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Abstract—Pairwise sequence alignment algorithms, e.g.,
Smith-Waterman and Needleman-Wunsch, with adjustable gap
penalty systems are widely used in bioinformatics. The strong
data dependencies in these algorithms, however, prevents
compilers from effectively auto-vectorizing them. When pro-
grammers manually vectorize them on multi- and many-core
processors, two vectorizing strategies are usually considered,
both of which initially ignore data dependencies and then
appropriately correct in a subsequent stage: (1) iterate, which
vectorizes and then compensates the scoring results with
multiple rounds of corrections and (2) scan, which vectorizes
and then corrects the scoring results primarily via one round of
parallel scan. However, manually writing such vectorizing code
efficiently is non-trivial, even for experts, and the code may not
be portable across ISAs. In addition, even highly vectorized
and optimized codes may not achieve optimal performance
because selecting the best vectorizing strategy depends on the
algorithms, configurations (gap systems), and input sequences.

Therefore, we propose a framework called AAlign to au-
tomatically vectorize pairwise sequence alignment algorithms
across ISAs. AAlign ingests a sequential code (which follows
our generalized paradigm for pairwise sequence alignment)
and automatically generates efficient vector code for iterate
and scan. To reap the benefits of both vectorization strategies,
we propose a hybrid mechanism where AAlign automatically
selects the best vectorizing strategy at runtime no matter which
algorithms, configurations, and input sequences are specified.
On Intel Haswell and MIC, the generated codes for Smith-
Waterman and Needleman-Wunsch achieve up to a 26-fold
speedup over their sequential counterparts. Compared to the
highly optimized and multi-threaded sequence alignment tools,
e.g., SWPS3 and SWAPHI, our codes can deliver up to 2.5-fold
and 1.6-fold speedups, respectively.

Keywords-parallelization; vectorization; SIMD; automated
code generation; alignment; pairwise sequence search; mul-
ticore; many-core; framework

I. INTRODUCTION

Pairwise sequence alignment algorithms, e.g., Smith-

Waterman (SW) [1] and Needleman-Wunsch (NW) [2], are

important computing kernels in bioinformatics applications

([3], [4], [5]) to quantify the similarity between pairs of

DNA, RNA, or protein sequences. This similarity is captured

by a matching score, which indicates the minimum number

of deletion, insertion, or substitution operations with penalty

or award values to transform one sequence to another. To

boost their performance on modern multi- and many-core

processors, it is crucial to utilize the vector processing

units (VPUs), which support single-instruction, multiple-

data (SIMD) operations. However, the strong data depen-

dencies among neighboring cells prevent such algorithms

from taking advantage of compiler auto-vectorization. Thus,

programmers need to explicitly vectorize their code or even

resort to writing assembly code to attain better performance.

The manual vectorization of such algorithms often re-

lies on two potential strategies: (1) iterate [6], [4], [5],

which partially ignores the dependencies in one direction,

vectorizes the computations, and then may compensate the

results by using multiple rounds of corrections; or (2) scan
[7], which completely ignores the dependencies in one

direction, vectorizes the computations, and re-calculates the

results with “weighted scan” operations and another round of

correction. Either strategy has its own benefits depending on

selected algorithms (e.g., SW or NW), gap systems (linear

or affine), and input sequences.

Two main challenges face programmers. First, manual

vectorization requires substantial coding effort in order to

handle idiosyncratic vector instructions. For applications

having complex data dependencies, expert knowledge of

vector instruction sets and proficient skills to organize vector

instructions are necessary to achieve the desired functional-

ity. Moreover, current vector ISAs evolve quickly and some

versions are not backwards-compatible [8]. Porting existing

vectorized codes to other platforms becomes a laborious and

tedious task. Second, even highly optimized vector codes

may not achieve optimal performance at the application

level. For pairwise sequence alignment, the combination

of algorithms, vectorization strategies, configurations (gap

penalty systems), and input sequences at runtime may lead

to significant variability in performance. Furthermore, it in-

creases the complexity of optimizing applications on modern

multi- and many-core processors. Therefore, looking for a

way to get around these obstacles is of great importance.

In this paper, we propose a framework called AAlign

to automatically vectorize pairwise sequence alignment al-

gorithms across ISAs. Our framework takes sequential al-

gorithms, which need to follow our generalized paradigm

for pairwise sequence alignment, as the input and generates

vectorized computing kernels as the output by using the for-
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malized vector code constructs and linking to the platform-

specific vector primitives. Two vectorizing strategies are

formalized as ”striped-iterate” and ”striped-scan” in our

framework. In addition, we propose a hybrid approach that

automatically switches between striped-iterate and striped-

scan vectorization based on the context at runtime, which in

turn provides better performance than past approaches.

The major contributions of our work are three-fold. First,

we propose the AAlign framework, which can automatically

generate parallel codes for pairwise sequence alignment

via a combination of algorithms, vectorizing strategies, and

configurations. Second, we show that the existing vectorizing

strategies cannot always deliver optimal performance even

when the codes are highly vectorized and optimized. As

a result, we design a hybrid approach that takes advan-

tage of two vectorizing strategies: iterate and scan. Third,

using AAlign, we generate various parallel codes for the

different combinations of algorithms (SW and NW), vec-

torizing strategies (striped-iterate, striped-scan, and hybrid),

and configurations (linear and affine gap penalty systems) on

two x86-based platforms, i.e., Advanced Vector eXtension

(AVX2)-supported multicore and Initial Many Core Instruc-

tion (IMCI)-supported manycore.

