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Abstract—Architectural innovation has telescoped the HPC
community from the commodity (Beowulf) cluster in a machine
room, i.e., a multi-node system with Ethernet interconnect, to a
commodity cluster on a chip, i.e., multicore CPU with an on-die
interconnect. We project that this notion of “telescoping archi-
tecture” will apply more broadly to heterogeneous computing,
namely from heterogeneous clusters like Tianhe-2 in a machine
room to on a chip. To that end, we present an experimental study
that extends the notion of telescoping architectures to identify
the ideal mixture of compute engines (CEs) and the number
of such CEs on a chip to create a heterogeneous “cluster on
a chip” (CoC). Specifically, we experiment with heterogeneous
architectures that contain single or multiple instances of CPUs,
GPUs, Intel MICs, and FPGAs to demonstrate their performance
efficacy given continuing advances in hardware technology, soft-
ware, tools, and run-time support.

I. INTRODUCTION

Moore’s Law has fueled processor advances for half a

century now. As per Dennard’s law [1], transistor scaling has

reduced transistor dimensions by 30% with every generation

and area shrinkage by 50%. This doubling of transistor den-

sity has allowed microarchitectural innovations that provide

further performance increases (roughly 40%, as per Pollack’s

Rule [2]) and the design of multi-level cache hierarchies to

address the increasing gap between processor and memory

speeds. While these trends have held true of single-core de-

signs for decades; limitations in transistor scaling, prohibitive

heat dissipation levels, and power/energy-related constraints

have mandated a switch to multicore in the mid-2000s. Look-

ing ahead, large-scale parallelism with heterogeneous cores

now appears to be on the path to exascale computing.

The trend of heterogeneity is not new; it is a recurring

pattern observed in chip design. Heterogeneity was first in-

troduced in the form of discrete devices that were later unified
on-chip in a subsequent technology iteration. For instance,

specialized floating-point or other co-processors (e.g., encryp-

tion or signal processing), which complemented early single-

core CPUs, eventually relocated onto the CPU die itself. By

the mid-2000s, the multi-core CPU era effectively telescoped

the homogeneous compute cluster from a machine room to a

homogeneous cluster on a chip. By the late 2000s, this same

telescoping trend saw discrete GPUs that were out on the PCIe

interface move onto the CPU die to create a fused CPU+GPU

die called an accelerated processing unit (APU). Discrete

FPGAs have also been used as co-processors to CPUs. With

Intel’s recent acquisition of Altera, a key FPGA vendor, Intel

will telescope previous “discrete CPU+FPGA” offerings into

a fused on-package integration with the Purley platform and

then a fused on-die integration with the Tinsley platform.

Currently, a typical supercomputer node may exploit the

synergistic (parallel) performance gains of architectures that

are heterogeneous in nature, such as multi-core CPUs, GPUs,

Intel MICs (Xeon Phi), or even FPGAs. These constituent el-

ements are interconnected via PCIe at the intra-node level and

over high-speed interconnects (e.g., Infiniband) at the inter-

node level. Following the above examples on the recurring, a

la déjà vu, trend of architectural unification that has defined

the chip evolution, we project that it may only be a matter

of years before the notion of telescoping architectures that

led from a “homogeneous cluster in a machine room” to a

“homogeneous, multicore-CPU cluster on a chip” is extended

to create a heterogeneous cluster on a chip (CoC).

In light of this trend and given the variety of homogeneous

architectures (i.e., CPU, GPU, Intel MIC, FPGA), the research

questions that arise are as follows:

1) What is the ideal mixture of compute engines (CEs) and

number of such CEs that will fuel telescoping architec-

tures and enable the transformation of a heterogeneous

cluster in a machine room to a heterogeneous CoC?

2) What methodology should we use to answer the above

question in a systematic and generalizable way?

To address these questions, we study heterogeneous CoC

and discuss the roadblocks that need to be addressed before

such a concept is materialized at the intra-node level. Such a

preliminary study is imperative before it can be expanded to

the inter-node level, where new sets of challenges arise.

We summarize our contributions below:

• A systematic and generalizable methodology towards

identifying future trends and catalyzing exploration into

the heterogeneous architecture space via real hardware
and the use of dwarf-based (or motif-based) benchmark-
ing.

• The application of the above methodology to quantify

the performance benefits of different instantiations of

a cluster on a chip (CoC), each employing single or

multiple instances of CPUs, GPUs, Intel MICs, and

FPGAs.

The rest of the paper is organized as follows: Section II

provides an overview of the trend in architectural unification

and background on the dwarfs concept and the rationale in
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using them as the driving force of architectural innovation.

Section III provides details on our approach and experimental

methodology, and Section IV presents our results and insights.

In Section V, we highlight challenges that affect the longer-

term feasibility of the proposed architectures. Finally, Sec-

tion VI discusses related work, and Section VII concludes the

paper and provides directions for future research.

II. BACKGROUND

A. Architectural Unification in the History of Computing
In this work we examine the trends towards architectural

unification as we move from a heterogeneous cluster in a

machine room to a heterogeneous cluster on a chip. To put this

trend in perspective it is useful to examine how the unification

trend has manifested throughout computing history. Moore’s

law has allowed doubling the transistor density in a chip, thus

facilitating heterogeneity at various levels and at the same time

on-chip replication of homogeneous resources.

As far as heterogeneous coupling is concerned, there are

various notable examples. At the early days of computing,

floating-point arithmetic was implemented in software (e.g.,

on Intel 8086). The Intel 8087 was the first math co-processor

for the 8086 line that allowed fast, hardware implementation of

floating-point instructions. Nowadays, all modern processors

include an (integrated) floating-point unit (FPU) and dedicated

floating-point registers on-chip.

