
J. Parallel Distrib. Comput. 65 (2005) 1253–1260
www.elsevier.com/locate/jpdc

Research Note

AnalyzingMPI performance over 10-Gigabit ethernet�

Justin (Gus) Hurwitz∗, Wu-chun Feng
Research and Development in Advanced Network Technology (RADIANT), Computer and Computational Sciences Division, Los Alamos National

Laboratory, MS D-451, Los Alamos, NM 87545, USA

Received 1 April 2005; accepted 1 April 2005
Available online 18 July 2005

Abstract

Recent work with 10-Gigabit (10GbE) network adapters has demonstrated good performance in TCP/IP-based local- and wide-area
networks (LANs and WANs). In the present work we present an evaluation of host-based 10GbE adapters in a system-area network
(SAN) in support of a cluster. This evaluation focuses on the performance of the message-passing interface (MPI) when running over a
10GbE interconnect. We find that MPI over 10GbE provides communications performance comparable to that of TCP alone and fairly
competitive with more exotic technologies such as MPI over Quadrics. The optimization of MPI and MPI-based applications to make
use of this performance, however, is a non-trivial task. Consequently, it is difficult for MPI-based applications to realize this performance
when running current-generation 10GbE hardware.
Published by Elsevier Inc.

Keywords:10GbE; Ethernet; MPI; SAN; Interconnect; Cluster

1. Introduction

Recently, we have shown that first-generation host-based
10GbE adapters can sustain multi-gigabit throughput (4.8–
7.3Gb/s) with low latency (10–15�s) on commodity hard-
ware [3,1,4]. However, these works focus soley on optimiz-
ing TCP over 10 Gigabit Ethernet (10GbE) for bulk data-
transfer applications rather than on 10GbE performance in
traditional message-passing environments found in clusters
and supercomputer.
Given the relatively low latencies achieved in previous

tests, 10GbE has potential to be an important and viable
technology in the system-area network (SAN) environment
in support of clusters and supercomputers. Ethernet has
long been discounted as a competitive solution for cluster

� This work was supported by the US DOE office of science through
LANL contract W-7405-ENG-36. This paper is also available as the
following LANL technical report: LA-UR 03-5728.

∗ Corresponding author. Fax: +15056654934.
E-mail addresses:ghurwitz@lanl.gov (J. Hurwitz), feng@lanl.gov

(W.-c. Feng).

0743-7315/$ - see front matter Published by Elsevier Inc.
doi:10.1016/j.jpdc.2005.04.011

interconnects because it typically had best-case latencies on
the order of hundreds of�s. In comparison, common cluster
interconnects, such as Quadrics, Infiniband, and Myrinet,
provide deterministic any-to-any latencies of sub-10-�s
[5,9].
Over the past decade, themessage-passing interface (MPI)

has clearly become the standard protocol for application-
layer communication in cluster environments [12]. As such,
an understanding of MPI’s performance over a given in-
terconnect is essential to understanding which interconnect
is best suited to the purpose of a given cluster. To pro-
vide a metric of 10GbEs viability in cluster environments,
we therefore evaluate the performance of MPI running over
10GbE’s. In conjunction with work such as [5], this evalu-
ation provides a picture of where 10GbE currently fits as a
cluster interconnect.

2. Background and previous work

At the time of this writing, the only commercially avail-
able host-based 10GbE adapter is Intel’s PRO/10GbE LR
Server Adapter. This card, which is the same one used in

http://www.elsevier.com/locate/jpdc
mailto:ghurwitz@lanl.gov
mailto:feng@lanl.gov

1254 J. Hurwitz, W.-c. Feng / J. Parallel Distrib. Comput. 65 (2005) 1253–1260

our previous testing, is described in detail in[3,1,4]. It is
built around Intel’s 82597EX single-chip 10GbE controller,
which interfaces with 512-KB of flash memory and 1310nm
single-mode serial optics. The host interface runs via a 133-
MHz PCI-X bus interface. This interface, the fastest used
by production 10GbE hardware on PC architectures, limits
theoretical throughput to 8.5Gb/s (133-MHz*64-bits).
When running in low-end commodity hardware (e.g., 2.2-

