
A 3D Deep Learning Architecture
for Denoising Low-Dose CT Scans

Armen Kasparian1, Guohua Cao2, and Wu-chun Feng1

1 Dept. of Computer Science, Virginia Tech — {armen,wfeng}@vt.edu
2 School of Biomedical Engg., ShanghaiTech U. — caogh@shanghaitech.edu.cn

Abstract. Low-dose computed tomography (LDCT) scans reduce the
radiation dose of computed tomography (CT) scans but come at the ex-
pense of image quality. Deep-learning (DL) image denoising techniques
can enhance these LDCT images to match the quality of their regular-
dose CT counterparts. To achieve better denoising performance than the
current state of the art, we present a novel 3D DL architecture for LDCT
image denoising called 3D-DDnet. The architecture leverages the inter-
slice correlation in volumetric CT scans to obtain better denoising per-
formance and employs distributed data parallel (DDP) strategies along
with transfer learning to achieve faster training. The DDP training strat-
egy enables a scalable multi-GPU approach on Nvidia A100 GPUs, which
allows the training of previously prohibitively large volumetric samples.
Our results show that 3D-DDnet achieves 10% better mean square error
(MSE) on LDCT scans than its 2D predecessor (i.e., 2D-DDnet). In ad-
dition, the transfer learning in 3D-DDnet leverages existing trained 2D
models to “jump start” the weights and biases of our 3D DL model and
reduces training time by 50% while maintaining accuracy.

Keywords: deep learning · distributed data parallel · transfer learning · com-
puted tomography · image enhancement

1 Introduction

Radiologists rely on non-invasive CT scans to obtain images of internal organs for
the diagnosis and treatment of patients [1]. Unfortunately, it exposes the patient
to significant radiation. Fazel et al. found that 75.4% of patients’ total effective
radiation dose in the USA can be attributed to CT and nuclear medicine scans
and used 50 millisieverts (mSv) as the “high” exposure range for radiation [2]. A
standard chest CT scan exposes patients to 4.55mSv of radiation. With the need
to minimize radiation exposure, LDCT scans have emerged to reduce radiation
exposure to a mere 0.5mSv but at the expense image fidelity [3].

Both statistical methods and deep learning-based methods have been used to
combat the noise and artifacts found in lower-quality LDCT scans. For example,
statistical model-based iterative reconstruction (MBIR) enhances image quality
and reduces noise in CT imaging Deep learning (DL) architectures like RED-
CNN [4] and DDnet [5] learn features from standard-dose CT scans and use that

ICCABS 2023 Norman, OK



2 A. Kasparian et al.

information to denoise LDCT scans. These DL architectures focus on denoising
these three-dimensional (3D) CT scans via two-dimensional (2D) slices as 3D
denoising has been computationally impractical. Enabling the transition from
today’s 2D-slice denoising architectures to a 3D architecture requires training of
a parameter space that is nearly 5× larger, i.e., 4,712,723 vs. 1,021,619.

Our 3D denoising architecture, 3D-DDnet, consists of two main components:
(1) distributed data parallel training to improve performance and (2) data loader
modifications to improve accuracy. The parallel training approach uses a volu-
metric representation of CT scans by selectively choosing the slices from the
dataset. The number of slices selected for a volume can now be explored as a
hyperparameter to fit into GPU VRAM. The increase in GPU VRAM size allows
larger sample volumes to be offloaded from CPU to GPU for faster training.

2 Related Work

2D vs. 3D Deep-Learning Architectures. Existing 3D deep-learning (DL) archi-
tectures for CT imaging have explored segmentation, classification, and detec-
tion techniques versus their 2D counterparts. Avesta et al. compare 2D and 3D
U-Net-based DL architectures for image segmentation in brain MRIs [6] and
show that 3D models need 20× more memory than 2D models. The 3D models
also converge to a more accurate state but at the expense of significantly more
computational overhead due to the extra dimension. Our 3D-DDnet approach re-
duces this increased computational overhead of 3D approaches while improving
the accuracy of state-of-the-art U-Net-based models.

