
A Non-Invasive Approach for Realizing Resilience in MPI
Umar Kalim, Mark K. Gardner, Wu Feng

Department of Computer Science
Virginia Tech

{umar,mkg,wfeng}@vt.edu

ABSTRACT
As the computational capabilities of a supercomputer transition
from peta�ops to exa�ops, more compute processes work concur-
rently to accomplish tasks, requiring more communication. This
results in using an increasing number of software and hardware
components, which in turn, increases the probability of abnormal
events and failures. We present a solution that improves resilience
against transient events in network communication.

We observe that the coupling of the session and transport seman-
tics in implementations inhibits recovery from transient failures.
Our proposal, a session-layer intermediary (SLIM), serves as a shim
layer on top of the interconnect’s interface and enables separation
of session and transport semantics. We use Open MPI as a case
study where SLIM exposes an interface to the Byte Transfer Layer
framework. This approach manages transient faults with the un-
derlying transport, by trapping and resolving them and thus not
allowing them to cascade into failed MPI primitives. Preliminary
results show that the introduction of SLIM delivers resilience and
does so without incurring any performance impact, either in latency
or throughput. In future, we plan to include other interconnects,
such as OpenIB, and enable tolerance for transient network failures.

KEYWORDS
Resilience, Fault Tolerance, Message Passing Interface (MPI), Ex-
tensions, Open MPI, Byte Transfer Layer (BTL)
ACM Reference format:
Umar Kalim, Mark K. Gardner, Wu Feng. 2017. A Non-Invasive Approach for
Realizing Resilience in MPI. In Proceedings of ACM Symposium on Operating
Systems Principles, Washington DC, June 26, 2017 (FTXS’17), 8 pages.
DOI: http://dx.doi.org/10.1145/3086157.3086166

1 INTRODUCTION
Large-scale computational problems (e.g., weather simulations)
that use MPI are typically structured by breaking down the job into
subproblems. A set of processes is then responsible for solving one
or more of the subproblems. When solutions to all subproblems
are obtained, the partial results are aggregated to obtain the overall
results. With such work distribution, each process’ role is important.
If results from all worker processes are not available the program’s
results will be incomplete or invalid. Therefore, if such a process

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
FTXS’17, Washington DC
© 2017 ACM. 978-1-4503-5001-3/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3086157.3086166

fails the entire job is bound to fail — unless there are mechanisms
in place to mitigate those failures [10, 19].

Therefore, mitigating the impact of transient or localized faults,
which might cascade into system-wide collapse, and recovering
from these failures is of signi�cant importance. We de�ne tran-
sient failures as �eeting events (e.g., those caused by interconnect
congestion) and localized failures as faults con�ned to a limited set
of hardware or software resources (e.g., those caused by node or
process failure).

Enabling resilience for large-scale parallel computations is par-
ticularly important as we scale up from compute capabilities of
peta�ops to exa�ops [7]. Scaling up to exa�ops will inevitably
involve increasing the number of compute processes working in
parallel, and it is well established that as the number of cores in-
crease, so do the number of faults [10, 28] — we can imagine the
increase in points of failure with the increase in number of con-
stituent components of an exascale supercomputer.

Researchers have investigated various dimensions of enabling re-
silience in MPI programs [10, 19]. These e�orts include checkpoint
and recovery [6, 25], user-level fault mitigation (ULFM) [5, 14, 24],
process-level redundancy [9], log-based recovery [4, 27], dynamic
process management [16], modi�ed MPI semantics [11, 12], algo-
rithm-based fault tolerance (ABFT) [3, 8], use of intercommuni-
cators with master-worker con�guration [18], transactional com-
munication [15], and renewed MPI implementations to include
resilience [13]. We will discuss some of these proposals in the
related work section in § 8.

Here we propose, a session-layer intermediary (SLIM), a shim
layer towards enabling resilient communications that mitigate and
eventually resolve transient or localized faults, which are intro-
duced by faulty network communication. Examples of such faults
include single or multiple failures of MPI primitives caused by fail-
ing network paths or congested interconnects. We enable resilience
by separating session and transport semantics, which are con�ated
in the implementations. We make a case that it is this con�ation
that results in strong coupling and thus inhibits adaptations and re-
covery in the face of transient events. Our proposal here is informed
by our experience with enabling resilient communications for tra-
ditional network communications [22, 23], where we demonstrate
the e�cacy through virtual machine migrations beyond networks
while maintaining connectivity [20, 22]. While our current contri-
butions are geared towards Open MPI’s TCP component [26], the
same can be applied to the BTL OpenIB component. This proposal
of separation of session and transport semantics for OpenIB has
also garnered interest by vendors [2].

Since our proposal serves as a shim layer that envelopes the
underlying interconnects and interfaces with MPI frameworks (e.g.,
Open MPI components [26]), all user programs would run without

7th FTXS Workshop (in conjunction with ACM HPCD 2017), Washington DC, June. 2017

FTXS’17, June 26, 2017, Washington DC Umar Kalim, Mark K. Gardner, Wu Feng

any change to their code. We do not propose any changes to the
MPI standard either.

Our contributions in this paper are as follows:
• A characterization of faults as well as approaches towards

mitigating faults. We also explain the assumptions neces-
sary for enabling resilience (§ 2 & § 3);

• The integration of the SLIM with Open MPI’s TCP mod-
ule, and plans for future extensions to include the OpenIB
module (§ 5); and

• A prototype implementation (§ 6) that exposes an API to
the Open MPI’s BTL framework along with an evaluation
of the proposed extensions (§ 7).

