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ABSTRACT
An acute hypertensive episode (AHE) refers to a period of extremely
high blood pressure (BP) that can arise suddenly in critical care,
and, if not identified early, can subject patients to the risk of severe
organ damage and even potential mortality. The early assessment
of AHE risk saves lives by enabling proactive medical intervention.

We propose GRAPPEL, a novel graph-based approach that as-
sesses a patient’s risk of experiencing an AHE before it occurs based
on the analysis of their BP recorded over time in critical care. Our
algorithm consists of two major components: (1) the construction of
a time-evolving graph representation of a patient’s time-series BP
data to encode the temporal BP variations into a graph and (2) the
generation of real-time AHE risk scores based on quantifying the
graph changes at each time step, triggered by the arrival of a new
BP record. Notably, GRAPPEL provides real-time and early AHE
risk assessment based solely on BP records that can be irregularly
spaced in time, making it suitable for critical care environments. Via
our extensive experiments on 3,476 critical-care visit records, we
demonstrate the superiority of our approach over existing methods
by achieving an AUC-ROC score of 91% in identifying patients at
risk of experiencing an AHE up to 170 minutes in advance (and an
AUC-ROC score of 94% up to 20 minutes in advance).
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1 INTRODUCTION
In critical care settings, such as surgery and intensive care units
(ICUs), early assessment of health risks is of utmost importance
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Figure 1: Motivation for early risk assessment of AHE

because (1) the gravity of the health risks observed in critical care
is severe and often life-threatening and (2) the condition of patients
within these environments deteriorate rapidly, leaving very little
time for life-saving medical interventions if detection is delayed.
Thus, early risk assessment provides healthcare professionals the
necessary time to evaluate the risks, rapidly determine a course of
medical intervention, and proactively administer the medical inter-
vention, thereby preventing a severe medical event from occurring.

One condition in critical care units that exemplifies this urgency
is an acute hypertensive episode (AHE) [11]. As shown in Figure 1,
AHE refers to a period of high blood pressure (BP), which if not
identified early, can lead to severe consequences, including irre-
versible organ damage, stroke, and even potential mortality [11, 17].
The early risk assessment of AHE in patients enables doctors to
proactively administer milder interventions, e.g., oral BP-lowering
agents, to prevent such episodes from occurring in the first place.

Previous research efforts for hypertension prediction include
clinical threshold-based methods [16, 17], machine learning (ML) [4,
10, 12, 13], and deep learning (DL) [14], but these methods have
their limitations. For example, as illustrated in Figure 1, threshold-
based methods may mistakenly associate isolated BP spikes that are
above a predefined threshold with AHE, resulting in false positives.
These isolated spikes can be caused by phenomena such as the
white coat syndrome [9], where a patient experiences a temporary
spike in BP due to anxiety in a clinical setting without necessarily
being at risk of encountering AHE in the future. ML methods face
challenges in processing time-series data and typically rely on static
statistical features computed over batches of data, which restricts
their ability to provide real-time and early risk assessment. DL
methods, such as long short-term memory (LSTM), exhibit promise
in achieving high prediction accuracy, but they show diminished
performance with irregularly spaced time-series data, as they rely
heavily on regularly spaced time steps.

Previous studies have highlighted the effectiveness of risk-scoring
methods, such as the early warning score (EWS) [2], to facilitate
early risk assessment. These methods are based on the premise
that the decline in patient health within critical care settings often
manifests as abnormal deviations in continuously monitored physi-
ological vitals such as pulse, BP, and respiratory rate. By analyzing
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the time-series data of these vitals, prolonged abnormal deviations
from the expected normal values can be detected and flagged as
“high risk.” Real-time and early risk-scoring algorithms can there-
fore alert healthcare professionals, enabling them to administer
timely medical interventions to prevent adverse outcomes and mor-
tality. Moreover, this approach can help mitigate the challenge of
the limited availability of qualified staff in critical care.