We conduct a series of evaluations of the generated vector

codes. Compared to the optimized sequential codes on the

Haswell CPU, our codes using striped-scan vectorization can

deliver 4.0-fold to 6.2-fold speedup, while using striped-

iterate vectorization, our codes can provide 4.7-fold to 10.0-

fold speedup. The vectorized codes also show performance

benefit on Intel MIC and can achieve 9.1-fold to 16.0-

fold speedup using striped-scan and 9.5-fold to 25.9-fold

speedup using striped-iterate over the optimized sequential

counterparts, respectively. We also compare our proposed

hybrid approach with striped-iterate and striped-scan vec-

torization and show that our hybrid approach can achieve

better performance on both platforms. Next, after wrapping

our vector codes with multi-threading, we compare our

hybrid approach to highly optimized sequence alignment

tools, i.e., SWPS3 [4] on CPU and SWAPHI [5] on MIC.

When aligning query sequences to an entire database, our

codes achieve up to a 2.5-fold speedup over SWPS3 on CPU

and 1.6-fold speedup over SWAPHI on MIC.

II. BACKGROUND

This section provides a brief overview of (1) the vector

ISAs of x86-based processors for both CPU and MIC and

(2) the pairwise sequence alignment algorithms.

A. Vector ISA

Modern x86-based processors (e.g., CPU and MIC) are

equipped with vector processing units (VPUs). These VPUs

can carry out a single operation over a set of data simultane-

ously. Alongside, the vector ISA provides an abundant set of

instructions and continues to evolve and expand to provide

additional functionality, e.g., Advanced Vector Extensions

(AVX), Initial Many Core Instructions (IMCI), and the

incoming AVX-512 [9]. Meanwhile, the vector width has

also extended from 128 bits (4 floats) to 256 bits (8 floats)

to current 512 bits (16 floats), improving the throughput of

systems and offering potential benefits for applications. In

this paper, we focus on AVX2 and IMCI.

AVX2 Instructions: The width of AVX2 registers is 256

bits, consisting of two 128-bit lanes. The ISA is available

since the Haswell architecture. AVX2 expands most vector

integer SSE and AVX instructions to 256 bits and sup-

ports variable-length integers. In addition, AVX2 introduces

gather, cross-lane permute and per-element shift instructions.

IMCI Instructions: The width of IMCI registers is 512

bits in four 128-bit lanes. IMCI works on the Knights Corner

MIC architecture. Although IMCI provides additional func-

tionality, e.g., scatter, gather, reduce, etc., it does not support

previous vector ISAs, e.g., SSE and AVX. Because IMCI

does not support 8-bit or 16-bit integers, we only consider

32-bit integers on IMCI in this paper.

B. Pairwise Sequence Alignment Algorithms

Algorithms for pairwise sequence alignment aim to quan-

tify the best-matching score between two input sequences

of DNA, RNA, or proteins. Specifically, the alignment uses

the edit distance to describe how to transform one sequence

into another by using a minimum number of predefined

operations, including insertion, deletion, and substitution,

along with an associated penalty or award. A common tech-

nique leverages dynamic programming, which uses tabular

computations as shown in Fig. 1. If the input sequences

are query Qm with m characters and subject Sn with n
characters, we need a m ∗ n table T , and every cell Ti,j in

the table stores the optimal score of matching the substring

Qi and Sj . To assist in the computation, we define three

additional tables: Li,j , Ui,j , Di,j denoting the optimal scores

of matching with substring Qi and Sj but ending with the

insertion, deletion, and substitution, respectively. We can

derive:
Ti,j = max(Li,j , Ui,j , Di,j) (1)

Fig. 1 also shows the data dependencies. Visually, Li,j , Ui,j ,

Di,j rely on its left, upper, diagonal neighbors. Although the

algorithm takes O(m ∗ n) time and space complexity, we

use a double-buffering technique, as shown by the two solid

rectangles in the figure, to address the former while lowering

the space complexity to O(m), assuming the computation

goes along the Qm.

There are two major classes of pairwise sequence align-

ment algorithms: local alignment and global alignment. For

the former, the Smith-Waterman (SW) algorithm [1] can

quantify the optimal match with respect to partial (local)

regions. For the latter, the Needleman-Wunsch (NW) al-

gorithm [2] can find the best-matching score over entire

sequences. Both algorithms have multiple variants by using
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Figure 1: Data dependencies in the alignment algorithms using dynamic programming

linear or affine gap penalties. In Sec. IV, we show a general-

ized paradigm for pairwise sequence alignment algorithms.

III. CHALLENGES

Alg. 1 shows the sequential code of SW with an affine

gap penalty. Though writing the sequential code is relatively

simple, vectorizing such an algorithm is non-trivial due to

the strong data dependencies among the neighbors shown in

Fig. 1.

Algorithm 1: Sequential Smith-Waterman following the paradigm (Sec. IV)

/* GAPOPEN and GAPEXT are constants; BLOSUM62 is a
substitution matrix; ctoi is a user-defined function
to map given character to the index number in the
substitution matrix */

1 for i ←0; i < n+1; i++ do
2 T0,i = U0,i = L0,i = 0;
3 for j ←0; j < m+1; j++ do
4 Tj,0 = Uj,0 = Lj,0 = 0;
5 for i ←1; i < n+1; i++ do
6 for j ←1; j < m+1; j++ do
7 Li,j = max(Li−1,j + GAPEXT, Ti−1,j + GAPOPEN);
8 Ui,j = max(Ui,j−1 + GAPEXT, Ti,j−1 + GAPOPEN);
9 Di,j = Ti−1,j−1 + BLOSUM62ctoi(Qj−1),ctoi(Si−1);

10 Ti,j = max(0, Li,j , Ui,j , Di,j);
11 // resultant score is the maximum value in T

In Sec. I, we introduced two vectoring strategies to re-

construct the data dependencies. Here we describe the major

differences between the two vectorizing strategies: (1) iter-
ate [6], which partially ignores the vertical dependencies in

Fig. 1, and processes the vertical cells simultaneously along

the column1 and (2) scan [7], which completely ignores the

vertical dependencies at the beginning. The vertical cells

can be processed in a SIMD way, giving us the preliminary

results. After that, a parallel max-scan operation is conducted

on the preliminary results, and the scan results are applied

to correct the results in another round of computation.