2 CHARACTERIZATION OF FAULTS
To better highlight the scope of our work and contribution, we
characterize the types of faults in relation to MPI.

We de�ne faults as events that result in abnormal operation. We
classify faults into two categories: software and hardware faults.

Software faults are induced by bugs in either users’ source code
or the MPI implementations. We do not address software faults in
this paper.

On the other hand, hardware faults pertain to the underly-
ing infrastructure. We further classify these as soft or hard faults.
We de�ne soft faults as those that do not necessarily indicate
imminent failure of the MPI program, although they may cause
individual ranks to fail. These faults can be detected and possibly
resolved. In contrast, we de�ne hard faults as those that interrupt
the execution of the MPI program in a manner that results in failure,
and they may not be detected. Hard faults may at times result in
system-wide failures (e.g., failure of GPFS).

Here we focus on soft faults induced by network communica-
tion which include transient and localized failures. We aim to
resolve transient faults — those that do not cause an MPI rank to fail
— without having to trigger user-level failure mitigation (ULFM),
checkpoint and restore, or other fault tolerance mechanisms. As
mentioned in § 1, we de�ne transient failures as �eeting events (e.g.,
those caused by interconnect congestion) and localized failures as
faults con�ned to a limited set of hardware or software resources
(e.g., those caused by node or process failure).

3 APPROACHES TOWARDS RESILIENCE
Fault tolerance for MPI is a well-studied domain [10]. As we brie�y
highlighted in § 1, there have been multiple notable contributions
along di�erent dimensions of this challenge — e.g., [4, 8, 9, 11, 24,
27].

3.1 Assumptions of Fault-Tolerant Methods
Although di�erent fault-tolerant mechanisms address challenges
along di�erent (and sometimes orthogonal) dimensions, all methods
tend to make certain assumptions about the process [17]. The
assumptions are as follows: (1) we are able to detect the failure;
(2) we have enough state information to able to recover from the
failure; and (3) we are allowed to instantiate recovery mechanisms
to mitigate the faults.

Taking these assumptions into account, we model the detection
of communication faults, mitigation, and �nally recovery process
by a state-transition diagram (see Figure 1).

Valid
Execution

soft / transient
event detected

recovery
failed

Terminate

Failure
Detected

Recovery

hard error
detected

user level fault
management

event or
interruption

failure
resolved

reclaim
resources

allocate
resources

job
completion

Figure 1: State diagram illustrating fault detection, mitiga-
tion, and recovery.

Master
Group

Remote
Group A

Remote
Group B intercommunicator

Figure 2: Master and worker con�guration between groups
of processes using MPI intercommunicators.

3.2 Types of Fault-Tolerant Methods
Here we brie�y describe the types of fault-tolerant methods, in the
context of soft faults that are transient.
Checkpoint and Restore: The foremost and most widely known
method of enabling resilience is through checkpointing and re-
store (e.g., [6]). Checkpoint and restore entails saving the state of
the program at regular intervals so that the application may be
restarted from there onwards, instead of having to start from the
very beginning. Most of the ULFM methods involve di�erent forms
of checkpoint-and-restore methods.

Checkpoint-and-restore methods are typically considered to be
expensive ways to enable resilience, particularly at scale. Although
there are scenarios where the most e�cient approach is to use
checkpoint and restore since the overheads depend entirely on the
type of the application, the frequency of checkpoints, and the ability
to restore states from various stages of the computation.

Due to the inherent nature of the approach, checkpoint and re-
store allows recovery from transient communication faults, whether
it is in terms of recovering from a failed primitive, a failed rank, or
even a total failure. However, we argue that such an approach is a

7th FTXS Workshop (in conjunction with ACM HPCD 2017), Washington DC, June. 2017

A Non-Invasive Approach for Realizing Resilience in MPI FTXS’17, June 26, 2017, Washington DC

very heavyweight way to mitigate transient faults. Such faults can
be resolved by much more lightweight approaches.
Methods Supported by Standard MPI Implementations: The
primary reason for the misunderstanding that "if a rank fails, then
the entire MPI program will fail" stems from the interpretation that
all MPI ranks exist within one communicator. The roots of such
practices originate from the use of collective operations while solv-
ing compute problems. Collective operations communicate within
one communicator. To minimize the complexity of the MPI pro-
gram, the typical practice is to use the default communicator, which
is MPI_COMM_WORLD. When a rank within a communicator fails,
or a collective operation fails, it may cascade into the failure of the
program if not handled through the users’ source code.

The use of intercommunicators [18] encourages compartmental-
izing ranks into groups and following the manager/worker para-
digm, as illustrated in Figure 2. Intercommunicators enable commu-
nication of ranks between groups. When a rank fails, for whatever
reason, the fault is compartmentalized. This compartmentaliza-
tion allows the user to manage complexity of the source code and
handle the error gracefully using suitable methods (e.g., redundant
processes [9] or dynamic process management [16]).

