
CRC Default Default Default
MatMul Mixed Mixed Default

Table 3.4: Movement Techniques used for Device Comparison

As predicted, the Zacate machine did not perform very well in our comparison with the

Llano and Discrete systems. The Zacate system is very low-power and as such does not

have a very powerful CPU, which impacts the data transfer rates, as well as fewer compute

units when compared to the other systems. It is important to note, however, that the Zacate

machine was able to outperform the Discrete system for the VectorAdd application. This is

because of the large percentage of time spent performing data transfers for that application.

When comparing the Llano and Discrete systems, we see the impact of the vastly improved
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Figure 3.6: Zacate Application Performance
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data transfer rates. For the VectorAdd and Reduce applications, the Llano machine is better

than the Discrete system, but for the Scan and CRC applications, the Discrete system is able

to slightly outperform the fusion system. The reason for this is the greater amount of work

that has to be done for those applications, allowing the faster and more numerous compute

units of the Discrete system to amortize the costs of the data transfer. We would expect

that if the Llano system had nearer the number of compute units as the Discrete system,

that the Llano machine would again outperform the Discrete system.

The MatMul application stands in stark contrast to the other applications. For this kernel,

the huge benefit of the compute power of the Discrete system is seen. Because the percentage

of data transfer to computation leans heavily towards computation, the Discrete system

heavily outperforms the fused architecture systems.

In addition to total performance, we looked at the percentage time spent per stage of com-

putation for each of our applications. Figure 3.8 shows the results of that analysis. This

graph shows the importance of improving data transfer for each application. For instance,

the VectorAdd application spends upwards of 95% of its execution time performing data

transfers. For this reason, improving data transfer speeds is of tremendous importance for

that application, allowing the fusion architectures to see performance improvements even

when the compared to the more powerful Discrete architecture.

We see as a counterexample the MatMul application. This application spends less than 5%
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of its time performing data transfer, which while is a significant percentage, does not give the

Llano or Zacate any chance of improving the overall performance of the application. This is

a prime example of an application to run on a discrete GPU instead of an APU system.

3.4 Model

In this section we present a model which can be used to better understand performance of a

given memory technique for a given system. For our work, we use the model to predict the

best memory movement technique to use for a given application on the Llano platform. We

first describe the design of the model and then validate it with real data.

3.4.1 Design

We break up the time of a given GPU application into three distinct stages: data transfer

to the device, kernel execution, and data transfer from the device. We find that almost all

GPU applications perform these three stages. More complex applications can, for the most

part, be broken up into multiple recurrences of these stages. Using our definition, we can

further define the amount of time taken for a given application with the following equation.

T = DH→D + K + DD→H (3.1)

In this equation, the term T represents the total application time. DH→D and DD→H repre-

sent the data transfer time from the host to device and vice versa, respectively. Finally, the

term K represents the amount of time required for kernel execution for this application.

We can define the amount of time taken for data transfers using Equations 3.2 and 3.3.
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DH→D =
∑ SH→D

BH→D(SH→D)
(3.2)

DD→H =
∑ SD→H

BD→H(SD→H)
(3.3)

The terms SH→D and SD→H , represent the size of the data transfer to and from the device,

respectively. Similarly BH→D and BD→H represent the bandwidth from host to device and

from device to host, respectively. We use a function to define the bandwidth of the device

at a given data size. This is due to the fact the the bandwidth of a data transfer is not

guaranteed to be constant, but is likely constant for very large data sizes. We investigate

this claim as part of our validation.

We use a summation of individual transfers to determine the overall data transfer time.

This makes the assumption that the data transfers of the application do not overlap and are

performed sequentially. This assumption is usually the case for most applications, but is not

guaranteed to be true in the case of asynchronous data transfers.

Finally, we look at the amount of time required for kernel execution for a given application.

We break this time into three parts: global memory reads, global memory writes, and

remaining computation time. Using this method we are able to derive the amount of time

spent on the kernel in Equation 3.4.

K =
SW

BW

+
SR

BR

+ C (3.4)

In this equation, the terms SW and SR represent the amount of data being loaded from

stored to global memory. The values of BW and BR represent the device’s global memory
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bandwidth. For this model, we assume that the bandwidth of access to global memory is

constant, regardless of data size. The value of C represents the remaining kernel execution

time, including arithmetic operations, kernel synchronization, and local memory access. Us-

ing a simple value of C allows us to make easy comparisons between techniques on the same

device and also reduces the error of these terms when performing comparisons on the same

device.