The fundamental difference in these two strategies is in

the correction. While iterate may not need any correction

or will finish the correction with one or several steps of

re-computations, scan will always take two rounds of re-

computations, i.e., the scan on all vertical cells and then a

round of much lighter correction.

1This round of computations only ensures a portion of the results as
correct, leading to potentially multiple rounds of corrections.

Comparing the vector codes in Alg. 2 and Alg. 32 to

the sequential code in Alg. 1, we see that writing vector

codes involves expert knowledge of the algorithms and

the platform-specific ISAs, even though the detailed low-

level intrinsics are hidden by our formalized codes. As a

result, the first question we want to answer is whether we

can automatically vectorize these types of applications with

multiple combinations of parameters.

Figure 2: Example of comparing two vectorizing strategies under various conditions
on MIC (the cases are from Sec. VI)

On the other hand, the differences in the two strategies

each have their own benefits. Fig. 2 shows our other moti-

vation — because the algorithms, configurations, and input

sequences at runtime can affect performance and because no

one combination can always provide best performance, the

second question is whether we can design a mechanism to

automatically select the favorable vectorization strategies at

runtime.

IV. GENERALIZED PAIRWISE ALIGNMENT PARADIGM

Here we present our generalized paradigm for the pairwise

sequence alignment algorithms with adjustable gap penal-

ties. Any sequential codes following the paradigm can be

processed by our framework to generate real vector codes.

Ti,j = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0

max0�l<j(Ti,l + θi,l +
∑j

k=l+1 βi,k)

max0�l<i(Tl,j + θ′
l,j +

∑j
k=l+1 βk,j)

Ti−1,j−1 + γi,j

(2)

In the paradigm in Eq.(2), the T is the working-set table and

Ti,j stores the suboptimal score. 0 is optional and used only

in local alignment. θi,l (θ′l,j) is the gap penalty of initiating

a gap at the position l of Qm (Sn). βi,k (β′
k,j) is the gap

penalty of continuing a gap at the position k of Qm (Sn).

γi,j is the substitution score of matching base j of Qm and

base i of Sn. In bioinformatics, the substitution scores are

usually from the scoring matrix, such as BLOSUM62. Both

θi,l (θ′l,j) and βi,k (β′
k,j) can be configured to be either

constants or variables. By using the dynamic programming,

one can use three assistant symbols, i.e., Ui,j , Li,j , Di,j , to

represent the influence from Ti,j’s upper, left, and diagonal

2Although we use our formalized codes as the examples, the hand-written
vector codes presented in previous research, e.g., [6], are similar to ours.
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neighbors. Therefore, the paradigm is equivalent to Eq.(3-6).

Ti,j = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0

Ui,j

Li,j

Di,j

(3)

Ui,j = max

{
Ui,j−1 + βi,j

Ti,j−1 + θi,j−1 + βi,j
(4)

Li,j = max

{
Li−1,j + β′

i,j

Ti−1,j + θ′
i−1,j + β′

i,j

(5)

Di,j = Ti−1,j−1 + γi,j (6)

Now, we can fit the real algorithms into the paradigm.

Smith-Waterman: Because it is a local alignment algo-

rithm, we need to keep 0 as the initial. If we simply use the

linear gap penalty, the θi,l (θ′l,j) is set to 0 and βi,k (β′
k,j) is

the gap penalty value. If we use affine gap penalty, the θi,l
(θ′l,j) is the gap open penalty value and βi,k (β′

k,j) is the gap

extension penalty value. If these parameters are variables,

other gap penalty systems can be used. Needleman-Wunsch:

Because it is a global alignment algorithm, we don’t need the

0. The configuration of other parameters is similar with the

SW. Actually, ln. 7 to ln. 10 in Alg. 1 follow the paradigm

with necessary initialization codes in ln. 1 to ln. 4.

V. AALIGN FRAMEWORK

The AAlign framework adopts the “striped-iterate” and

“striped-scan” as the basic vectorization strategies. We make

a few modifications to the original methods derived from [6]

and [7] to fit our framework. Fig. 3 illustrates the overview

of AAlign. The framework can accept any kind of sequential

codes following our generalized paradigm in Sec. IV. After

analyzing the Abstract Syntax Tree (AST) of the sequential

code, AAlign can obtain the required information, such as

the type of the given alignment algorithm and the selected

gap penalty system. Then, AAlign will input the information

to the “vec code constructs” which are formalized according

to the aforementioned vectorizing strategies. Finally, the

framework can generate real codes by using proper vector

modules. These modules include primitive vector operations

whose implementation is ISA-specific.

seq code

vec code 
constructs

Clang 
framework

Traverse
Identify

Build vec code
Use hybrid method

AST (seq code) AST (vec code constructs)

vec codemod

mod

ISA-specific 
modules

Figure 3: High-level overview of the structure of AAlign framework

A. Vector Code Constructs

In this section, we will first describe the SIMD-friendly

data layout used in AAlign. Based on it, we will present

two vector code constructs containing the vector modules

(Sec. V-C) and the configurable parameters (Sec. V-D).

Striped layout: AAlign always conducts the tabular com-

putation along the query sequence Qm. After loading the

a b c d eA B C D E

a b c d e A B C D E

v1 v2 v5v3 v4

Original:

Striped:

i

i

Figure 4: The original and SIMD-friendly striped layouts

data from the same column in Fig. 1 to the buffer, AAlign

transforms the data layout to the striped format, which is

SIMD-friendly because the data dependency among adjacent

elements are eliminated. Fig. 4 shows the data layouts

before and after the striped transformation. In the original

buffer, we have 20 elements from the same column of the

tabular; and each element depends on its preceding neighbor

(the vertical direction in Fig. 1). If we load the elements

directly into five vectors, the data dependencies will hinder

efficient vector operations. By rearranging the buffer into

the striped format, dependent elements are distributed to

different vectors, making the interaction happening among

vectors rather than within vectors.

