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Abstract—Because sparse matrix-vector multiplication
(SpMV) is an important and widely used computational kernel
in many real-world applications, it behooves us to accelerate
SpMV on modern multi- and many-core architectures. While
many storage formats have been developed to facilitate SpMV
operations, the compressed sparse row (CSR) format is still
the most popular and general storage format. However,
parallelizing CSR-based SpMV on multi- and many-core
processors (e.g., CPUs, APUs, GPUs) remains a challenging
problem, including dealing with uncoalesced memory access,
balancing workload, and identifying the most appropriate
parallelizing strategy.

In the paper, we propose a novel auto-tuning framework that
automatically finds the most efficient parallelizing strategy to
achieve high-performance SpMV. Our framework can deter-
mine the right binning schemes to group similar workloads
into bins (e.g., buckets) with negligible overhead. Then, for
each bin, the most suitable kernel is selected to process the
rows within. Our framework is input-aware and based on a
machine-learning method. The results show that our auto-tuned
SpMV performs significantly better than the default SpMV.
The speedups on 16 representative matrices range from 1.2x
to 52.0x. Compared to the state-of-the-art SpMV kernel, our
work yields better performance in most cases, achieving up to
a 1.9x speedup.

I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) is an impor-

tant computational kernel in sparse linear system solvers,

and more broadly, many real-world applications [1], [2], [3].

Hence, there exists a need to accelerate SpMV kernels on

modern multi-/many-core platforms, including many library

efforts designed to take advantage of the underlying parallel

computing resources [4], [5]. Due to the trade-off between

performance and space in sparse storage formats, many

formats have been proposed to handle one or more types of

matrices on various dedicated platforms (e.g., BCCOO [6],

BRC [7], and CSR5 [8]). Among them, however, com-

pressed sparse row (CSR) is one of the most widely adopted,

general-purpose formats, especially with respect to CPU im-

plementations [9], [10], [11], [12], [13], [14]. Moreover, the

transformation between different formats is non-negligible

in terms of performance, and the situation is worse when

one is working across devices in a heterogeneous computing

environment (e.g., APUs). Thus, we focus on the CSR

format in this paper.

Throughput-oriented processors, such as graphics process-

ing units (GPU), are well-known for efficiently solving reg-

ular and compute-intensive problems. However, dealing with

sparse matrices in the CSR format is non-trivial and brings

several challenges. First, irregular access to the non-zero

elements (in memory) are usually non-contiguous, leading

to an uncoalesced access pattern, which is not amenable

for GPU execution. Second, load imbalance occurs due to

having independent rows of different lengths. Specifically,

resource underutilization occurs when some SIMD lanes

become inactive when executing branches. Third, though

we can group similar workloads together (i.e., binning) and

then conduct the computation (i.e., kernel execution) for the

SpMV, it is non-trivial to figure out the appropriate grouping

policies, computational kernels, and their interactive rela-

tionships as they may depend on several factors, including

the shape of the input sparse matrices and the underlying

architectures.

This paper proposes a novel auto-tuning framework to

automatically find the most efficient parallelizing strate-

gies for computations with sparse data structures; different

strategies are applied to solving subproblems (e.g., different

rows or regions of rows). With respect to different sparse

matrices, our framework can determine the optimal binning

schemes to place similar workloads into different bins with

negligible overhead, and associated with each bin, it can find

the most suitable kernel to process the workloads within.

This paper uses SpMV as a case study, and the work can

be directly applied to other kernels with different potential

implementations for different inputs, such as some general

computational kernels [15], [16], [17] and domain-specific

applications [18], [19], [20], [21].

Our framework is based on a machine-learning model

(i.e., C5.0 decision tree [22]), where the off-line training

process extracts sparsity feature parameters from the given

sparse matrices. Subsequently, the model evaluates and iden-

tifies the best combinations of binning schemes and kernels

from our candidate pools, which include one coarse-grained

binning method with various binning granularities and nine
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different SpMV kernels with the same functionality.

Our auto-tuning framework differs from previous auto-

tuning work for SpMV, which has focused on searching for

the best storage format based on the input sparse matrices

and underlying architecture [10], [23]. In contrast, we build

our framework using the widely adopted format of CSR, and

the auto-tuning process occurs at the algorithmic level, along

with traditional parameter tuning. In addition, we make

the following two major contributions: (1) the extraction

of reusable patterns over different sparse matrices, binning

schemes and optimized kernels, which will later assist in

the selection of parallelization strategy; and (2) the dynamic

scheduling of binning schemes and kernels at run time,

which in turn, automatically delivers better speedups.

To empirically demonstrate our framework, we conduct

experiments on an AMD APU with HSA (Heterogeneous

System Architecture) and SNACK (Structured No API Com-

piled Kernels) [24] and show that our approach performs sig-

nificantly better than the single-kernel SpMV. The speedups

on 16 representative matrices range from 1.2x to 52.0x.

Compared to the state-of-the-art SpMV kernel [11], our

work also yields better performance in most cases, achieving

up to a 1.9x additional speedup.

II. BACKGROUND

In this section, we provide background on the Hetero-

geneous System Architecture (HSA), programming models,

and the compressed sparse row (CSR) format.