GHz Intel Xeon-based systems), these cards demonstrated
performance of nearly 5Gb/s in a local-area network (LAN)
environment. Similar configurations were used to saturate
an OC-48 (2.5Gb/s) trans-Atlantic connection to set the In-
ternet2 Land Speed Record in February 2003. On Opteron-
and Itanium2-based server-class machines, these cards show
sustained performance of better than 7Gb/s in a LAN and
6.25Gb/s in a wide-area network (WAN).
These numbers establish 10GbE as a critical technol-

ogy in achieving multi-gigabit throughputs in LANs and
WANs. Indeed, Intel’s adapter is currently the only way
to interface a single computer directly with a high-speed
WAN. Little work, however, has previously been done
to consider 10GbE in other environments. In particular,
10GbEs potential role in the SAN remains a hotly contested
topic.
SANs present a networking environment that is funda-

mentally different from that of LANs and WANs. Through-
put, which is the most visible and one of the most impor-
tant performance metrics in LANs and WANs, is relatively
unimportant in the SAN. This is not to discount its impor-
tance; but other metrics are equally, and often more, impor-
tant in the SAN. Many cluster-based applications depend
heavily upon calculations that are limited by inter-node la-
tency [13]. Inter-node latency is the time it takes for a small
amount of data to get from one node to another; as opposed
to bandwidth, which is the amount of data that can get from
one node to another in that time. Similarly, many calcula-
tions occur simultaneously with data transfers; again, this is
different from LANs, where computation is generally sec-
ondary to the transfer of data. Such calculations can be sig-
nificantly slowed if network-related overhead requires too
much processing time. It is therefore important that SAN
interconnects not place too heavy a burden on the CPU.
Our work with 10GbE has demonstrated inter-node la-

tencies on the order of 10–15�s, when running in a back-to-
back configuration. With new LAN/SAN-oriented 10GbE
layer-2 switches capable of port-to-port latencies of under
1�s [11,2], we can achieve end-to-end latencies an order
of magnitude less than past incarnations of Ethernet. While
10GbE’s latency may not be as low as that of specialized
SAN interconnects, it is low enough to warrant considera-
tion in high-end computing clusters.
Perhaps of more concern than 10GbEs inter-node latency

in a SAN environment is the overhead required to process
10GbE traffic. Other SAN technologies typically perform
much, if not all, network-related processing on dedicated
chipsets that are integrated with the adapters. This offloading

of network processing frees the CPU to work almost entirely
on application computation. Current 10GbE adapters are
only capable of offloading a small portion of this network
overhead. Even so, our previous work indicates that the CPU
is not entirely consumed by network processing at 10GbE,
and hence, that it may have usable cycles left for application
use during heavy network communication.
Although previous work has shown that 10GbEmight

have utility as a SAN interconnect, the work is not conclu-
sive. To evaluate its potential beyond speculation, we run a
series of synthetic benchmarks to determine 10GbEs actual
performance under common SAN-interconnect situations.

3. Testing environment

To run our benchmarks, we setup a simple two-node clus-
ter environment with two Opteron-class machines connected
in a back-to-back topology with 10GbE. We opt for such a
configuration, rather than one with more nodes, due to the
current state of 10GbE switching technology. All currently
available 10GbE-capable switches are designed to be used
as layer-3 IP routers. These switches do not offer the latency
characteristics that are required in a SAN interconnect. How-
ever, a new generation of layer-2 10GbE switches that offer
sub-�s port-to-port latency is now entering the market, e.g.,
the Fujitsu 10GbE switch recently demonstrated at SC2003
[11,2]. If 10GbE is to be used in a SAN environment, it will
likely be used in conjunction with switches such as these.
Rather than evaluate a larger number of 10GbE-enabled

nodes in an environment that poorly represents actual im-
plementations, we prefer to use a two-node system the
more accurately models switching latencies. As a conse-
quence, many common MPI benchmarks (e.g., all-to-all
and allreduce) are of marginal value, and are therefore not
reported.
In setting up our testing environment, we have taken care

to apply a baseline level of optimizations to both our hard-
ware and our software. These optimizations are of the gen-
eral nature that we expect would be used as the default in
a cluster configuration. We do not apply any benchmark or
network-specific optimizations, because such run-time opti-
mizations cannot be made in production environments. The
results, as should be expected, are therefore not the best pos-
sible for each specific test.