We argue that using intercommunicators to mitigate transient
communication failures is also heavier weight than it needs to be
because it incurs signi�cant overheads.
Modifying the MPI Standard to Revise Semantics: Another
rarely used approach is to revise the semantics of MPI primitives
in order to enable fault tolerance. Such approaches have been tried
in the past to enable fault tolerance (e.g., [11]). However these
approaches have the potential of rendering user codes, written for
such implementations, incompatible with other MPI implementa-
tions that comply with the MPI standard and therefore limiting
application portability.
MPI Extensions: An alternate approach to revising MPI semantics
is to add extensions to MPI (e.g., [17]). Doing so not only maintains
compatibility of the implementation with the MPI Standard, but
also allows additional functionality that applications may choose to
leverage. This includes, for example, de�ning suitable error codes
and corresponding error handlers.

We adopt the approach of adding an MPI extension to enable
fault tolerance, since this not only complies with the MPI standard
but also avoids the need for having to recompile MPI programs. We
discuss the details further in § 5.

4 ENABLING SEPARATION OF SESSION AND
TRANSPORT SEMANTICS VIA SLIM

In this paper, we leverage our experience in enabling resilient com-
munications for traditional networking [23] to provide fault tol-
erance in MPI. Below is a brief overview of SLIM and how it re-
introduces the distinction between session and transport from the
OSI model into the network stack. Communications can continue
in the face of transient faults because the session continues to exist
even though the TCP connection fails. SLIM re-establishes a trans-
port connection for the session to use and the fault is not observed
by MPI due to the separation into session and transport.

4.1 SLIM as a Session-Layer Intermediary
SLIM [23] is an extensible session-layer intermediary that provides
session semantics for improved resilience, among other things.
SLIM de�nes abstractions that it uses to enable resilience and an
out-of-band channel for the exchange of control messages that it
uses to restore communications in the event of transient faults.

SLIM de�nes the endpoint, �ow, and session abstractions that
form the session layer. They are illustrated in Figures 3 and 4.

Endpoint A

Control
flow

Endpoint B Endpoint C

Data
flows

Session
abstraction

Network

Figure 3: SLIM’s session, �ow and endpoint abstractions in
the context of TCP/IP stack.

Session

Transport

Time

Session

control flow

data flow 1

transport connection p

data flow 2

transport connection q

transport connection r

transport connection α

Figure 4: The �ow abstractions and their mappings onto un-
derlying transports in relation to time.

SLIM

Transport

Application

Internet Protocol

Link

Session Layer Intermediary (SLIM)

Session
Management

Negotiation of
Configuration

Data
Transfer

Figure 5: SLIM in relation to the TCP/IP stack.

An endpoint is de�ned as an entity participating in a conversa-
tion and represents a source and destination of communications.

A �ow represents a data exchange between a set of endpoints. It
gives a name to the concept of communication but requires map-
ping onto underlying transport connections before communication

7th FTXS Workshop (in conjunction with ACM HPCD 2017), Washington DC, June. 2017

FTXS’17, June 26, 2017, Washington DC Umar Kalim, Mark K. Gardner, Wu Feng

MPI Application

MPI byte
transfer

layer
(btl)

MPI
collective

operations
(coll)

Process
launch &

mon.
(plm)

IP
interfaces

(if)

Distributed
filesystem

(dfs)

MPI one
sided

operations
(osc)

Open MPI core (OPAL, ORTE, and OMPI layer)

High
resolution

timers
(timer)

…
ba

se

TC
P

op
en

ib

ba
se

tu
ne

d

rs
h

ba
sem
l

po
si

x_
ip

v4

ba
se

sl
ur

m

or
te

d

ap
p

ba
se

w
in

do
w

s

ba
se

pt
2p

t

rd
m

a

ba
se

lin
ux

da
rw

in

… … … … … … …

Focus of our contribution

Figure 6: Open MPI Architecture (recreated from [26]).

actually occurs. Because �ows are independent of transport connec-
tions, the concept of a �ow can precede the creation of a transport
connection and can persist after the transport connection has been
closed. This separation allows us to distinguish between session
and transport semantics. Doing so further enables recon�guration
of �ows on the �y (and subsequently recon�guration of underlying
transports). This is illustrated in Figure 4 where a �ow may be
mapped onto a transport connection p and later mapped onto a
transport connection r (e.g., when transport p is disrupted due to a
transient fault).

A session represents the complete conversation between par-
ticipants in an agreed-upon context. It encapsulates endpoints
and �ows that constitute the conversation and allows them to be
reasoned about together. This is illustrated in Figure 3.

As Figure 5 illustrates, SLIM exposes an API while providing
three sets of services to the application to assist with communica-
tion setup and management. These services ful�ll three roles: 1)
session management, 2) negotiation of con�guration, and 3) data
transfer. SLIM uses the underlying transport services to realize the
session abstractions. Since its is only active during communication
setup (in the beginning) and management (in case of recovery), it
does not interfere with data exchange. Therefore, it has negligible
impact on bandwidth and latency (see § 7).

Further details of SLIM, its backward compatible extensions to
TCP, and how it is used to support modern communcation needs,
such as virtual machine migration across subnets, see our prior
research [21–23].

5 SLIM’S INTEGRATIONWITH MPI
To begin, we chose to add our SLIM extension to Open MPI pri-
marily because of its modular component architecture (MCA) [26].
The design of Open MPI, frameworks coupled with components,
and the manner in which they are interfaced, instantiated, and
used, allows us to con�ne our proposed extensions to select com-
ponents. As illustrated in Figure 6, the focus of our contribution
is on interfacing with the Byte Transfer Layer (BTL) framework.
Initially our contribution is geared towards interactions with the
TCP component. In future we intend to include interfacing with
other components, such as OpenIB.