A. Heterogeneous System Architecture

The Heterogeneous System Architecture (HSA) [25] de-

fines a system architecture with the goal to make hetero-

geneous computing efficient and programming easier. It

targets systems that contain multiple processing units, such

as CPUs, GPUs, and other accelerators. HSA allows any

accelerator to operate as a peer to CPU rather than the

traditional offload model. HSA specifies an intermediate

language called HSAIL, which is an intermediate instruction

set for parallel processing with a memory model that is

compatible with C++11 and a runtime for dispatching tasks

to hardware queues. The current OpenCLTM2.0 [26] standard

supports many features of HSA.

An important feature of both HSA and OpenCL 2.0 is

that each defines a unified virtual address space for compute

devices. CPUs and GPUs traditionally have disjoint memory

spaces. In contrast, HSA allows both devices to access mem-

ory through the same virtual address. The system is further

simplified in that it only needs to manage one set of page

tables. This shared virtual memory (SVM) feature is partly

enabled by the I/O memory-management unit (IOMMU).

SVM allows users to directly use the same pointers and share

data structures on both the host and the device. Programmers

can allocate memory regions with memory allocators such

as malloc and use them on both the CPU and the GPU

(without the need of copying data).

SNACK (Structured No API Compiled Kernels) is a

programming API that enables easy programming of HSA.

It hides the complexity of dealing with the low-level HSA

API. SNACK also comes with a CL Offline Compiler

(CLOC) [24] that allows OpenCL kernels to be programmed

directly and compiled to HSAIL.

In SNACK, programmers can directly call a GPU kernel

on the host similar to a C function call. The only requirement

is that programmers use SNK_INIT_LPARM to specify

kernel launch parameters in a structure (e.g., global and local

sizes) and pass it to a kernel as a function argument (i.e.,

the last arg). GPU kernels in SNACK can be written in

OpenCL. Programmers use SNACK to compile an OpenCL

kernel with -c option, and an object file including a wrapper

function with HSA API calls and HSA brig kernel is

generated. This object file can be linked with other object

files and the HSA runtime library to generate the final

executable. The GPU kernel is finalized (i.e., to machine

ISA) the first time it is launched.

In this paper, we use SNACK with kernels written in

OpenCL on the AMD accelerated processing unit (APU),

which is an HSA platform that consists of an x86 multicore

CPU and an AMD Graphics Core Next (GCN) GPU [27].

Each compute unit (CU) on the GPU contains one scalar

unit and four vector units. Each vector unit contains an array

of 16 processing elements (PEs). Each PE consists of one

ALU. The four vector units use SIMD execution of a scalar

instruction. Each CU contains a data cache for the scalar

unit, a L1 data cache and a local data share (LDS) (i.e.,

software-managed scratchpad). The CPU and GPU share the

same DRAM controller.

B. CSR-based Matrix-Vector Multiplication

Sparse matrices appear in many real-world applications,

which comprise different computational patterns. Accord-

ingly, different storage formats have been proposed to facil-

itate the efficient storage and retrieval of meaningful data in

matrices, such as COO, ELL, and DIA. The paper focuses

on the compressed sparse row (CSR) format for three

major reasons. First, it is a widely adopted, general-purpose

storage format that represents sparse matrices without any

assumption of the sparsity structure and is favored in many

application domains [10], [11]. Second, because of the

popularity of the CSR format, one usually needs to transform

CSR matrices to another format if it could give superior

performance at the price of significant overhead [11]. Third,

in the HSA environment, such space and time overhead of

transformation can be avoided, leading to potential benefits.

Here we focus our study on the CSR-based sparse matri-

ces. Figure 1 shows an example of the CSR storage format

on a 4x4 matrix with eight non-zero elements. To represent

the matrix in CSR format, we use three arrays to represent
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the matrix: (1) rowPtr maintains the offsets of the each row’s

first non-zero in colIdx and val; (2) colIdx stores all the

column indices of the non-zeros in the row-major order; and

(3) val keeps the corresponding values of the non-zeros.

1850
0040
0203
0061

A

0 2 4 5 8

0 1 0 2 1 1 2 3

1 6 3 2 4 5 8 1

rowPtr:

colIdx:
val:

R0 R1 R2 R3

Figure 1: The CSR format to store an exemplar 4x4 sparse matrix

In order to perform the CSR-based sparse matrix-vector

(SpMV) multiplication, we compute the products of each

non-zero element of one row from the input matrix A and

the corresponding value from the input vector v. Then, we

accumulate the products into one value and store it in the

resultant vector u. Algorithm 1 shows the basic sequential

algorithm to conduct the SpMV over the sparse matrix A
and dense vector v. Because the calculation of one row

is independent from that of another line (see line 4), the

most straightforward parallelization might be to make each

thread work on one row and write the result to an exclusive

position in the vector u. Unfortunately, however, this scheme

results in poor performance due to the resulting unbalanced

workload and uncoalesced memory access patterns (see

line 9).

