
Cascaded TCP: Applying Pipelining to TCP for
Efficient Communication over Wide-Area Networks

Umar Kalim∗†, Mark K. Gardner†, Eric Brown†, Wu-chun Feng∗
∗Department of Computer Science, †Office of IT, Virginia Tech

umar@cs.vt.edu, {mkg,eric.brown}@vt.edu, feng@cs.vt.edu

Abstract—The bandwidth utilization in traditional TCP pro-
tocols (e.g., TCP New Reno) suffers over high-latency and high-
bandwidth links due to the inherent characteristics of TCP con-
gestion control. Conventional methods of improving throughput
cannot be applied per se for streaming applications. The challenge
is exacerbated by “big data” applications such as with the Long
Wavelength Array data that is generated at a rate of up to 4
terabytes per hour.

To improve bandwidth utilization, we introduce layer-4 re-
lay(s) that enable the pipelining of TCP connections. That is,
a traditional end-to-end connection is split into independent
streams, each with shorter latencies, that are then concatenated
(or cascaded) together to form an equivalent end-to-end TCP
connection. This addresses the root cause by decreasing the
latency over which the congestion-control protocol operates.

To understand when relays are beneficial, we present an
analytical model, empirical data and its analyses, to validate
our argument and to characterize the impact of latency and
available bandwidth on throughput. We also provide insight into
how relays may be setup to achieve better bandwidth utilization.

Index Terms—bandwidth utilization; throughput; perfor-
mance; long-fat networks; pipelining; TCP; wide-area networks

I. INTRODUCTION

A collaboration between Virginia Tech and University of
New Mexico requires the transfer of streaming data from the
Long Wavelength Array (LWA) in New Mexico to Blacksburg,
Virginia. LWA is capable of generating 4 TB of data per
hour, and data rates will grow by 53X as the instrument roles
out. Conventional methods of optimizing network bandwidth
usage, which focus on file transfers, do not apply per se to
such streaming data.

To exacerbate the problem, TCP New Reno [1], the most
widely deployed TCP congestion-control algorithm, delivers
poor average throughput over paths with high bandwidth-
delay products. This results in poor bandwidth utilization. The
algorithm is designed such that the sender has to wait for the
receiver’s feedback before the window sizes may be updated,
and therefore TCP New Reno cannot react fast enough over
high-latency links to achieve higher throughput.

We provide guidance for the deployment of TCP streaming
relays so as to reduce the impact of large end-to-end latencies.
As illustrated in Figure 1, a relay takes responsibility for
pipelining traffic from the source to the destination. The
connection from the source is terminated at the relay; the relay
in turn creates an independent (or cascaded) TCP connection to
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Fig. 1. The long-haul (end-to-end) TCP connection is split into two
independent TCP connections by the relay, each with smaller latencies.

forward data towards the destination. Consequently, a divide-
and-conquer approach allows the sliding-window protocols
operating on either side of each relay to receive control
feedback much faster than the long-haul connection, thus
delivering better bandwidth utilization. We refer to such a
setup as Cascaded TCP [2]. Note that such an approach would
benefit both streaming data as well as typical file transfer.

Reducing the adverse impact of large latencies on through-
put by using relays is not a novel idea. However the use of
relays is not appropriate for all scenarios. Thus, there is a need
to determine when Cascaded TCP may be applied.

Our contributions in this paper are:
• An analytical model for Cascaded TCP that provides

guidance for when to use relays.
• An evaluation of the use of TCP relays to improve

aggregate throughput and to test the hypothesis that the
use of relays improves bandwidth utilization.

We validate our hypothesis via an empirical study.
We present the related work in Section II and describe the

analytical model for Cascaded TCP in Section III. Section IV
describes the testbed and experiments. Section V explains the
empirical results. We evaluate the analytical model and results
in Section VI. Conclusions and directions of further research
are presented in Section VIII.