Graphics processing units (GPUs), in a similar fashion,

originated as separate devices (graphics co-processors) with

dedicated graphics memory. While still widely available in

a discrete form factor, integrated graphics processors (IGPs)

are the norm in many cases, especially in the laptop market.

For example, Intel HD Graphics in Ivy Bridge and Intel Iris

Graphics in Haswell CPUs are IGPs on the same package or

die as the CPU and utilize a portion of the computer system

RAM. Similarly, in 2011, AMD introduced Llano [3], the

first generation of accelerated processing units (APUs), which

combined a CPU and GPU on the same die.

FPGAs have also been used to accelerate computations in

many domains (e.g., bioinformatics [4], finance [5]). FPGAs

connect to a host platform typically via the PCIe interface or

Ethernet. However, there are system-on-chip (SoC) implemen-

tations, where a CPU is embedded in an FPGA board (e.g.,

big.LITTLE by ARM [6], Cyclone V SoC with ARM Cortex-

A9 [7]). To this end, Intel is also introducing their Xeon and

FPGA accelerator platform that incorporates an FPGA module

attached to the processor via a Quick Path Interconnect (QPI),

After Altera’s acquisition by Intel, it is expected that in the

next year, we will see a FPGA fabric as part of the package

or die.

As far as replication of homogeneous resources is con-

cerned, the CPU and GPU cases are indicative examples.

In the former case, single-core CPUs initially got connected

over a network to form compute clusters. When manufacturing

technology allowed, multiple cores (dual-, quad-, octa-cores,

etc.) fitted on the same chip. Later, with Intel Many Integrated

Core (MIC) [8] architecture, tens of (simpler) cores (60 or

61) became a reality. The next generation of Intel MIC (code-

named Knight’s Hill) will be bootable, obviating the need for a

host processor needed in current generation’s MICs. Similarly,

GPUs include an ever-increasing number of compute units

(or CUDA cores in NVIDIA terminology) and more advanced

architectural features.

Both above trends, in isolation and, more so, combined, hint

towards the concept of supercomputing on a chip.

B. Dwarf-Based Benchmarking and the OpenDwarfs

High-performance computing and benchmarking have tra-

ditionally gone hand in hand. Benchmarks are being routinely

used in assembling lists that rank supercomputers according to

various metrics, like performance or power (e.g., Top500 [9],

Green500 [10], HPCG [11]). Additionally, computer architects

have been utilizing benchmarks as part of characterizing their

platforms and in the subsequent decision-making that is related

to the microarchitectural advances of future renditions thereof.

Related research [12] from a software engineering standpoint

highlights the need for benchmarks that address real-world

problems that are tied to scientific paradigms. This notion of

paradigm encapsulates a universally agreed-on set of solutions

to such real-world problems. These scientific paradigms mirror

what is otherwise known as a computational dwarf (or motif ).

A dwarf is an algorithmic method that embodies a certain

computation and communication pattern. Such patterns may

be more or less suitable for one architecture over another.

This motivates the need for heterogeneous architectures, like

CPUs plus GPUs within a node, or ideally, a combination of

more heterogeneous platforms in the context of a single chip,

the type and characteristics of which will make them ideal

for addressing the needs of applications. Original unpublished

work by P. Colella introduced the concept of the dwarfs and a

set of seven original dwarfs. The concept and work was later

formalized and extended by Asanovic et al. [13] and became

what is widely known as the Berkeley Dwarfs.

In this work, we use OpenDwarfs [14], a benchmark suite

based on the concept of the Berkeley Dwarfs. OpenDwarfs

includes instantiations for dwarfs in [13] and is developed

in OpenCL, which allows a seamless benchmarking expe-

rience across different architectures, like multi-core CPUs,

GPUs, Intel MIC (Xeon Phi), and even FPGAs by use of

Altera OpenCL or the SOpenCL tool [15]. More importantly,

OpenDwarfs is characterized by uniformity of optimization

levels across the supported architectures, creating a level field

for studying architectures with respect to their suitability for

the computation and communication patterns themselves. The

above set of features render OpenDwarfs an ideal benchmark

suite for the purposes we seek to address in this work. In

Section III-B, we discuss how we exploit dwarf instantiations

in OpenDwarfs in a systematic and generalizable way that

allows us to draw broader conclusions about next-generation

heterogeneous architectures.



TABLE I: Configuration of the Target Fixed Architectures

Model AMD Opteron AMD Radeon Intel Xeon Phi

6272 (CPU) HD 7970 (GPU) P1750 (MIC)

Type CPU Discrete GPU Co-processor

Frequency 2.1 GHz 925 MHz 1.09 GHz

Cores 16 32† 61

Threads/core 1 4 4

L1/L2/L3 16/2048/ 16/768/- 32/512/-

Cache (KB) 8192‡ (L1 per CU) (per core)

SIMD (SP) 4-way 16-way 16-way

Process 32nm 32nm 22nm

TDP 115W 210W 300W

GFLOPS (SP) 134.4 3790 2092.8

† Compute Units (CU) ‡ L1: 16KBx16 data shared, L2: 2MBx8 shared, L3:

8MBx2 shared

TABLE II: Defining Base Unit (BU) for Chip Area Size

Type Model transis- Process Base
tors (bil.) (nm) Units

CPU AMD Opteron

6272 2.4 32 1

GPU AMD Radeon

HD 7970 4.3 28 1.372

MIC Intel Xeon Phi

P1750 5 22 0.985

FPGA Xilinx Virtex-6

LX760 5.8 40 3.778

III. METHODOLOGY

In this section, we present our methodology in addressing

the research questions set forth in Section I. We start with

identifying the search space for candidate Cluster on a Chip
(CoC) platforms. Then (Sections III-B and III-C) we describe

in detail how we evaluate the performance of each CoC

candidate. Section III-D discusses assumptions we make in

the process.