5.1 Open MPI Byte Transfer Layer (BTL)
The BTL framework works alongside the BTL Management Layer
(BML), Point-to- Point Messaging Layer (PML) and the MCA frame-
works. BTL is geared towards proving a uniform method of data
transfer between participants. The data transfer may be over di�er-
ent interconnects. For this paper, we focus on TCP alone.

5.2 Con�ation of Session and Transport
Semantics by Legacy BTL-TCP

The coupling of session and transport semantics in legacy TCP
causes di�culty in implementing fault tolerance for MPI communi-
cations. If there is a loss of network path between endpoints or a
transport connection faces a timeout, the BTL TCP connection will
drop. This will result in a failed MPI primitive, which may then
cascade to a failure of the MPI program.

Thus, it is imperative that we consider session semantics, which
is the notion of communication between endpoints, independent
of the underlying transport or sending of data across the network.

5.3 Enabling Fault Tolerance
Decoupling of session and transport semantics allows us to handle
transient failures (related to transport implementations) without
inducing a failure of an MPI primitive. If a transport connection
fails or faces a timeout for some reason, i.e., it was not cleanly
terminated, SLIM recognizes the fault and attempts to setup a new
transport connection to serve as a replacement. The �ow is then
mapped on to the new transport connection, the sequence spaces
are synchronized to ensure that no data is lost, and communications
resumes. Details of how this mapping of sequence space is managed
is discussed in our prior work [23]. The correct synchronization
of sequence spaces ensures that no data is lost — which may have
been in �ight. An illustration of such a disruption, followed by a
successful recon�guration is illustrated in Figure 4.

As we will discuss further in § 7, this decoupling incurs no over-
head during fault-free operation since the indirection comes into
play only during connection setup or transport recovery. During
communication, latency and performance are negligibly impacted
since SLIM passes packets through.

7th FTXS Workshop (in conjunction with ACM HPCD 2017), Washington DC, June. 2017

A Non-Invasive Approach for Realizing Resilience in MPI FTXS’17, June 26, 2017, Washington DC

Legacy BTL

SLIM
wrapper

legacy incremental
deployment

patched openmpi
codebase (btl & tcp)

integration with
btl to include
interconnects

TCP OPENIB…

Legacy BTL BTL BTL

LD_PRELOAD

TCP OPENIB…

SLIM

TCP OPENIB…

SLIM

TCP OPENIB…

Phase I II III

Figure 7: Incremental deployment and integration with Open MPI Byte Transfer Layer (BTL).

Transient faults vs. rank failures It is important to note that
SLIM enables resilience in the face of transient failures alone. This
is in contrast with the scenario where a rank fails. When a rank
fails, it is likely that program state will be lost. Therefore, resuming
connectivity with a replacement process may not su�ce. Although
there may be rare cases where the nature of the application allows
such possibilities. In order to resume communication following a
rank failure, a mechanism for automatic recovery must be in place
— e.g., application directed recovery, message logging and replay,
and so forth.

SLIM makes three attempts to recover from a transient failure.
If all three attempts to resume connectivity fail, the error is esca-
lated and may result in the MPI program’s failure, unless alternate
mechanisms are in place.

5.4 SLIM’s Integration with BTL
Figure 7 summarizes our incremental integration and deployment
approach. Initially we have implemented SLIM as a user-space
library. We setup the library to intercept the Socket API calls [1]
using LD_PRELOAD. The bene�t of this approach is that we do
not force the recompilation of either the MPI program or the Open
MPI implementation. All socket interface calls go through the
LD_PRELOAD wrapper, through SLIM, to the underlying TCP im-
plementation all the while providing resilient �ow implementations
to BTL. In the future, we will extend the BTL implementation to
interface directly with SLIM.

The goal is for session-based abstractions to be exposed to BTL
while SLIM manages the mappings to underlying transports. Fol-
lowing along the same lines, we plan to use SLIM to enable resilience
to transient faults for all underlying interconnects.As the next step,
we plan to integrate SLIM with OpenIB alongside TCP.

6 PROTOTYPE IMPLEMENTATION
Here we discuss our contributions with reference to the prototype
implementation.

6.1 Prototype for BTL TCP Component
The prototype for the BTL TCP component is implemented as a
user-space library in C. The implementation includes 3189 lines of
source code. SLIM’s interface, which exposes the session primitives,
is exposed to BTL and is illustrated in Figure 7. Details of SLIM’s
implementation that are speci�c to TCP are documented in [21, 23].

Interfacing with BTL and TCP SLIM serves as a wrapper around
the Socket API. As part of Phase I of our development, the Socket
API calls are intercepted by SLIM through LD_PRELOAD, where
SLIM maintains the session, �ow, and endpoint state. These ab-
stractions are mapped onto the underlying transport (e.g., a �ow is
eventually mapped to an underlying socket that serves as an input
and output stream).

This indirection for communications enables fault tolerance.
Consider the scenario where a transport connection faces a time-
out due to a transient failure. The termination of the connection
results in a failed TCP socket. SLIM recognizes the abnormality and
attempts to reconnect to the destination. The assumption here is
that if the fault was transient, the network will be available for later
communication. Spawning a new transport connection and having
the �ow mapped onto this new transport avoids the failure of the
MPI primitive that generated the communication event. Thus, the
indirection allows us to catch and recover from a failure that may
have caused the program to fail.