Building upon this concept, we proposeGRAPPEL, a novel graph-
based real-time and early risk assessment method for identifying
patients at risk of experiencing AHE, prior to its occurrence. To the
best of our knowledge, our GRAPPEL methodology is the first to
employ a time-evolving graph-based approach for real-time and
early risk scoring in the context of AHE. Our algorithm only relies
on BP data, which can be irregularly spaced in time, mirroring the
realistic data availability in critical care units.

We outline our contributions as follows:
• A novel methodology for real-time and early risk assessment of
AHE that offers the following features:
– A time-evolving graph representation of a patient’s time-series
BP data that encodes the temporal variations of BP into a graph.

– Real-time AHE risk scores that quantify changes in the graph
at each time step, triggered by the arrival of a new BP record.

– The ability to use sparse and irregularly spaced BP records.
• A rigorous evaluation of the AUC-ROC score, sensitivity, speci-
ficity, and early risk assessment capability of GRAPPEL, com-
pared to existing methods using the MIMIC-III [7] dataset.
The rest of this paper is organized as follows. First, Section 2 pro-

vides background about the MIMIC-III dataset and AHE, along with
a review of prior research. Next, Section 3 describes the GRAPPEL
methodology, followed by Section 4, which evaluates GRAPPEL
and compares it to the existing state-of-the-art baseline methods.
Finally, Section 5 concludes and details the scope of future work.

2 BACKGROUND AND RELATEDWORK
Here we provide an overview of the MIMIC-III [7] dataset that
GRAPPEL will analyze; elaborate on the specific problem we are
addressing, namely the acute hypertensive episode (AHE); and
review the prior studies conducted in this field.

2.1 MIMIC-III dataset
We utilize the MIMIC-III dataset, which contains the physiological
vital records of over 40,000 critical care patients. For our analysis,
evaluation, and comparisons against the baseline methods, we focus
solely on the mean blood pressure (BP) recorded over time.

The MIMIC-III dataset includes three types of mean BP values:
(1) mean arterial blood pressure (ABPm) and (2) mean arterial blood
pressure (ARTm), acquired through invasive methods from radial
arteries of either hand, as well as (3) non-invasive blood pressure
(NBPm), gathered using non-invasive techniques. Figure 2 depicts
each step of our preprocessing pipeline for the MIMIC-III dataset.

2.2 Early risk assessment of AHE in critical care
Before analyzing the data for AHEs, we articulate a precise defini-
tion of an AHE. Following some similar approaches [3, 8], we define
an AHE as a 30-minute time window during which the BP data
points remain above 100 mmHg for at least 90% of the duration.

Critical care visits

Mean arterial blood pressure 
(ABPm, ARTm)

Mean non-invasive blood pressure 
(NBPm)

Filter critical care visits with atleast 70 BP data 
points. Count = 13923

Filter visits that have atleast 1 “window of 
interest” i.e., a 30 min window with atleast 
10 BP data points. Count = 3476

Select one out of the three mean 
BP types for each time step; 
whichever available or with a 
priority ABPm > ARTm > NBPm

Training data Testing data

Count = 2084

MIMIC-III dataset

Time-series BP data

Count = 1392

Types of mean BP values recorded 
during visits: 

Count = 3476

Figure 2: MIMIC-III dataset summary

Since the data points in the MIMIC-III dataset are irregularly
spaced, a 30-minute window can encompass as few as one BP data
point. To address this variability, we introduce a window of interest
(WoI), which is a 30-minute time window with a minimum of 10 BP
data points. If the window meets the AHE criteria (BP data points
above 100 mmHg for at least 90% of the duration), it is considered
an AHE window; otherwise, it is regarded as a non-AHE window.

We further partition the time leading up to the WoI into two
segments: the observation window (O) and the early risk assessment
window (E). The observation window (O), ranging from time 𝑡0 to
𝑡𝐸 , serves as the primary input for our algorithm and the baseline
methods. It comprises the time-series BP data and is utilized to
assess the effectiveness of GRAPPEL and the baselines in predicting
the occurrence of an AHE before it actually occurs at time 𝑡𝐴𝐻𝐸 .

