19th IEEE International Conference on Parallel and Distributed Systems (ICPADS 2013)

On the Portability of the OpenCL Dwarfs
on Fixed and Reconfigurable Parallel Platforms

Konstantinos Krommydas®, Muhsen OwaidaT, Christos D. AntonopoulosT, Nikolaos Bellas’ and Wu-chun Feng*
*Department of Computer Science, Virginia Tech
TDepaItment of Electrical and Computer Engineering, University of Thessaly
E-mails: {kokrommy, wfeng}@vt.edu, {mowaida, cda, nbellas} @uth.gr

Abstract—The proliferation of heterogeneous computing sys-
tems presents the parallel computing community with the chal-
lenge of porting legacy and emerging applications to multiple
processors with diverse programming abstractions. OpenCL is
a vendor-agnostic and industry-supported programming model
that offers code portability on heterogeneous platforms, allowing
applications to be developed once and deployed ‘“‘anywhere.” In
this paper, we use the OpenCL implementation of the Open-
Dwarfs, a benchmark suite that captures patterns of computation
and communication common to classes of important applications,
as delineated by Berkeley’s Dwarfs. We evaluate portability
across multicore CPU, GPU, APU (CPUs+GPUs on a die), the
Intel Xeon Phi co-processor, and the FPGA. To realize FPGA
portability, we exploit SOpenCL (Silicon OpenCL), a CAD
tool that automatically converts OpenCL Kkernels to customiz-
able hardware accelerators. We show that a single, unmodified
OpenCL code base, i.e., OpenDwarfs, can be effectively used to
target multiple, architecturally diverse platforms.

Keywords-OpenCL, CPU, GPU, APU, Xeon Phi, FPGA, dwarfs,
portability

I. INTRODUCTION

Modern high-performance computing systems have become
increasingly heterogeneous in nature. This trend mandates that
heterogeneous components, such as CPUs, GPUs (discrete
or fused with CPUs on the same die), co-processors, such
as Intel Xeon Phi of the Many Integrated Cores (MIC)
architecture, or FPGAs, be used concurrently and efficiently.
As a result, a new challenge for software developers has
arisen in that each of these components generally uses its own
distinct programming model, possesses its own architectural
peculiarities, and introduces complex memory hierarchies and
multiple address spaces within a single compute node. Further
expertise, typically outside the realm of software developers
is also required to design and exploit FPGAs and ASICs.

OpenCL [1] is a vendor-agnostic and industry-supported
programming model, which aspires to serve as a unified de-
velopment framework for heterogeneous computing systems,
allowing applications to be developed once and deployed
“anywhere.” While OpenCL programmers may wish to resort
to platform-specific optimizations in order to achieve perfor-
mance portability, this approach is labor-intensive, limits the
overall code portability and cannot be applied if the target
platform is not known a priori.

In this paper, we use OpenDwarfs [2], a collection of
OpenCL codes that correspond to Berkeley’s Dwarfs [3],
to evaluate the practicality and effectiveness of executing

applications on architecturally diverse substrates, using a sin-
gle, unmodified code base in the form of OpenCL kernels.
We experiment with a modern CPU, GPU, APU, the Intel
Xeon Phi co-processor, and the FPGA. For FPGAs, we use
SOpenCL [4] to transform OpenCL kernels to equivalent
synthesizable Verilog hardware descriptions, thus facilitating
the exploitation of FPGAs as hardware accelerators without
the overhead of additional development cost and expertise.
This is one of the first research efforts to use and evaluate
OpenCL as a language to describe hardware. It is also one
of the first works to evaluate Intel Xeon Phi using OpenCL
across a diverse set of applications.

II. BACKGROUND

Here we provide a brief overview of FPGA technology and
the SOpenCL tool used for automating translation of OpenCL
code to Verilog for hardware generation.

A. FPGA Technology

Reconfigurable devices (FPGAs) are high-density arrays of
uncommitted logic blocks that are configured post-fabrication.
The functionality of FPGAs is determined through configu-
ration bits that specify the functionality of the configurable
logic blocks and the routing channels between them. Since
reconfigurable logic is more efficient in implementing specific
applications than multicore CPUs, it enjoys higher power
efficiency than any general-purpose computing substrate. One
of FPGAs’ main drawbacks, with respect to programmability,
is that they are traditionally programmed using Hardware
Description Languages (VHDL or Verilog), a time-consuming
and labor-intensive task, which requires deep knowledge of
low-level hardware details.

B. Silicon OpenCL (SOpenCL)

We use the SOpenCL tool [4] to automatically generate
hardware accelerators for the OpenDwarf kernels, thus dra-
matically minimizing development time and increasing pro-
ductivity. SOpenCL converts OpenCL kernels to equivalent
synthesizable Verilog, which can in turn be used to configure
an FPGA. The SOpenCL front end is a source-to-source
compiler that adjusts parallelism granularity of the OpenCL
kernel to better match the hardware capabilities of the FPGA.
The output of this stage is semantically equivalent C code at
the work-group granularity. SOpenCL back-end flow, which is
based on the LLVM compiler infrastructure [5], generates the
synthesizable Verilog of the accelerator.



19th IEEE International Conference on Parallel and Distributed Systems (ICPADS 2013)

III. EXPERIMENTAL STUDY AND DISCUSSION

This section presents our experiences with OpenDwarfs
across five types of parallel computing platforms, that span
a variety of architectures: CPU (AMD Opteron 6272), GPU
(AMD Radeon HD 7970), APU (AMD Llano A8-3850 — a
heterogeneous system that combines an AMD A8-3850 CPU
with an AMD Radeon HD 6550D integrated GPU on the
same die), Intel MIC co-processor (Intel Xeon Phi P1750),
and FPGA (Xilinx Virtex-6 LX760).

