
Exploring Performance Portability for Accelerators via

High-level Parallel Patterns

Kaixi Hou

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science and Application

Wu-chun Feng, Chair

Calvin J. Ribbens

Hao Wang

Yong Cao

Gagan Agrawal

May 2, 2018

Blacksburg, Virginia

Keywords: Parallel Patterns, Vector Processing, SIMD, Parallel Accelerators, Multi-core,

Many-core, DSL, Algorithmic Skeleton

Copyright 2018, Kaixi Hou

Exploring Performance Portability for Accelerators via

High-level Parallel Patterns

Kaixi Hou

(ABSTRACT)

Parallel computing dates back to the 1950s-1960s. It is only in recent years, as various parallel

accelerators have become prominent and ubiquitous, that the pace of parallel computing has sped

up and has had a strong impact on the design of software/hardware. The essence of the trend

can be attributed to the physical limits of further increasing operating frequency of processors and

the shifted focus on integrating more computing units on one chip. Driven by the trend, many

commercial parallel accelerators are available and become commonplace in computing systems,

including multi-core CPUs, many-core GPUs (Graphics Processing Units) and Intel Xeon Phi.

Compared to a traditional single-core CPU, the performance gains of parallel accelerators can

be as high as many orders of magnitude, attracting extensive interest from many scientific domains.

Nevertheless, it presents two main difficulties for domain scientists and even expert developers: (1)

To fully utilize the underlying computing resources, users have to redesign their applications by

using low-level languages (e.g., CUDA, OpenCL) or idiosyncratic intrinsics (e.g., AVX vector

instructions). Only after a careful redesign is carried out can efficient kernels be written. (2) These

kernels are oftentimes specialized and in turn imply that as far as the performance is concerned, the

codes might be not portable to a new given architecture, leading to more tedious and error-prone

redesign.

Parallel patterns, therefore, can be a promising solution in lifting the burdens from pro-

grammers. The idea of parallel patterns attempts to build a bridge between target algorithms and

parallel architectures. There has already been some research on using high-level languages as

parallel patterns for programming on modern accelerators, such as ISPC, Lift, etc. However, the

existing approaches fall short from efficiently taking advantage of both parallelism of algorithms

and diversified features of accelerators. For example, by using such high-level languages, it is still

challenging to describe the patterns of the convoluted data-reordering operations in sorting net-

works, which are oftentimes treated as building blocks of parallel sort kernels. On the other hand,

compilers or frameworks lack the capability and flexibility to quickly and efficiently re-target the

parallel patterns to another different architectures (e.g., what types of vector instructions to use,

how to efficiently organize the instructions, etc.).

To overcome the aforementioned limitations, we propose a general approach that can create

an effective and abstracted layer to ease the generating efficient parallel codes for given algorithms

and architectures. From algorithms to parallel patterns, we exploit the domain expertise to ana-

lyze the computational and communication patterns in the core computations and represent them in

DSL (Domain Specific Language) or algorithmic skeletons. This preserves the essential informa-

tion, such as data dependencies, types, etc., for subsequent parallelization and optimization. From

parallel patterns to actual codes, we use a series of automation frameworks and transformations

to determine which levels of parallelism can be used, what optimal instruction sequences are, how

the implementation changes to match different architectures, etc. In this dissertation, we present

our approaches by investigating a couple of important computational kernels, including sort (and

segmented sort), sequence alignment, stencils, etc., across parallel platforms (CPUs, GPUs, Intel

Xeon Phi). Through these studies, we show: (1) Our automation frameworks use DSL or algo-

rithmic skeletons to express parallelism. (2) Generated parallel programs take into consideration

of both parallelism of the target problems and characteristics of underlying hardware. (3) Evalu-

ations are discussed on the portable performance and speedups over the state-of-the-art optimized

codes. Besides, for some problems, we also propose novel adaptive algorithms to accommodate

the parallel patterns to varying input scenarios.

Exploring Performance Portability for Accelerators via

High-level Parallel Patterns

Kaixi Hou

(GENERAL AUDIENCE ABSTRACT)

Nowadays, parallel accelerators have become prominent and ubiquitous, e.g., multi-core CPUs,

many-core GPUs (Graphics Processing Units) and Intel Xeon Phi. The performance gains from

them can be as high as many orders of magnitude, attracting extensive interest from many scientific

domains. However, the gains are closely followed by two main problems: (1) A complete redesign

of existing codes might be required if a new parallel platform is used, leading to a nightmare for

developers. (2) Parallel codes that execute efficiently on one platform might be either inefficient

or even non-executable for another platform, causing portability issues.

To handle these problems, in this dissertation, we propose a general approach using parallel

patterns, an effective and abstracted layer to ease the generating efficient parallel codes for given

algorithms and across architectures. From algorithms to parallel patterns, we exploit the domain

expertise to analyze the computational and communication patterns in the core computations and

represent them in DSL (Domain Specific Language) or algorithmic skeletons. This preserves the

essential information, such as data dependencies, types, etc., for subsequent parallelization and

optimization. From parallel patterns to actual codes, we use a series of automation frameworks

and transformations to determine which levels of parallelism can be used, what optimal instruction

sequences are, how the implementation change to match different architectures, etc. Experiments

show that our approaches by investigating a couple of important computational kernels, including

sort (and segmented sort), sequence alignment, stencils, etc., across various parallel platforms

(CPUs, GPUs, Intel Xeon Phi).

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor Prof. Wu-chun Feng, who provides me invaluable

knowledge and insights on research, communication skills, and introduces me into the world of

academia. I have learned so much from Dr. Feng: how to read/write research papers, how to

express my idea briefly and deliver a good presentation, how to establish productive collaboration

with others, etc. Without Wu’s guidance and support, I would have never reach where I am now.

Next, I would like to thank my other committee members: Prof. Calvin J. Ribbens, Dr. Hao

Wang, Dr. Yong Cao, and Prof. Gagan Agrawal. I appreciate all their insightful comments and

feedback on my dissertation, as well as their precious time they put into serving at various stages

of my Ph.D. journey. Special thanks go to Dr. Hao Wang for working closely with me on many

research projects and providing me with great suggestion and helpful advise on strengthening my

research capability.

I have been fortunate to work with many researchers from other research institutes. I am

grateful to Shuai Che (AMD research) for his guidance on the GPU project to accelerate graph

algorithms. My thanks also go to Jonathan Gallmeier (AMD research) for the technical discus-

sions on how to efficiently utilize different GPU platforms. I am indebted to Seyong Lee, Jeffrey

Vetter, and Mehmet Belviranli (Oak Ridge National Lab), for the extended brainstorming discus-

sions on GPU-based wavefront problems. I would also like to thank Weifeng Liu (University of

Copenhagen) for sharing his knowledge and experience on GPU computing.

I also want to share my gratitude to the wonderful people around me throughout these years.

I am so fortunate to have Jing Zhang, Xiaodong Yu, Xuewen Cui, Da Zhang as my lab colleagues

during my Ph.D. I cannot forget the many “pizza” nights that we spent on the submission deadlines.

Special thanks go to my roommates, Fang Liu, Yao Zhang, and Jinxing Wang/Libei Huang couple,

at different stages of my Ph.D. I would like to thank the following people who make my life

colorful and entertaining in this “isolated” Blacksburg: Bo Li/Yao Wang couple, Hao Zhang, Yue

Cheng, Sichao Wu, Liangzhe Chen, Qianzhou Du, Xiaokui Shu, Ji Wang, Run Yu, Mengsu Chen.

My best wishes to all of you for the future endeavors.