A. Cluster on a Chip (CoC)
By Cluster on a Chip (CoC) we refer to the combination

of discrete types and numbers of compute engines (CEs).

This conglomerate of CEs constitutes the expected result of

the unification trend that we describe in Section II. Such

a hypothetical platform may not be feasible under current

technology and manufacturing constraints. We discuss our

assumptions in Section III-D. CEs under consideration include

a general-purpose CPU, a high-performance discrete GPU, an

Intel Xeon Phi (MIC) co-processor, and an FPGA. Table I

shows the detailed characteristics of each platform.

Given these CEs we construct hypothetical CoCs by creating

combinations thereof (also allowing multiple CE instances).

In order to restrict the CoC search space, we enforce an

(arbitrary) chip area constraint. Table II shows how we define

a chip area base unit (BU), based on the number of transistors

of each device and the process technology used in each to

approximate the chip area size of each CE, assuming that

transistors for all four types of CEs are laid out in the two-

dimensional space. A BU measures the relative chip area using

the calculated CPU chip area as a baseline. For example, given

the values for number of transistors and process technology

in Table II for CPU and GPU, the BUs of a GPU are

TABLE III: OpenDwarfs Benchmark Test Parameters/Inputs

Dwarf Algor. Problem Size
N-body methods GEM Input file: nucleosome

Dynamic programming NW Two 4096-letter protein sequences

Structured grids SRAD 2048x2048 FP, 128 iterations

Graph traversal BFS 248,730 nodes, 893,003 edges

Combinational logic CRC Input data-stream: 100MB

Sparse linear algebra CSR 20482 x 20482 sparse matrix

TABLE IV: Execution Time (in msec) of Dwarf Benchmarks

GEM NW SRAD BFS CRC CSR
CPU 21592 112 5093 331 672 22

GPU 401 672 232 96 19 4

MIC 11871 222 2298 278 881 5

FPGA 25345 35 17651 105 24 83

( 2832 )
2 ⇤ 4.3

2.4 = 1.372. Following the above, the restriction we

enforce is that all CoCs we consider have a chip size area

that is equal or less than the aggregate area of one CPU, plus

one GPU, plus one Intel Xeon Phi, plus one FPGA. Based

on Table II (Base Units column) this adds up to 7.135 BUs.

According to this constraint there are 100 possible CoCs.

B. Performance Evaluation
For evaluating the CoC candidates (Section III-A) we use

the OpenDwarfs benchmark suite. Specifically, we employ a

subset of the dwarf instantiations: GEM, NW (Needleman-

Wunsch), SRAD (Speckle-Reducing Anisotropic Diffusion),

BFS (Breadth-first Search), CRC (Cyclic Redundancy Check),

and CSR (Compressed Sparse-Row Matrix-Vector Multiplica-

tion). The dwarf categories are shown in Table III together with

the dwarf instantiations listed above and their input parame-

ters/datasets. Using these dwarfs we create a large number of

synthetic benchmarks. These synthetic benchmarks contain all

possible combinations of four, five, and six dwarfs. This allows

for the creation of benchmarks that cover a sufficiently large

number of potential real-world applications. This stems from

the fact that dwarfs, by definition, represent computation and

communication patterns and real-world applications are largely

composed of such patterns (dwarfs) that can be temporally or
spatially distributed across a set of CEs (examples of dwarf

composition of five ParLab applications and seven general

application areas are given in [16]). Along these lines, in each

synthetic benchmark we assume the latter (spatial) distribution

of constituent parts, i.e., dwarfs within an application are

independent and can run in parallel in a form of request-level
parallelism (similar assumptions are used in similar works,

e.g., [17]). Each dwarf runs in parallel by itself on the specific

CE it is scheduled on. The way each dwarf of a benchmark is

scheduled to each part of a CoC is described in Section III-C.

The above methodology allows us to draw broader conclusions

that are better representative of real-world workloads.

For our results we use the kernel execution times shown

in Table IV, which were obtained in [18] by executing the

OpenCL-based OpenDwarfs on the hardware shown in Ta-

ble I. Implementation details and performance evaluation of

each dwarf separately on each of the different architectures



(CPU, GPU, Intel MIC, FPGA) is also done in [18] and

beyond the scope of this paper. In this work we focus on the

overall performance benefits of using CoCs. For this reason,

the results of synthetic benchmarks that contain all possible

combinations of four, five, and six dwarfs (among the total

six used) are averaged (4-mers, 5-mers, 6-mers). This ensures

that no specific dwarf can disproportionally distort the high-

level insights. As we would see in Section IV the trends

observed in the results are similar, irrespective of the number

of constituent dwarfs, which is indicative of the generality of

our methodology.

C. Scheduling

In Section III-B we describe the performance evaluation

methodology with respect to the workloads. In this section,

we discuss the details of scheduling each constituent part of

our synthetic benchmarks on the disparate parts of CoC ar-

chitectures. Our scheduling methods assume oracle prediction

(as, e.g., in [19] or [17]), i.e., we assume a priori perfect

knowledge of execution times of each dwarf on each type

of CE within a CoC. Note that this work is not focused on

scheduling, but in providing an early evaluation of the upper

performance bound of CoC architectures, hence the oracle

assumption.