3.4.2 Validation

In addition to designing the theoretical model of different memory movement techniques on

the same device, we also validated our model using real data from the Llano system. We

first investigated the data transfer speeds, then used those speeds to predict data transfer

performance for the VectorAdd application. We then use our model to predict the compar-

ative performance between memory movements techniques for the VectorAdd and Reduce

application.

Figure 3.9 shows the data transfer rates for host to device and device to host transfers on

the Llano system. The graphs show low bandwidths for smaller data sizes which improve

to a nearly constant value as the amount of data transfered becomes very large. The reason

for the lower effective bandwidth for smaller data sizes is the overhead associated with data

transfers, while small, can have a big impact on the overall effective bandwidth of the system.

Using these figures we are able to determine a theoretical model which takes the constant

overhead into account. We develop this model in Equation 3.5.

B(S) =
S

c + S/b
(3.5)
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Figure 3.9: Data Transfer Performance for the Llano System
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Figure 3.10: Percentage Error of Llano Data Transfer Model

The value of B represents the effective bandwidth that is measured by our microbenchmark.

The value of S represents the size of data being transfered, c represents the constant overhead

from the transfer and b represents the true bandwidth of the transfer. We used curve fitting

to determine the values of c and b for our given data sets and we plot the percentage error

based on this fit in Figure 3.10. From this graph we see that most of the error for our model

is within 10% and all of the error percentages fall within 15% of our predicted value. Given

the variance in our effective bandwidth measurements, we consider 15% to be fairly accurate.

Using these effective bandwidth figures, we predicted the time spent an data transfer for the

VectorAdd application. We determined the percentage error for each technique and each

data point and plotted the result on Figure 3.11. From this graph we see that for the most

part our data lands within 20% error rates, and for most sizes within 10% error. One large
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Figure 3.11: Percentage Error of Data Transfer Time for the VectorAdd Application
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Figure 3.12: Percentage Error of Data Transfer Time for the VectorAdd Application with
GPU-Resident Piecewise Bandwidth

difference we are able to see is for the GPU-Resident memory case for small data sizes. These

points are around 80% off of our predictions. This is the same phenomena that we see in

our original experiments comparing the techniques for the VectorAdd application. Our data

transfer microbenchmark was unable to catch this phenomena as the working set for our

microbenchmark was less than 256 MiB. When we take this behavior into account and use a

piecewise function which will switch between 0.0256 GB/s and a linear interpolation of our

microbenchmark results, we see much better error rates for the GPU-Resident case. The

results of these model is shown in Figure 3.12.
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Figure 3.13: Predicted (Dashed) and Experimental (Solid) Data Transfer Times for the
VectorAdd Application
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Figure 3.14: Model Predictions for the VectorAdd Application

In addition to the percentage error, we also created a graph showing the estimated and

measured data transfer times for the VectorAdd application. This graph is shown in Figure

3.13. The estimated and measured data transfer times are very closely related except for

the first few data points of the GPU-Resident case, as would be expected based on the

percentage error.

Using the model, we attempted to predict the performance rankings of the different memory

movement techniques on of the VectorAdd application on the Llano system. The results of

our use of the model are shown in Figure 3.14. Our results are very promising, correctly
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Figure 3.15: Model Predictions for the Reduce Application

predicting the Mixed memory movement technique to perform best. The model also correctly

predicted the remaining memory movement techniques in their correct order: CPU-Resident,

Default, and GPU-Resident. This data shows the applicability of our model for more than

theoretical applications.

We also used the model to predict the performance of the Reduce application. The results

of the model are shown in Figure 3.15. The GPU-Resident and Mixed cases have almost

exactly the same results, which is reasonable considering how little data needs to be returned

by the application. Our model predicts best performance for the Mixed and GPU-Resident

memory movement cases and then the CPU-Resident case, and then finally the Default

movement case. When we compare these results with our experimental results from Figure

3.5, we see that our model correctly predicted the comparative performances of our movement

techniques.



Chapter 4

GPU Synchronization Primitives

In this chapter, we look at improving the performance of synchronization primitives through

the reduction of contentious memory accesses. In doing so, we produce a novel locking

mechanism for global synchronization primitives on GPUs.