3.1. Testing hardware

Each of our nodes is a dual AMD Opteron 246 running
at 2.0GHz. The CPUs run on Tyan S2880 motherboards
with 2-GB of PC3200 memory. The AMD Opteron has a
6.4GB/s (51.2Gb/s) memory bus and a HyperTransport-
based (6.4GB/s) connection to two PCI-X buses. Each PCI-
X bus can run at 133MHz. The 10GbE adapters are each
placed in a PCI-X slot in each of the machines. This places
a theoretical limit of 8.5Gb/s on each adapter. The 10GbE

J. Hurwitz, W.-c. Feng / J. Parallel Distrib. Comput. 65 (2005) 1253–1260 1255

adapters are then connected to each other by a pair of single-
mode, fiber-optic cables.
Previous testing has demonstrated that these systems, in

this configuration, can sustain better than 7.3Gb/s from end-
host to end-host when running TCP/IP. However, a substan-
tial amount of adapter- and application-specific tuning is re-
quired to achieve this throughput. We forego this level of
custom optimization in our present evaluation. Regardless,
we expect 7.3Gb/s to be an empirical upper-bound for our
performance evaluation.
We also note that the 10GbE adapters support MTU sizes

up to 16KB. However, because typical Ethernet environ-
ments only provide support for 1500- or 9000-byte MTUs,
we limit our tests to use these two common MTU sizes in
order to better model expected real-world performance.
Finally, with respect to hardware, we configure the

10GbE cards to use an interrupt delay of approximately 5�s.
Though this setting increases end-to-end latency by 5�s,
we generally achieve optimal TCP throughput performance
with it. This is the default value used by the adapters as
shipped.
Due to the latency-sensitive nature of SANs, we also ran

our tests without interrupt delay. Unfortunately, this resulted
in a great deal of connection instability (dropped packets
and similar errors). We present a preview of these results
below to demonstrate the problem. The remainder of our re-
sults exclude these lower-latency configurations due to their
instability. Further exploration of this problem is beyond the
scope of this presentation.

3.2. Testing software

Our benchmarks run MPI over TCP in a two-node cluster.
Each node runs a Linux installation with a 2.4.25 kernel and
the standard Linux TCP stack. We configure the kernel to
allow a maximum TCP window of 16MB.
There are several generally available MPI implementa-

tions that will work in this environment. We choose to run
the LAM-MPI to provide MPI support. Previous experience
with this MPI has given us great confidence in its ability
to work well in high-performance networks. We discounted
the use of other comparably high-performance implementa-
tions (such as LAMPI) out of consideration for the pending
releases of new versions.
We use standard installation options with the sole ex-

ception of setting therpi_tcp_shortvalue to 2MB (from
the default value of 64KB). This value controls the thresh-
old at which LAM-MPI switches from its short-message
to long-message protocols. The short-message protocol re-
quires fewer transfers per message but does not perform as
well as the long-message protocol when the message size is
very large. We experience poor performance with settings
less than about 512KB, little difference between 512KB
and 2MB, and virtually no difference when running with
even larger settings.

There are certainly other options that could be tuned to
improve performance. However, for the sake of compari-
son, we have kept our configuration as general as possi-
ble. We consider the modification ofrpi_tcp_shortneces-
sary and appropriate in any high-bandwidth and low-latency
network.
The first test the we run uses NTTCP[8] to measure TCP

performance. Because MPI is running over TCP, these re-
sults provide an important baseline against which to com-
pare our MPI results. Furthermore, NTTCP results in this
environment can be directly compared to those reported in
previous work. NTTCP operates by sending a set number
of packets of a given size to the remote host and reports
throughput as the ratio of the total number of bytes sent to
the wall-clock time taken to send them.We run this test send-
ing 4096 iterations of packets ranging in size from 8bytes
(8B) to 3,145,728 bytes (3MB).
The next test that we run is NetPipe [7]. NetPipe is a

protocol-independent benchmarking tool that allows us to
run identical throughput and latency tests over both TCP and
MPI. These results give us a benchmark understanding of
the communications overhead burden that LAM-MPI adds
to TCP processing. NetPipe performs two types of through-
put tests: ping-pong and stream. Ping-pong tests measure
the time required for a pair of hosts to transmit data from
one to the other and back. This is an important metric for
latency-sensitive (and many bandwidth-intensive) applica-
tions. The stream test sends a set amount of data and reports
the time required to transmit it, much in the same way as
NTTCP. NetPipe’s stream algorithm is more representative
of application-level throughput, whereas NTTCP represents
the transport-level bandwidth.
NetPipe is also used to measure host-to-host latency. This

measurement is made by dividing the transfer time by the
total number of transfers in each direction.
Finally, to measure MPI-application performance, we run