Finally, I am immensely grateful to my family back in China: my parents, Jianjun Hou and

v

Lu Zhao. Without their support, understanding, and unconditional love, I cannot go through my

ups and downs and finish my Ph.D. A last big thank you to my wife, Lingjie Zhang, for her love,

support, for bringing enthusiasm in my life, and for being patient and understanding.

Funding Acknowledgment My research was supported by National Science Foundation (NSF-

BIGDATA IIS-1247693, NSF-XPS CCF1337131), Air Force Office of Scientific Research (AFOSR)

Basic Research Initiative (Grant No. FA9550-12-1-0442), the European Unions Horizon 2020 re-

search and innovation programme under the Marie Sklodowska-Curie grant agreement No. 752321,

Advanced Research Computing (ARC) and Computer Science (CS) Department at Virginia Tech,

Advanced Micro Devices (AMD), and Oak Ridge National Lab (ORNL). Many thanks to all for

making this dissertation possible.

Declaration of Collaboration In addition to my advisor Wu-chun Feng, this dissertation has ben-

efited from many collaborators, especially:

• Hao Wang contributed to the work included in Chapter 3, Chapter 4, Chapter 5, Chapter 6,

and Chapter 7 of the dissertation.

• Weifeng Liu (Norwegian University of Science and Technology) contributed to both design

and evaluation parts of the work in Chapter 4.

• Seyong Lee and Jeffrey Vetter (ORNL) contributed to the work in Chapter 6.

• Jonathan Gallmeier and Shuai Che (AMD) contributed to the overall idea of the work in

Chapter 7.

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Performance Portability via DSLs . 4