Algorithm 2: Vector code constructs for striped-iterate

/* m is the aligned length of Q, n is the length of S,
k is number of vectors in Q, equal to m/veclen. If
the linear gap penalty system is taken, the AAlign
will ignore the asterisked statements */

1 vec vTdia, vTleft, vTup, vT;
2 vec vTmax = broadcast(INT MIN);
3 vec vGapTleft = broadcast(GAP LEFT);
4 vec vGapTup = broadcast(GAP UP);
5 *vec vL, vU;
6 *vec vGapL = broadcast(GAP LEFT EXT);
7 *vec vGapU = broadcast(GAP UP EXT);
8 *vec vZero = broadcast(0);
9 for i ←0; i < n; i++ do

10 vTdia = rshift x fill(arrT1 + (k − 1) ∗ veclen, 1, INIT T);
11 vTup = set vector(m, INIT T, GAP UP);
12 vTup = add vector(vTup, vGapTup);
13 *vU = set vector(m, INIT U, GAP UP EXT);
14 *vU = add vector(vU, vGapU);
15 *vU = max vector(vU, vTup);
16 for j ←0; j < k; j++ do
17 vTdia = add array(prof + ctoi(Si) ∗ m + j ∗ veclen, vTdia);
18 vTleft = add array(arrT1 + j ∗ veclen, vGapTleft);
19 *vL = add array(arrL + j ∗ veclen, vGapL);
20 *vL = max vector(vL, vTleft);
21 *store vector(arrL + j ∗ veclen, vL);
22 vT = max vector(vTdia, MAX OPRD);
23 store vector(arrT2 + j ∗ veclen, vT);
24 vTmax = max vector(vTmax, vT);
25 vTdia = load vector(arrT1 + j ∗ veclen);
26 vTup = vT;
27 vTup = add array(vTup + vGapTup);
28 *vU = add vector(vU + vGapU);
29 *vU = max vector(vTup, vU);
30 REC UP = rshift x fill(REC UP, 1, REC FILL);
31 int j = 0;
32 vT = load vector(arrT2 + j ∗ veclen);
33 while influence test(REC UP, REC CRT) do
34 vT = max vector(vT, REC UP);
35 store vector(arrT2 + j ∗ veclen, vT);
36 vTmax = max vector(vTmax, vT);
37 REC UP = add vector(REC UP, REC UP GAP);
38 if ++j >= k then
39 REC UP = rshift x fill(REC UP, 1, REC FILL);
40 j=0;
41 vT = load vector(arrT2 + j ∗ veclen);
42 swap(arrT1, arrT2);
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Striped-iterate: This vectorizing strategy is based on [6].

The modified vector code constructs are shown in Alg. 2.

We use two m-element buffers arrT1 and arrT2 to store the

best-matching scores. Additionally, a m-element buffer arrL
stores the scores denoting best-matching with ending gap in

Q. The scores denoting best-matching with ending gap in

S are stored in the vector register Tup or vU if affine gap

penalty system is taken. In this strategy, we first partially

ignore the data dependencies within the buffer (along the

Q) and use the predefined vectors (ln. 11 and ln. 13) to set

lower bounds. In the predefined vectors (Tup or vU), only

first elements come from the real initialization expressions

(INIT T and INIT U ), while other elements are derived

from them and corresponding gap penalties (GAP UP and

GAP UP EXT ). As a result, the first round of preliminary

computations (ln. 16 to ln. 29) only ensures the first elements

in each vector are correct (a-e cells in Fig. 4).

We need to correct the results if the updated predefined

vectors affect the results (ln. 33). The re-computations of

correction (ln. 34 to ln. 41) will take at most veclen-1 times

to ensure all the other elements in the vectors are correct.

After that, we continue the for loop (ln. 9) to process the

next character in S, which corresponds to another column

in Fig. 1.

Algorithm 3: Vector code constructs for striped-scan

// m is the aligned length of Q, n is the length of S,
k is number of vectors in Q, equal to m/veclen. If
the linear gap penalty system is taken, the AAlign
will ignore the asterisked statements

1 vec vTdia, vTleft, vTup, vT;
2 vec vTmax = broadcast(INT MIN);
3 vec vGapTleft = broadcast(GAP LEFT);
4 *vec vL;
5 *vec vGapL = broadcast(GAP LEFT EXT);
6 *vec vZero = broadcast(0);
7 for i ←0; i < n; i++ do
8 vTdia = rshift x fill(arrT1 + (k − 1) ∗ veclen, 1, INIT T);
9 for j ←0; j < k; j++ do

10 vTdia = add array(prof + ctoi(Si) ∗ m + j ∗ veclen, vTdia);
11 vTleft = add array(arrT1 + j ∗ veclen, vGapTleft);
12 *vL = add array(arrL + j ∗ veclen, vGapL);
13 *vL = max vector(vL, vTleft);
14 *store vector(arrL + j ∗ veclen, vL);
15 vT = max vector(vTdia, MAX OPRD);
16 store vector(arrT2 + j ∗ veclen, vT);
17 vTdia = load vector(arrT1 + j ∗ veclen);
18 wgt max scan(arrT2, arrScan,m, INIT T, GAP UP EXT, GAP UP);

19 for j ←0; j < k; j++ do
20 vTup = load vector(arrScan + j ∗ veclen);
21 vT = load vector(arrT2 + j ∗ veclen);
22 vT = max vector(vT, vTup);
23 vTmax = max vector(vTmax, vT);
24 store vector(arrT2 + j ∗ veclen, vT);
25 swap(arrT1, arrT2);

Striped-scan: The scan strategy in AAlign is based on

the GPU method [7]. We modify it by using the striped

format on x86-based platforms, shown in Alg. 3. Similar

with the striped-iterate, we define three m-element buffers

arrT1, arrT2, and arrL. In addition, an extra buffer arrscan
is used to store the scan results. In this strategy, we first

completely ignore the data dependencies within the buffer

(along the Q) to do the tentative computation (ln. 9 to ln. 17).