In contrast, the early risk assessment window (E) is a flexible
time window that is specifically designed to evaluate the early risk
assessment capabilities of our algorithm and those of the baseline
methods. It varies the time interval between time 𝑡𝐸 and 𝑡𝐴𝐻𝐸 for
evaluating how far in advance amodel can anticipate the occurrence
of an AHE or, in our case, identify a high risk of AHE before it
actually occurs at time 𝑡𝐴𝐻𝐸 . The value of 𝑡𝐸 represents the degree
of earliness relative to time 𝑡𝐴𝐻𝐸 (Note that the input to the models
will always be time-series BP data from time 𝑡0 to 𝑡𝐸 ).

Figure 3 summarizes all the three time windows that we use for
the early risk assessment of AHE in this paper.

2.3 Prior art
AHE prediction has received relatively less attention compared to
the prediction of acute hypotensive episodes, which was addressed
as a challenge in the 2009 Computers in Cardiology competition [8].
Nonetheless, predicting AHE remains a significant research prob-
lem [6, 15]. Recently, researchers have proposed machine learn-
ing (ML) methods for hypertension detection, including SVM [12],
KNN [13], XGBoost [4], and random forest [10]. However, these
studies have primarily focused on non-critical patients, where early
detection or risk assessment specifically related to AHE is not the
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Figure 3: Early risk assessment of AHE

priority. Furthermore, these studies often rely on large datasets de-
rived from wearable devices or electronic health records (EHRs). In
critical care settings, however, data availability is limited, and phys-
iological vitals are typically recorded from the moment the patient
is admitted to the unit. This reduced data availability can pose chal-
lenges for ML methods. Additionally, ML approaches commonly
rely on static patient features such as mean and standard deviation
of physiological vitals and other clinical information, which do not
account for temporal changes. This means that these ML methods
require the entire batch of monitored vital data to be available at
once, rendering real-time or early assessment impractical.

Recent advancements in deep learning (DL) models, such as
LSTM [14], have demonstrated promising results in hypertension
detection using time-series BP data, achieving accuracy rates of
above 90%. However, the efficacy of these models diminishes rapidly
when regular intervals of data are not available. In other words,
LSTMmodels rely heavily on consistent and continuous data inputs
over time to maintain their performance.

3 THE GRAPPEL METHODOLOGY
Figure 4 shows GRAPPLE, our graph-based approach for early risk
assessment of AHE in critical care. It consists of two primary steps:
(1) the construction of a time-evolving graph using time-series BP
data and (2) the generation of AHE risk scores at each time step to
facilitate the real-time and early assessment of AHE risk.

We construct the time-evolving graph to capture the variations
of a patient’s BP over time, effectively encoding the patient’s BP
dynamics in a graph structure. The acute deterioration of a patient’s
health, such as an AHE, is often preceded by abnormal deviations
in their physiological vitals, in this case, BP elevation over time.
Prolonged elevation in the patient’s BP gets encoded as signifi-
cant changes in the time-evolving graph, both of which serve as
indicators of a high risk of AHE occurrence. We describe the time-
evolving graph’s construction process and explain how the graph
structure encodes the temporal fluctuations in BP in Section 3.1.

The generation of the AHE risk score at each time step involves
quantifying the changes in the graph triggered by the arrival of a
new BP record at that specific time step. Section 3.2 delves into an
explanation of this process, demonstrating that prolonged eleva-
tions in BP records and the corresponding changes in the graph
result in a high AHE risk score. This high AHE risk score signifies
an increased likelihood of AHE occurrence in the future.
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D13 and D14< 0   
→no edge

Older the node in time, lower the weight wi

Figure 4: GRAPPEL: real-time generation of AHE risk scores
using a time-evolving graph

3.1 Constructing a time-evolving graph from
time-series BP data

Our time-evolving graph develops from a seed graph 𝐺0 at time
𝑡 = 0 and then updates at each subsequent time step 𝑡 by incor-
porating a new incoming BP data point 𝐵𝑃𝑡 . To account for the
abnormal elevation of each new BP data point 𝐵𝑃𝑡 arriving at time
𝑡 from the expected normal BP values, we apply a calibration step
that involves subtracting an offset factor 𝛿 from 𝐵𝑃𝑡 , as shown in
Equation (1). This calibration is crucial for capturing the elevated
BP characteristics associated with AHE and ensuring positive risk
scores for future assessments.