1.2.1 Data-reordering in Vectorized Sort . 4

1.2.2 Data-thread Binding in Parallel Segmented Sort 5

1.3 Performance Portability via Algorithmic Skeletons 5

1.3.1 SIMD Operations in Sequence Alignment 5

1.3.2 Data Dependencies in Wavefront Loops 6

1.3.3 Data Reuse in Stencil Computations . 7

1.4 Research Contribution . 8

1.5 Dissertation Organization . 10

2 Background and Related Work 11

2.1 Vector Processing in Modern Parallel Platforms 11

2.1.1 Vector Processing in x86-based Systems 11

2.1.2 Vector Processing in GPUs . 13

2.2 Parallel Sort and Segmented Sort . 14

2.3 Parallel Sequence Alignment and Wavefront Computation 16

2.4 Parallel Stencil Computation . 17

2.5 Previous Approaches for Performance Portability 17

2.6 Broader Performance Portability Issues . 18

vii

3 Data-reordering in Vectorized Sort 20

3.1 Introduction . 20

3.2 Terminology . 23

3.2.1 DSL for Data-Reordering Operations . 23

3.2.2 Sorting and Merging Network . 24

3.3 Framework and Generalized Patterns . 25

3.3.1 SIMD Sorter . 26

3.3.2 SIMD Transposer . 28

3.3.3 SIMD Merger . 29

3.4 Code Generation and Optimization . 31

3.4.1 SIMD Code Generator . 31

3.4.2 Organization of the ASPaS Kernels . 37

3.4.3 Thread-level Parallelism . 38

3.4.4 Sorting of {key,data} Pairs . 39

3.5 Performance Analysis . 41

3.5.1 Performance of Different Sorting Networks 42

3.5.2 Speedups from the ASPaS Framework . 43

3.5.3 Comparison to Previous SIMD Kernels 45

3.5.4 Comparison to Sorting from Libraries . 47

3.5.5 Sorting Different Input Patterns . 49

3.6 Chapter Summary . 51

4 Data-thread Binding in Parallel Segmented Sort 52

4.1 Introduction . 52

4.2 Motivation . 54

4.2.1 Segmented Sort . 54

4.2.2 Skewed Segment Length Distribution . 55

4.2.3 Sorting Networks and Their Limitations 56

4.3 Methodology . 57

viii

4.3.1 Adaptive GPU SegSort Mechanism . 57

4.3.2 Reg-sort: Register-based Sort . 59

4.3.3 Smem-merge: Shared Memory-based Merge 63

4.3.4 Other Optimizations . 65

4.4 Performance Results . 66

4.4.1 Kernel Performance . 66

4.4.2 Segmented Sort Performance . 69

4.5 SegSort in Real-World Applications . 72

4.5.1 Suffix Array Construction . 72

4.5.2 Sparse Matrix-Matrix Multiplication . 75

4.6 Chapter Summary . 76

5 SIMD Operations in Sequence Alignment 77

5.1 Introduction . 77

5.2 Motivation and Challenges . 79

5.2.1 Pairwise Sequence Alignment Algorithms 79

5.2.2 Challenges . 81

5.3 Generalized Pairwise Alignment Paradigm . 82

5.4 AAlign Framework . 83

5.4.1 Vector Code Constructs . 84

5.4.2 Hybrid Method . 87

5.4.3 Vector Modules . 89

5.4.4 Code Translation . 92

5.4.5 Multi-threaded version . 93

5.5 Evaluation . 93

5.5.1 Speedups from Our Framework . 94

5.5.2 Performance for Pairwise Alignment . 95

5.5.3 Performance for Multi-threaded Codes 97

5.6 Chapter Summary . 98

ix

6 Data Dependencies in Wavefront Loops 99

6.1 Introduction . 99

6.2 Motivation . 102

6.2.1 Wavefront Loops and Direct Parallelism 102

6.2.2 Tiling-based Solutions and Their Limitations 103

6.2.3 Compensation-based Solutions and Their Limitations 105

6.3 Compensation-based Computation – Theory . 106

6.3.1 Standard Wavefront Computation Pattern 106

6.3.2 Compensation-based Computation Pattern 106

6.4 Compensation-based Computation – Practice . 109

6.5 Design and Implementation on GPUs . 110

6.5.1 Compensation-based Computation on GPUs 110

6.5.2 Synchronizations on GPUs: Global vs. P2P 113

6.5.3 Putting Them All Together . 114

6.5.4 Library-based Implementations . 115

6.6 Evaluation . 116

6.6.1 Performance of Compensation-based Kernels 116

6.6.2 Performance of Hybrid Kernels . 118

6.6.3 Discussion . 121

6.7 Chapter Summary . 122

7 Data Reuse in Stencil Computations 123

7.1 Introduction . 123

7.2 Motivation and Challenges . 125

7.2.1 Stencil Computation . 125

7.2.2 Spatial Blocking Schemes . 126

7.2.3 Challenges . 127

7.3 GPU-UniCache Framework . 128

7.3.1 GPU-UNICACHE API . 130

x

7.3.2 GPU-UNICACHE Example . 131

7.4 Code Generation . 132

7.4.1 Input Parameters . 132

7.4.2 RegCache Methods . 133

7.4.3 LDSCache Methods . 137

7.5 Evaluation . 137

7.5.1 Experiment Setup . 137

7.5.2 AMD GCN3 GPU . 138

7.5.3 NVIDIA Maxwell GPU . 141

7.5.4 Speedups to Existing Benchmarks . 143

7.5.5 Discussion . 144

7.6 Chapter Summary . 145

8 Conclusion and Future Work 146

8.1 Summary . 147

8.2 Future Directions . 149

8.2.1 Utilizing Heterogeneous Accelerators and Clusters 149

8.2.2 Accelerating Big Data Applications for Parallel Platforms 150

Bibliography 152

xi

List of Figures

1.1 Serial and vector codes to interleave two given input arrays 2

1.2 Exploring the parallelism and performance-portability via parallel patterns 3

2.1 Reordering data on Intel CPUs and MICs . 12

2.2 Data permute/shuffle in AMD and NVIDIA GPUs 14

3.1 Bitonic networks . 25

3.2 The structure of ASPaS and the generated sort 26

3.3 Mechanism of the sort stage: operations generated by SIMD Sorter and SIMD

Transposer . 27

3.4 Four 4-element vectors go through the 4-key sorting network 27

3.5 Four 4-element vectors transpose with the formalized permutation operators of DSL 29

3.6 Two formalized variants of bitonic merging networks: the inconsistent pattern and

the consistent pattern . 30

3.7 Permute matrix representations and the pairing rules 33

3.8 Symmetric blend operation and its pairing details 34

3.9 The organization of ASPaS kernels for the single-threaded aspas::sort 38

3.10 Performance comparison of aspas sort and aspas mergewith different sort-

ing and merging networks . 42

3.11 ASPaS vs. icpc optimized (“compiler-vec”) and serial (“no-vec”) codes 44

3.12 ASPaS kernels vs. Previous manual approaches 46

xii

3.13 aspas::sort vs. mergesorts and aspas::parallel sort vs. the Intel

TBB parallel sort . 48

3.14 aspas::sort vs. library sorting tools. 49

3.15 Performance of ASPaS sorting different input patterns 50

4.1 An example of segmented sort . 54

4.2 Histogram of segment length changes in SpGEMM and SAC 55

4.3 One sorting network and existing strategies using registers on GPUs 56

4.4 Overview of our GPU Segsort design . 59

4.5 Primitive communication pattern and its implementation 60

4.6 Generic exch intxn, exch paral and exch local patterns, and a code example of

Algorithm 3 . 63

4.7 An example of warp-based merge using shared memory 64

4.8 An example of in-register transpose . 65

4.9 Performance of reg-sort routines with different combinations of data-thread bind-

ing policies, write methods, and block sizes . 67

4.10 Performance of smem-merge routines with different combinations of data-thread

binding policies and write methods . 69

4.11 Performance of different segsort over segments with uniform distribution 70

4.12 Segmented sort v.s. existing tools over segments of power-law distribution 73

4.13 Performance of suffix array construction using our segmented sort 74

4.14 Performance of SpGEMM using our segmented sort 76

5.1 Data dependencies in the alignment algorithms using dynamic programming 80

5.2 Example of comparing two vectorizing strategies under various conditions on MIC 82

5.3 High-level overview of the structure of AAlign framework 84

5.4 The original and SIMD-friendly striped layouts 84

5.5 The mechanism of the hybrid method . 88

5.6 Vector modules used in the striped-iterate . 90

xiii

5.7 Example of chosen ISA intrinsics for rshift x fill 91

5.8 Orchestration mechanism in the wgt max scan . 92

5.9 AAlign codes vs. Baseline sequential codes . 95

5.10 AAlign codes using striped-iterate, striped-scan, and hybrid method 96

5.11 AAlign Smith-Waterman w/ affine gap vs. existing highly-optimized tools 97

6.1 Parallelization landscape for wavefront loops. 100

6.2 Exposed parallelism and corresponding memory access pattern of the two forms

of loop nests in Algorithm 6.1 . 103

6.3 Splitting the array A into hyperplane tiles and their access patterns w/ and w/o

padding . 104

6.4 Compensation-based solutions decompose the processing into three steps, each of

which can be parallelism-friendly and load balanced 105

6.5 Parallel design of the weighted scan-based compensation computation 111

6.6 Performance comparison between the row-major computation with global sync.

and the anti-diagonal-major computation with peer-to-peer (p2p) sync. 114

6.7 Proposed hybrid method to adapt the computation and synchronization to different

wavefront problems and workspace matrices . 115

6.8 Throughput comparison of the weighted scan kernels 117

6.9 Performance of our hybrid method with varying tile sizes (height * width) 119

6.10 Performance comparison of the library-based (lib-thrust, lib-mgpu), tiling-based

(tile, hypertile) and our hybrid method on different input matrices 120

7.1 Blocking schemes for 2D and 3D stencils . 127

7.2 Diversified performance of stencils under different situations 128

7.3 An overview of the GPU-UNICACHE framework 129

7.4 Example of data exchange for “2D9Pt” stencil . 134

7.5 1D stencils with HCC by GPU-UNICACHE on AMD GPU 139

7.6 2D stencils with HCC by GPU-UNICACHE on AMD GPU 140

xiv

7.7 3D stencils with HCC by GPU-UNICACHE on AMD GPU 140

7.8 1D stencils with CUDA by GPU-UNICACHE on NVIDIA GPU 142

7.9 2D stencils with CUDA by GPU-UNICACHE on NVIDIA GPU 142

7.10 3D stencils with CUDA by GPU-UNICACHE on NVIDIA GPU 143

7.11 GPU-UNICACHE optimized codes vs. existing stencil benchmarks optimized by

spatial blocking on NVIDIA Maxwell GPU . 144

xv

List of Tables

3.1 Primitive Types . 32

3.2 The building modules to handle the data-reordering for {key,data} pairs in ASPaS . 40

3.3 Testbeds for ASPaS . 41

4.1 Experiment Testbeds . 66

5.1 The vector modules in AAlign . 89

5.2 Configurable expressions in vector code contructs 93

6.1 Experiment Testbeds . 116

7.1 Summary of the stencil computations . 126

7.2 GPU-UNICACHE and its subclass member functions 131

7.3 List of input parameters for the code generation 133

7.4 Experiment Testbeds . 138

7.5 Register usage of jacobi-3d stencil . 145

xvi

Chapter 1

Introduction

In the chapter, we motivate our work on exploring parallel patterns for the performance portability,

outline the important challenges encountered by current studies, and present the contributions of

this dissertation.

1.1 Motivation

Over the past decade, the Moore’s 2-year performance doubling has been due to the replacement

of increasing clock speed of single processor with integrating many efficient cores on one chip.

Since we have hit the power limit, the ever-increasing performance is no longer limited to strenu-

ously utilizing a faster single core, but becomes a style known as parallel computing [18]. Perhaps

nowhere is more evident than with the ubiquitous commercial parallel processors all around us,

from mobile processors in our smart phones, to multi-cores in laptops, to gaming GPUs in desk-

tops, to various accelerators (e.g., GPUs, Intel Xeon Phi, etc.) in computing servers. The evolution

of parallel computing has sped up and been prominent in high performance computing community

and many scientific domains.

The parallel computing power of many orders of magnitude higher than the single core CPU

attracts more scientists to port their old software to parallel one. This trend initiates the shift from

traditional sequential programming model towards a variety of parallel models. Unfortunately,

1

2

the exploitation of the parallel models can be accompanied by many challenges, which oftentimes

presents extreme difficulties, even for utilizing the most common multi-core CPUs, and even for

the expert programmers. These obstacles include two main aspects: (1) Designing efficient ker-

nels demands great attention and knowledge from programmers in low-level languages, including

CUDA or OpenCL for parallelization in GPU platforms, and SSE/AVX intrinsics for vectoriza-

tion on x86 platforms. It therefore behooves programmers to understand the details of underlying

hardware. (2) The carefully designed codes might be dedicated to one platform, causing perfor-

mance portability issues: the same kernels would fail to achieve high performance when platforms

change. If this happens, a tedious re-design will be inevitable. Therefore, in fact, the enthusiasm

of using accelerators will be plagued by the costly trade-offs between programming effort and the

resultant performance.

for(i = 0; i < n; i++) {
if(i%2 == 0) trgA[i] = inpA[(i/8*8)+(i%8)/2];
else trgA[i] = inpB[(i/8*8)+(i%8)/2]; }

for(i = 0; i < n; i++) {
if(i%2 == 0) trgB[i] = inpA[(i/8*8)+(i%8)/2+1];
else trgB[i] = inpB[(i/8*8)+(i%8)/2+1]; }

inpA 1 2 3 4

inpB 5 6 7 8

trgA 1 5 2 6

trgB 3 7 4 8

Serial codes for “general” platforms

Interleaving two input arrays

(a) Serial codes.