It is important to note that all of the synchronization primitives we discuss here work at the

work-group level of granularity. That is, we assume that there is only one active thread on the

work-group when a call to the synchronization primitive is made. If this is not the case then

deadlocks can occur based on how the hardware schedules threads running in a work-group.

This limitation could cause problems for applications where very fine-grained parallelism is

required, but should be sufficient for most of the problems necessitating synchronization on

the GPU.

49
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4.1 Traditional Synchronization Primitives

In this section we look at initial attempts of global synchronization primitives for use on

GPUs. Specifically, we are looking at the lock and semaphore implementations of Stu-

art and Owens [37]. Though these primitives were not the first or only implementations,

they represent some of the most common approaches for synchronization primitives used in

GPGPU computing.

4.1.1 Locks

There are two different locking mechanisms that we will investigate for this work: the Spin

Lock and the Fetch-and-Add (FA) Lock. Both of these algorithms depend on contentious

memory accesses on a single variable.

The Spin Lock is the simplest lock in terms of both code and data footprint. Every thread

wishing to lock will simply atomically exchange with the locking variable until it returns an

unlocked value. To unlock after computation, the thread must simply atomically exchange

back the lock variable to the unlocked state. A picture of this lock is shown in Figure 4.1a.

One of the downsides of this lock, however, is that starvation can occur. It is possible that

a thread trying to lock will continuously get preempted by other threads and will never be

able to acquire the lock until all of the other threads have completed execution. This could

cause improper load balancing for an application.

The other locking mechanism that we investigate is the FA Lock. This lock is similar to

the Spin Lock, but solves the problem of starvation occurring, and is shown in Figure 4.1b.

To lock, each thread will atomically increment a ticket variable, giving the thread a unique

ticket. The thread will then continuously atomically exchange with a turn variable until it
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Figure 4.1: A depiction of the lock implementations used for this work. In each subfigure,
thread T4 has acquired the lock and is in the process of unlocking. T3 has just begun to
locking procedure, illustrating the startup procedure of that lock.

is equal to the thread’s designated ticket value. When this occurs, the thread has obtained

the lock. To unlock, the thread must simply atomically increase the turn value of the lock.

This lock only requires two global integer variables to work. This lock also guarantees that

starvation will not occur as the maximum time for a thread to wait is equal to the number

of work-groups using the locking mechanism.

4.1.2 Semaphores

We use two semaphore implementations to compare our new distributed semaphore to. These

semaphores are referred to as the Spin Semaphore and the Sleep Semaphore. As with

the locks in the previous subsection, both of these semaphores will perform spinning on

contented global variables. We describe these two semaphore schemes below.

The Spin Semaphore, shown in Figure 4.2a, is fairly straightforward in terms of semaphore

implementations, but this implementation can be prone to deadlock on some systems. Both

posting and waiting for this semaphore require acquiring a lock and spinning on the locking

mechanism. To wait using this semaphore, a thread will constantly acquire the lock and then
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test to see if a value variable is greater than 0. If it is, the thread will decrement this variable,

unlock and then continue execution. Otherwise, the thread will unlock and continue to spin.

On a post, the thread must acquire the lock and then increment the value variable. In this

system there is no guarantee that the semaphore will complete execution if there is at least

one other thread waiting, because of the starvation problem that can occur. In addition, this

scheme incurs a lot of overhead from the interference between posting threads and waiting

threads. For these reasons, we believe that the Spin Semaphore is typically not the best

solution for semaphore synchronization on the GPU.

The other semaphore implementation that we will investigate is the Sleep Semaphore,

depicted in Figure 4.2b. For this semaphore, each waiting thread will receive a ticket by

atomically incrementing a ticket variable. Then they will wait for the turn variable to be

equal or greater than their ticket, in much the same manner as the FA Lock. Afterwards,

they may continue execution. To post, the turn thread must simply be incremented. This

semaphore avoids the problems of the Spin Semaphore presented above, but can have more

overhead in the waiting phase. The waiting phase still involves a contentious spin loop on

global memory. In the posting phase, the amount of overhead is substantially less when

compared to the Spin Lock, requiring only a single atomic increment instruction.

4.2 Distributed Primitives

In this section we present the design of our distributed locking and semaphore algorithms.