MPBench (now part of llcbench [6]). MPBench is a suite
of MPI applications that are used to measure common MPI
performance metrics. The focus of these benchmarks is the
application, as opposed to the network. As a result, these
benchmarks are representative of the performance that can
be expected by a typical MPI application, as opposed to a
typical network-measurement tool.
MPBench evaluates several performancemetrics: uni- and

bi-directional throughput, round-trip time (connection la-
tency), MPI_Send() latency, and broadcast, reduce, all-to-all
and all-reduce throughputs. Of these tests, only the first set
is of interest to our two-node environment; the rest are vari-
ants of the first two throughput tests and produce results that
are roughly identical to the two-node case.
In selecting these benchmarks, we have tried to find

a happy-medium between application-oriented and micro
benchmarks. The wide range of applications, and their
specific performance requirements, makes it an impossible
task to present generally useful “application” benchmarks.
Traditional micro-benchmark results, on the other hand,

1256 J. Hurwitz, W.-c. Feng / J. Parallel Distrib. Comput. 65 (2005) 1253–1260

are difficult metrics from which to extrapolate application-
and system-level performance. While both types of bench-
marking should ultimately be performed, neither is partic-
ularly salient to our present inquiry, viz., whether 10GbE
is a workable interconnect for MPI-based applications
generally.

3.3. Methodology

Each test is run multiple times to confirm that the results
are consistent, both with respect to the given test and with
respect to similar tests. Any observed abnormalities are ex-
amined and re-tested to determine whether they arise from
factors unrelated to the tests themselves.
We monitor the system load throughout our testing. Sys-

tem load is represented as a unitless number and is generally
calculated as the ratio of the number of processes added to
a CPU’s run queue to the number of processes removed in a
given time. A load of 1.0 means that one CPU is constantly
busy; less than 1.0 means that one CPU has free cycles; and
greater than 1.0 means that more work is being requested of
a CPU than it is capable of doing. The “optimal” load in a
multiprocessor system is generally equal to the number of
CPUs in that system.
To monitor the load, we access and timestamp the ker-

nel’s current load computation at 5-s intervals and record
it to a file. We then timestamp the beginning and end
of each test. The 5-s granularity is the highest resolution
measurement of load supported by the kernel. This allows
us to identify the load for the duration of each test that
we run.
Because the load ismeasured at so coarse a granularity, we

do not present graphs of the data. To determine what values
to report, we compare the measurements from multiple runs
to confirm that each represents a stable value, and report the
highest value. Where aberations are noticed, we rerun the
appropriate tests. Such aberations can result from system
processes (e.g., crontab jobs) automatically running on the
testing systems.

4. Experimental results

MPI over 10GbE uses TCP as its transport; similarly,
MPI-based applications use MPI as their transport. It is
therefore necessary to understand our testbed’s TCP per-
formance before considering its MPI performance, and its
MPI performance before considering its MPI-based applica-
tion performance. Our results are therefore presented in this
order.
To facilitate comparison of results, all of our throughput

results are plotted in the same domain and range and at the
same scale. The only exception are the results in Fig.1, in
which the interrupt delay was disabled.

4.1. NTTCP results

We first test 10GbE TCP throughput with the NTTCP
program (Fig.1). The peak throughput observed with 1500-
and 9000-byte MTUs are approximately 3.6 and 6.0Gb/s,
respectively. This peak falls off substantially for payloads
larger than 400KB when using a 9000-byte MTU.A similar,
though less substantial, drop occurs at the same point when
using a 1500-byte MTU.
This drop is related to the kernel’s ability to allocate buffer

memory. Simultaneous with this drop, we see a large in-
crease in system load, from well below 0.5 to about 0.8
and with spikes as high as 1.2. Additionally, the operat-
ing system reports a large number of memory-allocation
errors.
We have not observed this drop in previous testing. While

it is important that its cause ultimately be understood, we
consider this a question of optimization beyond what can
be expected in a typical SAN. This behavior is taken as the
baseline performance for the remainder of our tests.
Additionally, these graphs include throughput when run-