__m256 v1 = _mm256_unpacklo_ps(v_inpA, v_inpB);*
__m256 v2 = _mm256_unpackhi_ps(v_inpA, v_inpB);
__m256 v_trgA = _mm256_permute2f128_ps(v1, v2, 0x20);
__m256 v_trgB = _mm256_permute2f128_ps(v1, v2, 0x31);

__mm512i l = _mm512_permute4f128_epi32(v_inpA, _MM_PERM_BDAC);
__mm512i h = _mm512_permute4f128_epi32(v_inpB, _MM_PERM_BDAC);
__mm512i t0 = _mm512_mask_swizzle_epi32(h, 0xcccc, l, _MM_SWIZ_REG_BADC);
__mm512i t1 = _mm512_mask_swizzle_epi32(l, 0x3333, h, _MM_SWIZ_REG_BADC);
__mm512i l = _mm512_mask_permute4f128_epi32(t1 , 0x0f0f, t0 , _MM_PERM_CDAB);
__mm512i h = _mm512_mask_permute4f128_epi32(t0 , 0xf0f0, t1 , _MM_PERM_CDAB);
__mm512i v_trgA = _mm512_shuffle_epi32(l, _MM_PERM_BDAC);
__mm512i v_trgB = _mm512_shuffle_epi32(h, _MM_PERM_BDAC);

Vector codes for AVX-supported platforms

Vector codes for IMCI-supported platforms

(b) Platform-specific vector codes.

Figure 1.1: Serial and vector codes to interleave two given input arrays. *: In vector codes, the vector load

and store instructions are ignored for brevity.

The most straightforward solution for these challenges might be to simply rely on the guid-

ance directives (e.g., OpenMP) and compiler options (e.g., -O3) to automatically parallelize the

loops or functions that could be executed in parallel [74]. However, the compilers are oftentimes

too conservative to parallelize target codes, due to the lack of accurate compiler analysis and ef-

fective compiler transformations [108]. In Figure 1.1a, we present the serial codes for instance to

interleave two given input arrays; certainly, the codes are parallelizable. Nevertheless, the modern

3

compilers (e.g., ICC, GCC, and PGCC) cannot effectively parallelize the codes, even if different

directives and compiler options are used. That way, programmers have to tweak, transform, or even

rewrite the codes to fulfill the architectural properties [135, 19, 74, 176]. As shown in Figure 1.1b,

we show the platform-specific vector codes for the same purpose with AVX and IMCI instruction

sets respectively. Apparently, both the instructions and associative parameters are idiosyncratic,

causing not only the programming burden but also portability issues.

Parallel Patterns

Domain
Specific

Languages

Algorithmic
Skeletons

Problem
Abstraction

Platform-specific
Code Translation

Target Problems

Sort

Alignment

SegSort

Stencils

… …

Parallel Codes

GPUs

CPUs

Xeon Phis

… …

Figure 1.2: Exploring the parallelism and performance-portability via parallel patterns.

In this dissertation, we focus on an alternative solution by taking advantage of parallel pat-

terns, i.e., domain specific languages (DSLs) and algorithmic skeletons [50]. In particular, as

shown in Figure 1.2, our approaches start from the abstraction of target problems to parallel pat-

terns and end with the translation from parallel patterns to real codes. On abstraction, we exploit

the domain expertise to analyze the computational and communication patterns in the problems

and express them in DSLs or algorithmic skeletons. That way, we can preserve the important

domain-specific information and create an intermediate layer that can facilitate the subsequent

generation of parallel codes. On translation, we transform the patterns to efficient parallel codes

by considering the characteristics of underlying architectures. We propose, design, and implement

a series of automation frameworks and optimizations to determine how different levels of paral-

lelism can be applied, what the optimal instruction sequences are, how to tune generated kernels

for the best performance, etc. The overarching goal of our approaches is to achieve performance

portability across different accelerators without the hassle of programming low level for parallel

computing.

This dissertation selects five important scientific kernels (i.e., sort, segmented sort, alignment,

4

wavefront, and stencil) as the target research problems and uses three widely-used parallel plat-

forms (i.e., multicore CPUs, manycore Intel Xeon Phi, and GPUs). In the next sections, we briefly

describe these research problems and proposed research methodology by using DSLs and algorith-

mic skeletons respectively.

1.2 Performance Portability via DSLs

1.2.1 Data-reordering in Vectorized Sort

Due to the difficulty that modern compilers have in vectorizing applications on vector-extension

architectures, programmers resort to manually programming vector registers with intrinsics in or-

der to achieve better performance. However, the continued growth in the width of registers and the

evolving library of intrinsics make such manual optimizations tedious and error-prone. That is, the

different architectures, varying vector functionalities, and idiosyncratic instructions and parame-

ters, present a great challenge, from programmers’ perspective, for achieving high performance

across platforms.

In the first part of this dissertation, we propose a framework for the Automatic SIMDization

of Parallel Sorting (ASPaS) on x86-based multicore and manycore processors. ASPaS takes any

sorting network and a given instruction set architecture (ISA) as inputs and automatically gen-

erates vectorized code for that sorting network. By formalizing the sort function as a sequence

of comparators and the transpose and merge functions as sequences of vector-matrix multiplica-

tions, ASPaS can map these functions to operations from a selected “pattern pool” that is based

on the characteristics of parallel sorting, and then generate platform-specific vector codes. The

performance evaluation of our ASPaS framework on the Intel Xeon Phi coprocessor illustrates that

automatically generated sorting codes from ASPaS can outperform the sorting implementations

from STL, Boost, and Intel TBB, on both CPUs and Xeon Phis.

5

1.2.2 Data-thread Binding in Parallel Segmented Sort

Segmented sort, as a generalization of classical sort, orders a batch of independent segments in a

whole array. Along with the wider adoption of manycore processors for HPC and big data applica-

tions, segmented sort plays an increasingly important role than sort. To parallelize the segmented

sort on GPUs, directly sorting each segment in parallel could cause severe load imbalance. Even

with “dynamic parallelism” techniques, the implementation may cause degraded performance due

to high overhead for context switch.

In the second part of this dissertation, we present an adaptive segmented sort mechanism on

GPUs. Our mechanisms include two core techniques: (1) a differentiated method for different seg-

ment lengths to eliminate the irregularity caused by various workloads and thread divergence; and

(2) a register-based sort method to support N-to-M data-thread binding and in-register data com-

munication. We also implement a shared memory-based merge method to support non-uniform

length chunk merge via multiple warps. Our segmented sort mechanism shows great improvements

over the methods from CUB, CUSP and ModernGPU on NVIDIA K80-Kepler and TitanX-Pascal

GPUs. Furthermore, we apply our mechanism on two applications, i.e., suffix array construc-

tion and sparse matrix-matrix multiplication, and obtain prominent advantage over state-of-the-art

implementations.

1.3 Performance Portability via Algorithmic Skeletons

1.3.1 SIMD Operations in Sequence Alignment

The pairwise sequence alignment algorithms, e.g., Smith-Waterman and Needleman-Wunsch, with

adjustable gap penalty systems are widely used in bioinformatics. The strong data dependencies

in these algorithms prevent them from exploiting the auto-vectorization techniques in compilers.