II. RELATED WORK

As Cheshire suggested, with poor latency there is only so
much that one can do [3]. Nevertheless, by using a divide-and-
conquer approach, we can address the challenges imposed by
large latencies. Border et al. make a case for performance-
enhancing proxies (PEPs) [4], where they propose a generic
divide-and-conquer approach to improve performance. They
argue that PEPs may be applied at the application, transport
and/or link layer for the purposes of tunneling, compression,
reliability or improving throughput. They suggest that the
decision whether to use proxies “should be under the control of
the end user” [4]. We build on PEPs and propose an analytical
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model that can be automated to decide whether Cascaded TCP,
PEPs, or the like should be used or not.

Many application acceleration proxies are available
today from different vendors and inspired by performance-
enhancing proxies. They are typically marketed as front-
end-optimization, dynamic-site-optimization, and WAN-
acceleration solutions.

Content distribution networks [5] use caches to house data
near the users’ location. While this reduces latency, it can
only be applicable in scenarios where the data is available a
priori. Such an approach may not be applied to “Big Data”
applications, where the only option is to use the data or discard
it, as in the case of the Long Wavelength Array.

Research on congestion-control to improve network per-
formance has led to the development of algorithms such as
BIC [6], CUBIC [7] and Compound TCP [8]1. In contrast with
TCP New Reno, a packet loss in these algorithms triggers an
aggressive search for available bandwidth by making drastic
changes to window sizes. While they do improve throughput,
they adversely impact TCP friendliness and RTT fairness [9].
In contrast, Cascaded TCP reduces the latency that a connec-
tion experiences by segmenting the path.

On the other hand, algorithms such as XCP [10] and
ECN [11] provide the sender with control information to avoid
losses due to congestion. Subsequently low aggregate through-
put can be avoided by minimizing losses and thereby side
stepping the drastic changes in window sizes (i.e., reduction
due to loss followed by recovery). However, XCP and ECN
are effective only when appropriate active queue management
policies are implemented. Cascaded TCP, on the other hand,
reduces the latency for each TCP segment that forms the
logical connection, thereby improving aggregate bandwidth,
even with AQM.

Alternate methods of increasing throughput have been pro-
posed to parallelize data transport. Research done by Sivaku-
mar et al. [12] and Zhang et al. [13] are select examples.
Part of the networking community is opposed to such methods
because they are not TCP friendly. Note that Cascaded TCP
can be combined with other optimizations; if throughput for
a single flow can be improved with Cascaded TCP, the same
may be applied to each flow of the parallel streams.

Sophisticated methods of communication such as hybrid
(packet- and circuit-switched) networks have been analyzed
by Veeraraghavan et al. [14] and use a decision process to
choose between possible options. We seek to provide similar
guidance but for packet-switched networks with relays.

Pucha and Hu [15] suggest overlay networking that enables
layer-4 forwarding. Our research strengthens the argument for
layer-4 forwarding as a means to increase bandwidth utiliza-
tion with an analytical model that assists with the decision as to
when Cascaded TCP should be used and with a comprehensive
empirical analysis involving a wider spectrum of tests.

1BIC, CUBIC, and Compound TCP are not as widely deployed. FreeBSD
and Mac OS X use TCP New Reno as the default congestion-control
algorithm. Compound TCP, in Microsoft Windows Vista, is disabled by
default. Linux kernel 2.6.19 and onwards use CUBIC as the default algorithm.

III. ANALYTICAL MODEL AND CASCADED TCP

Let Tcascaded be the time required to complete the transfer
of data using a cascade of relays. We express this as

Tcascaded = Toverhead + Ttransfer (1)

where Toverhead is the overhead of using cascaded TCP and
Ttransfer is the time required to complete the transfer using
relays. Note that Toverhead = Tsetup + Tproc , where Tsetup is
the time required to setup a cascade of relays and associated
TCP connections and Tproc is the processing overhead.