ning with a 0-�s interrupt delay. It is clear that running with-
out this delay is detrimental to performance; such behavior
is expected, due to the increased interrupt load placed on the
host system. In addition to generally decreased throughput
we also observe a great deal of “jitter” in the performance.
This jitter is best characterized as a large number of very
low performance data points (performance drops at these
point by as much as 50%). These points are not consistent
between test runs (whereas the variability in performance
seen with the 5-�s delay does persist between runs). They
appear to be caused by bursts of lost packets.
In light of this behavior, we exclude tests that disable

the interrupt delay from our results. The performance is too
unreliable either to be confidently reported or to be used
in a production environment. Again, it is possible (and we
believe likely) that this problem could be corrected with
the proper, if somewhat extensive, optimizations. Alterna-
tively, we hypothesize that this instability is caused by the
samememory allocation errors seen above for large (400KB)
payloads.

4.2. NetPipe results

We next run a series of tests with NetPipe (Fig. 2).
Throughout these tests, we see the same drops in through-
put and similar load characteristics that were observed in
the NTTCP tests.
The first set of results are from NetPipe’s stream test.

As expected, this test, which is very similar to NTTCP,
yields observed TCP throughput that is similar to that of
NTTCP, albeit marginally lower: roughly 3.0Gb/s for 1500-
byte packets and 5.8Gb/s for 9000-byte packets. Contrary
to expectations, however, MPI throughput is almost equal to
that of TCP. In some cases, particularly around peak through-

J. Hurwitz, W.-c. Feng / J. Parallel Distrib. Comput. 65 (2005) 1253–1260 1257

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 32 1024 32768 1.04858e+06

M
b/

se
c

Payload size in bytes

NTTCP Stream BW, 4096 itts, 5-us Interrupt Delay

1500 Byte MTU, 5us Delay
9000 Byte MTU, 5us Delay

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 256 512 1024 2048 4096 8192 16384 32768 65536

M
b/

se
c

Payload size in bytes

NTTCP Stream BW, 4096 itts, Interrupt Delay Disabled

1500 Byte MTU, 0us Delay
9000 Byte MTU, 0us Delay

Fig. 1. NTTCP results, with 5- and 0-�s interrupt delay.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 32 1024 32768 1.04858e+06

M
b/

se
c

Payload size in bytes

NetPipe Bandwidth, stream

1500 Byte MTU, MPI
1500 Byte MTU, TCP
9000 Byte MTU, MPI
9000 Byte MTU, TCP

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 32 1024 32768 1.04858e+06

M
b/

se
c

Payload size in bytes

NetPipe Bandwidth, ping-pong

1500 Byte MTU, MPI
1500 Byte MTU, TCP
9000 Byte MTU, MPI
9000 Byte MTU, TCP

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 32 1024 32768 1.04858e+06

u-
se

co
nd

s

Payload size in bytes

NetPipe Roundtrip Latency

1500 Byte MTU, MPI
1500 Byte MTU, TCP
9000 Byte MTU, MPI
9000 Byte MTU, TCP

Fig. 2. NetPipe results.

put, MPI outperforms TCP! Additionally, MPI throughput
is more stable, especially at its peak. These results can be
attributed to the implicit tuning and TCP optimizations that
LAM-MPI enables, transparent to the user and application.

These improvements are far more apparent when running
NetPipe’s ping-pong tests. In these tests, the same TCP
falloff seen in Fig.1 is observed. Given the nature of these
tests, we expect peak throughput to be lower than in the

1258 J. Hurwitz, W.-c. Feng / J. Parallel Distrib. Comput. 65 (2005) 1253–1260

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 32 1024 32768 1.04858e+06

M
b/

se
c

Message size in bytes

Performance of MPI Bandwidth

1500 Byte MTU
9000 Byte MTU

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 32 1024 32768 1.04858e+06

M
b/

se
c

Message size in bytes

Performance of MPI Bi-directional Bandwidth

1500 Byte MTU
9000 Byte MTU

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 32 1024 32768 1.04858e+06

T
ra

ns
ac

tio
ns

/s
ec

Message size in bytes

Performance of MPI Roundtrip

1500 Byte MTU
9000 Byte MTU

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 32 1024 32768 1.04858e+06

m
ic

ro
se

co
nd

s

Packet size in bytes

Synthetic Latency of MPI Roundtrip

1500 Byte MTU
9000 Byte MTU

Fig. 3. MPBench results.