When programmers manually vectorize them on multi- and manycore processors, two vectoriz-

ing strategies are usually considered, both of which initially ignore data dependencies and then

appropriately correct in a subsequent stage: (1) iterate, which vectorizes and then compensates

6

the scoring results with multiple rounds of corrections and (2) scan, which vectorizes and then

corrects the scoring results primarily via one round of parallel scan. However, manually writing

such vectorizing code efficiently is non-trivial, even for experts, and the code may not be portable

across ISAs. In addition, even highly vectorized and optimized codes may not achieve optimal per-

formance because selecting the best vectorizing strategy depends on the algorithms, configurations

(gap systems), and input sequences.

In the third part of this dissertation, we propose a framework AAlign to automatically vector-

ize pairwise sequence alignment algorithms across ISAs. AAlign ingests a sequential code (which

follows our generalized paradigm for pairwise sequence alignment) and automatically generates

efficient vector code for iterate and scan. To reap the benefits of both vectorization strategies, we

propose a hybrid mechanism where AAlign automatically selects the best vectorizing strategy at

runtime no matter which algorithms, configurations, and input sequences are specified. On Intel

Haswell and MIC, the generated codes for Smith-Waterman and Needleman-Wunsch achieve up

to a 26-fold speedup over their sequential counterparts. Compared to the highly optimized and

multi-threaded sequence alignment tools, e.g., SWPS3 and SWAPHI, our codes can deliver up to

2.5-fold and 1.6-fold speedups, respectively.

1.3.2 Data Dependencies in Wavefront Loops

Wavefront loops are widely used in many scientific applications, e.g., partial differential equation

(PDE) solvers and sequence alignment tools. However, due to the data dependencies in wave-

front loops, it is challenging to fully utilize the abundant compute units of GPUs and to reuse

data through their memory hierarchy. Existing solutions can only optimize for these factors to a

limited extent. For example, tiling-based methods optimize memory access but may result in load

imbalance; while compensation-based methods, which change the original order of computation

to expose more parallelism and then compensate for it, suffer from both global synchronization

overhead and limited generality.

In the fourth part of this dissertation, we first prove under which circumstances that breaking

data dependencies and properly changing the sequence of computation operators in our compensation-

7

based method does not affect the correctness of results. Based on this analysis, we design a highly

efficient compensation-based parallelism on GPUs. Our method provides weighted scan-based

GPU kernels to optimize the computation and combines with the tiling method to optimize mem-

ory access and synchronization. The performance results on the NVIDIA K80 and P100 GPU

platforms demonstrate that our method can achieve significant improvements for four types of

real-world application kernels over the state-of-the-art research.

1.3.3 Data Reuse in Stencil Computations

Spatial blocking is a critical memory-access optimization to efficiently exploit the computing re-

sources of parallel processors, such as many-core GPUs. By reusing cache-loaded data over mul-

tiple spatial iterations, spatial blocking can significantly lessen the pressure of accessing slow

global memory. Stencil computations, for example, can exploit such data reuse via spatial block-

ing through the memory hierarchy of the GPU to improve performance. However, approaches

to take advantage of such blocking require complex and tedious changes to the GPU kernels for

different stencils, GPU architectures, and multi-level cached systems.

In the fifth part of this dissertation, we explore the challenges of different spatial blocking

strategies over three cache levels of the GPU (i.e., L1 cache, scratchpad memory, and registers)

and propose a framework GPU-UniCache to automatically generate codes to access buffered data

in the cached systems of GPUs. Based on the characteristics of spatial blocking over various stencil

kernels, we generalize the patterns of data communication, index conversion, and synchronization

(with abstracted ISA-friendly interfaces) and map them to different architectures with highly op-

timized code variants. Our approach greatly simplifies the design of efficient and portable stencil

computations across GPUs. Compared to stencil kernels based on hardware-managed memory

(L1 cache) and other state-of-the-art GPU benchmarks, the GPU-UniCache can achieve significant

improvements.

8

1.4 Research Contribution

From the above two aspects, we demonstrate in this dissertation that we can achieve performance

portability for various scientific computational kernels across parallel platforms by using our pro-

posed parallel pattern based approaches.

We study how to exploit parallel patterns to express the core computation and communication

patterns in many scientific kernels. We explore the effectiveness of translating these parallel pat-

terns to real parallel codes. We also investigate how to optimize and tune the codes by considering

different inputs, workloads and underlying parallel architectures. In the following, we highlight

the specific research contributions that this dissertation makes.

A Framework for Automatic Vectorization of Sorting on CPUs and MICs In this work, we make

the following contributions. First, for portability, we propose the ASPaS framework to

automatically generate the cross-platform parallel sorting codes using architecture-specific

SIMD instructions, including AVX, AVX2, and IMCI. Second, for functionality, using AS-

PaS, we can generate various parallel sorting codes for the combinations of five sorting

networks, two merging networks, and three datatypes (integer, float, double) on Intel Ivy

Bridge, Haswell CPUs, and Intel Knights Corner MIC. In addition, ASPaS generates the

vectorization codes not only for the sorting of array, but also for the sorting of key,data pairs,

which is a requisite functionality to sort the real-world workloads. Third, for performance,

we conduct a series of rigorous evaluations to demonstrate how the ASPaS-generated codes

can yield performance benefits by efficiently using the vector units and computing cores on

different hardware architectures.

Fast Segmented Sort on GPUs In this work, the contributions are listed as follows: First, we

identify the importance of segmented sort on various applications by exploring segment

length distribution in real-world datasets and uncovering performance issues of existing

tools. Second, we propose an adaptive segmented sort mechanism for GPUs, whose key

techniques contain: (1) a differentiated method for different segment lengths to eliminate

load imbalance, thread divergence, and irregular memory access; and (2) an algorithm that

9

extends sorting networks to support N-to-M data-thread binding and thread communication

at GPU register level. Third, we carry out a comprehensive evaluation on both kernel level

and application level to demonstrate the efficiency and generality of our mechanism on two

NVIDIA GPU platforms.

A SIMD Framework for Pairwise Sequence Alignment on CPUs and MICs In this work, the

major contributions include the following. First, we propose the AAlign framework that can

automatically generate parallel codes for pairwise sequence alignment with combinations

of algorithms, vectorizing strategies, and configurations. Second, we identify the existing

vectorizing strategies cannot always provide the optimal performance even the codes are

highly vectorized and optimized. As a result, we design a hybrid mechanism to take advan-

tages of two vectorizing strategies. Third, using AAlign, we generate various parallel codes

for the combinations of algorithms (SW and NW), vectorizing strategies (striped-iterate,

striped-scan, and hybrid), and configurations (linear and affine gap penalty systems) on two

x86-based platforms, i.e., the Advanced Vector eXtension (AVX2) supported multicore and

the Initial Many Core Instructions (IMCI) supported manycore.

Compensation-based Parallelism for Wavefront Loops on GPUs In this work, the key contri-

butions are summarized below. First, we prove that in wavefront loops, if the accumu-

lation operator is associative and commutative and the distribution operator is either dis-

tributive over or same with the accumulation operator, breaking through the data depen-

dency and changing the sequence of computation operators properly does not affect the

correctness of results. This provides the guidance for developers under which circum-

stances, the compensation-based method can be used. Second, we design a highly efficient

compensation-based method on GPUs. Our method provides the weighted scan-based GPU

kernels to optimize the computation, and combines with the tiling method to optimize the

memory access and synchronization. Third, we carry out a comprehensive evaluation on

both kernel level and application level to demonstrate the efficiency of our method over the

state-of-the-art research for wavefront loops.