Specifically, in our schedule we execute each dwarf on the

best available CE (i.e., not necessarily on the fastest one,

which would correspond to the local minimum). This schedule

is feasible given use of an off-line scheduling algorithm, where

we know the execution time of each dwarf, or a performance

prediction model. Such schedules may allow late start for a

given dwarf, if such a schedule leads to a globally optimal
solution. We explore cases with multiple instances of CEs

(given space constraints as described in Section III-A), and

we allow multiple CEs to be active simultaneously.

D. Assumptions

We start our study with a simplified model that incorporates

certain assumptions. Our goal is to provide an initial system-

atic and broad study of the CoC concept based on existing

hardware and to rationalize the benefits of a conceptual

architecture like it. While a CoC may be unfeasible given the

current state of the practice, we envision it can materialize in

the (near) future, once further advances in chip manufacturing

and other areas are made. Even in the presence of the stated

assumptions, like negligible inter-CE interference, our study

projects a conservative upper bound on performance (a la

the Roofline model [20], for example) and provides useful

insights about the future of heterogeneous computing. Similar

approaches with respect to assumptions are made in related

work (Section VI), like [21], [17], [19]. We discuss such

relevant required technology and system-level advances in

Section V.

1) Data transfers: The architectures, as discrete devices,

that comprise a CoC would require data transfers between a

CPU host and the corresponding accelerator in a real OpenCL

execution scenario. Such data transfers could in fact be po-

tential bottlenecks also limiting maximum parallelism [22]. In

the context of this work we deem them negligible, expecting

a broader adoption of the unified memory trend (a la CPU and

GPU in the context of an APU system).

2) Prediction/scheduling: In Section III-C we discuss

scheduling. When multiple CEs, and especially CEs of dif-

ferent types, are available, it is essential that scheduling of

workloads be done in an efficient manner, taking advantage

of the specific characteristics of each CE type. This would

require a form of pattern/application signature recognition.

Such scheduling is non-trivial and adds an extra overhead on

top of the actual execution time of a given workload. Within

the confines of our study, we assume perfect prediction, given

off-line scheduling and zero scheduling overhead.

3) Power: One of the main premises of CoCs, besides

performance scaling, is power efficiency and energy savings

by assigning workloads to the most appropriate CE type (as

opposed to a generic fat core). The actual power budget of an

architecture that consists of one (or more) of each of a CPU,

MIC, GPU and FPGA could be prohibitive without employing

advanced power management techniques. Our study focuses

on the performance aspect of the CoC concept and indirectly

addresses the thermal power density aspect by only allowing

sufficient heterogeneous computing elements to fit within a

constrained die area. Ensuring that CoCs are power-efficient

and a detailed study of power is an important future research

avenue beyond the scope of this work.

4) Parallelism within applications: Our synthetic bench-

marks consist of applications that fall under the dwarfs clas-

sification, for reasons we discuss in Section III-B. For the

purposes of our work, we assume that workloads are com-

posed of independently parallelizable parts (i.e., the constituent

dwarfs of each synthetic benchmark) following a request-level

parallelism paradigm.

IV. RESULTS

In this section we present the findings of our experiments

that are based on the methodology outlined in Section III. The

main variables in our experiments include:

1) Synthetic benchmarks (i.e., benchmarks comprising dif-

ferent combinations of dwarf N-mers).

2) Cluster on a Chip (CoC) instantiations (i.e., different

combinations of types and numbers of CEs under con-

sideration).

Despite the magnitude of the potential options search space,

we attempt to provide relevant experiments and group the

results we obtain in such ways so as to allow us to identify

certain trends in a clear way and draw useful insights with

respect to the following research questions:

1) For a widely-varying set of dwarf combinations forming

synthetic benchmarks what are the best combinations of

CEs to form a CoC across the potential CoC spectrum?

(Section IV-A)
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Fig. 1: Performance of Clusters on a Chip (CoC): Speed-up over single-GPU baseline for all possible combinations (100)

restricted by the maximum number of Base Units (BUs), for three classes of synthetic benchmarks

2) What are the trade-offs between the CoCs’ chip area and

performance? What are the most efficient CoCs based on

a performance per chip area metric? (Section IV-B)

3) What is the expected benefit of fusing an FPGA in three

specific CoC instantiations and what are the CE usage

trends with different combinations of dwarfs in smaller

synthetic benchmarks? (Section IV-C)

Answering the above questions enables us to draw useful

conclusions related to the main research question of what is
the best combination and number of CEs within a CoC for a

varied set of algorithmic patterns (as classified by the dwarfs
concept).

A. Performance of CoC Instantiations
Figure 1 presents the results for all possible CoC instan-

tiations and for the average performance across all three

categories of synthetic benchmarks built and scheduled as

described in detail in Section III. Performance (execution

time) is presented as the speed-up over a CoC that contains

a single GPU. In this case, separate dwarfs within a synthetic

benchmark are executed one after the other on the single GPU,

but each dwarf itself is executed in parallel within the GPU.

Each CoC is identified by the number of its constituent CEs

(number of CPUs, GPUs, MICs, FPGAs). For example, 1210
corresponds to a CoC that includes one CPU, two GPUs, one

Intel MIC and zero FPGAs. Note that in the OpenCL paradigm

a host (CPU) is required alongside the device (accelerator). A

“traditional” CPU, a soft- or hard-core CPU within a FPGA

or a MIC core can serve as both an OpenCL host and device.