Challenges with 3D Deep-Learning Networks. Singh et al. find that relative to
classification, segmentation, and detection for 3D deep-learning networks, com-
mon challenges include increased difficulty in training and hyperparameter tun-
ing and the inability to utilize smaller datasets [7]. Crespi et al. study the tran-
sition from 2D convolution neural networks (CNN) to 3D CNNs and find the
larger dimension space problematic due to the lack of available datasets [8]. In
contrast, our 3D-DDnet approach proposes a data-loading strategy that creates
3D volumes from existing 2D slice-based CT scan datasets. This strategy reduces
the overhead of curating a custom dataset by introducing the ability to reuse
previous datasets designed for 2D CT scan denoising.

Impact of Multislice Inputs on Accuracy. Multislice inputs for 3D CNN noise
reduction have previously been explored on the accuracy front. Zhou et al. show
that the improved accuracy of a 3D network comes at the expense of longer
training time per epoch [9]. The 2D network takes 25 minutes to train per epoch
while the 3D equivalent takes 270. In addition, due to hardware limitations,
their data loader is limited to sampling 64×64 patches of the source 512×512
slices. An earlier implementation of 3D-DDnet [10] was also limited by hardware,
resulting in the use of a sample patching and stitching technique.

ICCABS 2023 Norman, OK



A 3D Deep Learning Architecture for Denoising Low-Dose CT Scans 3

3 Approach and Design of 3D-DDnet

Increasing the dimensions of an architecture from 2D to 3D dramatically in-
creases the parameters of the network (in our case, from 1,021,619 to 4,712,723),
allowing for more feature extraction but at the expense of more computation [11].
To alleviate these costs, we present an overhaul to the training strategy and en-
hancements to the data loader for our 3D-DDnet architecture.

3.1 Architecture

The 3D-DDnet architecture extends our previous “2D DenseNet and Deconvo-
lutional neural network” (i.e., DDnet) [5], as shown in Fig. 1. This extended
architecture generalizes more information from the source data by using the
correlations found between slices and delivers better accuracy.

Fig. 1: Architecture of 3D-DDnet. Layer numbers
correspond to Table 1.

The convolution layers
in the upper half of 3D-
DDnet now consist of 3D
dense blocks and 3D con-
volutions. The 3D dense
blocks contain internal 3D
convolution layers that are
followed by 3D max pool-
ing layers, which work like
their 2D counterparts but
reduce the latent space by
a factor of two in the x,
y, and z dimensions of the
sample volume.

Table 1 shows the in-
put and output sizes of
each network layer, where

a volume consists of 32 slices. The architecture allows for the number of slices
utilized in a sample to be a hyperparameter. This hyperparameter is then set at
runtime, facilitating further research into the effects of different volume sizes.

3.2 Datasets

The data used to train and test 3D-DDnet came from three sources: (1) Mayo
Clinic with 100 healthy CT scans at full and quarter dosage, (2) Lung Image
Database Consortium (LIDC) with 722 CT scans, and (3) Medical Imaging Data-
bank of the Valencia region (BIMCV) with 397 CT scans. If the dataset did not
contain LDCT images, we ran the high-dose images through an algorithm to
simulate LDCT scans. These numerically simulated low-dose images were then
paired with the corresponding high-dose CT images to create a uniform dataset
containing source and target images. All the CT images from the dataset are of
size 512×512 and rotated to be the same orientation.