10

Automatic Code Generation of Spatial Blocking for Stencils on GPUs In this work, the con-

tributions include the following: (1) GPU-UniCache, a framework to automatically generate

spatial blocking codes for stencil kernels on GPUs, and (2) a comprehensive evaluation

of the GPU-UniCache framework on AMD and NVIDIA GPUs. GPU-UniCache not only

improves programming productivity by unifying the interfaces of spatial blocking for dif-

ferent stencils, GPU architectures, and cache levels; but it also provides high performance

by optimizing data distribution, indexing conversion, thread communication, and synchro-

nization to facilitate data access in GPU kernels. Compared to hardware-managed memory

(L1 cache), with single-precision arithmetic, our automatically-generated codes deliver up

to 1.7-fold and 1.8-fold speedups at the scratchpad memory level and register level, respec-

tively, when running on an AMD GCN3 GPU and up to 1.6-fold and 1.8-fold, respectively,

when running on a NVIDIA Maxwell GPU. For double precision, it delivers up to a 1.3-fold

speedup on both GPU platforms. Compared to the state-of-the-art benchmarks (incl. Parboil,

PolyBench, SHOC), it can also provide up to 1.5-fold improvement.

1.5 Dissertation Organization

The remaining dissertation chapters address the following topics. Chapter 2 presents the back-

ground information and state-of-the-art related work on the research problems posed in this dis-

sertation. First, Chapter 3 to 4 present DSL-based approaches to achieve performance portability.

Chapter 3 presents our proposed framework to generate high-performance sort kernels for differ-

ent x86-based systems. Chapter 4 introduces an adaptive segmented sort for modern GPUs. Then,

Chapter 5 to 7 focus on the approaches using algorithmic skeletons. Chapter 5 presents the vec-

torized pairwise sequence alignment kernels for high efficiency on CPUs and Intel Xeon Phis.

Chapter 6 provides a new compensation-based parallel solution for general wavefront problems

on GPUs. Chapter 7 introduces a framework for stencil computations to access reusable data in

memory hierarchy on GPUs from different vendors. Finally, Chapter 8 concludes and discusses

the future work.

Chapter 2

Background and Related Work

In this chapter, we provide brief background information and state-of-the-art work regarding the

research problems of this dissertation. We focus on applying parallel patterns to bridge the gap be-

tween complex computational codes and parallelism available in various accelerators. This chapter

first introduces the major hardware characteristics that is closely related to this dissertation. Then,

we summarize the state-of-the-art research on each research problem. In addition, we compare

them with our proposed appoarches and frameworks based on parallel patterns from the perspec-

tives of novelty, efficacy, etc.

2.1 Vector Processing in Modern Parallel Platforms

2.1.1 Vector Processing in x86-based Systems

The vector processing units (VPUs) equipped in the modern x86-based processors are designed to

perform one single operation over multiple data items simultaneously. The width of the vectors

and richness of the instruction sets are continuously expanding and evolving, forming different

generations of vector ISAs, e.g., AVX, AVX2, and IMCI.

AVX/AVX2 on CPUs: The AVX is initially supported by Intels “Sandy Bridge” processors

and each of their 16 256-bit registers contains two 128-bit lanes (named as lane B and A in Fig-

11

12

ure 2.1), together holding 8 floats or 4 doubles. The three-operands in AVX use a non-destructive

form to preserve the two source operands. The AVX2 is available since the “Haswell” proces-

sors and it expands the integer instructions in SSE and AVX and supports variable-length integers.

Moreover, AVX2 increases the instructional functionalities by adding, for example, gather support

to load non-contiguous memory locations and per-element shift instructions. In both AVX and

AVX2, the data-reordering operations contain permutation within each 128-bit lane and cross the

two lanes. The latter is considered more expensive. The top-left sub-figure in Figure 2.1 shows an

example of rearranging data in the same vector. We first exchange the two lanes B and A (using

permute) and then conduct the in-lane permutation by swapping the middle two elements (us-

ing permute or shuffle). The top-right sub-figure illustrates an another example of using the

unpacklo instruction to interleave the numbers at even positions from two input vectors. The

specific instructions used in AVX and AVX2 might be different from one another. Note, the AVX2

also supports variable-length integers, e.g., char, short, and int.

v1=_mm256_permute2f128_ps(v0, v0, 0x03);
v2=_mm256_permute_ps(v1, 0xd8);

1 2 3 4 5 6 7 8

5 6 7 8 1 2 3 4

5 7 6 8 2 3 2 4

v0

v1

v2
In-Lane Reorder

Lane B Lane A
D C B A D C B A AVX intrinsics

Cross-Lane Reorder

v1=_mm256_permute2x128_si256(v0, v0, 0x03);
v2=_mm256_shuffle_epi32(v1, 0xd8);

AVX2 intrinsics

9
v2=_mm256_unpacklo_ps(v0, v1);

v1 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

1 9 3 11 5 13 7 15

v0

v2

Lane B Lane A
D C B A D C B A

AVX intrinsics

v2=_mm256_unpacklo_epi32(v0, v1);
AVX2 intrinsics

v1=_mm512_permute4f128_epi32(v0, _MM_PERM_DBCA);
v2=_mm512_shuffle_epi32(v1, _MM_PERM_DBCA);

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 9 10 11 12 5 6 7 8 13 14 15 16

1 3 2 4 9 11 10 12 5 7 6 8 13 15 14 16

v0

v1

v2
In-Lane Reorder

Lane D Lane C Lane B Lane A
D C B A D C B A D C B A D C B A

IMCI intrinsics

Cross-Lane Reorder

17

v2=_mm512_mask_swizzle_epi32(v0, m1, v1, _MM_SWIZ_REG_BADC);

v1 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31(tmp)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 17 3 19 5 21 7 23 9 25 11 27 13 29 15 31

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

v0

m1

v2

Lane D Lane C Lane B Lane A
D C B A D C B A D C B A D C B A

IMCI intrinsics

swizzle

Reordering Data in One Vector (CPU) Reordering Data in Two Vectors (CPU)

Reordering Data in One Vector (MIC) Reordering Data in Two Vectors (MIC)

Figure 2.1: Reordering data on Intel CPUs and MICs from the same vector register and the two vector

registers, respectively.

IMCI on MICs: The MIC coprocessor consists of up to 61 in-order cores, each of which is

outfitted with a VPU. The VPU state for each thread contains 32 512-bit general registers, eight

16-bit mask registers, and a status register. The IMCI is introduced in accordance with the new

13

VPU. Previous SIMD ISAs, e.g. SSE and AVX, are not supported by the vector architecture of

MIC, due to the issues from the wider vector, transcendental instructions, etc. [127]. On MIC, each

512-bit vector is subdivided into four lanes and each lane contains four 32-bit elements. Both of the

lanes and elements are ordered as DCBA. The bottom-left sub-figure in Figure 2.1 illustrates the

data rearrangement in the same vector register with the shuffle and permute intrinsics. The

permute intrinsic using MM PERM DBCA is for cross-lane rearrangement, which exchanges data

in lanes C and B. The shuffle intrinsic conducts the same operation but on the element-level within

each lane. Because the permute and shuffle intrinsics are executed by different components of the

hardware, it is possible to overlap the permute and shuffle intrinsics with a pipeline mode [84].