While for now a discrete GPU cannot serve as a host, this

may not be the case in the future.

First, on a high-level we observe that for the majority of

CoCs the achieved performance is irrespective of the number

of dwarfs contained in a synthetic benchmark (4-mers, 5-mers,
6-mers). The cases where the observed performance is higher

for the 4-mers case than in 5- or 6-mers are generally these

where the number of CEs in a CoC is less than four. In

these cases, one or two dwarfs in the 5- or 6-mer synthetic

benchmarks need to run sequentially (with respect to the other

dwarfs) on one of the available CEs, thereby increasing the
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overall execution time. The fact that the general performance

trends remain the same, irrespective of the number of dwarfs

in our synthetic benchmarks, indicates the suitability of our

benchmarking methodology (Section III) for our purpose of

evaluating next-generation heterogeneous architectures, in the

form of CoCs.

Without loss of generality, we focus on the 6-mer case

and provide a more detailed analysis of the observed results.

Without a GPU, relative performance (i.e., speed-up over

common baseline) is limited in the 0.033 to 0.12 range. A GPU

is indeed an indispensable CE in any CoC. Note that a CoC

with two GPUs (0200 in graph) provides a 1.952-fold speed-up

over a CoC with one GPU. This may seem counter-intuitive at

first (expecting a 2-fold speed-up), but one needs to remember

that the execution time of different dwarfs within a synthetic

benchmark vary and the way they can be scheduled onto the

two GPUs (i.e., as a whole) may lead to such schedules.

For similar reasons, CoCs with three, four or five GPUs only

(0300, 0400, 0500) exhibit the same performance (2.123-fold

speed-up). Maximum performance is capped by the longest-

running dwarf within the synthetic benchmarks. So if chip

area (and consequently power) is a concern, a CoC with three

GPUs is better than one with four or five. Or one may deem

the 8.7% performance increase between using two and three

(or four or five) GPUs negligible and elect a CoC with two

GPUs only. Similar observations can be gleaned from Figure 1

for CoCs entailing other CEs, like MIC (e.g., cases 1210,

1220, 1230). The best performance (3.555) can be obtained

using different combinations of CEs within a CoC. Again,

these combinations exhibit varying chip area requirements.

The above observations provide useful insights with respect

to the performance per area ratio that we discuss further in

Section IV-B.

B. Performance vs. Area Trade-offs
In this Section we attempt to provide another view of

our experimental results focusing on the performance versus

area trade-offs. Figure 2 presents the speed-up over a single

GPU baseline with respect to the chip area required for 300

points (100 CoCs times three different set of experiments to

include all possible 4-, 5-, and 6-mers). While the 300 points

are not annotated, due to their large number, our purpose is

to provide a high-level view of the trade-offs entailed, and

which we only briefly discuss in Section IV-A. Specifically,

one can observe three large clusters for each of the three

experiments. The higher the number of dwarfs in each of

the three experiments, the more concentrated the clusters are

along the horizontal axis. For example, in the 6-mer synthetic

benchmark experiments, most points fall on or near the 0.12,

2.18, 3.56 mark (x-axis). Focusing on the 3.56-fold speed-up

case, there are 26 CoCs with varying chip area requirements

(a lot of them overlapping in Figure 2). The best performance

(3.56) with the least area (3.73 BUs) within this performance

point is achieved on a CoC with two GPUs and one MIC. The

same performance with the second best area is a CoC with two

GPUs and one CPU (chip area of 3.74 BUs). The following

best one (chip area of 4.7 BUs) comprises two GPUs and two

MICs. The above observations are indicative of two cases: a)

different combinations of CEs in CoCs can achieve the same
performance, and b) more CEs are not always beneficial. In

the former case, the choice of one CoC over the other may

make more sense for non-technical reasons, too. For example,

a 1-CPU + 2-GPUs CoC is a cheaper choice over a 1-MIC

+ 2-GPUs CoC (assuming the cost of a combination of CEs

within a CoC is the same as the CE separately). Also, there

are power implications depending on the CE selection (e.g.,

MIC TDP is generally higher than CPU TDP). In the latter

case the higher number of CEs (especially of the same type,

as discussed above) does not provide any benefit.

Minimizing chip area while keeping performance steady is

important, due to manufacturing costs, cooling requirements,

power, etc. As such, it is important to evaluate CoCs’ per-

formance with respect to occupied chip area. To do so we

introduce a performance per area metric. We present the

results in Figure 3 in descending order (the higher the better).

This provides insight with respect to what combinations of

CEs within a CoC provide the best performance per chip real

estate. As in Section IV-A, we focus on the 6-mer synthetic

benchmarks experiments. We show the CoCs that achieve a

value of performance per area over 0.3 (all the rest CoCs score

less than 0.06 and are not shown). As can be seen in Figure 3

the two best CoCs with respect to the performance per area

metric are the ones we discussed in the previous paragraph

(0210, 1200). The next best ones with a performance per area

value over 0.9 (and still close to the maximum) incorporate

one GPU and one MIC (0110), and one CPU and one GPU

(1100), respectively. Notice that while these two CoCs are

efficient with respect to our target metric, they are not optimal

in terms of performance alone. This accentuates the trade-

offs entailed and the fact that the choice of a CoC depends

on the design goals. The most efficient CoCs, both from a

performance per area perspective (Figure 3) and performance

alone (Figure 1), contain at least one GPU. Intel MIC is also

sufficiently present across the top performance per area CoCs,

but always in combination with GPU(s).
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Fig. 3: Performance per Area Results