stream tests and the “ramp-up” to that throughput to take
longer. Again, the tests meet these general expectations.
MPI performance, however, is noticeably greater than that
of TCP, and the throughput falloff is significantly smaller.
Peak throughput for TCP is roughly 2.8 and 5.0Gb/s
for 1500- and 9000-byte MTUs, respectively; post-falloff
throughput is roughly 1.7 and 2.7Gb/s, respectively. For
MPI, peak throughput is roughly 3.1 and 5.2Gb/s for these
respective MTUs; post-falloff throughput is roughly 2.5
and 3.9Gb/s for these respective MTUs. The improved
performance of MPI is, again, attributed to implicit TCP
optimizations.
The final NetPipe results that we present are the laten-

cies observed in the above tests. Here we observe latency on
the order of 13–17�s for small TCP packets, and 17–22�s
for small MPI packets. Latencies remain in these ranges for
packets up to roughly 1500-bytes. Larger packets require
multiple transfers when using a 1500-byte MTU. Addition-
ally, latency increases due to time spent transferring memory
across the memory bus on the host systems.
As packet size increases, we observe two trends. First,

packets sent with a 9000-byte MTU have lower latency than
those sent with a 1500-byte MTU. Generally, we see about a
two-fold difference in latency between the different MTUs.

Second, packets sent with MPI have lower latency than those
sent with TCP. These results again indicate MPI optimiza-
tions to TCP. Furthermore, they help to explain the results
from our ping-pong tests: decreased latency improves ping-
pong performance.

4.3. MPBench results

MPBench is the final test suite that we run. The results
of the tests that are pertinent to our experimental setup are
shown in Fig.3. The latency values shown in the figure
are computed manually as the inverse of half the number
of transaction per second. Other methods of measuring la-
tency, such as those used by benchmark, can be artificially
deflated due to the buffering behaviour of the MPI_send()
call.
We observe very high CPU load throughout all of these

tests. The average load ranges between 1.75 and 2.25, with
frequent readings on the order of 2.5. On dual-processor
systems, such as our test systems, this means that the CPUs
were not able to keep up with system demands.
The first pair of tests we discuss are the uni- and

bi-directional throughput tests. We measure peak uni-
directional throughput of about 1.9 and 2.8Gb/s for

J. Hurwitz, W.-c. Feng / J. Parallel Distrib. Comput. 65 (2005) 1253–1260 1259

1500- and 9000-byte MTUs, respectively. We observe bi-
directional peaks of 2.5 and 3.7Gb/s for the same respective
MTUs.
These tests show a number of interesting features. Fore-

most, we observe a near-complete drop in performance for
payloads greater than 128KB. This drop, while similar to the
one observed in our TCP tests, begins to occur with much
smaller packets and is far more significant than the TCP
drop. Previous experience with MPBench has shown that the
LAM-MPI short-message to long-message crossover point
can cause a similar drop at 64KB. In these experiments,
however, we are unable to eliminate this problem by alter-
ing the crossover point. Given the increased system load in
these tests, this could be the same memory allocation prob-
lem seen with larger payloads in earlier tests.
The next thing to notice is the slope of MPBench’s

throughput curve relative to that of NetPipe. The slope of
MPBench’s curve grows far more gradually than either of
NetPipe’s curves. This indicates that, for a given packet
size, MPBench’s achieved throughput is less than that of
NetPipe. Given the approximate differences in slope, it
seems reasonable that MPBench is only capable of, at best,
60–75% of NetPipe’s peak throughput.
In addition to the throughput tests, we present the results

of MPBench’s round-trip test. MPBench reports an average
of about 20,000 round-trip transactions per second for small
messages (up to about 1500 bytes). Larger messages show a
gradual decrease in this value, up to 128KB. As in the other
MPBench results, we see a dramatic drop in performance
after this point.
These results are inversely proportional to twice the la-

tency. They therefore correspond to a latency of 25–30�s for
small packets and about 250�s for 128-KB packets. These
numbers correspond well to the NetPipe latency results, with
an additional overhead of a few�s. As with the NetPipe
latency tests, we see steady performance as the message
sizes approach about 1500 bytes, after which performance
degrades.We also see the results for the 9000-byte MTU be-
have in a similar manner: as the message size grows large,
we see about a two-fold difference in performance relative
to the smaller MTU.