Algorithm 1: The basic CSR-based SpMV algorithm

/* rowPtr, colIdx, val: CSR data structures of matrix A */
1 /* m: number of rows of matrix A */
2 /* v: input dense vector */
3 /* u: output dense vector */
4 for Int i = 0 to m − 1 do
5 Int rowStart ← rowPtr[i];
6 Int rowEnd ← rowPtr[i + 1];
7 u[i] ← 0;
8 for Int j = rowStart to rowEnd − 1 do
9 u[i] ← u[i]+val[j]*v[colIdx[j]];

10 end
11 end

C. Motivation

In the parallelization of sparse matrix algorithms, we often

encounter the problems of load imbalance as a result of the

unpredictable distribution of non-zero elements in a given

sparse matrix. To mitigate the negative effects of load im-

balance, one can group similar rows together and then do the

corresponding computation. This grouping process is known

as binning. In the context of load balancing, there are two

binning schemes: (1) inter-bin load balancing [11], where

each bin contains a variable number of adjacent rows so that

the workloads (e.g., the total number of non-zeros of these

rows in SpMV) between every two bins can approximate one

another; and (2) intra-bin load balancing [12], [15], where

we collect the rows with similar workloads together into bins

and the rows are not required to be neighbors. Generally,

the first scheme only needs to store the first row index of

the grouped rows due to their adjacency, while the second

scheme gathers all the row indices in each bin, leading to

higher space and time overhead.

The differences found in the rows make some computing

kernels better than others to get more efficient performance

results. This, in turn, requires different kernels for each bin.

However, if we take into account the features of matrices

(e.g., the dimensions, the distribution of non-zeros, and the

sparsity shape), the computational patterns (e.g., SpMV and

SpGeMM), and the underlying platforms (e.g., CPU, GPU,

and APU), it is non-trivial to determine the appropriate

mapping relationship between bins and kernels.

Figure 2a shows an example of performance results

for five SpMV kernels (when we have two distinct input

matrices and for each matrix we put all the rows into

a single bin for simplicity). While the kernels offer the

same functionality, the choice of kernels significantly affects

efficiency. The binning schemes also add more complexity

to the decision-making process. Figure 2b provides another

example where we distribute all the rows into four bins.

For each bin, we examine the performance results of the

five SpMV kernels. The results indicate that different best

kernels are selected among bins, even for the same input.

(a) Different input matrices (b) Different bins

Figure 2: Examples of comparing different kernels given (a)
different inputs and (b) grouping policies

Therefore, this paper focuses on tackling two major prob-

lems: (1) determining the optimal binning scheme and kernel

selection for each bin given different sparse matrices; and (2)

generating a framework that automatically makes decisions

based on a data-mining method at runtime. The paper places

particular emphasis on the SpMV algorithm and the AMD

APU platform.

III. METHODOLOGY

In this section, we first provide a brief overview of our

proposed framework to automatically find out the most

efficient binning schemes and associated kernels while per-

forming parallel SpMV. Second, we detail the candidate

binning schemes and kernels within the framework. Third,

we describe a machine-learning model that is based on a

C5.0 decision tree, including the extracted attributes, the

classifier, and configuration setups.

A. Framework Overview

Sparse matrices present different properties for different

domains of applications. These properties include the basic
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information of matrices, such as the dimensions and number

of non-zeros (NNZs), and statistics of non-zeros, such as

the average and variance of the non-zeros. These factors

affect the decision-making process and resultant choices of

binning schemes and, in turn, affect the kernel selection for

each bin. For example, suppose we have a sparse matrix A
that contains rows with no more than ten non-zeros. It is

reasonable to assign each thread to process each row when

we are parallelizing the SpMV over A. In contrast, if we have

another matrix B, each of whose rows contains hundreds of

non-zeros, assigning multiple threads to deal with one row

simultaneously is more suitable. In reality, there are various

lengths of rows existing in the same sparse matrix. Because

non-zeros are distributed in the matrix in an unpredictable

manner, the static and fixed binning scheme and kernel

selection are not universally applicable to all the situations.

Thus, our framework is designed to automatically search

for the most efficient combinations of binning schemes and

kernels by using the data mining method. The framework is

shown in Figure 3.

ExecuteMachine 
Learning 
Model

SpMV 
Kern.

Binning 
Scem.

Feature 
Selection

Train

New  
Matrix

Feature 
Selection

Best Binning & 
Kernel 

Selection

Feat. 
vectors

Training 
Set 

(~2000 
matrices)

Predict

Example
serial kern.
subvec kern.
...
vector  kern.

Example
gran=10NZ
gran=20NZ
…

Figure 3: The overview of our data mining framework of SpMV

In the framework, we use over 2000 sparse matrices from

the UF collection [28] as the training set. These matrices are

collected from various scientific and engineering domains

and present many specific features in sparse matrix algo-

rithms. We use some extracted attributes to represent the

feature of matrices (i.e., the feature selection module). The

candidate binning schemes contain the grouping policies in

the framework. The grouping policy defines how to gather

similar rows of non-rows into the same bins. The candidate

SpMV kernels, on the other hand, are the kernels with the

same functionality, but use different parallelization strategies

(see algorithms in Section III-B) to deal with the rows. For

every sparse matrix from the training set, we find out the best

combination of binning scheme and right kernels for each

bin and store it as one record. Then, these records serve

as inputs to the training process, which is illustrated using

red arrows. This step is done only once and the decision

result is stored in a database. When a new incoming sparse

matrix is entered during runtime, the framework can predict

the most appropriate binning scheme and kernels based

on the extracted feature of the matrix and training results.