Note that SLIM recognizes failures by evaluating the error codes
returned due to failed read and writes to underlying sockets (or �le
descriptors).

Legacy App

Socket API

SLIM

LD_PRELOAD wrapper

App

Socket API

SLIM

SLIM supporting
legacy applications

SLIM enabling greater
functionality

Figure 8: SLIM in relation to legacy applications and those
using the library.

As part of Phase II, we plan to extend the BTL implementation
and integrate SLIM without having to use LD_PRELOAD to inter-
cept Socket calls.
Backwards Compatibility To enable backwards compatibility
with legacy TCP stacks, we use custom TCP options [21, 22]. If the
peer stacks are unable to exchange the custom options during the
3-way handshake, SLIM recognizes that the peer stack does not
support SLIM and subsequently falls back to legacy TCP behavior.

7th FTXS Workshop (in conjunction with ACM HPCD 2017), Washington DC, June. 2017

FTXS’17, June 26, 2017, Washington DC Umar Kalim, Mark K. Gardner, Wu Feng

6.2 Prototype for BTL OpenIB Component
As part of Phase III, we plan to expand the SLIM implementation
to integrate the OpenIB interconnect. The plan is to have a uni-
form interface exposed to BTL, and have SLIM interact with the
underlying BTL module when instantiated by MCA — be it TCP or
OpenIB. The objective is to have a separation of session and trans-
port semantics so that transient faults may be caught in time to
allow suitable recovery (or graceful degradation), instead of having
the application fail.

7 DISCUSSION
Here we discuss preliminary performance results and overheads
when testing SLIM in a controlled environment as well as the con-
cerns of deployment and interactions with the infrastructure.

7.1 Performance and Overheads
As part of the performance evaluation, we try to understand the im-
pact the addition of SLIM has on performance, in particular latency.
Since SLIM is only involved during communication setup and does
not play a signi�cant role during on going communications, we
do not expect to see any signi�cant overheads. The only role that
SLIM plays during ongoing communications is an added level of
indirection (i.e., �ow to socket descriptor mapping), which should
not incur a signi�cant overhead, even for latency sensitive systems
— e.g., MPI applications.

Figures 9 and 10 summarize the latency and throughput measure-
ments from microbenchmarks ran on an unprimed con�guration.
We see that the SLIM implementation — analogous to a BTL, SLIM,
and TCP component — has statistically similar performance to that
of a legacy con�guration with the socket API — analogous to the
BTL and TCP component implementation.

0

50

100

150

200

1 8 15 22 29 36 43 50

La
te

nc
y

(μ
s)

Measurements

Socket API SLIM

Figure 9: Trace of average latency for BTL+TCP (Socket API)
vs BTL+SLIM+TCP (SLIM) using unprimed long-runningmi-
crobenchmarks (1 Gbps link capacity, 0% loss)

The round trip latencies for application’s point to point com-
munication hover around an average of 120 µs for both SLIM and
the legacy implementations. In case of bandwidth tests, the point-
to-point tests are able to saturate the link up to the achievable
link capacity of nearly 94%. The variability in results is due to the
aggressive back-o� mechanism of the TCP New Reno implementa-
tions, which were used for these tests. Newer congestion control
implementations (such as TCP BBR or CUBIC may show lesser
variations).

0

200

400

600

800

1000

1 8 15 22 29 36 43 50A
vg

. T
hr

ou
gh

pu
t (

M
bp

s)

Measurements

Socket API SLIM

Figure 10: Trace of average throughput for BTL+TCP (Socket
API) vs BTL+SLIM+TCP (SLIM) using long-running mi-
crobenchmarks (1 Gbps link capacity, 0% loss)

7.2 Collective Operations
While the focus of our discussions have been on a shim between
BTL and TCP for point to point communications, note that SLIM
supports communication between multiple participants as part of
the session. This is because the abstractions have been developed
to support separate session from transport semantics and therefore
mitigating the limitations of underlying transport mechanisms that
inhibit extensions (such as fault tolerance). However, using the
multi-party session semantics of SLIM as a replacement for the
COLL framework will not be e�cient. This is because the multi-
party session semantics are geared towards supporting participants
for traditional networking and not high-performance collective op-
erations. However, SLIM when used as part of the BTL framework
— as means for reliable data transfer — performs at par with the
legacy implementations.

As we move towards Phase III of our development, we plan to
include the OpenIB interconnect. There we will study the impact
of separation of session and transport semantics and its in�uence
on collective operations.

7.3 Incremental Deployment and Integration
with Open MPI

In § 5, we discussed our development plan and summarized it in
Figure 7. We see that initially with the wrapper library, we may use
LD_PRELOAD to deploy the library. This would not require rewrit-
ing or recompiling any code, whether the application or the Open
MPI implementation. Doing so enables incremental deployment for
the BTL TCP component. However, as we move to Phase II and III
where we not only extend BTL to interface directly with SLIM, but
also expand SLIM to interface with OpenIB, there would be a need
to recompile and deploy the updated Open MPI implementation.
The applications would not require any recompilation.