Given Tlh as the time required to transfer data using long-
haul TCP, it would be prudent to choose Cascaded TCP if the
overheads do not outweigh the benefits, i.e.,

Tcascaded < Tlh or (2)
Toverhead < Tlh − Ttransfer . (3)

A. Transfer Time for Long-Haul TCP (Tlh)

We know that throughput is inversely proportional to latency
between end-points. The rate of increase in throughput is also
coupled with latency as the longer the latency, the longer it
takes the congestion-control algorithm to increase the sender’s
TCP window size and converge towards the ideal bandwidth.
The same conclusions can be derived from Mathis’ model [16]:

throughput ≤ cMSS

RTT
√
p
, (4)

where MSS = maximum segment size, RTT = latency, p =

loss probability, c =
√

3
2b such that b = 1 for long-haul TCP

and b = 2 when delayed ACKs are enabled.
If S is the size of data, then using (4), the average transfer

time over long-haul TCP is expressed as:

Tlh ≤
S

throughput
=

S(RTT
√
p)

cMSS
. (5)

There are much more precise models than Mathis’ approx-
imation such as that by Padhye et al. [17]. We chose Mathis’
approximation for its simplicity, though Padhye’s or other
models may be used. However, the models cannot be applied
to short-lived TCP flows as their entire lifetimes are usually
within the slow-start phase.

B. Data Transfer Time for Cascaded TCP (Ttransfer )

Cascaded TCP may be classified as non-pipelined or
pipelined, based on the mechanics of the relay [2]. The relay
is non-pipelined when it stores all the traffic coming from
the sender until the connection is closed. Once the sender’s
connection closes, the relay starts forwarding traffic to the
destination (or the next relay in the chain). It is understandable
that such an approach would not be a viable option, particu-
larly for streaming data. In contrast, a relay is pipelined when
it is allowed to forward packets as soon as they are available
in the queue. To avoid packet drought in the buffer — when
a relay does not have enough data to send — the relay’s
outbound TCP connection may wait for W windows before
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starting transmission. Therefore, transfer time Ttransfer or in
particular the pipelined transfer time Tpc can be expressed as:

Ttransfer = Tpc ≤
S(RTT k

√
pk)

c MSS
+W

N∑
i=1

RTT i, (6)

where for each i = 1, ..., N , RTT i denotes the round-trip
time for TCP connection i. The first term is the bottleneck
link transfer time. From (4), the bottleneck link would be k =
argmin{i = 1, . . . , N : RTT i

√
pi}— that is the link with the

lowest available bandwidth. The second term is the buffering
to prevent drought and comes from the first W end-to-end
round-trip times that each connection waits before starting its
transmission. As window scaling is enabled for sizes beyond
64 KB and it takes 16 round trip times during the slow start
phase for the window to grow beyond 64 KB, we choose 16
as a default value for W in (6).

Note that both (5) and (6) depend on latency (RTT ) and
loss (p). Here the message size may be considered a constant
when choosing between long-haul and cascaded TCP.

C. Setup Time for Cascaded TCP (Tsetup)

The time to setup relays has a strong correlation with latency
between source and relays. This is because setup time involves
sending configuration parameters to the relay to trigger setup.
Thus we can approximate setup time with the time it takes
for the first payload segment to arrive. All relays along the
path may be triggered in parallel. By doing so, the time to
trigger relays that are closer to the sender is hidden by the
time to trigger the relay that is the farthest. For the sake of
simplicity we use the latency RTT between the sender and
the receiver. A TCP connection is typically setup after one-
and-a-half round trip. The first payload may arrive along with
the third segment in the 3-way handshake. Therefore:

Tsetup ≈ 1.5 RTT . (7)

If this optimization were not applied and relays were setup
in a sequence the overall setup time would be the sum of setup
times for all the relays, that is Tsetup ≈

∑N
i=1 1.5 RTT i,

where N is the number of relays.