ICCABS 2023 Norman, OK



4 A. Kasparian et al.

Table 1: Input/output sizes and filter sizes of the layers in 3D-DDnet

Layers Output Size Details

Conv3D 1 512× 512× 32× 16 Filter size=7× 7× 7, Stride=1

MaxPool3D 1 256× 256× 16× 16 Filter size=3× 3× 3, Stride=3

DenseBlock3D 1 256× 256× 16× 80 Filter size=(5× 5× 5)× 4

Conv3D 2 256× 256× 16× 16 Filter size=1× 1× 1, Stride=1

MaxPool3D 2 128× 128× 8× 16 Filter size=3× 3× 3, Stride=3

DenseBlock3D 2 128× 128× 8× 80 Filter size=(5× 5× 5)× 4

Conv3D 3 128× 128× 8× 16 Filter size=1× 1× 1, Stride=1

MaxPool3D 3 64× 64× 4× 16 Filter size=1× 1× 1, Stride=2

DenseBlock3D 3 64× 64× 4× 80 Filter size=(5× 5× 5)× 4

Conv3D 4 64× 64× 4× 16 Filter size=1× 1× 1, Stride=1

MaxPool3D 4 32× 32× 2× 16 Filter size=3× 3× 3, Stride=2

DenseBlock3D 4 32× 32× 2× 80 Filter size=(5× 5× 5)× 4

Conv3D 5 32× 32× 2× 16 Filter size=1× 1× 1, Stride=1

Unpooling3D 1 64× 64× 4× 16 Scale factor = 2

Deconv3D 1 64× 64× 4× 32 Filter size=5× 5× 5, Stride=1

Deconv3D 2 64× 64× 4× 16 Filter size=1× 1× 1, Stride=1

Unpooling3D 2 128× 128× 8× 16 Scale factor = 2

Deconv3D 3 128× 128× 8× 32 Filter size=5× 5× 5, Stride=1

Deconv3D 4 128× 128× 8× 16 Filter size=1× 1× 1, Stride=1

Unpooling3D 3 256× 256× 16× 16 Scale factor = 2

Deconv3D 5 256× 256× 16× 32 Filter size=5× 5× 5, Stride=1

Deconv3D 6 256× 256× 16× 16 Filter size=1× 1× 1, Stride=1

Unpooling3D 4 512× 512× 32× 16 Scale factor = 2

Deconv3D 7 512× 512× 32× 32 Filter size=5× 5× 5, Stride=1

Deconv3D 8 512× 512× 32× 1 Filter size=1× 1× 1, Stride=1

3.3 Data Loaders

2D data loaders supply batches of image slices to models, with a batch size of one
meaning one image per epoch for training. Larger batch sizes send more slices
per epoch. 3D data loaders, on the other hand, send volumes—stacked sets of 2D

Fig. 2: Strided vs. grouped data loader.
A selection of a five-slice volume from a
seven-slice sample with a stride length
of size two.

slices—as single samples. Batches
with 3D loaders contain multiple vol-
umes processed separately, increas-
ing computational demands. For in-
stance, a 512×512 slice requires 1.5
GB of memory, while a 512×512×16
volume needs nearly 20 GB. This
memory constraint makes volume
slice selection critical, determined by
both desired accuracy and hardware
capabilities. Our paper introduces
and evaluates two data loader types
(see Fig. 2): strided and grouped.

Strided Data Loader The strided data loader selects slices at uniform inter-
vals. The strided loader’s advantage is its consistent slice selection across the
entire CT scan, useful when crucial data is spread throughout. However, it uni-
formly values all slices, which might not be ideal. For example, the initial and
final slices of LDCT may offer limited relevant data; yet, this loader picks slices
uniformly, potentially including less valuable ones for training.

ICCABS 2023 Norman, OK



A 3D Deep Learning Architecture for Denoising Low-Dose CT Scans 5

Center-Grouped Data Loader The center-grouped data loader minimizes
the distance between slices selected for the volume to help the model learn the
correlation between slices in the third dimension. This data loader works by
selecting a group of slices centered around the middle of the sample. The main
benefit of this data loader is that the selected slices for the volume contain the
highest correlation between them.

3.4 Training Strategy

Current datacenter GPUs offer up to 80GB of HMB2e VRAM, a significant
upgrade over the previous 32GB of HBM2, thus supporting the loading of larger
datasets onto GPUs and the shift from 2D slices to 3D volumetric data. For
context, a single 512×512 slice occupies about 1.5GB, while 16-slice and 32-
slice volumes require 20GB and 40GB, respectively, underscoring the demand
for enhanced GPU capacity.

Fig. 3: Overview of the distributed data parallel architecture. The data loader
individually sends unique batches of data to each GPU while each of the models
loaded onto the GPUs are synchronized during the gradient, all-reduce step
found in backpropagation. The models receive different data from the data loader
but average the gradients per epoch, leaving the models synchronized.

Past generations of datacenter GPUs could not even load a single sample
volume onto the GPU. With this hardware limitation now lifted, we need to be
smarter with how we load the dataset onto the GPU. Since we are unable to load
multiple sample volumes onto a single GPU, our approach to solve this problem
uses a distributed data parallel (DDP) approach. Distributed data parallelism
(DDP) enables data parallelism at the model level. It allows for a synchronized
model on each device while different data is passed for training during each
epoch. This approach, built into PyTorch, works by creating a replica of the
model architecture on each GPU. For each epoch, each replica model running
on its corresponding GPU receives a different batch of data to run through the
forward pass. Gradients are then computed locally for each process. These local
gradients are then synchronized during the backward pass with an all-reduce
gradient synchronization that calculates the mean of all the gradients across all
the processes. These average gradients are then distributed to the individual
processes for the backward pass. After this backward pass completes, all the
models across each of the individual processes are the same and prepared for the

ICCABS 2023 Norman, OK



6 A. Kasparian et al.

next epoch and batch of data. A visualization of how the data loader works in
tandem with the synchronized models can be seen in Fig. 3.