These algorithms were designed to avoid the atomic memory contention problems of the

above primitives, which causes both increased performance as well as scalability.
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Figure 4.2: The Semaphore implementations used for this work. Threads filled in are posting
to the semaphore while the other threads are waiting on the semaphore.

4.2.1 Distributed Lock

The Distributed Lock (D-Lock) algorithm contains a novel distributed network to avoid

contentious atomic memory access while also ensuring that starvation does not occur. This

locking scheme is depicted in Figure 4.1c and the algorithm for this lock is shown in Algorithm

1.

To lock, a thread, T , will atomically exchange their group ID with a variable in the mutex.

The returned value will be the group ID of the last thread to begin acquiring the lock.

T will then wait for the previously acquiring thread to unlock the lock. At this point, T

has acquired the lock and can continue computation. We make use of an array to avoid

contentious atomic accesses for this lock. Each work-group will have a specific slot in the

array based on its group ID. The acquiring thread, T , will constantly check the slot of the

preceding thread to see if it has unlocked, and when it does, it will reset that slot of the

preceding thread and then continue execution. To unlock, the thread must simply set the

state of its slot to unlocked to allow the next thread to continue.

In terms of space required, the D-Lock algorithm presented here will require one integer to act
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as the turn variable and an array of size equal to the number of work-groups launched. This

is more than the naive lock algorithms require, but is still a small amount when compared to

the amount of global memory on the system. Global synchronization primitives are typically

utilized in the persistent threading paradigm, so the number of slots needed in D-Lock is

likely to be small.

In terms of performance overhead, this method is roughly equivalent to the FA Lock and

must do one extra atomic exchange than the Spin Lock. However, this slight overhead

increase also completely eliminates the remaining contentious atomic memory reads. This

should make the algorithm much more scalable than either of the other two algorithms.

Algorithm 1 Distributed Lock Algorithm

Let a xchg represent an atomic exchange
function lock(mutex m)

bid← group id()
watch← a xchg(m.ticket, bid)
while a xchg(m.slots[watch], 1) 6= 0 do
end while

end function

function unlock(mutex m)
a xchg(m.slots[watch], 0)

end function

4.2.2 Distributed Semaphore

We present a novel distributed semaphore called D-Sem. Like the D-Lock algorithm de-

scribed above, this algorithm also makes improvements on existing semaphore algorithms by

eliminating the atomic global memory contention problem. However, this is done at the cost

of extra overhead both in terms of computation as well as memory footprint.

In order for a thread to wait on this distributed semaphore, it will first check to see if it is
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allowed to continue execution by checking a value variable. If this value is greater than 0

before an atomic decrement takes place, then the thread is allowed to continue execution.

Otherwise, the thread will get a ticket and wait on a corresponding slot in a shared global

array. This wait is done with a spin loop using a atomic exchange operation. When this slot

is changed from the locked to unlocked state, the thread is allowed to continue its execution.

Posting on the thread is somewhat similar to waiting. The posting thread will increment a

global value variable and if that value was less zero before the decrement, a ticket indicating

the next thread to unlock will be incremented and the array slot associated with that ticket

will be unlocked.

Similar to the D-Lock implementation, our implementation of D-Sem requires an array of

values in order to eliminate memory contention. However, this also adds a larger memory

footprint for the algorithm. Luckily, this overhead as the number of slots can be any length

longer than the number of threads which can run concurrently on the device, or more con-

servatively, a number equal to the number of work-groups. The conservative use of an array

size equal to the number of work-groups is sufficiently small in a persistent threading model,

but could be problematic if such a model is not used.

In terms of algorithmic overhead, our D-Sem implementation has more overhead than the

Sleep Semaphore. In the case of posting, extra steps need to occur to determine and then

set the specified slot value, while in the Sleep Semaphore, only a simple increment of a

variable needs to take place. However, depending on the number of threads waiting on a

semaphore, we believe that our solution may yield better results by eliminating the atomic

global memory contention.