The process is shown in green arrows. Finally, the SpMV

is performed over the matrix using the predicted solution,

which is denoted by the black arrows.

B. Binning Schemes and Kernel Choices

The SpMV method in the framework is shown in Fig-

ure 4, which contains three major steps: (1) we collect the

information about the number of non-zeros per row in the

given matrix; (2) we group the rows according to the selected

binning schemes; and (3) we conduct selected kernels on the

rows in each bin. The step 2 and step 3 are reconfigurable,

as they can be reprogrammed to change the binning schemes

or the kernels based on the corresponding candidate pools.

Collecting 
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NNZ per row
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Input sparse 
matrix

Figure 4: The reconfigurable SpMV method in the framework

First step: In SpMV, the rows of the input sparse matrix

can be processed simultaneously. However, the workloads

per row vary, thereby leading to the load imbalance issue.

Since the workloads are determined by the number of non-

zeros per row (line 8 in Algorithm 1), we need to first

collect the information regarding the distribution of non-

zeros in the matrix. Because the fine-grained binning based

on every row will require higher space and time costs (in

Section II-C), the framework treats every U neighboring

rows as a single “virtual” row in the binning step. The U
is controlled by the selected binning scheme. Algorithm 2

contains the pseudocode for step 1.

Second step: The similar rows are placed together not

only for load balance, but also for the customized kernel

operations. In the framework, we adopt a coarse-grained

way to group the similar rows into different bins. Since

we treat multiple neighboring rows as a single row, we

can use the first row index to represent them and this will

save memory space for the bins. Furthermore, we have a

set of granularity units (denoted as U ), which determine the

number of neighboring rows in the “virtual” row, to adjust

the binning results. Therefore, the bin index binId indicates

that the amount of workloads of the “virtual” row is between

U ∗ binID and U ∗ (binID+1). For example, suppose the

granularity U is 10. Every row index k in bin 1 means its

following 9 rows in addition to itself contain the workloads

in the range of [10, 20). In the experiments, U is preset to

be 10, 20, 50, 100, · · · , 106 and there are up to 100 bins.

For the extremely long rows, whose number of non-zeros

exceeds any bin’s capacity, we will place them into the last

bin.

This binning method is different from [11], although both

work on the adjacent rows. For example, suppose there is

a sparse matrix with 10 rows, where the first 5 rows each

have 1 non-zero (representing short rows), while the last 5

have 9 non-zeros (representing medium rows). The large bin

7th AsHES, Orlando, Florida, May, 2017



workload limit (e.g., 50) in the method [11] puts all 10 rows

into the same bin and thus an approach, somewhere in the

middle of solving short and medium rows, would be used,

failing to efficiently process any types of rows. The short

bin workload limit (e.g., 5) puts the first 5 rows together

and uses approaches for short rows, but the last 5 rows

will appear in 5 separate bins because they each exceed

the bin workload limit. That way, the last 5 bins would

probably use approaches for long rows based on the fact

that there is only a small number of rows (e.g., 1) in the bin.

In contrast, we set the number of concatenated neighboring

rows as an adjustable U . Therefore, in this particular case,

our framework is able to find the optimal U as 5 and put

the first 5 rows as a “virtual” row into a small bin and the

next “virtual” row of last 5 rows into a medium bin.

The pseudocode for step 2 is also shown in Algorithm 2.

The bin index can be calculated based on the workloads

(in line 7). Then, the representative rows are stored into the

target bins (line 8 to 11). Besides of the binning schemes

explained above, there are other alternatives, including, for

example, a fine-grained method which stores every single

row index in the bins and a hybrid method which uses fine-

grained binning over short rows, but a coarse-grained one

over long rows. Our framework can be easily extended to

include other binning schemes by modifying the definition

and distribution of workloads in Algorithm 2.

Algorithm 2: The step 1 and 2 of our SpMV framework

/* Step 1: collect workloads, i.e. NNZ (wl) */
1 /* U is a configurable granularity unit number */
2 for Int i = 0 to �m/U� − 1 do
3 wl[i] ← rowPtr[min((i + 1) · U,m)]-rowPtr[i · U ];
4 end
5 /* Step 2: group rows into bins */
6 for Int i = 0 to �m/U� − 1 do
7 Int binId ← �wl[i]/U�;
8 if binId < MAX BIN ID then
9 bin[binId].insert(i);

10 else
11 bin[MAX BIN ID].insert(i);
12 end
13 end

Third step: Since the bins present different features of the

number and distribution of non-zeros, each bin will need

to determine the most suitable kernel to process these non-

zeros. In the framework, we have nine SpMV kernels with

the same functionality, but using different thread organi-

zations. These kernels can also be categorized into three

groups according to thread usage. For clarity, we treat one

work-group of threads in OpenCL as a vector, and subvector

means a subgroup of threads to provide finer grained control

of threading.

(1) Kernel-Serial: The kernel is the most straightforward

one to process rows in parallel for each bin. Algorithm 3

shows the pseudocode of the kernel. We assign one row to

each thread (line 2) and then the thread will sequentially

calculate the products of the non-zeros in the row with the

corresponding values in the input vector v (line 7). Finally,

the thread accumulates the products into sum and stores

it into the output vector u (line 9). Although the kernel

is simple and easy to implement, it is quite powerful to

handle small bins, where all the rows are very short. Given

the bin, the kernel will be launched with �bin.size()/256�
work-groups and each work-group has a fixed 256 threads.