Unlike the striped-iterate, we conduct “weighted” scan over

the tentative results arrT2 and store the scan results to arrscan
(ln. 18). Finally, we use the values in arrscan to correct the

results (ln. 19 to ln. 24). After that, we continue to process

the next character in S (ln. 7).

B. Hybrid Method

As we discussed in Sec. III, no one combination of

the algorithms (SW or NW), vectoring strategies (iterate

or scan), gap penalty systems (linear or affine) can al-

ways provide optimal performance for different pairs of

input sequences. Before we provide a better solution, we

investigate the reason under what circumstances a specific

combination can win. We test various query sequences,

whose lengths range from 100 to 36k characters. We fix the

algorithm to SW and the gap penalty system to the affine

gap, and change the vectoring strategies. We find that the

striped-scan strategy performs better when the number of

re-computations in striped-iterate is around 1.5 times more

on MIC, and 2.5 times on Haswell (For other combinations

of algorithms and gap systems, the ratios are similar due to

the similar computational pattern and workloads). Generally,

if the best-matching score before the re-computations is

high, meaning that the two input sequences may be close to

each other, the striped-iterate has to carefully and iteratively

check each position with more re-computation steps in order

to eliminate the false negative; while in striped-scan, no

matter what the matching scores are, the fix number of

re-computations are needed. Paradoxically, we cannot rely

on this observation to determine which strategy should be

taken, because unless we finish the alignment algorithm and

get the real matching scores, we don’t know how similar

or dissimilar in the input pair of sequences, or even in a

specific rang of pairs.

In the paper, we propose an input-agnostic hybrid method

that can automatically select the efficient vectorizing strategy

at the runtime. Our hybrid method starts from the striped-

iterate strategy, in which we maintain a counter to record

the number of re-computations. When the counter exceeds

the configured threshold, the method will switch to the

striped-scan. For example, based on the experiments for the

combination of SW with the affine gap presented in the

previous paragraph, we set the threshold to be 2 for MIC and

3 for Haswell CPU. However, switching back from striped-

scan to striped-iterate is nontrivial, because we don’t know

the amount of re-computations for striped-iterate when the

algorithm is working in the striped-scan mode. Alternatively,

we design a solution to “probe” the re-computation overhead

at a configurable interval stride. That way, after processing

stride characters in the subject sequence using the striped-

scan, we tentatively switch back to the striped-iterate and

rely on the counter to determine the next switch. Once
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the counter is above the threshold, we switch back again

to the striped-scan for another round of processing stride
characters. Otherwise, our method will stay in the striped-

iterate mode and continue checking the counter.

Fig. 5 shows an example of the hybrid method. If we only

rely on the striped-iterate method, the re-computations in the

middle part of the subject sequence will kill the performance

due to the overhead of re-computations. In contrast, if we

only use the striped-scan, the benefits of the head and tail

parts in the striped-iterate will be wasted. Our hybrid method

uses the counter to find the amount of re-computations is

above the threshold around processing the 800-th character,

and thus switch to striped-scan method. Then, it will probe

the counter periodically by going back to the iterate method

until the counter drops below the threshold or the end of the

sequence S is achieved.

Figure 5: The mechanism of the hybrid method

One may wonder why the hybrid mechanism starts from

the striped-iterate, conservatively switches from striped-

iterate to striped-scan only when the counter exceeds the

threshold, and aggressively switches back by using the

proactive probe. The reason is related with the characteristics

of sequence search: although the sequence alignment is

designed to find similar sequences of databases for the input

query, it cannot identify too many similar sequences because

statistically most of the sequences of databases are dissimilar

with a specific input. Even if a sequence is determined

similar to the input, their exactly match regions are few.

Considering the much faster convergence speed of striped-

iterate for dissimilar pairs, we prefer it, and conservatively

switch to striped-scan only when we find current aligned

regions are highly matched.

C. Vector Modules

We have already seen the usage of the vector modules

in Alg. 2 and Alg. 3. These vector modules are designed to

express the required primitive vector operations in our vector

code constructs and hide the ISA-specific vector instruction

details. Therefore, when the platform changes, AAlign only

needs to re-link the vector code to the proper set of vector

modules. Tab. I defines the vector primitive modules. The

first group of modules are designed to conduct basic vector

operations over given arrays or vectors. Specifically, they

are wrapper functions of the directly-mapped ISA intrinsics.

As a contrast, the second group of modules carry out an

application-specific operations, customized to our formal-

ized vector code constructs.

Table I: The vector modules in AAlign

Module Name Description
Basic Vector Operation API

load vector(void *ad); Load/store a vector from/to the memory address
ad, which can be char*, short*, or int*
(the same below)

store vector(void *ad, vec v);

add vector(vec va, vec v); Add a vector of va or from the memory address
ad by vector v,add array(void *ad, vec v);

max vector(vec v1, ...); Take any count of input vectors, and return
the vector with largest integers in each aligned
position

App-specific Vector Operation API
set vector(int m, int i, int g); Init a new vector, in which i is the default Ti,j

or Fi,j value when j=0, g is their correspond-
ing gap βi,j or θi,j

rshift x fill(vec v, int n, ...); Right shift the vector of v or loaded from ad by
n of positions and fill the gaps with specified
values

rshift x fill(void *ad, int n,
...);

influence test(vec va, vec vb); Check if vector va can affect the values in vb
wgt max scan(void *in, void
*out, int m, int i, int g, int G);

“weighted” max-scan over the values in in of
the striped format, store the results to out. i is
the default Ti,j value when j=0, g, G are the
corresponding βi,j , θi,j

set vector: is to set the lower-bound vector in the striped-

iterate strategy. Fig. 6 shows that AAlign will set the first

value of the lower-bound vector to be the initial value i
Then, the lower-bound values of the rest are set to be

i + l ∗ k ∗ g, where l is the element’s index, k is the

total number of vectors, and g is the associate gap penalty.