Kenneth S. Lee Chapter 4. GPU Synchronization Primitives 56

Algorithm 2 Distributed Semaphore Algorithm

Let a xchg represent an atomic exchange
Let a inc represent an atomic increment
Let a dec represent an atomic decrement
function wait(semaphore s)

v ← a dec(s.value)
if v < 0 then

watch← a inc(s.ticket)%s.slots.length
while a xchg(s.slots[watch], 0) do
end while

end if
end function

function post(semaphore s)
v ← a inc(s.value)
if v <= 0 then

free← a inc(s.turn)%s.slots.length
a xchg(s.slots[free], 1)

end if
end function

4.3 Methodology

In this section we describe the methodology of our experiments which will attempt to prove

the validity of both our claim of atomic global memory contention being a problem as

well as using that knowledge to impact the performance of global memory synchronization

primitives. Finally, we present a realistic octree creation application and wish to show the

validity of synchronization primitives on a real application.

4.3.1 Experimental Setup

For this work we will use both AMD and NVIDIA GPUs so that we can find the true extent

to which our new algorithms improve upon existing ones. We use the two AMD and two

NVIDIA GPUs described in Table 2.1. For each vendor, we use both a commodity graphics
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GPU, referred to as the Low machine, as well as a more compute-oriented GPU system,

referred to as the High machine. In addition to these platforms we also include the AMD

Fusion architecture, Llano. We anticipate that the results of the Llano machine will be

similar to that of the AMD Low machine because the fundamental architecture is the same

between the machines, but our results might differ because of the different memory used in

the fused architecture, DDR3.

All of the work for this experiment was done using OpenCL 1.1 because it can be used

across both AMD and NVIDIA platforms. All of the tests were performed using the Linux

Operating System using the latest drivers available for each system, CUDA 4.0 for the

NVIDIA machines and AMD APP SDK 2.7 for the AMD systems.

4.3.2 Microbenchmarks

Here, we describe the microbenchmarks we will use in order to test the validity of our claim

of atomic memory accesses being a problem on GPU systems. We will also look into different

atomic instruction performance on each system as well as varying stride length to further

reduce memory contention. Finally, we will use microbenchmarking to determine if our

new D-Lock and D-Sem implementations can outperform the naive global synchronization

primitives.

First we will use microbenchmarks to determine the difference in performance between con-

tentious and non-contentious reads on the GPU. We will launch enough threads to fully

occupy the device and then perform 1000 atomic operations. For the contentious accesses,

all of the accesses will be to a single value. For non-contentious access, each thread will per-

form accesses on its own global data. Based on the information of these microbenchmarks,

we are able to determine the approximate bandwidth of these operations on the device.
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Atomic reads are performed using the atomic add instruction with a value of 0, and atomic

writes are performed in a similar way using atomic xchg where the value returned by the

exchange is never used.

In addition to reading and writing, we also looked at the comparable performance of different

atomic operations on each device. Specifically, we looked at the following atomic instructions:

atomic add, atomic inc, and atomic xchg. We wanted to determine if atomic performance

was consistent between instructions or if some instructions had more overhead than others.

We also wanted to investigate to what degree global contention was happening for accesses

to neighboring data. The performance of accessing data elements near to other access could

be lower due to caching effects on the GPU. We therefore tested different stride lengths for

accesses to global memory, the distance between neighboring thread accesses. We tested

different stride lengths from one to 1024 by powers of two to understand this phenomenon.

Finally, we implemented the three lock and semaphore implementations previously described

and ran them multiple times in order to understand how their performance scales with the

number of work-groups being run. Each work-group launched performed either a lock and

unlock or a wait and post 1000 times before ceasing execution. Each kernel was run 1000

times and the mean of all the runs was determined.

4.3.3 Application

In order to test the applicability of synchronization primitives on realistic applications, we

use the octree algorithm as an example application. This algorithm was used by Cederman

and Tsigas[9] in their work on dynamic GPU queuing. The octree algorithm is a spatial

partitioning algorithm for a given set of points, which is used extensively in graphics appli-

cations and physics simulations. It is important to note that this algorithm uses a shared
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queue as part of its implementation.

At the beginning of the computation, all of the points in the input set are considered. These

points are then sorted based on their spatial octant. Each octant created will continue to be

split if the number of points in that octant is greater than a specified threshold. Once this

threshold is met for all octants, computation is completed.

We compared our synchronization primitives against a naive Kernel Launch method, in which

all synchronization occurs implicitly through kernel execution barriers. This method also

communicates with the CPU between executions to determine if computation has finished.

Our lock-based approach does not require any global barrier. Instead accesses to a work-

queue containing an octant that needs to be partitioned will be shared by all the threads.