Though, the workgroup size is a tunable parameter too.

Algorithm 3: Kernel-Serial

/* Every thread handles one row */
1 Int tid ← get global id();
2 Int rid ← bin[binID]+tid;
3 Int rowStart ← rowPtr[rid];
4 Int rowEnd ← rowPtr[rid + 1];
5 Float sum ← 0.0;
6 for Int i ← rowStart to rowEnd − 1 do
7 sum ← sum+val[i]*v[colIdx[i]];
8 end
9 u[rid] ← sum;

(2) Kernel-SubvectorX: The kernel is designed to process

one row using X threads simultaneously. X represents a

subgroup of 256 threads in the work-group in OpenCL

and sets to be 2, 4, 16, 32, 64, 128 in our experiments.

Algorithm 4 provides the pseudocode of the kernel. In the

kernel, we first assign every X threads to one row index

(line 3). Second, we load the target data into a local memory

buffer localMem (line 10 to 15). Additionally, we set the

size of local memory to be factor times of the work-

group size. That way, we can more efficiently utilize the

high bandwidth of the local memory. Third, we conduct a

segmented parallel reduction over localMem, where every

X threads reduce their buffered partial products and store

the results in their first position (line 16). After that, the first

threads in the subgroups will put the results in a register sum
and another round of computation will occur until the end

of the rows. Finally, the accumulated results will be stored

in the destination of vector u (line 24). The variants of the

kernel are designed to handle the vast majority of middle-

sized rows with less than 100 non-zeros (in Figure 5). In

the experiments, each work-group still contains 256 threads,

and we will launch the kernel using �bin.size() ∗X/256�
work-groups.

(3) Kernel-Vector: In this kernel, the entire work-group

of threads are used to tackle the assigned row. Algorithm 5

provides the pseudocode of this kernel. The procedure is

similar to that of the “Kernel-SubvectorX”, but assigns all

the threads in the work-group to one row (line 3) and reduces

the products in the buffer using these threads in parallel

(line 16). For the large bins with long rows, this kernel might

be preferred. We launch the kernel with bin.size() work-

groups of 256 threads.
It is worth pointing out that our framework includes

no kernels that use multiple work-groups to process one

single row for two main reasons. (1) The overhead of using

multiple work-groups simultaneously is relatively high, since

it involves the global synchronization or atomic opera-

tions, which are not preferable in the GPU implementa-
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Algorithm 4: Kernel-SubvectorX

/* X threads handle one row */
1 Int tid ← get global id()%X;
2 Int bid ← get global id()/X;
3 Int rid ← bin[binID]+bid;
4 Int rowStart ← rowPtr[rid];
5 Int rowEnd ← rowPtr[rid + 1];
6 Int factor ← 4;
7 Float sum ← 0.0;
8 for Int i ← rowStart + tid to rowEnd − 1 do
9 Int t ← 0;

10 for Int j ← i to min(i + factor∗X, rowEnd − 1) do
11 localMem[get local id()+t∗get local size()] ←

val[j]*v[colIdx[j]];
12 j ← j+X;
13 t ← t + 1;
14 end
15 barrier(CLK LOCAL MEM FENCE);
16 seg parallel red(localMem, factor, X);
17 if tid == 0 then
18 sum ← sum+localMem[get local id()];
19 end
20 i ← i + factor∗get local size();
21 barrier(CLK LOCAL MEM FENCE);
22 end
23 if tid == 0 then
24 u[rid] ← sum;
25 end

Algorithm 5: Kernel-Vector

/* All threads in work-group handle one row */
1 Int tid ← get local id();
2 Int bid ← get group id();
3 Int rid ← bin[binID]+bid;
4 Int rowStart ← rowPtr[rid];
5 Int rowEnd ← rowPtr[rid + 1];
6 Int factor ← 4;
7 Float sum ← 0.0;
8 for Int i ← rowStart + tid to rowEnd − 1 do
9 Int t ← 0;

10 for Int j ← i to min(i + factor∗get local size(), rowEnd − 1) do
11 localMem[tid+t∗get local size()] ← val[j]*v[colIdx[j]];
12 j ← j+get local size();
13 t ← t + 1;
14 end
15 barrier(CLK LOCAL MEM FENCE);
16 parallel red(localMem, factor);
17 if tid == 0 then
18 sum ← sum+localMem[get local id()];
19 end
20 barrier(CLK LOCAL MEM FENCE);
21 end
22 if tid == 0 then
23 u[rid] ← sum;
24 end

tion. Though there is some research about using dynamic

parallelism techniques to deal with the long rows of non-

zeros [12], the efficiency will depend on the specific feature

and implementation of the underlying hardware. (2) The

majority of rows in the sparse matrices in the real-world

applications are short rows. Figure 5 shows the histogram

of non-zeros in the rows of the sparse matrices, which are

collected from the UF collection and totals 2760 matrices

in all. As shown in the figure, about 98.7% of the rows

have only 100 non-zeros or less. Therefore, in the paper we

focus on the aforementioned kernels to handle the common

sparse matrices; our framework is also flexible and can be

extended to support other kernels for long rows in the latest

research [12], [29], but we leave it to future work.