TABLE V: CoCs that include an FPGA: CE utilization and speed-up over corresponding CoC without FPGA

1 CPU + 1 FPGA 1 CPU + 1 GPU + 1 FPGA 1 CPU + 1 GPU + 1 MIC + 1 FPGA
Synthetic Dwarf #CPU #FPGA Speed-up #CPU #GPU #FPGA Speed-up #CPU #GPU #MIC #FPGA Speed-up

w/o FPGA w/o FPGA w/o FPGA
NW / SRAD / BFS 1 2 1.09 1 1 1 1.41 1 1 0 1 1.2

NW / SRAD / CRC 1 2 1.15 1 1 1 1.08 1 1 0 1 1.08

NW / SRAD / CSR 1 2 1.03 2 1 0 1 2 1 0 0 1

NW / BFS / CRC 1 2 8.59 0 1 2 1.2 0 1 0 2 1.2

NW / BFS / CSR 2 1 3.46 1 1 1 1.16 1 1 0 1 1.16

NW / CRC / CSR 1 2 13.51 1 1 1 3.2 1 1 0 1 3.2

SRAD / BFS / CRC 1 2 1.2 0 1 2 1.43 0 1 0 2 1.2

SRAD / BFS / CSR 1 2 1.07 1 1 1 1.42 1 1 0 1 1.2

SRAD / CRC / CSR 1 2 1.14 1 1 1 1.08 1 1 0 1 1.08

BFS / CRC / CSR 1 2 7.9 1 1 1 1.2 1 1 0 1 1.2

Average: 1.1 1.9 4.01 0.9 1 1.1 1.42 0.9 1 0 1.1 1.35

C. Case Study: FPGAs in CoCs

In Section II we discuss practical examples of telescoping

architectures, such as fusing CPUs and GPUs in the form of

an Accelerated Processor Unit (APU). Also, we hint towards

the unification of reconfigurable fabric (i.e., FPGA) with CPU

on-chip, in future implementations. The latter is projected to

be of particular importance in datacenter computing (e.g.,

search-engines), because of the FPGA’s high-performance for

certain algorithms, and its high energy efficiency. This Section

discusses the performance benefits of CoCs that include an

FPGA CE. In contrast to Section IV-A, here we focus on

simpler CoCs that may be more viable in the shorter term.

As such, we focus on three sample cases, that is CoCs that

include: a) one CPU and one FPGA, b) one CPU, one GPU

and one FPGA, c) one CPU, one GPU, one MIC and one

FPGA. As far as workloads are concerned, we use synthetic

benchmarks that comprise dwarf kernels from the OpenDwarfs

subset discussed in Section III minus GEM (to keep number

of combinations tractable). However, in these experiments we

focus on synthetic benchmarks that are composed of three

dwarfs (i.e., 3-mers); specifically all combinations of three

dwarfs possible out of the five dwarfs: NW, SRAD, BFS, CRC,

CSR. Table V shows the results of the above experiments. For

each of the three sample cases, we list the number of times

dwarfs from each synthetic benchmark are run on the CPU,

GPU, MIC or FPGA. Also, we indicate the speed-up obtained

with the CoC at hand compared to the same configuration

of CEs without the FPGA. For instance, in the 1-CPU + 1-

FPGA case, and for the NW/SRAD/BFS synthetic benchmark,

the CPU is used for one of the three constituent dwarfs of that

benchmark and the FPGA for two. Also, the indicated speed-

up is the performance obtained using this CoC compared to a

CPU-only equipped CoC. Although we do not show the details

of where dwarfs of each synthetic benchmark are scheduled,

we provide details where necessary below.

In the first case, we examine the case where we incor-

porate an FPGA with a CPU on a chip. This would be

conceptually similar to Intel’s announced Xeon CPU + FPGA

chip. Apparently, the FPGA is utilized on average twice as

much as the CPU in the CoC (1.1 vs. 1.9). The performance

obtained compared to a CPU-only CoC (practically a typical

CPU) ranges from a meager 1.09- to a considerable 13.51-fold

increase. In the average case, we observe a 4.01-fold speed-

up. Specifically, as expected, all ten cases exhibit performance

improvement. However, speed-up in six out of ten lies below

1.20x. These are the cases where the SRAD dwarf is present

in the synthetic benchmark. Even for the best schedule, where

the CPU is chosen for SRAD (3.47x than the FPGA), and

the FPGA is used for the (faster) execution of the remaining

two dwarfs in each case, the actual execution time of SRAD

compared to the other two dwarfs dominates total execution

time. While not shown in Table V, a CPU + GPU CoC exceeds



a CPU + FPGA CoC performance for the workloads under

consideration, for nine out of ten cases. Specifically, all six

synthetic benchmarks that contain SRAD are considerably

slower on the CPU + FPGA CoC. Of the four remaining ones

the CPU + GPU CoC is faster in three out of four cases (by

1.12-1.20x), whereas in one case (NW/CRC/CSR) the CPU

+ FPGA CoC is faster by 1.88x. In that case, NW runs 3.2x

faster on the FPGA, CRC runs 27.35x faster on the FPGA,

and CSR runs 3.77x faster on the CPU. Since all three dwarfs

can run in parallel and we have one CPU and one FPGA in

the CoC, NW and CRC run one after the other on the FPGA

while CSR runs on the CPU. The above shows how important

heterogeneity (or hardware customization) is to cover special

cases that may appear and completely nullify any expected

performance gains.