𝐵𝑃𝑖 = 𝐵𝑃𝑖 − 𝛿 (1)

At each time step 𝑡 > 0, a new node 𝑁𝑡 and corresponding edges
𝐸𝑡 are introduced to expand the existing graph 𝐺𝑡−1, resulting in
the updated graph𝐺𝑡 . The newly added node 𝑁𝑡 represents the BP
data point 𝐵𝑃𝑡 at time 𝑡 , while the edges 𝐸𝑡 connect node 𝑁𝑡 with
the preexisting nodes in 𝐺𝑡−1, which represent previous BP data
points occurring prior to time 𝑡 .

The existence of an edge 𝐸𝑖 ∈ 𝐸𝑡 between node 𝑁𝑡 and an
existing node 𝑁𝑖 in 𝐺𝑡−1 is determined by a distance criterion 𝐷𝑖𝑡

with the condition 𝐷𝑖𝑡 > 0. Distance 𝐷𝑖𝑡 incorporates (1) the BP
values 𝐵𝑃𝑡 and 𝐵𝑃𝑖 associated with nodes𝑁𝑡 and𝑁𝑖 , reflecting their
respective magnitudes, and (2) the temporal proximity between
node𝑁𝑡 and𝑁𝑖 , indicating the time interval between them. A higher
value of 𝐷𝑖𝑡 is indicative of nodes 𝑁𝑡 and 𝑁𝑖 having elevated BP
values and being closer to each other in time. This means that nodes
with higher BP values are more likely to have more edges (higher
degree) and are connected to nodes representing records closer in
time. The formulation of criterion 𝐷𝑖𝑡 is shown in Equation (2):

𝐷𝑖𝑡 = max(𝐵𝑃𝑡 , 𝐵𝑃𝑖 )2 − ( 𝑡 − 𝑖

𝛼
)2 (2)

The level of connectivity between node 𝑁𝑡 and temporally dis-
tant nodes is determined by the time scaling factor 𝛼 . For instance,
increasing the value of 𝛼 establishes connections between node 𝑁𝑡

and nodes that are further away in time from time 𝑡 . The entire
graph becomes fully connected if we set 𝛼 to infinity. On the other
hand, as 𝛼 approaches zero, the graph will have no edges.
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3.2 Real-time AHE risk scoring
After we have constructed a time-evolving graph, we proceed to
calculate the AHE risk score at each time step following the update
of the graph with the addition of a new node (BP record). To explain
our real-time AHE risk scoring, we first define a node’s local outlier
factor (LOF) and time weightage factor (w) as follows:

Definition 1. Local Outlier Factor (LOF). In a time-evolving
graph 𝐺𝑡 at time 𝑡 , local outlier factor LOF for a node 𝑁𝑖 where
𝑖 ∈ [1, 𝑡] can be formulated as follows:

𝐿𝑂𝐹𝑖 =

𝑝∑︁
𝑗=1

|𝐷𝑒𝑔𝑟𝑒𝑒 (𝑁𝑖 ) − 𝐷𝑒𝑔𝑟𝑒𝑒 (𝑁 𝑗 ) |
max(𝐷𝑒𝑔𝑟𝑒𝑒 (𝑁𝑖 ), 𝐷𝑒𝑔𝑟𝑒𝑒 (𝑁 𝑗 ))

(3)

where 𝐷𝑒𝑔𝑟𝑒𝑒 (𝑁𝑖 ) is the node degree of 𝑁𝑖 , 𝑝 is the total number of
neighbors of 𝑁𝑖 , and 𝐷𝑒𝑔𝑟𝑒𝑒 (𝑁 𝑗 ) is the node degree of neighbour 𝑁 𝑗 .