5. Synopsis of results

One apparent trend throughout our tests is that poor per-
formance at one layer adversely affects performance at ev-
ery higher layer. Though intuitive, this idea is so important
to these tests that it deserves explicit mention.
A poorly optimized TCP stack results in a poor MPI

performance. Application-layer latencies are worse than
protocol- and link-layer latencies. An MPI implementa-
tion may make use of application-layer TCP optimizations
(such as we observe in our tests) that improve performance
relative to TCP. Such “performance tweaks” cannot, how-
ever, overcome fundamental limitations in the optimization

of TCP. The result is that MPI over TCP over 10GbE re-
quires optimizations at all three levels to perform well. The
necessary optimizations might well be different for differ-
ent applications. It is unreasonable to expect this level of
custom configuration in a SAN environment.
Our NetPipe results indicate that some MPI-based ap-

plications can reach very high performance when running
over 10GbE. These tests also confirm the conclusions of our
previous work that TCP’s performance over 10GbE is not
CPU-limited.
The principal difference between the NetPipe and MP-

Bench benchmarks is how they manage buffer memory. Net-
Pipe is specifically tuned to measure peak throughput. As
such, it uses an optimized algorithm to get higher perfor-
mance out of MPI. For instance, it pre-posts receives to
MPI, which pre-allocates buffer space for data reception.
MPBench, on the other hand, is designed to model typical
application performance. It therefore implements a far sim-
pler transfer algorithm, and consequently, does not achieve
nearly as high performance.
The dramatic differences between NetPipe and MPBench

performance again demonstrate the importance of configu-
ration and optimization when running MPI over 10GbE.

6. Conclusion

It is difficult to compare MPI over 10GbE to MPI over
other SAN interconnects. This is largely because the MPI
specification has many implementations. Each implemen-
tation, while compatible with MPI, has intrinsic peculiar-
ities that affect network performance in positive or nega-
tive ways. Achieving maximum MPI performance requires
the MPI implementation to be tuned to its operating en-
vironment and presumes that this environment itself is al-
ready tuned. Similarly, each application ought to incorporate
implementation-specific optimizations if it is to reach peak
performance.
Much of the promise of 10GbE is that it allows the per-

formance of TCP-based applications running over Fast Eth-
ernet or Gigabit Ethernet to be increased without requiring
modifications to the application code itself. In light of the
above conditions, this advantage does not entirely carry over
to MPI-based applications.
The proprietary MPIs that many other SAN interconnects

support obviate much of the need for difficult configuration
and optimization that is required when running MPI over
10GbE. Their MPI implementations are inherently tuned
to their particular network environments. As well, they fre-
quently take advantage of comprehensive processing offload
techniques to reduce the load on the host CPU, which makes
performance less dependent upon how applications interface
with the MPI API.
This raises a difficult question: since other MPIs are in-

herently tuned to their interconnects, do we consider a com-
parison to 10GbE fair if it is tuned or untuned? There is little

1260 J. Hurwitz, W.-c. Feng / J. Parallel Distrib. Comput. 65 (2005) 1253–1260

doubt that our benchmarks could be optimized to greatly im-
prove application performance. However, such results would
undermine many of the features that make 10GbE an attrac-
tive interconnect. Furthermore, they would lead to unrealis-
tic performance expectations.
While this is an important question at present, we ex-

pect its importance to wane with the next generation of
host-based 10GbE adapters. The first generation hardware
used in our tests is now two years old; a next generation
of hardware, from several manufacturers, is fast approach-
ing the market. Our basic conclusion is that the first gen-
eration of host-based 10GbE adapters is a suitable inter-
connect for many MPI-based applications, which may re-
quire burdensome optimizations for other applications. We
are confident that the next generation of 10GbE adapters
can only increase performance, and decrease the burdens of
optimization.
Many new 10GbE adapters promise to include substan-

tial protocol offload support (such as TOE and RDMA over
IP [10]). On its face, these technologies will greatly increase
TCP performance of 10GbE. Indeed, our initial testing of
a prototype TOE-enabled 10GbE adapter has demonstrated
throughput in excess of 7.1Gb/s using a 1500-byte MTU
with a latency of 9�s, and barely measurable increase in sys-
tem load. Such improvements to TCP performance should
offer comparably great increases in performance for MPI
running over TCP.
In addition, many of these adapters will include on-board

programmable logic. While initial offload support is princi-
pally targeted at TCP, the programmability of new 10GbE
adapters might be leveraged to enable MPI offload support.
With such developments on the horizon, 10GbE’s future role
in the SAN environment looks bright.
Regardless of its future potential, the use of MPI over