D. Processing Overhead (Tproc)

The processing overhead may be approximated by the time
the relay process waits to avoid buffer drought, which is
accounted for in (6). Note that the overhead of data passing
through the relay’s transport layer instead of being forwarded
at layer 3 by a router would be negligible when compared to
the waiting time to avoid buffer drought.

E. Summary

We can estimate Tlh , Ttransfer , Tsetup and Tproc from (5),
(6) and (7), which allows us to estimate Toverhead and evaluate
the condition (3). We present and discuss the throughput esti-
mates in relation to empirical measurements in Section VI-A.

IV. EXPERIMENTAL SETUP

We use iperf v2.0.5 [18] to emulate the sender (client) and
receiver (server) in our testbed. The nodes run FreeBSD 9.0.
The relays are implemented with netcat [19] as layer-4 relays.

A. Approach
We configure the operating system appropriately (e.g., set

kernel frequency timer at 4000 Hz, define maximum window
sizes such that they do not gate bandwidth, enable window
scaling and selective acknowledgements). We compute the ex-
pected bandwidth-delay product for the end-to-end path. This
allows us to determine the transfer size for the combination
of bandwidth capacity, end-to-end latency, and packet loss,
to ensure that TCP connections remain in steady state for
at least 90% of their lifetime. We then configure Dummynet
pipes at the sender and relay(s) to emulate available band-
width/capacity, end-to-end latency, and packet loss. We vary
configurations for Dummynet pipes in the ranges listed in
Table I. We measure achievable bandwidth, latency, and packet
loss and take between 10 and 30 samples for each permutation
of the parameters to compute statistical significance.

TABLE I
VALUES USED TO CONFIGURE DUMMYNET AND EMULATE TESTBED.

Metric Range of Values
Round Trip Time (ms) 8, 16, 32, 64, 128, 256, 512
Bandwidth (Mbps) 0.512, 1, 2, 4, 8, 16, 32, 64, 128, 256
Packet Loss (%) 0.001, 0.01, 0.1, 1

1) Long-Haul (LH) TCP: The long-haul TCP connections
provide a performance baseline for our testbed. To measure
baseline performance, we route through the same path by
enabling layer-3 forwarding at the relays. This is done to
make the emulation overhead the same for both long-haul and
Cascaded TCP. For long-haul tests, the sender is configured to
have the first relay node as its gateway. The client addresses
the server as the receiver/destination. Here the bandwidth es-
timates are computed as follows: throughput = transfer size

test duration .
2) Pipelined Cascaded TCP: Netcat is setup at the relays

to act as layer-4 forwarding gateways. As data arrives at the
relay, it is pipelined/forwarded to the next relay in the chain
or to the destination if it is the last relay. In this case, we
cannot assume that the test is complete when the client’s
TCP connection terminates; the relay may still be forwarding
data when the sender’s connection terminates. Therefore our
measurements include the time until the last relay in the chain
is done forwarding traffic to the server.

We recognize that Dummynet’s emulation of bandwidth and
latency is coarse-grained; Dummynet queues packets, which
can increase delay in addition to what is configured. This
coarse-grained emulation and bursty behavior is apparent in
low-latency emulations where measured bandwidth results in
observations greater than the limits defined.

V. RESULTS

We collect and analyze results for all permutations of the
metrics defined in Table I using one and two relays. Due to
space constraints, we only present results for a loss factor of
0.1%, which we chose based on typical loss values [20].
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A. Observations from the Testbed

1) Bandwidth utilization decreases with increase in latency:
As summarized in Figure 2(a), we see that bandwidth utiliza-
tion decreases with increased latency. We see similar trends for
long-haul and Cascaded TCP. Utilization decreases further as
loss increases. These observations remain valid for all varieties
of bandwidth capacities we tested. We can derive the same
conclusions from Mathis’ throughput approximation.
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Fig. 2. Bandwidth utilization with a single relay for varying link capacities (4
– 128 Mbps) and latency (8 – 512 ms) at a loss of 0.1%. The 95% confidence
intervals are not shown here as all observations fall within ±5% of the mean.