(a) (b)

(c) (d)
Fig. 4: Performance results with respect to accuracy and training time. (a/b)
Show training time scaling with respect to the number of GPUs. (c/d) Show
accuracy variance between datasets with respect to the number of GPUs.

Data Parallelism with Batches When using the DDP training strategy, we
need to understand how it affects the batch size and learning during training.
With DDP, we modify the batch size to be an effective batch size that relates to
the number of processes being run. This effective batch size is equivalent to the
local batch size (the number of samples being processed per epoch per process)
multiplied by the number of processes (GPUs) being utilized.

In our application with volumetric CT image enhancement, this now removes
the VRAM limitation of the GPU and increases the previous maximum batch
size from one to equal the number of GPUs available for training. It is important
to note that this is only possible since we can load, at minimum, a single 3D
volumetric sample onto the individual GPU. Then, by utilizing multiple GPUs,
we can increase our effective batch size and scale with data parallelism.

The performance speedup shown in Fig. 4.(a/b) is due to the data paral-
lelism leveraged by utilizing the DDP training algorithm. The use of DDP also
facilitates reasonable, effective batch sizes that allow for faster training times
while maintaining accuracy, as shown in the Fig. 4.(c/d).

ICCABS 2023 Norman, OK



A 3D Deep Learning Architecture for Denoising Low-Dose CT Scans 7

When looking at Fig. 4.(c/d), we can see the variance bands continually
decrease as more GPUs are utilized during training. Using more GPUs in dis-
tributed data parallel training reduces variance in model training by allowing for
larger batch sizes and more consistent gradient estimates, leading to smoother,
more stable updates and better generalization. This is achieved through parallel
processing, averaging gradients across GPUs, and efficient utilization of compu-
tational resources.

3.5 Transfer Learning

Leveraging pre-existing 2D networks can offset the computational challenges of
transitioning to 3D networks. Transfer learning applies the weights and biases of
a pre-trained model to new settings, providing an advantage in training. Specif-
ically for 3D networks, it enhances efficiency by strategically employing the 2D
architecture’s weights and biases. Numerous 2D models in the biomedical sector
allow us to harness their computational investment to amplify the 3D counter-
parts through the reuse of older network structures.

Typically, in transfer learning, trained layers from a donor network are in-
tegrated directly into a recipient network, ensuring the pre-learned parameters
initiate the recipient’s training. However, this is feasible only when both archi-
tectures have matching dimensions. When dimensions differ, as in our study, an
adapted transfer learning strategy is needed. Transferring from 2D to 3D involves
embedding the weights of a 2D image

Fig. 5: Transfer learning diagram
showing insert of 2D kernel into 3D
kernel

kernel into a 3D volume kernel, as visu-
alized in Fig. 5.

Unoccupied values in the 3D ker-
nel are filled with zeros from the pre-
trained 2D kernel. We tested alternative
fill methods, such as consistently using
the 2D kernel for the entire 3D space or
introducing random noise. All variations
displayed comparable performance, with
negligible differences in metrics like MSE
and MS-SSIM.

4 Evaluation Metrics for the
Loss Function

The loss function of the neural network dictates the metrics that backpropaga-
tion is trying to enhance. Mean squared error (MSE) is a direct pixel-to-pixel
comparison of the differences between two images or volumes – see Eq. (1). The
MSE equation iterates over N pixels, where X is the source image, and Y is the
image after being denoised.