Figure 5: The histogram of non-zeros in rows of sparse matrices
in UF collection

C. Machine Learning Model

In the framework, we use a machine learning method to

automatically find out the binning schemes and kernels for

any given sparse matrix. The sparse matrices are abstracted

to a set of parameters. On top of that, we define the attribute

collection for our data mining method. Finally, we will

discuss our data mining tool and its setups.

Matrix Feature Parameters: Since our framework is input

matrix adaptive, we need to extract enough feature pa-

rameters to represent the given sparse matrix. We borrow

the general parameters from [10] and add Min NNZ to

describe the minimum number of non-zeros among the rows.

The parameters can be categorized into two groups: basic

information and non-zero distribution information. The full

list is provided in Table I.

Table I: Extracted parameters to represent given sparse matrices

Module Name Description
Basic Matrix Info.

M The number of rows
N The number of columns

NNZ The overall number of non-zeros

Non-zero Distribution Info.
Var NNZ The variation of non-zeros per row
Avg NNZ The average of non-zeros per row
Min NNZ The minimal of non-zeros per row
Max NNZ The maximal of non-zeros per row

Attribute Vectors: Our machine learning model adopts a

two-stage training process. First, we focus on finding out

the best binning scheme for the given sparse matrix. As

a result, the first attribute vector is in the form of {M, N,

NNZ, Var NNZ, Avg NNZ, Min NNZ, Max NNZ, U} and

the target attribute is the binning scheme U . Second, we

change the attribute vector to the form of {M, N, NNZ,

Var NNZ, Avg NNZ, Min NNZ, Max NNZ, U, binID,

kernelID} and focus on finding out the most efficient

kernel kernelID for each bin of the given sparse matrix

under the binning scheme U . The two-stage training process

enables us to figure out the mapping relationship between

binning schemes and kernels for each bin.

Data Mining Model: In the framework, we use the C5.0

data mining tool [22] to extract the informative relationship

between binning schemes and kernels, because it has a
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user-friendly design and only knowledge of target features

is required during the generation of the model. After the

training process (i.e., discovering patterns and assembling

them into classifiers), the C5.0 can offer a rule-set, which is

a set of if-then statements. In our experiments, we use over

2000 sparse matrices from the UF collection [28] as the

training set, where 75% of them are used for training and

the rest are used for testing. We observe the error rate for the

first stage of learning is around 5%, while the second stage

error rate is up to 15%. After training, we have two rule-sets:

one is for selecting binning schemes; another is for selecting

kernels under the selected binning scheme. Thus, we are

able to make the decision of the parallelization strategies

for any new incoming matrix in the predict process (shown

in Figure 3).

IV. EVALUATION

In the section, we will first introduce the experimental

platform followed by the selected representative matrices.

Then, we show the performance results of SpMV, where

the parallelization strategies are selected by using our data

mining method. Finally, we will analyze and discuss the

binning overhead and some limitations of our framework.

A. Experimental Setup

Platform: Our experimental results are measured on real

HSA hardware using an AMD A10-7850K APU. The AMD

A10-7850K features four 3.7 GHz CPU cores and eight

720MHz GPU compute units. Our system is equipped with

16 GB memory. We use AMD Heterogeneous System Archi-

tecture (HSA) - Linux amdkfd v1.4 release, and CL Offline

Compiler CLOC V0.9.5 (HSA 1.0F) with SNACK support.

Input sparse matrices: In the off-line training process,

we use over 2000 matrices from the UF collection, 75% of

which are for training and 25% are for testing. To evaluate

the selected parallelization strategies, we use 16 represen-

tative sparse matrices from different application domains.

These matrices are summarized by [10] and Table II gives

the list of them. Note, the 16 representative matrices are

exclusive from the matrices in the training set.

B. Speedups from Our Framework

Our SpMV is able to automatically select a binning

scheme and equip every bin with appropriate kernels. We

first compare our optimized SpMV (kernel-auto) with the

default SpMV using only one single kernel. The kernels se-

lected for the default one are the “kernel-serial” and “kernel-

vector” respectively, which represent two ends of threading

granularity. As we can see from Figure 6, “kernel-auto” can

yield better performance than its counterparts for all the 16

representative matrices. Compared to “kernel-serial”, we can

achieve 1.7x to 11.9x speedups, while compared to “kernel-

vector”, the speedups are changed to 1.2x to 52.0x. In most

cases, the “kernel-serial” can provide superior performance

Table II: The list of representative matrices for evaluation, which
is summarized by [10]

Graph Name #Row #Col #NZ Kind

apache1 81k 81k 542k Structural problem

bfly 49k 49k 197k
Undirected graph

sequence

ch7-9-b3 106k 18k 423k
Combinatorial

problem

crankseg 2 64k 64k 14m Structural problem

cryg10000 10k 10k 50k Materials problem

D6-6 120k 24k 147k
Combinatorial

problem

denormal 89k 89k 1m
Counter-example

problem

dictionary28 53k 53k 178k Undirected graph

europe osm 51m 51m 108m Undirected graph

Ga3As3H12 61k 61k 6m
Theoretical/quantum
chemistry problem

HV15R 2m 2m 283m CFD problem

pcrystk02 14k 14k 969k
Duplicate materials

problem

pkustk14 152k 152k 15m Structural problem

roadNet-CA 2m 2m 6m Undirected graph

shar te2-b2 200k 17k 601k
Combinatorial

problem

whitaker3 dual 19k 19k 57k 2D/3D problem

Figure 6: Performance comparison of SpMV kernels over different
matrices. Execution time: normalized to our “kernel-auto”.

over “kernel-vector” in that most sparse matrices contain

very short rows on average, which is consistent with the

statistics shown in Figure 5. However, there are 5 matrices

making “kernel-vector” perform better due to their relatively

long rows. In contrast, our SpMV takes into consideration of

the lengths and distribution of the non-zeros in the matrix.