7.4 Interaction with Middleboxes
Unlike traditional networks, interaction with middleboxes is not a
concern here, since data center deployments are typically devoid of
middleboxes between compute nodes. Nevertheless, we’ve demon-
strated in our prior work [20, 22, 23] that SLIM is not adversely
impacted by middleboxes even if they exist in traditional networks.

7th FTXS Workshop (in conjunction with ACM HPCD 2017), Washington DC, June. 2017

A Non-Invasive Approach for Realizing Resilience in MPI FTXS’17, June 26, 2017, Washington DC

8 RELATEDWORK
In the last decade or so, researchers have investigated various di-
mensions of enabling resilience in MPI programs [10, 19]. It appears
that the philosophy of fault tolerance has moved towards enabling
users to mitigate the impact of faults and recover by trapping er-
rors in user code and implementing suitable solutions. This is
understandable as applications have di�erent characteristics and
the impact of the a fault may be severe for one application but
not be as severe for the other. Nevertheless, we observe that all
these faults typically lie in the category of what we classify as hard
faults. Handling transient faults is left entirely up to the users, who
tend to use methods such as dynamic process management [9] or
checkpoint and restore [6] to deal with them. While this approach
yields results, we’ve argued that they are expensive for transient
faults. We focus on transient network communication fault for the
BTL TCP component as a case study and suggest SLIM as a suitable
solution.

Below we summarize some of the notable and representative
approaches that enable fault tolerance for MPI.

Fagg et al. [11] propose FT-MPI (Fault Tolerant MPI) which aug-
ments the MPI implementation and maintains more state to deter-
mine what actions can be taken when processes in the communica-
tor encounter failures. This changes the standard MPI semantics.
For example, the MPI communicator is allowed to have di�erent
states (other than the original valid and invalid states), which are
determined by the failure scenario it is experiencing. On detecting
a failure in the communicator, the application can go into a failure
recovery mode that is speci�ed by the application developer. Thus,
FT-MPI allows application developers to have di�erent failure recov-
ery modes, other than simply checkpointing and recovery. While,
FT-MPI sacri�ces a great deal in terms of the time-tested semantics
of standard MPI, the lessons learned have been incorporated in
current Open MPI implementations.

The User Level Failure Mitigation (ULFM) [5] interface has been
proposed to provide fault-tolerant semantics in MPI. The interface
focuses fail-stop failures only and allows application-level failure
detection, and local failure migration based on removing the failed
processes from shrinking communicators. Laguna et al. [24] show
that as processes continue to fail, the time to revoke and shrink the
communicator increases linearly with increasing number of nodes.
In addition, the paper shows that the interface is only suitable
for jobs that have work-decomposition �exibility which exists for
instance in a master-slave application model. However, for more
general applications such as bulk synchronous MPI applications,
the interface has few bene�ts.

MPICH-V [6] is a fault-tolerant MPI implementation designed
for large clusters, where failures or disconnection between nodes
are common events, resulting from human error, and hardware or
software faults. MPICH-V adds fault-tolerance by using uncoordi-
nated checkpointing and distributed pessimistic message logging.
An essential goal of the work is to allow ease of use that allows
running old applications without modi�cation, ensuring transpar-
ent fault tolerance for users, etc. However, the paper shows that
MPICH-V incurs an overhead of about 23% on a job’s runtime when
no failures occur. Also, the uncoordinated checkpointing is not
user directed, instead it is system directed, which may result in

signi�cantly poor performance as application characteristics are
not taken into account.

Dynamic process management can provide fault tolerance in
MPI programs. Gropp et al. [16] show how the existing MPI spec-
i�cation, which usually serves as a message-passing system, can
be extended to include an application interface to the system’s job
scheduler and process manager, or even to write those functions
if they are not already provided. The speci�cation allows running
processes to spawn new processes and communicate with them.
However, developers still need to handle explicitly issues such as
resource discovery, resource allocation, scheduling, pro�ling, and
load balancing.

Another dimension of dealing with faults is to develop algo-
rithms that are inherently tolerant. To help matrix factorizations
algorithms survive fail-stop failures during parallel execution, Du et
al, [8] propose a hybrid approach based on algorithm-based fault tol-
erance (ABFT) that can be applied to several ubiquitous one-sided
dense linear factorizations. Using LU factorization, the authors
prove that this scheme successfully applies to the three well known
one-sided factorizations, Cholesky, LU and QR. The algorithm pro-
tects both the left and right factorization results. ABFT protects
the right factor with checksum generated before, and carried along
during the factorizations. A scalable checkpointing method pro-
tects the left factor. However, the work does not support multiple
simultaneous failures.

9 FUTUREWORK
In future we plan to explore the following directions of research
and development:

(1) In Phase II of the development, we plan to extend the BTL
framework to directly interface with SLIM and integrate
SLIM as a patch for the Open MPI code base.

(2) In Phase III we plan to expand SLIM to interface with
other interconnects, particularly OpenIB. This would allow
BTL to access the underlying interconnects with SLIM’s
uniform interface. This work has been of interest to inter-
connect vendors [2].

(3) We plan to study Open MPI’s COLL framework and see if
we can unify the both COLL and SLIM’s multi-party com-
munication mechanisms to help with collective operations.
This may either be in terms of semantics or in terms of
implementation optimizations.

(4) We also will plan to investigate how we may apply the
lessons learned through SLIM and Open MPI implementa-
tions to other MPI implementations (e.g., MPICH).