Definition 2. Time Weightage Factor (w). In a time-evolving
graph 𝐺𝑡 at time 𝑡 , time weightage factor w for a node 𝑁𝑖 where
𝑖 ∈ [1, 𝑡] can be formulated as follows:

𝑤𝑖 =
𝛽

𝑡 − 𝑖 + 1
(4)

where 𝛽 is a weight scaling factor. It scales the AHE risk score from
decimal to readable integer ranges.

The AHE risk score at time 𝑡 , denoted as 𝐴𝐻𝐸𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒𝑡 , is
calculated using the following values associated with each node 𝑁𝑖

in the graph 𝐺𝑡 : (1) the time weightage factor𝑤𝑖 , (2) the BP value
𝐵𝑃𝑖 , and (3) the local outlier factor 𝐿𝑂𝐹𝑖 where 𝑖 ∈ [1, 𝑡].

First, the time weightage factor (𝑤) of each node reflects the
node’s importance based on its temporal position in the graph.
Nodes closer to time 𝑡 , have a higher𝑤 and contribute higher to the
risk score as our focus is real-time AHE risk assessment. Second,
the BP value associated with each node in the graph reflects the
magnitude of BP elevation. Nodes with high BP values contribute
higher to the risk score as we see elevated BP as a sign of AHE
risk. Third, the local outlier factor (𝐿𝑂𝐹 ) of each node reflects its
degree of dissimilarity with its preceding nodes in terms of BP
value or node degree (nodes with higher BP values have higher
node degrees). Nodes that are similar to their preceding nodes have
lower LOF values and contribute higher to the risk score as we see
the prolonged elevation of BP as a sign of AHE risk.

Previous studies, such as [17], and our analysis of the MIMIC-III
dataset indicate that the rate and magnitude of BP elevation may
be at least as important as the absolute value of BP in assessing the
risk of AHE. We observe that the AHE event is usually preceded
by a prolonged elevation in BP instead of a sudden spike and fall,
as shown in Figure 5. We can distinguish the former from the
latter using LOF. LOF has previously been used for graph anomaly
detection, such as [1], but we modify it slightly to use it for our
AHE risk assessment task.

We calculate the AHE risk score 𝐴𝐻𝐸𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒𝑡 at time 𝑡 using
the following equation:

𝐴𝐻𝐸𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒𝑡 =

𝑡∑︁
𝑖=1

𝑤𝑖 ∗ 𝐵𝑃𝑖 ∗ (1 − 𝐿𝑂𝐹𝑖 ) (5)

4 RESULTS AND EVALUATION
To evaluate the effectiveness of GRAPPEL and compare it against
the existing state-of-the-art baseline methods, we use three key
metrics: AUC-ROC score, specificity, and sensitivity. Additionally,
we test the methods for their early risk assessment capabilities.

4.1 Experimental Setup
To evaluate our methodology, we first divide a patient’s time-series
BP data into windows as shown in Figure 3 and then cast the
problem of early risk assessment of AHE as a classification problem.
If the window of interest (𝑊𝑜𝐼 ) is an AHE window, we consider
the patient to be a positive class sample and if𝑊𝑜𝐼 is a non-AHE
window, it is a negative class sample.

Due to the irregular time spacing of the BP records in the MIMIC-
III dataset, it becomes challenging to define the observation window
(𝑂) and early risk assessment window (𝐸) in minutes. For instance,
setting the window to 30 minutes would result in some patients
having over 40 data points in the 𝑂 window, while others would
have only one. As a result, we define 𝑂 and 𝐸 based on the number
of BP data points rather than minutes.

We set the total number of data points in 𝑂 + 𝐸 combined to 60,
ensuring that 𝑂 comprises at least 10 data points. We then slide 𝐸
in the range of {0, 1, ..., 50} data points, which subsequently results
in 𝑂 having a range of {60, 59, ..., 10} data points.