Hence, it outperforms the others.

Then, we compare our SpMV with the prior state-of-the-

art GPU SpMV “CSR-Adaptive” [11], which outperforms

some widely-used tools from clSpMV [30], ViennaCL [31]

and format ELLPACK. It has been adopted in current

ViennaCL. We tested against a SNACK version of CSR-

Adaptive, though the performance may be lower than the
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Figure 7: Performance comparison over the state-of-the-art SpMV
kernel [11]

latest available in clSPARSE. The “CSR-Adaptive” uses

the binning method to achieve inter-bin load balance and

it is able to automatically select the right kernel while

processing different rows within a single bin. The choice

of the strategy is defined (with hard-coded parameters) and

may not perform well on all the platforms. In contrast, our

binning method focuses on intra-bin load balance and pos-

sible different choices of kernels occur across bins. Figure 7

shows our speedups over the “CSR-Adaptive” SpMV. Our

SpMV can yield better performance over 10 out of 16 sparse

matrices and achieve up to 1.9x speedups. However, for the

matrices of crankseg 2, D6-6, dictionary28, europe osm,

Ga3As3H12, and roadNet-CA, “CSR-Adaptive” outperforms

ours. This might be caused by the lack of other efficient

binning schemes and the error of prediction. We will discuss

them in the next section.

C. Analysis and Discussion

Binning overhead: In our framework, we choose not to

set the binning granularity U to small numbers, such as 1

or 2, because the small granularity will cause very high

overhead. Considering the low ratio of the computation

to the memory access in SpMV, the overhead cannot be

compensated by the later computational operations. If we

adopt the fine-grained binning scheme in SpMV, not only

the number of bins will increase significantly, but also more

time will be consumed. Figure 8 provides an example of

the overhead of binning a sample matrix with 107 rows and

each row has only one non-zero. As it is shown, the binning

with U of 1 consumes much more time than the other

granularities. When the granularity rises to 100, the overhead

becomes negligible. Therefore, our framework prefers to

use coarser-grained binning schemes with larger granularity

numbers so that binning overhead is minimized while in the

meantime it is sufficient for optimizing for different kernels.

For large-scaled SpMV, we can conduct segmented analysis

to hide the binning overhead [32] or overlapped binning and

computation [33].

Grouping to Single Bin: In previous section, our SpMV

cannot provide better performance over the baseline “CSR-

Adaptive” for the matrices of crankseg 2, D6-6, dictio-
nary28, europe osm, Ga3As3H12, and roadNet-CA. After

Figure 8: Binning overhead of the changing binning granularity for
a sample sparse matrix (107 rows and each has only one non-zero).
Each row contains only one non-zero.

Figure 9: The single-bin strategy with various kernel selections. Ex-
ecution time: normalized to the state-of-the-art SpMV kernel [11]

taking a close look at the matrices, we find there are other

better binning schemes. For example, we can simply put all

the rows into a single bin and then look for the best kernel.

Figure 9 shows the performance of the single-bin strategy.

In this case, we manually change the selected kernel and

test the corresponding performance. The horizontal dashed

line indicates the performance of “CSR-Adaptive”. Although

two matrices still generate inferior performance, the other

four are able to outperform or become equal to the baseline.

This observation shows that for some matrices, though the

variance of the number of non-zeros per row exists, the

strategy of grouping the rows into different bins might not

be able to compete with simply using one kernel to process

all the rows. However, we still need to automatically figure

out which kernel is the most suitable one. Currently, our

framework does not accommodate the case for single-bin

strategy effectively which we plan to improve in future work.

Also, we found that most of these matrices have either very

low non-zeros per row (e.g., D6-6, europe osm) or very

high non-zeros per row (e.g., crankseg 2, Ga3As3H12). Our

current framework addresses irregular matrices with varying

non-zeros more effectively.

Parameters: In the framework, we currently use some

general feature parameters (in Table I) to represent sparse

matrices. Although these parameters can approximately re-

flect the shape of the matrices and distribution of the non-

zeros, how to represent a sparse matrix with a set of key

parameters is still an open research area. For example,
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metrics are needed to capture the ratio and adjacency of

the long, medium, and short rows. In the future, we plan to

further update our machine learning model to decrease the

error rate of learning and improve accuracy of prediction

by using the parameters, such as the histogram of rows of

non-zeros.

V. RELATED WORK

Since the SpMV is widely used in the scientific and

engineering applications, there is a great deal of literature

with a focus on optimizing and tuning SpMV on the modern

accelerators (e.g., multi-core CPUs and GPU), or finding

the most preferable storage formats to facilitate the SpMV.