10 SUMMARY
As computational capabilities scale from peta�ops to exa�ops, more
compute processes work concurrently to accomplish tasks, requir-
ing more communication. Increase in the number of software and
hardware components is strongly correlated with potential increase
in faults. In this paper, we presented SLIM, a shim layer, that im-
prove resiliences against transient faults in network communication.
We make a case that the coupling of the session and transport layer
in implementations inhibit recovery from transient failures. SLIM

7th FTXS Workshop (in conjunction with ACM HPCD 2017), Washington DC, June. 2017

FTXS’17, June 26, 2017, Washington DC Umar Kalim, Mark K. Gardner, Wu Feng

decouples the two semantics by acting as shim underneath BTL,
allowing users to run their code without change.

ACKNOWLEDGMENTS
The authors would like to thank Eric Brown for his consultation,
feedback, and support over the years, particularly with regards to
research and development in relation to SLIM. We are also grate-
ful to the anonymous reviewers for their valuable feedback and
guidance in improving our ongoing research.

REFERENCES
[1] 2015. POSIX.1-2008 Speci�cation. http://pubs.opengroup.org/onlinepubs/9699919799

/functions/contents.html. (2015). Accessed December 16, 2016.
[2] 2016. Personal Communication with Mellanox Representative at Supercomputing.

(2016). http://sc16.supercomputing.org
[3] Al Geist and Christian Engelmann. 2002. Development of Naturally Fault Tolerant

Algorithms for Computing on 100,000 Processors. (2002). http://www.csm.ornl.
gov/~geist/Lyon2002-geist.pdf

[4] R. Batchu, J. P. Neelamegam, Zhenqian Cui, M. Beddhu, A. Skjellum, Y. Dandass,
and M. Apte. 2001. MPI/FTTM: Architecture and Taxonomies for Fault-Tolerant,
Message-Passing Middleware for Performance-Portable Parallel Computing. In
IEEE/ACM International Symposium on Cluster Computing and the Grid. 26–33.
DOI:http://dx.doi.org/10.1109/CCGRID.2001.923171

[5] Wesley Bland, Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack
Dongarra. 2013. Post-Failure Recovery of MPI Communication Capability. The
International Journal of High Performance Computing Applications 27, 3 (2013),
244–254. DOI:http://dx.doi.org/10.1177/1094342013488238

[6] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Herault, P.
Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov. 2002. MPICH-
V: Toward a Scalable Fault Tolerant MPI for Volatile Nodes. In The International
Conference for High Performance Computing, Networking, Storage and Analysis.
29–29. DOI:http://dx.doi.org/10.1109/SC.2002.10048

[7] Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer, and Marc
Snir. 2014. Toward Exascale Resilience: 2014 update. Supercomputing Frontiers
and Innovations 1, 1 (2014). http://superfri.org/superfri/article/view/14

[8] Peng Du, Aurelien Bouteiller, George Bosilca, Thomas Herault, and Jack Don-
garra. 2012. Algorithm-based Fault Tolerance for Dense Matrix Factorizations. In
17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’12). 225–234. DOI:http://dx.doi.org/10.1145/2145816.2145845

[9] Ifeanyi P. Egwutuoha, Shiping Chen, David Levy, and Bran Selic. 2012. A
Fault Tolerance Framework for High Performance Computing in Cloud. In 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID ’12). 709–710. DOI:http://dx.doi.org/10.1109/CCGrid.2012.80

[10] Ifeanyi P. Egwutuoha, David Levy, Bran Selic, and Shiping Chen. 2013. A Survey
of Fault Tolerance Mechanisms and Checkpoint/Restart Implementations for
High Performance Computing Systems. The Journal of Supercomputing 65, 3
(2013), 1302–1326. DOI:http://dx.doi.org/10.1007/s11227-013-0884-0

[11] Graham E Fagg, Antonin Bukovsky, and Jack J Dongarra. 2001. HARNESS
and Fault Tolerant MPI. Parallel Computing 27, 11 (2001), 1479–1495. DOI:
http://dx.doi.org/10.1016/S0167-8191(01)00100-4

[12] Graham E. Fagg and Jack J. Dongarra. 2004. Building and Using a Fault-
Tolerant MPI Implementation. The International Journal of High Performance
Computing Applications 18, 3 (2004), 353–361. DOI:http://dx.doi.org/10.1177/
1094342004046052

[13] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J Dongarra,
Je�rey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, and others. 2004. Open MPI: Goals, concept, and design of a next
generation MPI implementation. In European Parallel Virtual Machine/Message
Passing Interface Users Group Meeting. Springer, 97–104.

[14] Marc Gamell, Daniel S. Katz, Hemanth Kolla, Jacqueline Chen, Scott Klasky,
and Manish Parashar. 2014. Exploring Automatic, Online Failure Recovery for
Scienti�c Applications at Extreme Scales. In ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis (SC ’14).
895–906. DOI:http://dx.doi.org/10.1109/SC.2014.78

[15] Jim Gray and Andreas Reuter. 1992. Transaction Processing: Concepts and Tech-
niques (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[16] W. Gropp and E. Lusk. 1995. Dynamic Process Management in an MPI Setting.
In 7th IEEE Symposium on Parallel and Distributed Processing. 530–533. DOI:
http://dx.doi.org/10.1109/SPDP.1995.530729

[17] William Gropp and Ewing Lusk. 2004. Fault Tolerance in Message Passing
Interface Programs. The International Journal of High Performance Computing
Applications 18, 3 (2004), 363–372.