For low-bandwidth limits and latencies, we observe that the
bandwidth utilization is at times greater than 100%, which is
not possible in reality. We attribute this to the coarse-grained
emulation by Dummynet. This behavior is most apparent for
low-latency configurations. We compute the transfer size based
on the bandwidth-delay product such that the TCP connection
remains in streaming state for about 90% of the time; for
small bandwidth-delay products, the transfer sizes are small
and tests complete in a few seconds. Variations in emulation
at such granularities have significant impact on the results.
In contrast, we do not see the same behavior for tests with
large bandwidth-delay products as the errors are amortized
over the duration of the test. We could have increased transfer
sizes to amortize the effect of these errors. While doing so for
short latencies amortized the errors, for large latencies the test
durations became unreasonably long. An alternate approach
would be to use different transfer size proportions for short
and long latencies; in this case, however, we would not be
doing a fair comparison across configurations.

We note that if loss and latency configurations remain the
same and link capacities increase, the throughput achieved
has a slight but noticeable decrease. This observation may
be explained as follows. Assume a link with given bandwidth
capacity and uniform loss. Here the window size will be able to

grow to a certain percentage of the maximum size before loss
is experienced and subsequently the window size drops. If the
loss behavior remains the same, the percentage of maximum
window size achieved is less for a high capacity link. This is
observed in the empirical results.

2) Throughput improves by introducing layer-4 relay(s):
Figure 2(a) shows that introducing a single relay results
in significant improvement in bandwidth utilization due to
better average throughput. By introducing a relay halfway,
we split the connection into two TCP connections. Each split
connection has shorter latency and therefore results in better
aggregate throughput and thus better bandwidth utilization.
Figure 2(b) provides a summary of the relative difference
in bandwidth utilization. Cascaded TCP with a single relay
delivers up to twofold improvement in bandwidth utilization.

Figure 2(a) shows that as latency increases, Cascaded TCP
achieves increasing bandwidth utilization. The relative differ-
ence continues to grow and goes beyond 100% in some cases,
as seen in Figure 2(b). For example with latencies of 256 ms
at 8 Mbps, Cascaded TCP continues to be twice as efficient
as compared to long-haul TCP. The same is observed for
bandwidths as high as 32 Mbps and latencies 64 ms, which
is in fact the same bandwidth-delay product as the former
example. We see similar trends with varying losses too.

We observe smooth trends in our results except for select
cases in Figure 2(b) of 32 Mbps capacity and 128 ms latency.
This apparent anomaly is due to the observed value being just
over the lower bin limit and hence an artifact of binning.

We note that throughput drops at high bandwidth-delay
products and we see diminishing returns with one relay. We
anticipate that if more relays are added, while assuming that
latency is equally split between them, we would continue to
see increasing utilizations.

3) Multiple relays continue to improve throughput: Figure 3
shows that using two relays results in further improvement
in throughput and therefore utilization. With two relays,
Cascaded TCP achieves approximately 90% utilization when
the end-to-end latency is 64 ms and loss is 0.1%. This is
reasonably near the theoretical limit of about 94% when
compared to a connection with maximum utilization — the
limit of 94% is experienced due to protocol overheads. We
see the same trends for all cases of losses. Here again, we
see that median bandwidth utilizations for Cascaded TCP are
always significantly better than that of long-haul TCP.

4) Cascaded TCP performs well with high losses: With
Cascaded TCP, we achieve better throughput even when losses
are high because the latency for the split TCP connections
is shorter, allowing the congestion-control algorithm to react
more quickly. This delivers better throughput and therefore
better bandwidth utilization. With zero losses, Cascaded TCP
enables throughput up to twice as much as long-haul TCP
connections; this is observed even when latencies are as high
as 256 ms. Here we do not show bandwidth utilization results
for varying losses due to lack of space.