The implementation of the module is to use the proper

_mm256/512_set instrinsics.
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Figure 6: Vector modules used in the striped-iterate

rshift x fill: is to right shift the vector elements with

the value x filled. AAlign uses this module to adjust the

data dependencies between vectors. As shown in Fig. 6, the

1st round of computation can ensure the values in the first

column (a-e cells) are correct, since they are calculated based

on the real initial value i. Therefore, the test of the need

for correction is required. Before that, we observe that in

the 2nd round, the current “true” value e would affect A
according to the original layout in Fig. 4. As a result, we

shift the vector v5 to right by 1 position and fill the gap

using a small enough number x to make sure there is no

influence caused by it.
The implementation is essentially a combination of data-

reordering operations. However, the selection of instructions
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is quite different because of different ISAs and desired data

types. Fig. 7 shows how to achieve the same functionality

with different intrinsics. Because the shortest integer data

type supported by IMCI is 32-bit, we only show IMCI with

32-bit int, which uses a combination of the cross 128-bit

lane permutevar and swizzle intrinsics. As a contrast, we

directly insert the value x after the permutevar completes

on AVX2 with 32-bit int. If we work on the 16-bit values,

there is no equivalent permutevar intrinsics so that we

use shufflehi/hi, permute8x32 and blend intrinsics for this

functionality, followed by the insert.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516

x x x x x x x x x x x x x x xx

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15x

1 2 3 4 5 6 7 8

1 2 3 4 5 6 78

1 2 3 4 5 6 7x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 8 5 6 7 12 9 10 11 16 13 14 154

1 2 3 8 5 6 7 12 9 10 1116 13 14 15 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15x

__m512_permutevar_epi32

__m512_mask_swizzle_epi32

__m256_permutevar_epi32

__m256_insert_epi32

__m256_shufflehi/lo_epi16

__m256_permutevar8x32_epi16

__m256_blend_epi16

__m256_insert_epi16

rshift_x_fill (IMCI 32-bit int)

rshift_x_fill (AVX2 32-bit int)

rshift_x_fill (AVX2 16-bit int)

__m512_set1_epi32

Figure 7: Example of chosen ISA intrinsics for rshift x fill (only blend operations are
shown with arrows)

influence test checks if an extra re-computation of correc-

tion is necessary in the striped-iterate method. Specifically,

the module is a vector comparison. The comparison results

containing 1s mean the 1st operand will affect the 2nd one.

In IMCI, the results are stored in a 16-bit mask and then we

simply check if this value is larger than 0 or not. However, in

AVX2, the “mask” is stored in a 256-bit vector, and there is

no single instruction to peek how many set bits inside. Our

solution is to split the vector to two 128-bit SSE vectors and

use the intrinsic _mm_test_all_zeros to detect if there

are set bits.

wgt max scan implements the “weighted” scan along the

buffer holding the tentative results (denoted as T̃i,j and

stored in arrT1 from ln. 18 of Alg. 3). Mathematically,

we perform the calculation of max0�l<j(T̃i,l + θi,l +
∑j

k=l+1 βi,k). For simplicity, let’s suppose θi,l, βi,k are two

constants θ and β and only use 8 characters as the example

for the striped sequence shown in Fig. 4. In Fig. 8, we use

three steps to achieve the wgt max scan. First, we conduct

a preliminary round of inter-vector weighted scan on v1 and

v2 with initial weight θ + β and extensive weight β. The

results will be stored in the intermediate vectors u1 and

u2. Second, an intra-vector and exclusive weighted scan is

performed on vector u2 with the weight of k ∗ β, where k
is the total number of vectors. The results are stored in s.

Third, the last round of inter-vector and exclusive weighted

broadcast is performed on s, u1 and u2 with the weight of

β. The final scan results are stored in arrT1.

Weighted scan result
(in original order)

wgt_max_scan (arrT,arrScan,i, , )

a+ +

i+ +

Striped:

1. Inter-vector weighted scan

+2 +2 +2
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Figure 8: Orchestration mechanism in the wgt max scan (Maximum operations are
applied on each cell)

D. Code Translation

The AAlign framework takes the sequential codes fol-

lowing our generalized paradigm as the input. After the

analysis of the codes, the framework will decide how to

modify the vector code constructs. We make use of Clang

driver [10] to create the Abstract Syntax Tree (AST) for

both the sequential codes and vector code constructs, shown

in Fig. 3. To traverse the trees, we build our Matcher and

Visitor classes in Clang’s AST Consumer class. Once the

information from the AST nodes of interest is identified and

retrieved, we use our Rewriter class to modify the AST tree

of the vector code constructs with the information and its

derivative results. Note, present framework only supports

the constant gap penalties (e.g., βi,k, θi,l). We will leave

it to future work to support variable penalties used in, for

example, the dynamic time warping (DTW) algorithm.

Tab. II shows the configurable expressions in Alg. 2 and

Alg. 3. The information can be retrieved from the sequential

codes in four groups: 1. Identify which type of the pairwise

alignment algorithm is used: local or global. This can be

done by checking if there is a constant 0 set to T or not. 2.