The second case studies a CoC that contains an FPGA on a

chip together with CPU and GPU CEs. That would correspond

to an APU chip, as available today, with the addition of an

FPGA on that same chip package. As we observe in Table V,

despite the presence of a GPU, the FPGA is still utilized at

least once in nine out of ten cases. That makes it obvious

that the addition of an FPGA on chip would be beneficial

for performance, if added alongside a CPU or a CPU and

GPU. Even though the benefits of adding an FPGA to an APU

chip are not as high as doing so on a CPU-only, they still

provide an average of 1.42-fold performance increase. In our

example synthetic benchmarks, the major benefit comes from

scheduling SRAD on the GPU. As we mentioned the actual

execution time for SRAD (even on the GPU) is comparably

bigger than the rest of the dwarfs. This may mean that

the scheduler picks the second fastest CE for a dwarf, as

long as SRAD is assigned to the GPU. For example, in the

NW/SRAD/BFS case, NW is assigned to the CPU and BFS to

the FPGA, although these CEs are the second best for these

dwarfs. As one can see in the CPU + FPGA and CPU + GPU

+ FPGA cases, adding an extra CE is always better. Even in

the case a CE may not be the most suitable (i.e., fastest) for

a given dwarf, it provides more scheduling possibilities that

can lead to a better overall performance. While this may be

worse with respect to power, clever power-saving techniques

could counter such effects (e.g., switching off CEs when not

used, etc.)

In the third case, we consider the case of placing an FPGA

together with a CPU, GPU, and MIC CEs. This experiment

provides useful insights, that also tie back to Section IV-B.

Specifically, it is an example of a case where an extra CE,

which also occupies useful chip real estate, does not contribute

any performance benefit. As we see, the MIC is not used at

all across the synthetic benchmarks search space. In fact, the

statistics reduce to the previous case (CPU + GPU + FPGA

CoC). While the number of constituent workloads within our

synthetic benchmarks (three) is less than the available CEs

(four), it is still interesting to see that MIC is not used over

one of the other CEs in any of the synthetic benchmarks.

Similarly, comparing the CPU + GPU + MIC + FPGA CoC

to the corresponding one without the FPGA, we identify only

three cases where adding the FPGA benefits performance (the

rest remains the same). These are the cases where the BFS

dwarf is present and now scheduled on the FPGA, instead of

MIC.

V. DISCUSSION

Telescoping architectures in the form of CoCs bears many

similarities with related work (Section VI) and can provide

performance and power benefits. In this work, we focus on

a first-order approach on the performance aspect of CoCs,

identifying an upper bound on attainable performance, under

certain assumptions. Telescoping architectures in the context

of heterogeneous computing (i.e., CoCs) is a non-trivial ef-

fort. In order for CoCs to find practical implementation a

number of issues needs to be addressed, some of which

warrant a whole research area by themselves. The proposed

methodology, based on dwarf-based synthetic benchmarks,

can be used in such future studies that focus on issues like

scheduling, power/energy-aware optimizations, memory hier-

archies, network-on-chip. Also, it can serve as a starting point

for refined approaches for performance modeling/prediction.

Borkar and Chien discuss challenges regarding the future of

microprocessors, many of which are relevant to a CoC, in more

detail in [23]. Here, we provide a high-level overview of three

issues related to our assumptions in Section III-D.

A. Programming CoCs:
One of the obstacles in democratizing heterogeneous com-

puting has been learning a disparate set of programming

languages and optimization techniques. Eventually, key hard-

ware vendors introduced the OpenCL standard that allows

programming CPUs, GPUs, Intel MICs and even FPGAs.

The “write once, run anywhere” concept of OpenCL ren-

ders it ideal for a heterogeneous cluster on a chip. While

OpenCL, as is, covers the functional portability aspect (i.e.,

correct results across architectures), there yet remains the

issue of performance portability (i.e., equally fast performance

across architectures, given the same code). It is expected

that compiler technology advances, in tandem with auto-

tuners, and optimized/customized libraries will assist towards

bridging the performance portability gap across heterogeneous

architectures.

B. Identifying Patterns/Signatures and Scheduling:
Scheduling dwarfs within an application to the CEs of a

CoC in an efficient way requires identifying the dwarfs within

that application. Research efforts include using performance

counters to dynamically identify the best program phase to

core matching ([24], [21]) or signature-driven approaches

([25], [26], [27]) and other scheduling techniques/run-time

systems for workloads with various levels of parallelism (e.g.,

task-based, loop-based) on heterogeneous resources ([28],

[29]). Efficient recognition of dwarfs as constituent parts of

real applications is challenging because applications may be

composed of multiple dwarfs in a non-trivial way. Related

work could be expanded to leverage CoC architectures and

dwarf-based workloads.



C. Hardware-Related Issues: Chip Integration, Data Transfers
and Memory Unification, Power:

For CoCs to materialize there is a need for major advances

on the hardware level, specifically in the area of System on

Chip (SoC) or System in Package (SiP) [30]. The latter is on

the focus of ITRS [31], where complex, 3D SiP architectures

are proposed on the road to heterogeneous integration. In both

cases assembly, packaging, and most importantly interconnect

of separate parts of a die (or chips in a SiP) will play a

very important role in the fruition of CoC architectures. Issues

like energy efficiency and energy proportionality are also of

paramount importance. An interesting discussion on inter-

connects of future multi-processors, as well as power-related

concerns, is given in [23]. We expect that the trend towards

unifying the memory space and collocating heterogeneous

cores on the same die (e.g., in the APU case) will continue

allowing more and different instances of compute engines to

perform synergistically within the same chip or package.

VI. RELATED WORK

The concept of architectural unification in the context of

homogeneous and heterogeneous computing is not new. In

Section II we discuss examples from the commercial domain.