[18] William Gropp, Ewing Lusk, and Anthony Skjellum. 1999. Using MPI: Portable
Parallel Programming with the Message Passing Interface (2nd ed.). MIT Press.

[19] Thomas Hérault and Yves Robert. 2015. Fault-Tolerance Techniques for High-
Performance Computing. Springer.

[20] Umar Kalim. 2011. Demonstration Video of Seamless Virtual Machine Migration.
http://www.cs.vt.edu/ umar/vm-demo. (2011).

[21] Umar Kalim, Eric Brown, Mark Gardner, and Wu Feng. 2010. En-
abling Renewed Innovation in TCP by Establishing an Isolation Boundary.
http://p�d.net/2010/technical.php. In 8th International Workshop on Protocols
for Future, Large-Scale and Diverse Network Transports (PFLDNeT).

[22] Umar Kalim, Mark Gardner, Eric Brown, and et al. 2013. Seamless Migration of
Virtual Machines Across Networks. In IEEE International Conference on Computer
Communication and Networks (ICCCN).

[23] Umar Kalim, Mark Gardner, Eric Brown, and Wu Feng. 2017. SLIM: Enabling
Transparent Extensibility and Dynamic Con�guration via Session-Layer Ab-
stractions. In ACM/IEEE Symposium on Architectures for Networking and Com-
munications Systems (ANCS).

[24] Ignacio Laguna, David F. Richards, Todd Gamblin, Martin Schulz, and Bronis R.
de Supinski. 2014. Evaluating User-Level Fault Tolerance for MPI Applications.
In Proceedings of the 21st European MPI Users’ Group Meeting (EuroMPI/ASIA ’14).
Article 57, 6 pages. DOI:http://dx.doi.org/10.1145/2642769.2642775

[25] Soulla Louca, Neophytos Neophytou, Adrianos Lachanas, and Paraskevas Evripi-
dou. 2000. MPI-FT: Portable Fault Tolerance Scheme for MPI. Parallel Processing
Letters 10, 04 (2000), 371–382. DOI:http://dx.doi.org/10.1142/S0129626400000342

[26] Je�rey M. Squyres and Andrew Lumsdaine. 2005. The Component Architecture
of Open MPI: Enabling Third-Party Collective Algorithms. (2005), 167–185. DOI:
http://dx.doi.org/10.1007/0-387-23352-0_11

[27] S. Rao, L. Alvisi, and H. M. Vin. 1999. Egida: an extensible toolkit for low-overhead
fault-tolerance. In 29th Annual International Symposium on Fault-Tolerant Com-
puting. 48–55. DOI:http://dx.doi.org/10.1109/FTCS.1999.781033

[28] B. Schroeder and G. Gibson. 2010. A Large-Scale Study of Failures in High-
Performance Computing Systems. IEEE Transactions on Dependable and Secure
Computing 7, 4 (2010), 337–350. DOI:http://dx.doi.org/10.1109/TDSC.2009.4

7th FTXS Workshop (in conjunction with ACM HPCD 2017), Washington DC, June. 2017

http://sc16.supercomputing.org
http://www.csm.ornl.gov/~geist/Lyon2002-geist.pdf
http://www.csm.ornl.gov/~geist/Lyon2002-geist.pdf
http://dx.doi.org/10.1109/CCGRID.2001.923171
http://dx.doi.org/10.1177/1094342013488238
http://dx.doi.org/10.1109/SC.2002.10048
http://superfri.org/superfri/article/view/14
http://dx.doi.org/10.1145/2145816.2145845
http://dx.doi.org/10.1109/CCGrid.2012.80
http://dx.doi.org/10.1007/s11227-013-0884-0
http://dx.doi.org/10.1016/S0167-8191(01)00100-4
http://dx.doi.org/10.1177/1094342004046052
http://dx.doi.org/10.1177/1094342004046052
http://dx.doi.org/10.1109/SC.2014.78
http://dx.doi.org/10.1109/SPDP.1995.530729
http://dx.doi.org/10.1145/2642769.2642775
http://dx.doi.org/10.1142/S0129626400000342
http://dx.doi.org/10.1007/0-387-23352-0_11
http://dx.doi.org/10.1109/FTCS.1999.781033
http://dx.doi.org/10.1109/TDSC.2009.4

	Abstract
	1 Introduction
	2 Characterization of Faults
	3 Approaches Towards Resilience
	3.1 Assumptions of Fault-Tolerant Methods
	3.2 Types of Fault-Tolerant Methods

	4 Enabling Separation of Session and Transport Semantics via SLIM
	4.1 SLIM as a Session-Layer Intermediary

	5 SLIM's Integration with MPI
	5.1 Open MPI Byte Transfer Layer (BTL)
	5.2 Conflation of Session and Transport Semantics by Legacy BTL-TCP
	5.3 Enabling Fault Tolerance
	5.4 SLIM's Integration with BTL

	6 Prototype Implementation
	6.1 Prototype for BTL TCP Component
	6.2 Prototype for BTL OpenIB Component

	7 Discussion
	7.1 Performance and Overheads
	7.2 Collective Operations
	7.3 Incremental Deployment and Integration with Open MPI
	7.4 Interaction with Middleboxes

	8 Related Work
	9 Future Work
	10 Summary
	References