Note that for low loss, the improvement in throughput for
two relays over one relay is not of the same magnitude as it
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Fig. 3. Results for link capacity of 32 Mbps, latencies of 64 ms and 128 ms
and losses of 0%, 0.01%, 0.1% and 1% are presented to compare long-haul
and cascaded TCP with one and two relays. Zero relays imply long-haul TCP.

is for one relay over no relay (or long-haul TCP), as shown in
Figure 3. However, as loss increases, we see that the magnitude
of improvement is similar for two relays as compared to
one and one relay as compared to none. At high losses, the
congestion-control protocol does not allow the window sizes
to grow because of losses and therefore we are able to see
the benefits of having relays. The more relays we add, the
more we alleviate the impact of losses. However at low losses,
throughputs increase up to link capacity and are gated and
thus the benefits of increasing the number of relays is less
evident. In Figure 3, for 0.01% loss, we see that the average
measured throughput for 128 ms latency configuration is less
for two relays as compared to one relay. This anomaly is
because of temporary self-congestion induced by the sender.
Apart from this anomaly, we did not observe this behavior for
other configurations.

5) Cascaded TCP measurements correlate with Mathis’
model: Figure 4 shows measured bandwidths with respect
to Mathis’ approximation of the upper limit on bandwidth.
We see that our empirical results for long-haul TCP have
a strong correlation with Mathis’ model, until we hit the
link capacity — where throughput is capped. In other words,
empirical observations show that beyond certain percentages
of available bandwidth, the link capacity starts becoming
bottleneck. As mentioned earlier, when throughputs are gated
by link capacity, the measurements are reasonably near the
theoretical limit of about 94%.

Cascaded TCP has a steep slope, indicating that Cascaded
TCP results in better throughput than what Mathis’ model
predicts, based on the end-to-end latency. The steep slope
is observed because Cascaded TCP effectively doubles the
achieved bandwidth by allowing the congestion-control al-
gorithm to react faster; this assumes that the link capacity
supports higher bandwidths.

We observe that throughputs experienced by a long-haul
TCP connection for a particular configuration are about half
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of that observed by Cascaded TCP (with one relay). This effect
is profound at larger latencies (e.g., 128 ms and 256 ms). We
discuss the reasons for this behavior in Section VI-B.

B. Case Study using PlanetLab

We conducted a case study on real networks using the
PlanetLab testbed. We evaluated the use of a single relay on
different network paths. These paths included inter-continental
links. Our findings across these network paths were similar.

Note that with PlanetLab, as we operate in the live network,
the cross traffic inhibits optimal bandwidth utilization. Also,
there may be unknown circumstances (e.g., asymmetric link
capacities) and events that may or may not influence the
behavior of the traffic flowing across.

TABLE II
FINDINGS FROM A SELECT CASE STUDY

Metric Value
Mean latency, client to server 448.07ms± 1.6ms
Mean latency, client to relay 194.74ms± 0.58ms
Mean latency, relay to server 295.06ms± 0.34ms
Packet loss, all paths 0%
Long-haul bandwidth µ = 5.85Mbps, CI : (5.25, 6.39)
Pipelined bandwidth µ = 6.44Mbps, CI : (6.00, 6.98)
p-value, H0 : µp = µlh 0.011∗

Consider the path: from planetlab1.iitkgp.ac.in, via
planetlab-1.imperial.ac.uk, to planetlab1.sfc.wide.ad.jp. The
performance measurements are summarized in Table II. We
see that the difference in throughput achieved by Cascaded
TCP as compared to long-haul TCP is statistically significant.
Here the difference is limited to about 10%, which can
be explained by the use of default window sizes for TCP
connections from the hosts. We were unable to reconfigure the
hosts to use larger window sizes due to limited administrative
access. These default window sizes gated the sender window
sizes from growing to accommodate the larger bandwidth-
delay product. This resulted in lesser gains as compared to
experiments in an ideal environment.