Identify what kind of gap penalty system is used. We can

check if θ is set to 0 or not (row 1-4 in Tab.II). 3. Learn how

to initialize the boundary values (row 5,6). 4. Derive other

information of how to organize the vectors (row 7-11). After

the vector code constructs have been rewritten, we use the

hybrid method to generate our pairwise sequence alignment

kernels.

E. Multi-threaded Version

The AAlign framework can also utilize the thread-level

parallelism of the multi- and many-cores to align a given

query with all subject sequences in a database. We first

assign the generated kernel to each thread, and a thread

will get a subject sequence from the database to conduct

the alignment until all subject sequences are aligned. After
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(a) SW (CPU) (b) NW (CPU) (c) SW (MIC) (d) NW (MIC)

Figure 9: AAlign codes vs. Baseline sequential codes. The baselines are different and they are optimized to follow the similar logic with the corresponding AAlign codes.

Table II: Configurable expressions in vector code contructs

Expression Description & Format Example*

GAP LEFT Gap penalty from the left T cell (i.e.
θ′+β′); constants or variables

GAPOPEN (ln.7)

GAP UP Gap penalty from the upper T cell (i.e.
θ+β); constants or variables

GAPOPEN (ln.8)

GAP LEFT EXT Gap penalty from the left L cell (i.e. β′);
constants or variables

GAPEXT (ln.7)

GAP UP EXT Gap penalty from the upper U cell (i.e. β);
constants or variables

GAPEXT (ln.8)

INIT T Upper boundary value of T cell; func(i) 0 (ln.2)
INIT U Upper boundary value of U cell; func(i) 0 (ln.2)
MAX OPRD Operands required by the max operation;

vec variables

vU, vL, vZero

REC FILL Value to fill the right shifted gap; constant GAPOPEN (ln.8)
REC UP Operand for checking the re-computation;

vec variable

vU

REC UP GAP Gap operand for REC UP; vec variable vGapU
REC CRIT Criterion for checking re-computation; vec

variable

vGapTup-vGapU

*: The examples are fetched or derived from Alg. 1

we sort the database by the subject sequence length, this

dynamic binding mechanism is extremely efficient because

of the load balance among threads. For the implementation,

we don’t need to create the profile array of substitution

matrix for the query every time (prof in ln. 17 of Alg. 2 or

ln. 10 of Alg. 3). Therefore, the only change of the kernel

is to extract the part of building profile array and perform it

once before launching multiple threads.

VI. EVALUATION

In the section, we evaluate the AAlign-generated pairwise

sequence alignment codes on Haswell CPU and Knights

Corner MIC. For Haswell, we use 2 sockets of E5-2680 v3,

which totally contain 24 cores running on 2.5 GHz with 128

GB DDR3 memory. Each core has 32 KB L1, 256 KB L2,

and shares 30 MB L3 cache. For MIC, we use the Intel Xeon

Phi 5110P coprocessor in the native mode. The coprocessor

consists of 60 cores running on 1.05 GHz with 8 GB GDDR5

memory, and each core includes 32 KB L1 and 512 KB L2

cache. We use icpc in Intel compiler 15.3 with -O3 option

to compile the codes. To specialize the desired vector ISA,

we also include -xCORE-AVX2 for CPU and -mmic for MIC.

All the sequences are from NCBI-protein database [11]. The

number of characters is integrated into the query name.

Our objectives include the following: (1) compare

AAlign-generated codes with the optimized sequential

codes; (2) compare our proposed hybrid method with the

iterate and scan methods, respectively, and (3) compare

multi-threaded versions of AAlign-generated codes with

existing state-of-the-art tools.

A. Speedups from Our Framework

We first compare the AAlign-generated codes (32-bit

int) with the sequential codes (32-bit int) to evaluate the

vectorization efficiency. The subject sequence is a Q282. The

sequential codes are following the same logic of the vector

codes. We also add “#pragma vector always” in the inner-

loop of the codes. The speedups, shown in Fig. 9, are the

performance benefits brought by the AAlign using striped-

iterate and striped-scan respectively. By using the striped-

scan, the SW and NW can achieve an average of 4.8 and

13.6-fold speedups over the sequential codes on CPU and

MIC respectively. In contrast, the speedups of the striped-

iterate SW and NW vary in a wider range of 4.7 to 10-fold on

CPU and 9.5 to 25.9-fold on MIC. The superlinear speedups

of the striped-iterate are mainly because the striped-iterate

avoids a considerable amount of computation along the Q
if the influence test fails.

We can see that the performance variance of the striped-

scan is smaller than the striped-iterate. For example, though

the SW approximates the NW in terms of computational

workloads, the performance of the striped-iterate SW-affine

(Fig. 9c) and NW-affine (Fig. 9d) changes a lot, while

the striped-scan keeps relatively consistent. Actually, the

performance difference of the two methods depends on

the processed numerical values which are affected by the

algorithms, gap systems, and input sequences.

B. Performance for Pairwise Alignment

In the preceding section, we observe that the algorithm

and gap penalty system will affect the choice of the better

vectorizing strategy. This section changes the input se-

quences. We first borrow the concepts of query coverage

(QC) and max identity (MI) [12] from the bioinformatics

community to describe the similarity of the input sequences.

QC means the percent of query sequence Q overlapping

the subject S, while the MI is the percentage of the simi-

larity between Q and S over the length of the overlapped
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(a) SW w/ linear gap (CPU) (b) SW w/ affine gap (CPU) (c) NW w/ linear gap (CPU) (d) NW w/ affine gap (CPU)

(e) SW w/ linear gap (MIC) (f) SW w/ affine gap (MIC) (g) NW w/ linear gap (MIC) (h) NW w/ affine gap (MIC)

Figure 10: AAlign codes using striped-iterate, striped-scan, and hybrid method. The x-axis represents the similarity of the two sequences using the format of QC MI in which
the query coverage (QC) and max identity (MI) metrics are in three levels: high (>70%), medium (70%-30%), and low(<30%)

area. Additionally, we define three ranges of hi (>70%),

md (30%-70%), and lo (<30%). That way, we have nine

combinations of QC MI to represent the similarity and

dissimilarity of two input sequences. For example, lo hi
means only a small portion of two sequences overlaps each

other, but the overlapped areas are highly similar. In the

experiment, we use Q2000 against the “nr” database using

NCBI-BLAST [12] and pick out nine typical subjects for

the aforementioned criteria.