MSE(X,Y ) =
1

N

N∑
n=1

[X − Y ]2, (1)

ICCABS 2023 Norman, OK



8 A. Kasparian et al.

The structural similarity (SSIM) index, shown in Eq. (2), measures the sim-
ilarity between two images based on their structural information in the spatial
domain [12]. The SSIM index considers luminance l(X,Y ), contrast c(X,Y ), and
structure s(X,Y ) and returns a value between -1 and 1, where a value of 1 indi-
cates perfect similarity. In Eq. 2, µx and µy are the mean intensities of windows,
σ2
x and σ2

y represent the variances of windows, σxy is the covariance between
windows which provides a measure of the strength and direction of the relation-
ship between two sets of variables, C1 and C2 are constants added to stabilize
for the dynamic range of the images where C1 = (k1L)

2 and C2 = (k2L)
2 where

L is the dynamic range of the images and k1 and k2 are small constants (set to
default values k1 = 0.01 and k2 = 0.03).

SSIM(X,Y ) =
(2µxµy + C1)

(µ2
x + µ2

y + C1)
× (2σxy + C2)

(σ2
x + σ2

y + C2)
= l(X,Y )× cs(X,Y ) (2)

The multi-scale structural similarity index (MS-SSIM), defined in Eq. (3), is
built upon the SSIM by images considering multiple scales (M and j) to better
capture structural similarities across different levels of detail. MS-SSIM divides
the image or volume into multiple smaller sub-regions and computes the SSIM
value at different levels of image detail [13]. Like SSIM, MS-SSIM ranges from -1
to 1, with higher values indicating a higher similarity between the two samples.
α and βj are weights for the luminance, contrast, and structure terms. These
weights are set to one to equally weigh all the terms.

MS-SSIM(X,Y ) = lαM (X,Y ) ·
M∏
j=1

cs
βj

j (X,Y ) (3)

Eq. (4) presents a composite loss function, Loss(X,Y ) that combines the higher-
quality MS-SSIM with the MSE. This allows us to have a loss function where the
MSE focuses on pixel-wise accuracy and the MS-SSIM emphasizes preserving
structural and perceptual quality. Combining them offers a holistic approach,
ensuring both pixel-level precision and high perceptual quality in the denoised
images. In our loss function, a γ of 0.1 is selected to balance the magnitude of
these two terms properly.

Loss(X,Y ) = MSE(X,Y ) + γ(1−MS-SSIM(X,Y )), (4)

5 Results

Here we present both the quantitative results of 3D-DDnet with respect to ac-
curacy and the qualitative results of 3D-DDnet with respect to the CT images
and the difference maps between the original high-quality CT image and the
denoised CT images produced by 2D-DDnet and 3D-DDnet. These results are
run with the Adam optimizer and a learning rate of 0.001. An ablation study is
done between the different optimizations which can be seen in the quantitative
results below.

ICCABS 2023 Norman, OK



A 3D Deep Learning Architecture for Denoising Low-Dose CT Scans 9

5.1 Quantitative Results

The baseline 2D-DDnet model sets the benchmark for our transition to 3D-
DDnet. Training on a single GPU for about 8 hours with a batch size of one,
it achieves an average MSE of 0.003998 and an MS-SSIM of 0.788877. In con-
trast, our 3D-DDnet variants show improvements in both MSE and MS-SSIM,
highlighting the benefits of the 3D approach.

Comparisons between using 32 and 16 slices per volume in 3D-DDnet (Fig.
6 and Table 2) reveal negligible differences (±1) in performance, suggesting that
using more than 16 slices may lead to unnecessary computational expense. There-
fore, for optimal efficiency and accuracy, a 16-slice volume is recommended.

Speed enhancements are evident with the distributed data parallel strategy.
Scaling from 1 to 2 GPUs nearly doubles the speed, while increasing from 2 to
4 GPUs offers a 1.75× speedup.

Fig. 6: Training loss similarities between
the 16- and 32-slice volume data loader

To verify that parallel architec-
ture doesn’t compromise the model’s
stability, we examined loss curves
for single and multi-GPU setups
(Fig. 7). The loss consistently de-
creases over 50 epochs, indicating sta-
ble training. Notably, transfer learn-
ing provides a substantial accelera-
tion in learning, allowing the model
to rapidly approach optimal loss val-
ues. In instances where surpassing the
2D model’s performance is the goal,
training can be shorter. At 15 epochs,
the 3D model already outperforms its
2D counterpart. The loss function plateaus at 50 epochs (Fig. 7(c)), signifying
that the network has reached its optimal point.