The bottom-right sub-figure shows another example of picking data from two vector registers with

the masked swizzle intrinsics. To that end, we use the mask m1 to select elements from either

the swizzled vector of v1 or the vector v0, and then store the result to a blended vector v2. The

behavior of the mask in Intel MIC is non-destructive, in that no element in source v0 has been

changed if the corresponding mask bit is 0.

2.1.2 Vector Processing in GPUs

In this dissertation, we use GPU programming models from different vendors. The first one is HCC

(Heterogeneous Compute Compiler) for AMD GPUs, specifically the GCN3 (Graphics Core Next)

architecture. In AMD GPUs, the basic execution unit is called a wavefront (or wave, for brevity)

and has 64 lanes. Thus, each thread assigned to a lane ranges from 0 to 63. A wave is assigned

to a 16-wide SIMD unit, where each operation takes 4 cycles to finish. The second one is CUDA

(Compute Unified Device Architecture) for NVIDIA GPUs, specifically the Kepler, Maxwell, and

Pascal architectures, where the basic scheduling unit is a 32-thread warp.

To hide the high latency of off-chip DRAM memory access, modern GPUs possess a cached

memory hierarchy. For AMD GCN3, each compute unit (CU) has a 16-kB vector L1 cache and a

64-kB LDS (Local Data Share) as scratchpad memory. In contrast, each multiprocessor (MP) in

NVIDIA GPUs has a 48 or 96-kB scratchpad memory (i.e., shared memory). It contains L1 cache

as well; however, to enable it, developers may need to turn on -Xptxas -dlcm=ca at compile

14

time, for example, for the Maxwell architecture.

In considering registers as cache, both AMD’s CU and NVIDIA’s MP possess 256-kB reg-

ister files that support cross-lane data sharing. For AMD GPUs, this is realized with so-called

“permute” instructions, e.g., the backward permute instruction ds bpermute b32. In contrast,

the NVIDIA GPUs support “shuffle” instructions, e.g., the general shuffle instruction shlf.

Both ds bpermute b32 and shfl exhibit “pull” semantics, where each thread must read a

register value from a target lane. Currently, the GPUs support built-in 32-bit data sharing, while

for 64-bit data, one needs to split the data into two values, perform two rounds of data sharing, and

then concatenate the results.

12 9 04 28 24 1720

a b dc e f hg

d c ab h g ef

3 2 01 7 6 45

a b dc e f hg

a b dc e f hg

d c ab h g ef
lane0
lane1
lane2
lane3
lane4
lane5
lane6
lane7

addr

src

tmp

idx 3 2 1 0 7 6 5 4

dest

idx

src

dest

lane0
lane1
lane2
lane3
lane4
lane5
lane6
lane7

dest =
_amdgcn_ds_bpermute

(addr, src)
dest = _shfl(src, idx)

Reordering Data in Registers
(AMD GCN3 GPUs)

Reordering Data in Registers
(NVIDIA Kepler GPUs)

Figure 2.2: Data permute/shuffle in AMD and NVIDIA GPUs. Values in white are stored in registers and

the temporary buffer (tmp) is in gray. 8 threads in a wave is for illustration only.

The hardware implementation of data sharing and addressing are different for the two plat-

forms. In AMD GCN3 GPUs, LDS is used to route data between the 64 lanes of a wave, but no

actual LDS space is consumed [9]. The left sub-figure in Figure 2.2 shows the target values of src

that will first be put into a tmp buffer. Then, the indices are deduced by ignoring the least two sig-

nificant bits in addr, which are used later to select data from tmp. The reordered results are stored

in dest. In NVIDIA GPUs, threads can directly “read” data from another thread that is actively

participating in the shfl. The right sub-figure presents this mechanism of each thread directly

accessing data based on the given index.

2.2 Parallel Sort and Segmented Sort

In the following, we provide the related work on the parallel sort on x86-based systems (with the

emphasis on vectorization) and segmented sort on GPUs. We also compare the previous work with

15

our research.

Parallel sort on x86-based systems Efficient sort kernels usually require a careful parallel

design to match the underlying hardware, e.g., the vector units. Furtak et al. [65] use SIMD

optimizations to handle the base cases of recursive sorting algorithms. AA-sort [82] is a two-

phase sorting algorithm with vectorized combsort and odd-even merge on CPUs. Chhugani et

al.[48] devise another SIMD-friendly merge sort using the odd-even and bitonic sorting networks.

Their solution provides an architecture-specific and hard-coded solution of SSE and Larrabee ISAs

but not revealing many details on how the parameters are selected and how to deal with data

across vector lanes (e.g., on Larrabee). Inoue et al. [83] propose a stable sorting SIMD solution

to rearrange the actual database records. On MICs, Bramas [29] proposes an efficient partition

solution for quicksort by using “store some” instructions in AVX-512. Xiaochen et al. [161] studies

the bitonic merge sort using both mask and permute IMCI instructions. These existing studies

have to explicitly use SIMD intrinsics to handle the tricky data-reordering operations required by

different sorting and merging algorithms; while our work (§ 3), in contrast, formalizes the patterns

of sorting networks and vector ISAs to facilitate the automatic code generation of efficient and

“cross-platform” vector codes.

Segmented sort on GPUs To sort many independent segments in parallel, previous methods

mainly rely on the global sort with necessary modification. These solutions may fail to take advan-

tage of both data distribution and architecture, because most of them [53, 63, 122] adopt a “one-

size-fits-all” philosophy that treats different segments equally. The mechanisms in [53, 63] sort

the whole array after extending input with segment IDs as primary keys, which will consume extra

memory space and result in an increased computational complexity. Another mechanism [122]

uses one thread block to handle a segment, no matter how different the segments are. It will give

rise to some deficiencies when processing a numerable batch of short segments, due to the re-

source under-utilization. Many GPU applications [154, 102, 186, 185] reformulate the segmented

sort problem in terms of global sort and call APIs supported by libraries, sacrificing the benefits

of segmentation. In contrast, our method (§ 4) presents a differentiated method for different seg-

ment lengths. Especially, we formalize the N -to-M data-tread binding in the register-level sort to

16

facilitate the searching for the optimal performance of our kernels.

2.3 Parallel Sequence Alignment and Wavefront Computation

Here we provide a brief background on parallelizing the sequence alignment algorithm and its

more general form–wavefront computation.

Parallelizing the sequence alignment To parallelize the sequence alignment algorithms (e.g.,

the Smith-Waterman algorithm [140], Needleman-Wunsch [116] algorithm, and sequence search/align-

ment tools [184, 183, 182]), the approaches of computation refactoring are usually adopted. One

way is to partially ignore the dependencies in one direction and then compensate the intermediate

results via multiple times of corrections [105, 62]. An alternative way is to use the prefix sum oper-

ations to perform the compensation over the intermediate results [87]. However, the choice of the

best parallel strategies depend on the characteristics of input sequences, hardware, etc. Moreover,

the realization requires manually working with idiosyncratic vector instructions. Compared to the

existing work, the distinctive aspects of our work (§ 5) are to formalize the sequence alignment

problems in the view of vector primitives. This additional abstraction layer enables the subsequent

vector code generation for different x86 platforms. Furthermore, we provide a new strategy to

switch among these strategies no matter the selected algorithms, configurations, and inputs in the

runtime.