Fig. 10 shows the performance of AAlign using different

vectorizing strategies, including striped-iterate, striped-scan,

and hybrid, on CPU and MIC. For the alignment algorithms

with linear gap penalty, the striped-iterate method always

outperforms the striped-scan, because the effects of the zero

θ cause the number of re-computations falling into a very

small number. The results also show that with the linear

gap penalty, our hybrid method will fall back to the striped-

iterate and has very similar performance with it. For the

algorithms with affine gap penalty, the striped-scan is better

than the striped-iterate when two sequences have high or

medium scores of QC and MI, meaning that the input

sequences are very similar. For example, for the sequences

labeled as hi hi, hi md, md hi, md md, in Fig. 10b, 10d,

10f, and 10h, striped-scan is the better solution, thanks to

its fixed rounds of re-computation. In the cases of the NW

with the affine gap, the striped-scan can deliver up to 3.5

fold speedup on MIC and up to 1.9 fold speedup on CPU

over the striped-iterate. For other inputs (dissimilar input

sequences), the striped-iterate is better. Because the hybrid

method can automatically switch to the better solution, in

most test cases, the hybrid method has better performance

than either of the striped-iterate and striped-scan method.

In the corner cases, the hybrid method approximates to the

better solution instead of the worse one.

C. Performance for Multi-threaded Codes

In the section, we compare AAlign’s multi-threaded SW

with affine gap penalty system with the tools of SWPS3

and SWAPHI. The database is the “swiss-prot” containing

more than 570k sequences [13]. SWPS3 [4] uses a modified

version of the striped-iterate method working on CPUs.

The buffers of the table T are of char and short data

types. SWAPHI [5] supports both inter-sequence and intra-

sequence vectorization in the multi-threaded on MIC. In the

experiment, we only focus on their intra-sequence method of

int data type. Correspondingly, we use our generated kernel

of short and int data type on CPU and MIC respectively.

(a) vs. SWPS3 on CPU (b) vs. SWAPHI on MIC

Figure 11: AAlign Smith-Waterman w/ affine gap vs. existing highly-optimized tools
in billion cell updates per second (GCUPS)

Fig. 11 presents the results of AAlign SW algorithms

comparing with the two highly-optimized tools. On the CPU,

the generated AAlign codes can outperform the SWPS3 for

up to 2.5 times, especially for the short query sequences.

However, in Fig. 11a, for the long sequences Q4000, SWPS3

is better. This mainly because rather than working entirely
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on the short data type (16 bits), SWPS3 also uses the char-

type (8 bits) buffers. Only when the overflow occurs, the

tool will switch to the short. This is especially beneficial for

long query sequences by lowering the cache pressure. For

the MIC, we can outperform the SWAPHI on an average

of 1.6 times, thanks to our hybrid method and the efficient

vector modules.

VII. RELATED WORK

To fully utilize the computing power of modern accelera-

tors, it is crucial to utilize the SIMD units within. However,

the low programmability are still obstacles facing non-expert

programmers. Though some applications can naturally enjoy

the benefits brought by the compiler auto-vectorization tech-

niques [14], there are still many applications not belonging

to this category. As a result, programmers have to smartly

design and hand-code the SIMD codes. [15] propose a

fast SIMD sorting algorithm using CPU vector instrinsics.

The work of [5], [6], [7] operate on Smith-Waterman by

manually writing compiler instrinsics and GPU kernel codes.

Heinecke et al. [16] optimize the Linpack Benchmark by

using assembly codes on MIC. Unfortunately, explicitly

writing vector codes is still not productive and portable.

Some compiler-based solutions are proposed to ease the

situation. Polyhdral compiler [17] uses a set of loop transfor-

mation, optimization and vectorization to generate efficient

codes. ISPC [18] provides SIMD-friendly data structures

and function APIs. However, these solutions still require the

expert knowledge of vectorization and applications.

Other research works focus on the specialized vectoriza-

tion patterns and code generation. Ren et al. [19] present a

set of novel code transformations to facilitate vectorization

of recursive programs. PeerWave [20] explores the wave-

front parallelism on GPUs including intra-tile parallelism

on SIMD units. Ren et al. [21] propose a code generation

and optimization engine targeting at using SIMD resources

for the irregular data-traversal applications. ASPaS [22] are

designed to generate optimized and efficient vector codes

for the sorts. Compared to the existing work, the distinctive

aspects of our work are to automatically generate the vector

codes based on different vectorizing strategies. Our solution

is able to switch among these strategies no mater the selected

algorithms, configurations, and inputs in the runtime. In

addition, our codes are portable among different x86-based

systems.

VIII. CONCLUSION

The AAlign framework can generate the vector codes

based on “striped-iterate” and “striped-scan”. Moreover, we

design an input-agnostic hybrid method, which can take

advantage of both the vectorization strategies. The generated

codes will be linked to a set of platform-specific vector mod-

ules. To do this, the AAlign only needs the input sequential

codes following our generalized paradigm. The results show

that the vector codes can deliver considerable performance

gains over the sequential counterparts by utilizing the data-

level parallelism and decreasing the amount of computation.

We also demonstrate that our hybrid method is able to

automatically switch to the better vectorization strategy at

runtime. Finally, compared to the existing highly-optimized

multi-threaded tools, the multi-threaded AAlign codes can

also achieve competitive performance.
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