To make our results readable, as discussed in Section 4.4, we
convert the “number of BP data point” scale to the “time (in mins)
before WoI” scale. We achieve this conversion by calculating 𝑡𝐸 −
𝑡𝐴𝐻𝐸 i.e, 𝐸 for every patient and then averaging them across all the
patient’s 𝐸(s). For instance, if the first patient’s 𝐸’s 60 data points
correspond to 200 minutes and the second patient’s 𝐸’s 60 data
points correspond to 100 minutes, then the average duration of 60
data points is 150 minutes. The x-axis of Figure 7 thus represents
the average duration of 𝐸 or the time before the𝑊𝑜𝐼 in minutes.

Finally, we divide our dataset into training and testing data with
a 60-40 ratio. For training, we set 𝐸 to 0 and O to 60, allowing
the methods to utilize the full duration of time-series BP data for
optimal learning. Since our methodology focuses on risk scoring
rather than classification, we introduce a threshold variable in our
to transform it into a classifier model. Using the training data, we
determine the most optimal threshold for our model. If the AHE
risk score surpasses the threshold at any time within the O, we
classify the𝑊𝑜𝐼 as AHE indicating that the patient will have AHE
as per high risk scores. Additionally, we utilize the training dataset
to find the optimal values for 𝛼 , 𝛽 , and 𝛿 . Through experimentation,
we heuristically determine that our optimal threshold is 24.7, while
the optimal values for 𝛼 , 𝛽 , and 𝛿 are 60, 100, and 80, respectively.

4.2 Existing classification methods
While there is limited work on predicting AHE, we use the most
popular models that have been used for hypertension detection
for our comparisons, as explained previously in Section 2.3. We
categorize our baseline methods as follows:
• Statistical: MEAN
• Machine Learning (ML): k-nearest neighbor (KNN), support
vector machine (SVM), random forest, and XGBoost

• Deep Learning (DL): long short-term memory (LSTM)
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Figure 5: AHE risk score of non-AHE and AHE patients

4.2.1 Statistical: To evaluate the MEAN method, we find the
moving average of the time-series BP data and make a positive
AHE prediction if the moving average surpasses a threshold. We
find the best threshold for optimal prediction through the ROC
curve analysis of the training dataset.

4.2.2 Machine Learning (ML):. The ML methods do not incor-
porate the temporal component of data into their models, thus
requiring a transformation of the time-series BP data into a feature
space. Following a similar approach as described in the paper [3], we
convert our BP data into 15 statistical features including mean, stan-
dard deviation, and histogram-based features with the frequency of
measurements divided into 13 bins. The bin boundaries are defined
as [10, 60, 80, 90, 95, 100, 105, 110, 120, 130, 140, 170, 200, 250]. This
binning strategy assigns more bins of elevated BP values to the
histogram compared to the lower BP values.

4.2.3 Deep Learning (DL):. In time-series classification, long
short-term memory (LSTM) is a commonly employed technique
with promising results, as elaborated in Section 2.3. However, LSTM
requires regularly spaced data points, creating a challenge for train-
ing and testing. To overcome this limitation, we incorporate times-
tamps as additional features alongside the BP data when feeding
them into the LSTM model. Additionally, to address the class imbal-
ance of our dataset, we employ an oversampling technique [5] that
ensures a balanced training dataset for both ML and DL models.
Balanced datasets enable the most optimal performance for ML and
DL algorithms.

The LSTM architecture is configured with an input size of 2, a
hidden size of 32, and an output size of 2. For training, we utilize the
Adam optimizer with a learning rate of 0.001, and the loss function
employed is cross-entropy. The model is trained for 200 epochs.
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Figure 6: Comparison of GRAPPEL with the baselines

4.3 Evaluation
To evaluate the efficiency of our model and the baseline methods for
the early identification of AHE risk, we ask the following question:
Can a model predict, based on the input of an observation
window (𝑂), whether the window of interest (𝑊𝑜𝐼 ) is an
acute hypertensive episode (AHE) or not, as early as before
the early risk assessment window (𝐸)?. We define the positive
class as the time-series BP data of patients where the𝑊𝑜𝐼 is an AHE
window and the negative where𝑊𝑜𝐼 is a non-AHE window. We
measure a model’s performance over three metrics: (1) AUC-ROC
score, (2) specificity, and (3) sensitivity.