Table 2: Quantitative Results showing the training time, average MSE, and aver-
age MS-SSIM of testing. The architecture section contains GDL (Grouped Data
Loader), SDL (Strided Data Loader), and TL (Transfer Learning) optimizations
present. Batch Size = GPU Count

Architecture Epochs Slice Count Batch Size Training Time (H:M:s) Average MSE Average MS-SSIM
2D-DDnet 50 N/A 1 8:44:32 0.0039±0.0015 0.7888±0.0857

3D-DDnet-SDL 50 32 2 21:47:50 0.0022±0.0014 0.9165±0.0455
3D-DDnet-GDL 50 32 2 21:42:09 0.0012±0.0009 0.9233±0.0779
3D-DDnet-TL 15 32 2 1:56:13 0.0014±0.0008 0.9201±0.0596

3D-DDnet-TL-GDL 50 16 1 10:31:03 0.0010±0.0006 0.9339±0.0572
3D-DDnet-TL-GDL 50 16 2 5:24:07 0.0011±0.0006 0.9258 ±0.0603
3D-DDnet-TL-GDL 50 16 4 3:08:17 0.0010±0.0006 0.9303±0.0667
3D-DDnet-TL-GDL 50 32 2 21:43:28 0.0021±0.0080 0.9246±0.0634
3D-DDnet-TL-GDL 50 32 4 11:19:36 0.0011±0.0009 0.9257±0.0713
3D-DDnet-TL-GDL 25 32 2 10:52:32 0.0016±0.0017 0.9247±0.0866
3D-DDnet-TL-GDL 25 32 4 5:40:45 0.0015±0.0013 0.9076±0.0807

ICCABS 2023 Norman, OK



10 A. Kasparian et al.

Our results show that there is very little difference between the utilization of
32 slices per volume compared to the 16 slices per volume in both training (Fig. 6)
and testing. From Table 2, it is apparent that while holding all hyperparameters
the same but the number of slices per volume there is only a ±1% difference
which is within the margin of error between the two models. This leads to the
conclusion that the utilization of more slices in the volume can be considered
wasted computation time as the training time is almost double. For maximum
parallel efficiency while maintaining accuracy, selecting 16 slices is critical.

(a) Baseline overlaid with
transfer learning

(b) Baseline without
transfer learning

(c) Transfer learning
training graph

Fig. 7: Graph (a) shows the order of magnitude difference in the loss function
between utilizing transfer learning and not. Graph (b) shows the loss function
without transfer learning, and graph (c) shows the loss function with transfer
learning. Both graphs (b) and (c) show that transfer learning does not affect the
ability of the network to optimize the loss function.

5.2 Qualitative Results

The difference maps in Fig. 8 also give an insight into what the network focuses
on changing. At the same time, the 2D network is more focused on minor changes
that pertain to the streaking. The 3D network focuses on the lung tissue, with
the difference map showing the most changes in that area.

(a) 2D-DDnet (b) 3D-DDnet

Fig. 8: Difference maps of the same randomly selected sample CT slice

ICCABS 2023 Norman, OK



A 3D Deep Learning Architecture for Denoising Low-Dose CT Scans 11

The direct comparison between the 2D and 3D reconstructed images shows
how the two architectures differ in what they aim to enhance and denoise. Look-
ing at the 2D reconstructed image in Fig. 9(c), much of the streaking is removed
from the source LDCT slice found in Fig. 9(a). While this may seem positive
initially, many features found in the target CT slice shown in Fig. 9(b) are lost
in this process. Looking at the 3D reconstructed image in Fig. 9(d), we can see
that the streaking is overall reduced from the LDCT scan. With this reduction
comes the retention of features, which can be seen on the top portion of the
scan.

(a) Source Low Dose
CT

(b) Target Full Dose
CT

(c) 2D-DDnet
Reconstructed

(d) 3D-DDnet
Reconstructed

Fig. 9: Comparison between the LDCT, target slice, 2D reconstructed slice, and
3D reconstructed slice. The sample CT slice was randomly selected from the
dataset. 3D-DDnet can maintain features that are lost in the 2D reconstruction.
Retaining these features comes at the cost of some streaking and artifacts still
present in the 3D reconstruction.

6 Conclusion

This work presents a method for adopting 3D architectures in biomedical image
denoising, demonstrating effective training of larger models on single-node multi-
GPU systems using distributed data parallelism. We adapt existing 2D data
loaders and datasets for 3D modeling and employ transfer learning for efficient
reuse of datasets and pretrained models.