VI. DISCUSSION

A. When does Cascaded TCP become viable?

As observed in Figures 2(a) and 2(b), pipelined Cascaded
TCP is viable for almost all configurations except for small
bandwidth-delay products. In Figure 2(a), we see that a single
relay continues to be efficient for bandwidths as high as
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64 Mbps (at 64 ms) and 128 Mbps (at 32 ms). Beyond that,
to remain efficient (i.e., obtain greater than 80% utilization),
a second relay is needed, as illustrated in Figure 3.

As discussed in Section III-E using (5), (6) and (7), we can
evaluate condition (3), which allows us to determine if using
Cascaded TCP would be feasible. We compute estimates for
throughput using the Cascaded TCP model and compare them
with measured throughput. Results for 128 Mbps link capacity
are presented in Figure 5.
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model we use loss of 0.001% to approximate 0% loss. Note that bandwidth-
delay products are proportional to latencies which are shown in this figure.

We see that the analytical model provides acceptable ap-
proximations for achievable bandwidth. The errors can be
partly explained by the simplifying assumptions we use to
approximate overheads. Note that Mathis’ model is also an
approximation upon which we base our model. If Cascaded
TCP were based on a more precise model (e.g., [17]) it would
yield better estimates. Nevertheless the analytical model allows
us to make an informed decision whether to use Cascaded TCP
or not. As with Mathis’ model, the predictions beyond link
capacity are not valid and for negligible losses (i.e., 0.001%)
the TCP model overestimates throughput (e.g., throughput
estimates for 32 ms latency and 0.001% loss in Figure 5).

The relative differences computed from empirical results
(also shown in Figure 2(b)) for the same configuration high-
light that we achieve approximately 100 percent improvement,
which is what the model predicts.

In contrast to large bandwidth-delay product scenarios,
we note that the model predicts minimal improvement in
throughputs for low bandwidth-delay products.

In summary, we observe that Cascaded TCP is beneficial
when the bandwidth-delay product is greater than 32 KB,
which incidentally is less than the the typical default limit
for window sizes — FreeBSD and other operating systems

typically have 64 KB as the default TCP window size.

B. How many relays do we need?

We can modify Mathis’ throughput approximation to ac-
commodate relays. If we assume homogeneity, the throughput
would be as shown in (8), suggesting that the maximum
throughput achieved would be that of the bottleneck. We may
represent the latency for the bottleneck link as RTT/(N +1)
and loss as p/(N+1), where N is the number of relays and for
the sake of simplicity, loss is assumed to remain the uniform
across links. Therefore, we have:

throughput =

(
MSS
RTT
N+1

) 1√
p

N+1

 =
(
R3/2

)
K, (8)

where R = N + 1, and K = MSS
RTT

√
p . Subsequently,

∂B

∂R
=

3

2
R1/2K. (9)

Equation (9) is a monotonically increasing function. This
implies that if we continue to increase the number of relays
that we should expect bandwidth utilization to increase until
the capacity limits are reached. In Figure 4, we see that if we
introduce a relay, we effectively double the throughput. This
is until the link capacity is reached. While this approximation
may be true theoretically, it is not so practically. From a
cursory case study of available locations to setup relays
between Virginia and New Mexico we concluded that we
would be able to setup at most six to eight relays.

C. Where should the relays be located?

For simplicity we assume uniform spacing for the relays —
for example one relay is setup half way between the sender
and the receiver, similarly two relays are located such that the
latency for each layer-4 hop is about one third the end-to-end
latency between the sender and the receiver. This may not be
a practical assumption. Our model and empirical results show
that maximum improvement in performance is experienced
when the relays are equally spaced. If they were to be placed
close or farther to the source the benefits would be reduced.
In this case the bottleneck bandwidth will be dictated by the
segment with the longer RTT and the benefits would decrease
in proportion to the ratio of the longer segment’s RTT and
the long-haul connection’s RTT .