Using OpenCL as a common programming model, we were
able to quickly compile (or synthesize in the FPGA case) and
run all benchmarks on five widely different architectures, with-
out modifying code, thus dramatically increasing productivity.
Below, we discuss our observations on performance of this
unmodified, unoptimized code across our test platforms.’

OpenCL vendor toolchains were able to exploit multi-
and many-core architectures, providing scalable speedups for
applications whose working set can be easily partitioned.
GPUs and Xeon Phi offer much higher single-precision FP
performance compared to both CPUs and FPGAs, which helps
to explain their superior performance for compute-bound ap-
plications that have a high computation/communication ratio.
A large number of applications spanning scientific computing,
linear algebra, and bioinformatics are characterized by inde-
pendent, operation-heavy computations and are prime targets
for GPU acceleration.

Interestingly, but not unexpectedly, state-of-art GPUs can
attain good performance on applications that are not data
parallel. Similar to CPUs, these architectures include cache
hierarchies to reduce memory access latency, thus alleviat-
ing lack of memory-level parallelism and runtime-dependent
accesses. Erratic branching, the realm of conditional-heavy
integer code, seems to be the only case in which GPUs are
outperformed by CPUs in our evaluation.

Data transfers are, as expected, costly on accelerator plat-
forms that communicate with main memory through a PCle
interface. Another interesting observation concerns the APU
and the standalone HD7970 GPU. Although the Radeon HD
7970 is significantly more powerful in terms of computational
performance, Llano’s integrated GPU enjoys tighter coupling
with the system’s main memory and the CPU cache hierarchy,
resulting in lower data transfer times. Therefore, it outper-
forms the discrete GPU when the data transfer overhead is
a significant portion of total execution time, or whenever the
characteristics of the application (e.g., data dependencies and
low computation/communication ratio) prohibit the Radeon
HD 7970 from exploiting its peak computational capability.

The FPGA results are negatively biased by the fact that
all massively parallel OpenDwarfs are based on floating-point
(FP) computations for which GPUs have a distinct advantage.
Conversion from FP to fixed-point arithmetic, whenever that
conversion can be tolerated by the application, would offset
this disadvantage. However, we decided to retain bit-exactness

IFor details on the OpenDwarfs applications mentioned in this section, refer
to [2]

and use IEEE-754 FP arithmetic. FPGAs outperformed all
other accelerators in integer applications. Finally, careful
placement of the input working set into on-chip memories
to exploit the huge internal FPGA bandwidth is of paramount
importance in data-parallel applications.

Finally, while Xeon Phi features 2 TFLOPS (SP) of theo-
retical peak performance, our experimental results reveal that
initial functional code portability is trivial and speed enhance-
ments are observed, depending on the application’s nature.
However, careful application of platform-specific optimiza-
tions is necessary for exploiting Xeon Phi’s full capabilities.

IV. CONCLUSIONS

In this work we presented an evaluation of the functional
portability of OpenCL by executing an unmodified code base
of the OpenDwarfs benchmark suite on five architecturally
diverse parallel platforms: CPU, GPU, APU, FPGA and the
Xeon Phi co-processor. Our experimental study demonstrates
that OpenCL can be realistically used as a hardware descrip-
tion language (HDL) by employing tools like SOpenCL that
automatically translate unmodified OpenCL code to Verilog
and eliminate the burden of HDL programming. Such tools
facilitate the proliferation of OpenCL as a universal” pro-
gramming language and, according to our studies, offer FPGA
implementations whose performance typically lies between
that of multi-core CPUs and GPUs or even surpasses it in
specific applications. Further research towards making such
tools even more efficient will help bridge the performance

gap.
ACKNOWLEDGMENTS

This work was supported in part by the Institute for Critical
Technology and Applied Science (ICTAS) at Virginia Tech
and co-financed by the European Union (European Social
Fund ESF) and Greek national funds through the Operational
Program “Education and Lifelong Learning” of the National
Strategic Reference Framework (NSRF) - Research Funding
Program. The authors would also like to thank the OpenDwarfs
project, supported by the NSF Center for High-Performance
Reconfigurable Computing (CHREC).

REFERENCES

[1] A. Munshi, Editor, The OpenCL Specification. Version: 1.2, Khronos
OpenCL Working Group, November 2012.

[2] W.-C. Feng, H. Lin, T. Scogland, and J. Zhang, “OpenCL and the 13
Dwarfs: A Work In Progress,” in Proceedings of the 3rd ACM/SPEC
International Conference on Performance Engineering (ICPE), Boston,
MA, April 2012, pp. 291-294.

[3] K. Asanovic et al., “The Landscape of Parallel Computing Research:
A View from Berkeley,” Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley, Tech. Rep.
UCB/EECS-2006-183, December 2006.

[4] M. Owaida, N. Bellas, K. Daloukas, and C. D. Antonopoulos, “Synthesis
of Platform Architectures from OpenCL Programs,” in Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), Salt Lake City, UT, May 2011.

[5] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis Transformation,” in Proceedings of the 2004 Interna-
tional Symposium on Code Generation and Optimization (CGO’04), Palo
Alto, CA, March 2004, pp. 75-86.