Williams et al. [34] examine a set of optimization meth-

ods of SpMV kernels on the modern processors including

homogeneous and heterogeneous parallel platforms. Their

methods include thread-level parallelism, blocking for better

cache and local storage access, and register blocking. Bell

et al. [35] implement SpMV kernels on the GPU, where

they explore how different formats (e.g., COO, CSR, and

ELLPACK) affect the performance of SpMV and they

propose a hybrid format of the SIMD-friendly ELLPACK

and non-zero distribution invariant COO in order to take

advantage of both sides. The tools, such as clSPARSE [36],

cuSPARSE [4], clSpMV [30], take into account different

sparse storage formats and provide corresponding interfaces.

However, for a given sparse format, the necessity and

overhead of explicitly converting to a more SIMD-friendly

one is not negligible on GPUs. In contrast, on CPUs, we can

use directives/pragmas to directly restructure loops to utilize

vector processing resources [37], [38].

Ashari et al. [12] organize rows into different bins ac-

cording to the number of non-zeros within and these bins

are statically mapped to different kernels. Their binning

method is akin to the fine-grained binning scheme. More-

over, they take advantage of the dynamic parallelism (DP)

of the latest NVIDIA GPUs. Although dynamic parallelism

provides runtime launch of kernels to process long rows in

sparse matrices (e.g., graphs), the naive use of this feature

oftentimes deteriorates the performance [39], [40]. Merriall

and Garland [41] propose a merge-based SpMV kernel

and achieve superior performance on both CPU and GPU.

Actually, both of the DP-based and merge-based kernels can

be integrated into our framework as kernel candidates, which

will be covered as part of our future work. Liu et al. [15]

focus on the SpGeMM kernels and uses another hybrid

binning method, where for the short rows the fine-grained

binning is used, while for the long rows the coarse-grained

binning is used. In contrast to the “intra-bin” balanced

methods, Greathouse and Daga [11] devise an alternate

binning solution to achieve “inter-bin” load balance. Their

approach puts neighboring rows together so that each bin has

similar workloads (the workload limits are set in advance).

Then, the number of rows within each bin will determine the

suitable methods to process each row. Our work is different

from the aforementioned SpMV for two major reasons. (1)

Our binning method treats multiple adjacent rows as one

“virtual” row (the number of adjacent rows is determined

by U in Section III-B) and then only stores the first row’s

index in the bins. By doing so, we can take advantage of the

benefits from both fine-grained (finer kernel assignment) and

“inter-bin” binning methods (adjacent data access, less time

and space overhead of binning). (2) The binning scheme and

kernels are not fixed to any criteria in our work. We can

adjust the strategies automatically according to the sparsity

features of the inputs.

Considering the diversity of sparsity features of the target

matrices in addition to the parallel platforms, it is promising

to find a reliable auto-tuning and prediction model to resolve

the performance portability issue. On the other hand, there

are different sparse storage formats to handle different types

of matrices. DIA is proved to be the right format for the non-

zeros distributed along the diagonal [35]. ELLPACK and

its variants are SIMD-friendly and might be an effective

formats for the modern accelerators [35], [42]. Other formats

(e.g., BCCOO [6], BRC [7], and CSR5 [8]) are proposed to

further accelerate the parallel SpMV. Since different formats

are usually adopted to resolve one or more types of sparse

matrices, some research focuses on using auto-tuning and

prediction to automate the process of decision making for

which format to use. SMAT [10] and Sedaghati et al. [23]

propose machine learning models to select the most efficient

storage format to facilitate the SpMV operations. Vázquez

et al. [43] propose an auto-tuning method to find optimal

parameters for the ELLR-T algorithm to compute SpMV

on GPUs. In contrast to the previous work, we focus on the

most popular CSR format and our auto-tuning and prediction

model is in the level of selecting optimal parallel strategies

of binning schemes and kernels.

VI. CONCLUSION & FUTURE WORK

In this paper, we propose a SpMV framework using the

machine learning model to automatically find the optimal

parallel strategies (i.e., the binning schemes and kernels for

each bin). Our framework is based on the CSR format,

which is a widely-used storage format for sparse matrices.

According to the different sparsity features of the given

matrix, our SpMV framework can assist in choosing the ap-

propriate grouping policy and organizing independent rows

into different bins. Then, each bin will look for the suitable

kernels to process the rows within. Both searching processes

are based on the results of previous training steps. The

results show that our SpMV kernels are able to significantly

outperform the SpMV kernels using single kernel selection.

Moreover, for 10 out of 16 representative matrices, our

SpMV can achieve better performance over the state-of-the-

art SpMV kernels. This approach is also generic to other

sparse matrix applications (e.g., SpGeMM, SpElementWise,
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etc.) and other applications with different implementation

variants, which would be useful for researchers and devel-

opers.

For future work, we plan to extend our work to fully

utilize the underlying heterogeneous architectures. Since the

bins grouped by our binning schemes are optimized for

“inter-bin” workload balancing, it would be promising to

schedule the execution of the small sized but high volume

bins onto the throughput-oriented processors and the large

sized but low volume bins onto the latency-oriented proces-

sors, such as [44].
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