10GbE faces substantial burdens in the current SAN envi-
ronment. The question today is not whether we can achieve
good performance: we can. Rather, the question is how diffi-
cult it is to achieve that performance. One of 10GbEs great-
est benefits is that it requires no changes to existing code
bases for applications to realize multi-gigabit performance
in any networking environment. The level of specialized op-
timization required to get competitive performance out of
MPI-based applications, which potentially includes changes
to the applications themselves, seriously threatens the ben-
efits of running 10GbE in a SAN environment.

Acknowledgments

We would like to thank our co-worker Jeremy Archuleta
for his assistance configuring MPI to work in our testing
environment, and for his continued help understanding its
performance characteristics.

References

[1] W. Feng, G. Hurwitz, H. Newman, S. Ravot, L. Cottrell, O. Martin,
F. Coccetti, C. Jin, D. Wei, S. Low, Optimizing 10-Gigabit Ethernet
for Networks of Workstations, Clusters and Grids: a Case Study,
Proceedings of SuperComputing 2003 (SC2003), November 2003.

[2] Fujitsu Ethernet Switch Crip, http://www.fma.fujitsu.com/
10Gethernet/.

[3] G. Hurwitz, W. Feng, Initial End-to-End Performance Evaluation of
10-Gigabit Ethernet, Proceedings of Hot Interconnects 11 (HotI03),
August 2003.

[4] G. Hurwitz, W. Feng, End-to-End Performance of 10-Gigabit Ethernet
on Commodity Systems, IEEE Micro. 24 (1) (2004).

[5] J. Liu, B. Chandrasekaran, W. Yu, I. Wu, D. Buntinas, S. Kini,
P. Wyckoff, D.K. Panda, Micro-Benchmark Level Performance
Comparison of High-Speed Cluster Interconnects, Proceedings of
Hot Interconnects 11 (HotI03), August 2003.

[6] LLCbench Home Page,http://icl.cs.utk.edu/projects/llcbench/.
[7] NetPIPE,http://www.scl.ameslab.gov/netpipe/.
[8] NTTCP: New TTCP program,http://www.leo.org/∼elmar/nttcp/.
[9] F. Petrini, D. Addison, J. Beecroft, D. Hewson, M. McLaren, Quadrics

QsNet II: A Network for Supercomputing Applications, Proceedings
of Hot Chips 14 (HotChips03), August 2003.

[10] A. Romanow, S. Bailey, An Overview of RDMA over IP, Proceedings
of the First International Workshop on Protocols for Fast Long-
Distance Networks (PFLDnet 2003), February 2003.

[11] T. Shimizu, et al., A single chip shared memory switch with twelve
10Gb ethernet ports, Proceedings of Hot Chips 14 (HotChips03),
August 2003.

[12] The Message Passing Interface (MPI) standard,http://www-unix.mcs.
anl.gov/mpi/.

[13] W. Washington, C. Parkinson, An Introduction to Three-Dimensional
Climate Modeling, University Science Books, 1991.

Justin (Gus) Hurwitz is a member of the Research & Development in
Advanced Network Technology (RADIANT) team in the Computer &
Computational Sciences Division at Los Alamos National Laboratory. His
research interests include protocol and OS design for high-performance
networking, and general approaches to fair utilization and optimization of
finite resources. He has a Computer Science background and a Bachelor’s
degree in Liberal Arts from St. John’s College. He is currently a student
at the University of Chicago School of Law, where he is focusing on
Intellectual Property law and the interaction between science, law, and
policy.

http://www.fma.fujitsu.com/10Gethernet/
http://www.fma.fujitsu.com/10Gethernet/
http://icl.cs.utk.edu/projects/llcbench/
http://www.scl.ameslab.gov/netpipe/
http://www.leo.org/~elmar/nttcp/
http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/