We also assume that the relays are located along the
same path the long-haul TCP traffic traverses. It may not be
possible to always locate a relay along the same path the
long-haul traffic traverses. Also, an alternate path may have
different loss, latency and capacity configurations therefore
incur additional overheads.

D. Does Cascaded TCP maintain end-to-end semantics?

The end-to-end semantics of TCP are broken when using
Cascaded TCP because the connection is split into a cascade of
independent TCP connections, which are put together by the
relays to form a logical connection. We note that end-to-end
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semantics are also broken by middleboxes such as firewalls
and NATs. The concerns we face in maintaining end-to-end
semantics with Cascaded TCP relays are no more than what
we already experience with middleboxes. As long as the risks
of using such relays/middleboxes are understood, the benefits
of increased throughput outweighs the concerns. Nevertheless
this may not apply to all situations.

E. Does Cascaded TCP maintain TCP friendliness?

The expectations from congestion control algorithms are
that they maintain high bandwidth utilization, RTT fairness
and end-to-end semantics. They are also expected to be TCP
friendly. As Cascaded TCP continues to use TCP New Reno,
it maintains both TCP friendliness and RTT fairness while
improving network throughput.

BIC, CUBIC and Compound TCP do maintain end-to-end
semantics and improve upon bandwidth utilization (when com-
pared with TCP New Reno), however, they do not maintain
TCP friendliness and RTT fairness for large latencies [9].

F. Should the use of Cascaded TCP be hidden from the user
and how can it be deployed?

Whether the use of Cascaded TCP relays is apparent to
applications or not depends on how the transport layer imple-
ments the solution. What is important to note is that there
is a need to make a decision based on context in which
communication occurs — for example based on latency, loss,
link capacity experienced by the connection and availability
of relays. This decision process may be transparent and
automated by a daemon implementing the analytical model
as described in Section III, subsequently aiding the network
stack. or it may be controlled by the end user as was suggested
by Border et al. [4] by implementing policies.

As explained in Section IV we used an expedient method to
establish a proof of concept. Ideally, to support the transport
layer a framework would be required to identify potential
relays, setup transport connections between the relays and
manage communication.

VII. FUTURE WORK

We plan to investigate how cascaded TCP, which we’ve seen
to be a viable step towards improving throughput, performs in
connection with other congestion control algorithms (such as
[6], [7]) — to study the benefits of using them together and
as an alternate solution. We also intend to study the benefits
of Cascaded TCP for parallel streams.

If the sender does not generate traffic at a suitable rate the
relays may experience buffer drought. We try to accommodate
for this aspect in our model (in (6)) by considering the number
of windows that the relay waits for before it may start relaying.
Alternatively, if the sender generates traffic at a higher rate
than what the relay could accommodate, we face a buffer
overflow problem. We are in the process of formulating an
optimization problem that allows us to choose the location of
relays and buffer sizes when considering the latency and loss
constraints while maximizing throughput.

VIII. SUMMARY

In this paper, we have shown that we can improve bandwidth
utilization by reducing the impact of end-to-end latency on
typical congestion-control protocols. We do so by introducing
layer-4 forwarding relays, which allows us to split a TCP
connection into two or more TCP connections that are cas-
caded together to form one logical end-to-end connection. As
each segment’s congestion-control algorithm operates indepen-
dently and reacts to feedback from the receiver much faster
than that of the long-haul TCP connection, Cascaded TCP
enables greater overall throughput and thus better bandwidth
utilization. We present an analytical model that allows us to
make an informed decision as to when the use of Cascaded
TCP would be viable. We present and evaluate the results
of the analytical model and our empirical tests. We conclude
that introducing relays results in a significant increase in
throughput for many practical scenarios.
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