While focused on LDCT scan denoising, our 3D-DDnet architecture is ver-
satile, applicable to fields like image segmentation and classification, and shows
potential in MRI imaging. This study indicates the need for scaling to multi-
node setups for larger datasets due to the correlation between batch size and
GPU utilization.

The shift to 3D introduces hyperparameter sensitivity, addressed through
manual tuning in this study. Future research could explore automated opti-
mization methods. Overall, 3D-DDnet effectively outperforms its 2D predecessor,
highlighting the advantages of 3D models in biomedical imaging.

Acknowledgments. This research was supported in part by NSF IIS-2027607 and
NSF CCF-2031215 as well as Dr. Cynthia McCollough, the Mayo Clinic, and the Amer-

ICCABS 2023 Norman, OK



12 A. Kasparian et al.

ican Association of Physicists in Medicine and grants EB017095 and EB017185 from
the NIBIB, for providing the Mayo Clinic dataset. We acknowledge Garvit Goel for his
initial work on the 2D model and its evolution to the 3D model as well as Advanced
Research Computing at Virginia Tech for providing the computational resources and
technical support that contributed to the results in this paper.

References

1. J. Hsieh, “Computed tomography: principles, design, artifacts, and recent ad-
vances,” vol. 1, 2015.

2. R. Fazel, H. M. Krumholz, Y. Wang, J. S. Ross, J. Chen, H. H. Ting, N. D. Shah,
K. Nasir, A. J. Einstein, and B. K. Nallamothu, “Exposure to low-dose ionizing
radiation from medical imaging procedures,” New England Journal of Medicine,
vol. 361, pp. 849–857, 2009.

3. Y. Zhou, Y. Zheng, Y. Wen, X. Dai, X. Wang, Q. Gong, C. Huang, F. Lv, and
J. Wu, “Radiation dose levels in chest computed tomography scans of coronavirus
disease 2019 pneumonia,” Medicine, vol. 100, p. e26692, 2021.

4. H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, and G. Wang,
“Low-dose ct with a residual encoder-decoder convolutional neural network,” IEEE
Transactions on Medical Imaging, vol. 36, no. 12, p. 2524–2535, 2017.

5. Z. Zhang, X. Liang, X. Dong, Y. Xie, and G. Cao, “A sparse-view ct reconstruction
method based on combination of densenet and deconvolution,” IEEE Transactions
on Medical Imaging, vol. 37, no. 6, pp. 1407–1417, 2018.

6. A. Avesta, S. Hossain, M. Lin, M. Aboian, H. M. Krumholz, and S. Aneja, “Com-
paring 3d, 2.5d, and 2d approaches to brain image segmentation,” 2022.

7. S. P. Singh, L. Wang, S. Gupta, H. Goli, P. Padmanabhan, and B. Gulyás, “3d
deep learning on medical images: A review,” 2020.

8. L. Crespi, D. Loiacono, and P. Sartori, “Are 3d better than 2d convolutional neural
networks for medical imaging semantic segmentation?” in 2022 International Joint
Conference on Neural Networks (IJCNN), 2022, pp. 1–8.

9. Z. Zhou, N. R. Huber, A. Inoue, C. H. McCollough, and L. Yu, “Multislice input for
2D and 3D residual convolutional neural network noise reduction in CT,” Journal
of Medical Imaging, vol. 10, no. 1, p. 014003, 2023.

10. G. Goel, A. Gondhalekar, J. Qi, Z. Zhang, G. Cao, and W. Feng, “Compute-
covid19+: Accelerating covid-19 diagnosis and monitoring via high-performance
deep learning on ct images,” in Proceedings of the 50th International Conference
on Parallel Processing. Association for Computing Machinery, 2021.

11. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9.

12. Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from
error visibility to structural similarity,” IEEE Transactions on Image Processing,
vol. 13, no. 4, pp. 600–612, 2004.

13. Z. Wang, E. Simoncelli, and A. Bovik, “Multiscale structural similarity for image
quality assessment,” in 37th Asilomar Conf. on Signals, Systems, and Computers,
2003, vol. 2, 2003, pp. 1398–1402 Vol.2.

ICCABS 2023 Norman, OK