Threads will pull work off of this queue using locks to ensure no simultaneous access is

occurring. When threads produce additional work, they will enqueue it on to the shared

work-queue. Execution ends when there are no more items left on the work queue and every

thread is waiting on that queue for additional work.

4.4 Results

In this section, we present the results of both the microbenchmark data as well as our realistic

octree application data.

4.4.1 Microbenchmarks

The results for our microbenchmarks on global atomic accesses are given in Figure 4.3. These

results show that contentious accesses incur a large performance penalty when compared with

their non-contentious counterparts. For the AMD Low and AMD High machines, we notice
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Figure 4.3: Atomic Instruction Comparison between Contentious and Non-Contentious Ac-
cesses
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Figure 4.4: Atomic Performance with Varying Stride

a 165-fold and 125-fold performance difference, respectively. On the NVIDIA architectures

we see a much more staggering difference of 170-fold and 630-fold performance difference

for the High and Low machines, respectively. The results of this microbenchmark show the

importance of eliminating contentious atomic memory accesses as much as possible.

Another surprising figure from these results are that of the Atomic Exchange performance

on the AMD Low system. We notice almost an 1.5-fold slowdown in atomic performance

when using the atomic exchange operation. This information could be important for the

design of future algorithms using atomics on that system. The other systems that we tested

show only negligible differences between various atomic operations.

Figure 4.4 shows the performance when using different stride lengths for atomic reads and

writes. We notice that in terms of writing performance, none of the devices are dependent on

stride length for increased performance. On the other hand, we notice an increase in atomic

read performance as the stride length increases for the AMD systems. After increasing the

stride length to 4 for the AMD High machine and 2 for the AMD Low machine, we see

constant performance for the atomic read operations. For this reason, we ensured the use of

strides greater than 4 for our D-Lock and D-Sem implementations on the AMD machines.

The performance of our lock implementations for the four systems we tested are shown in

Figure 4.5. The results show a surprisingly good performance for the Spin Lock implemen-
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Figure 4.5: Lock Performance for Varying Work-group Sizes

tation. The reason for this good performance is most likely due to the reduced overhead of

that implementation. One the NVIDIA Low machine, we see a drastic loss in performance

of the Spin Lock as the number of work-groups increases, this is caused by the contentious

memory accesses performing so poorly on that system (630-fold performance difference).

When comparing the performance of D-Lock against the FA lock, our D-Lock implementation

generally outperforms the FA lock as the number of work-groups increases. In general, we

see that the performance of D-Lock is consistent across number of work-groups whereas

the FA Lock decreases in performance. This shows the scalability of our distributed lock

implementation when compared to other locking schemes.

We show the results of our semaphore microbenchmarks in Figure 4.6. For these tests, we

notice that the performance of the Spin Semaphore is very poor on both Low machines. We
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were also unable to run the Spin Semaphore on the AMD High machine without crashing.

On both low machines the amount of overhead caused by the spinning while locking and

unlocking a mutex is far too large to produce any kind of performance benefit. This caused

performance to plummet on all of the systems besides the NVIDIA High system. We believe

that the NVIDIA High machine was able to achieve good performance on the Spin Semaphore

because of the vastly increased atomic performance on NVIDIA Fermi architectures. This

improved performance could reduce the amount of contention for the lock by simply having

a vastly superior throughput, ensuring that few threads are attempting to acquire the lock

at a given time.

Our D-Sem algorithm performs best on the NVIDIA Low machine because of the effects of

contentious atomics on that system. On the other hand, for AMD systems, the time saved

by D-Sem in removing contentious memory accesses was not enough when compared to the

overhead required for our new algorithm. For this reason, the standard Sleep Semaphore

performs better on those systems.

Comparing the Llano and AMD Low performance for both locking and semaphore algo-

rithms, we notice the same trends for both systems, and comparatively similar performance.

We believe that the larger number of compute units in the AMD Low machine actually

worked against it for these tests by increasing the amount of contention. The fewer compute

units of the AMD Llano machine reduce contention, causing increased performance for that

system.

4.4.2 Octree Performance

We compared the performance of the Kernel Launch and lock-based methods on two data

sets for the octree application. The results of these tests for a uniform data set are shown
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Device Kernel Launch (ms)
AMD Low 0.161
AMD High 0.157
NVIDIA Low 0.087
NVIDIA High 0.124

Table 4.1: Kernel Launch Times

in Figure 4.7 and for a cylindrical data set in Figure 4.8. For these results we used the Spin

Lock and the Sleep Semaphore for all systems.