All of these metrics are applied for each observation window
(𝑂) value that ranges from 10 data points to 60 data points. We find
the best AUC-ROC score for every model to present the best overall
result and to keep the comparison fair, as shown in Figure 6. We
also plot the AUC-ROC score, sensitivity, and specificity results for
every value of O in Figure 7. Negative values on the X-axis reflect
the time before the start of WoI. For example, if we are looking at a
metric at -30 minutes, it reflects how well the model performs in
assessing the risk of AHE 30 minutes in advance.

4.4 Discussion
As shown in Figure 6, GRAPPEL outperforms all the other models
in the AUC-ROC score and sensitivity and comes ina close second
to random forest with respect to specificity. We observe that the
models XGBoost, random forest, and SVM performed relatively well
and have a higher specificity than sensitivity. This means that they
are better at predicting non-AHE events than AHE events. Ideally,
both specificity and sensitivity are important in critical care, since
any misdiagnosis can be fatal for the patient. GRAPPEL shows least
differences between sensitivity and specificity.

While the AUC-ROC score reflects a method’s overall perfor-
mance, our primary goal is to evaluate the early detection capability
of our model compared to the baseline models. Figure 7 shows the
early detection performance of all the methods. We observe that
the AUC-ROC scores, sensitivity, and specificity of GRAPPEL stay
stable along the axis which reflects the time before the𝑊𝑜𝐼 that
can be an AHE window or a non-AHE window. The AUC-ROC
score for GRAPPEL ranges from 0.91 at -170 minutes before the
𝑊𝑜𝐼 to 0.94 at -20 minutes. We see a similar trend with specificity
and sensitivity as well.

While other models show a similar trend like GRAPPEL, we see
a completely different pattern with LSTM. The AUC-ROC score for
LSTM fluctuates substantially, but the peak score occurs around -90
minutes before𝑊𝑜𝐼 . We also see the specificity rise closer to𝑊𝑜𝐼

and the sensitivity dropping rapidly compared to other models.
An analysis of GRAPPEL, as shown in Figure 5, illustrates the

real-time AHE risk scores generated by GRAPPEL across the time-
series BP data. We observe in Figure 5a, that the AHE risk score
does not spike even though the BP data of the patient shows an
isolated spike. The local outlier factor (𝐿𝑂𝐹 ) of the nodes with
high BP values raises the AHE risk score temporarily, but at a later
time, new nodes with lower BP values bring the score down again.
In contrast, we observe in Figure 5b that sustained high BP value
nodes around -20 minutes before𝑊𝑜𝐼 incrementally increase the
AHE risk scores.
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Figure 7: Comparison of GRAPPEL with the baseline methods for early risk assessment of AHE

5 CONCLUSION AND FUTUREWORK
We present GRAPPEL, a novel graph-based approach for real-time
and early risk assessment of acute hypertensive episodes (AHE)
in critical care patients. Our algorithm generates real-time risk
scores to predict AHE before they actually occur by constructing
a time-evolving graph that captures the temporal structure of a
patient’s time-series BP data. GRAPPEL only needs time-series BP
data that can be irregularly spaced in time, making it practical for
deployment in critical care environments.

GRAPPEL achieves an AUC-ROC score as high as 94% when
identifying patients at risk of AHE and can do so as much as 170
minutes before the episode occurs, thus outperforming existing
state-of-the-art methods. By providing real-time and early risk
assessment of AHE, GRAPPEL empowers healthcare professionals
to intervene proactively, preventing adverse outcomes and potential
mortality. It can also be highly assistive in critical care settings
where qualified staff may be limited.

In the future, we plan to expand our method to encompass a
broader range of critical conditions and enhance our real-time and
early assessment by incorporating additional time-series features
such as electrocardiography (ECG) into our framework, which is
readily available through bedside monitoring in critical care.
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