Here, we focus on prior research that attempts to address the

issue from a theoretical and practical standpoint.

In [32], Borkar discusses the prospect of many-core archi-

tectures that comprise hundrends or thousands of cores, as

an answer to the unreasonable power envelop of integrating

multiple complex cores on a die. In the proposed solution

the cores correspond to simpler cores versus “fat” cores (e.g.,

typical Xeon cores). This concept materialized with Intel Many

Integrated Core (MIC) architecture (up to 61 cores in Knight’s

Corner and 72 cores in Knight’s Landing co-processors).

Borkar’s work refers to homogeneous cores, as opposed to

the following works, however it provides useful background

related to fine-grain power management, memory bandwidth,

on-die networks and system resiliency for many-core systems

that are also relevant in the heterogeneous context.

In [21] Kumar et al. study single-ISA heterogeneous multi-

core architectures. Specifically, they present a chip-level multi-

processor with four Alpha cores of varying complexity and

power consumption, with the same ISA. Their evaluation

is simulation-based, and includes certain assumptions (e.g.,

oracle scheduling, assumed architectural and power-related

characteristics). One assumption is that different workload

phases can be assigned to the most appropriate core type, while

rest cores are switched off. The authors conclude that the pro-

posed multi-core architecture demonstrates up to three times

higher energy efficiency with small sacrifices in performance.

Chung et al. [17] evaluate the prospects of single-chip

heterogeneous computing from a stand-point similar to ours.

Specifically, they try to answer the question: “Does the future
include custom logic, FPGAs, and GPGPUs?” To address the

question in the context of performance scaling and energy

efficiency they investigate designs that place unconventional
cores alongside traditional CPU cores. They focus on an

analytical model that extends Hill and Marty’s work [33] to

include unconventional cores, i.e., custom logic, FPGAs, and

GPUs. As in [21] and our work, their methodology includes

assumptions with respect to the parallel workloads, like perfect

scheduling and infinite divisibility.

In [19] Lukefahr et al. propose Composite Cores, an archi-

tecture that brings the notion of heterogeneity within a single
core, with the main target being to reduce switching overheads
– typically observed in other heterogeneous computing ap-

proaches. Composite Cores is based around the concept of big

and little compute micro-engines that are characterized by high

performance and high energy efficiency, respectively. Cycle-

accurate simulations show their design achieves considerable

energy savings (18%) at minimal performance loss (5%).

Chien et al. [34] propose an alternative approach to hetero-

geneity and energy efficiency through hardware customiza-
tion. Specifically, they argue about steering away from the

traditional 90/10 optimization paradigm that guides architec-

tural designs and addresses the “common case”. Instead, they

propose the 10x10 architecture that includes cores (or micro-
engines) optimized for ten different 10% cases (where the

number ten is arbitrarily chosen). Guha et al. [35] examine a

broad selection of benchmarks from major benchmark suites

in order to cluster applications by computation and memory

behavior. Conceptually, each of these clusters would corre-

spond to the “10%” cases optimally executed by each of the

“10” corresponding micro-engines. [36] presents a case study,

on a higher-level, of a “7x7” architecture.

Our work, complements prior work in that it tries to address

heterogeneous computing, but does so in the context of what

we term telescoping architectures. In contrast to the above

works, we omit a theoretical analysis or simulator-based

approaches, in favor of a high-level practical approach with

considerable breadth, where we conceptually combine existing

heterogeneous architectures and evaluate their performance,

under certain assumptions. As shown in previous works above,

assumptions in initial approaches for novel architectures are

acceptable (but need to be refined and addressed in subsequent

work). Clusters on a Chip (CoCs), as defined in Section III-A,

in contrast to [21] have disparate ISAs. However, as opposed

to some of the other works, they can be universally pro-

grammed using OpenCL. In our work, we employ dwarf-based

benchmarks for evaluation purposes that allow a certain level

of generalization of conclusions. The majority of the work,

except “10x10”-related papers that use the notion of clustering

of computation and communication patterns, uses standard

benchmarks that may not allow such broader insights.

VII. CONCLUSIONS AND FUTURE WORK

In this work we conducted a broad exploration of the

heterogeneous architecture space via real hardware by ex-

tending the notion of telescoping architectures. This notion

of telescoping allows us to envision, in a form of d´ej`a vu, that

similar advances that led from a commodity (heterogeneous)

cluster in a machine room to a commodity cluster on a chip,

will be repeated, now in the context of heterogeneity. To



this end, we experiment with heterogeneous architectures that

comprise multiple types and instances of CPUs, GPUs, Intel

MICs, and FPGAs and attempt to provide an early study on

the performance benefits of such heterogeneous clusters on a

chip (CoC). We find that CoCs exhibit not only performance

benefits overall, as expected, but also interesting characteristics

with respect to their performance and constituent compute

engines (CEs), as well as with respect to specific workloads.

In future work we intend to focus on relaxing some of the

working assumptions and provide a high-level performance

model that captures issues like inter-CE interference. Beyond

that, there are multiple research opportunities. First, we plan

to extend our study on CoCs to consider a broader set of

workloads, scheduling techniques, and examine the benefits

of CoCs in exploiting parallelism on the dwarf-level across
CEs within a CoC (in this work we schedule whole dwarfs in

separate CEs). Second, to harness the full potential of CoCs,

we plan to study the performance benefits when optimized

implementations for dwarfs in a synthetic benchmark are

available for each CE. Last, but not least, in future work we

plan to factor in power- and energy-related considerations.
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