In addition, we also ran a microbenchmark to determine the amount of time required to

launch a kernel on each of these systems. The results of that microbenchmark are shown

in Table 4.1. The kernels launched were empty and were run 100 times before an average

result was taken.

The results for both of the data sets show the same trends in terms of overall performance.

Only the AMD Low machine vastly outperforms the Kernel Launch method with the lock-

based one. Both the Spin Lock and Sleep Semaphore performed the best for this system.

In addition, the time spent to launch a kernel was highest for this device. This lead to the

lock-based implementation outperforming the Kernel Launch version.

On the other hand, when looking at the performance of the NVIDIA Low machine we see that

the performance of the lock-based method was far worse than the Kernel Launch method.

The reason for this discrepancy is the exact opposite of the AMD Low machine. The kernel

launch times for the NVIDIA Low machine were the lowest of any of the systems we tested

by a wide margin. In addition, the Spin Lock performed poorly on that system. Using our

D-Lock and D-Sem algorithms we would expect to see improved performance, more closely

matching the Kernel Launch performance.
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Figure 4.7: Octree performance on a uniformly distributed data set.
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Chapter 5

Summary and Future Work

In this section we present a summary of our work, including both memory movement tech-

niques and improved synchronization primitives which avoid the costs of contentious atomic

memory operations. We also present ideas for future work which use this thesis as a basis.

5.1 Summary

In this section we present a summary of the work completed as part of this thesis, specifically

in the characterization and exploitation of memory systems of GPU and APU systems.

Heterogeneous computing has proven to be more than just a fad in computing, but rather has

made significant gains in altering the modern computational paradigm. The realization of

so many hardware supported threads on Graphics Processing Units (GPUs) make them very

attractive for applications which must perform numerous computations in a data-parallel

manner. Although the architecture of the GPU allows many applications to achieve instan-

taneous speedups, many applications are hindered from these improvements by the memory

67
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systems of modern GPUs.

This thesis aims to stress the importance of utilizing the underlying system architecture to

improve performance for applications which are in some way constrained by the memory

system. Using the unique architecture of the Accelerated Processing Unit (APU) we were

able to effect large performance gains for data-intensive applications. We were able to achieve

a 2.5-fold speedup by using the APU on the VectorAdd application as well as show up to

3-fold performance difference based on the memory movement technique being used. In

addition to our work on the APU, we also investigated contentious global memory atomics

and their impact on application performance on discrete GPU systems. By leveraging our

knowledge we were able to design two novel GPU synchronization primitives, D-Lock and

D-Sem, which showed improved performance and scalability on some of the systems we

tested.

In general, this work shows the importance of understanding the underlying memory system

of the architecture in use. In addition we show the importance of understanding how a given

application uses the memory system in order to achieve speedups over naively written codes.

5.2 Future Work

In this section we present future work that can done based upon the work presented in this

thesis.

Automated Model for Multiple Devices: The work presented for this thesis looks at

improving the performance of data-intensive kernels on the APU, but acknowledges

that computationally intensive kernels should still be run on the discrete GPU to

leverage the better computational abilities of that system. A system or model could
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be developed that would automatically predict the best device to run a given ker-

nel based on characteristics about the application, thereby improving the usability of

heterogeneous systems by programmers.

Optimization for Multiple Kernel Invocations: Chapter 3 presents a model and per-

forms optimizations for single kernel applications. Multi-kernel applications could

achieve best performance running on multiple different devices. A system could be

developed which could a priori or greedily schedule kernels on whichever device would

give them the best performance. However, this performance may not be optimal be-

cause of the data transfers that must occur to move computation between devices.

Performing this type of analysis can be very beneficial in terms of realistic GPGPU

applications.

Shared Memory Synchronization Primitives: With tighter coupling of system mem-

ories in newer iterations of the AMD Fusion APU, we hope to extend our work on

global synchronization primitives to multiple devices. If the future APUs have a truly

shared system memory it may be possible to create synchronization primitives which

can work effectively between the CPU and GPU sub-devices. This would increase the

ability of collaborative computing between the CPU and GPU on these novel APU

systems.
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