Parallelizing the wavefront computation The sequence alignment algorithms actually be-

long to a more general wavefront computation. To parallelize the computation, one direction is

to exploit the polyhedral model, which synthesizes affine transformations to adjust the iteration

space, to expose the potential parallelism hidden in target loop nests. With regards to GPUs, these

efforts include [59, 20, 26]. Another direction concerns how to map the exposed parallelism effi-

ciently on parallel machines. Xiao et al. [160] propose an atomic-based local synchronization to

handle dependencies among tiles. PeerWave [24] is a GPU solution for efficient local synchroniza-

tion between tiles. For the tiling, it utilizes square tiles and hypertiles respectively. Manjikian and

Abdelrahman [110] explore the intratile and intertile locality for the large-scale shared-memory

17

multiprocessors. All the approaches above perform the computation strictly following the original

dependency order, which might cause issues on access, locality, and load balance. Differed from

them, our work (§ 6) focuses on using a different computational order for more parallelism (from

the problems) and more efficiency (from underlying GPUs). This approach is built on a “weighted”

prefix sum primitive and we outline its validity and limitation on different combinations of opera-

tors using a mathematical proof.

2.4 Parallel Stencil Computation

In stencil computation, each cell is visited multiple times by its neighbors with the computation

sweeping over a spatial grid. It is frequently selected in benchmarks for the measure of perfor-

mance and scalability [90]. The data reuse and memory access is a key problem in stencil compu-

tation. Nguyen et al. [117] focus on a 3.5D blocking optimization (i.e., temporal reuse plus spatial

2.5D blocking). Rawat et al. [128] propose an effective tiling strategy to utilize both scratchpad

memory and registers for 2D/3D stencils. Vizitiu et al. [149] locate reusable data to constant cache,

shared memory, etc., to explore performance variance between different NVIDIA GPUs. Falch and

Elster [61] optimize 1D/2D stencils using registers as buffer with manually written shuffle opera-

tions. The focus of our work (§ 7) is different, as we are providing a framework for automatically

and efficiently accessing neighboring data on different cache levels. It utilizes the knowledge of

access patterns to automatically conduct data distribution, synchronization, and communication for

different stencils. Note, to take advantage of the shuffle/permute operations, our work is built on

AMD and NVIDIA’s own programming languages (i.e., HCC and CUDA), rather than the OpenCL

and OpenACC.

2.5 Previous Approaches for Performance Portability

Now we introduce the previous approaches related to performance portability: library-based so-

lutions (mainly based on algorithmic skeletons) and framework-based solutions (mainly based on

18

DSLs).

Library-based solutions Many libraries are designed to take advantage of data-level paral-

lelism from hardware. For x86 platforms, the vector functions (e.g., from the ISPC [123] and

Clang 6 [2]) are for the ease of programming vector units and hide the platform-specific codes.

For GPUs, many widely-used algorithms and data structures are supported by libraries, e.g., Mod-

ernGPU [22], Thrust [71]. However, because not revealing the details of the actual instructions

being used or not considering the characteristics of actual inputs, the performance of these codes

is not well-understood. Furthermore, programmers still need to figure out how to exploit these

functions to meet their demand, e.g., finding appropriate functions and parameters.

Framework-based solutions Since the computation patterns in many applications can be for-

malized, automation frameworks are proposed to generate codes for parallel machines. Mint [147],

Physis [112], Zhang and Mueller [188] present automation mechanisms to translate sequential

stencil codes to efficient GPU codes. McFarlin et al. [113] propose a super-optimizer to conduct

a guided search of the shortest sequence of vector instructions for desired vector operations. Ren

et al. [131] provide an approach to optimize the SIMD code generation for generic permutations.

Its code searching part is based on an assumption that any data movements can be directly trans-

lated to the SSE’s shufps instruction. However, the modern vector units of AVX/AVX2/IMCI

contain more lanes and more reordering instructions, and thus the search and selection is no long

straightforward. This dissertation, by contrast, considers the new features and differences of mod-

ern hardwares (e.g., AVX2/IMCI vector operations for CPUs, data exchange with different mem-

ory hierarchies for GPUs) to achieve performance portability by studying the research problems,

including the data-ordering, data-thread binding, data reuse, etc.

2.6 Broader Performance Portability Issues

The techniques based on parallel patterns can be used to improve not only performance portability

but also scalability of many applications in a wide variety of areas.

• Data mining: Many patterns can be found in social media modeling and analysis [35, 36,

19

38, 164], critical infrastructure analysis [37, 39, 88], network segmentation and summariza-

tion [11, 34, 12, 10].

• Data Security: Anomaly detection and web security [178, 179, 180] also follow predictable

patterns, which could be accelerated with parallel devices. The parallel patterns can be

also applied into security domains to reduce the performance overhead, e.g., application

security [146, 145, 144] and web security [143, 162, 41].

Chapter 3

Data-reordering in Vectorized Sort

3.1 Introduction

Increasing processor frequency to improve performance is no longer a viable approach due to its

exponential power consumption and heat generation. Therefore, modern processors integrate mul-

tiple cores onto a single die to increase inter-core parallelism. Furthermore, the vector processing

unit (VPU) associated with each core can enable more fine-grained intra-core parallelism. Exe-

cution on a VPU follows the “single instruction, multiple data” (SIMD) paradigm by performing

a “lock-step” operation over packed data. Though many regular codes can be auto-vectorized by

the modern compilers, some complex loop patterns prevent performant auto-vectorization, due to

the lack of accurate compiler analysis and effective compiler transformations [108]. Thus, the bur-

den falls on programmers to implement the manual vectorization using intrinsics or even assembly

code.

Writing efficient vectorized (SIMD) code by hand is a time-consuming and error-prone ac-

tivity. First, vectorizing existing (complex) codes requires expert knowledge in restructuring al-

gorithms to exploit SIMDization potentials. Second, a comprehensive understanding of the actual

vector intrinsics is needed. The intrinsics for data management and movement are equally impor-

tant as those for computation because programmers often need to rearrange data in the vector units

before sending them to the ALU. Unfortunately, the flexibility of the data-reordering intrinsics is

20

21

restricted, as directly supporting an arbitrary permutation is impractical [84]. As a consequence,

programmers must resort to a combination of data-reordering intrinsics to attain a desired compu-

tational pattern. Third, the vector instruction set architectures (ISA) continue to evolve and expand,

which in turn, lead to potential portability issues. For example, to port codes from the Advanced

Vector Extensions (AVX) on the CPU to the codes of the Initial Many Core Instructions (IMCI)

on the Many Integrated Core (MIC), we either need to identify the instructions with equivalent

functionalities or rewrite and tune the codes using alternative instructions. While library-based

optimizations [81] can hide the details of vectorization from the end user, these challenges are still

encountered during the design and implementation of the libraries themselves.

One alternate solution to relieve application programmers from writing low-level code is to

let them focus only on domain-specific applications at a high level, help them to abstract the com-

putational and communication patterns with potential parallelization opportunities, and leverage

modern compiler techniques to automatically generate the vectorization codes that fit in the parallel

architectures of given accelerators. For example, McFarlin et al. [113] abstract the data-reordering

patterns used in the Fast Fourier Transform (FFT) and generate the corresponding SIMD codes for

CPUs. Mint and Physis [147, 112] capture stencil computation on GPUs, i.e., computational and

communication patterns across a structured grid.

In this chapter, we focus on the sorting primitive and propose a framework – Automatic

SIMDization of Parallel Sorting (a.k.a ASPaS) – to automatically generate efficient SIMD codes

for parallel sorting on x86-based multicore and manycore processors, including CPUs and MIC,

respectively. ASPaS takes any sorting network and a given ISA as inputs and automatically pro-

duces vectorized sorting code as the output. The code adopts a bottom-up approach to sort and

merge segmented data. Since the vectorized sort function puts partially sorted data across differ-

ent segments, ASPaS gathers the sorted data into contiguous regions through a transpose function

before the merge stage. Considering the variety of sorting and merging networks1 [8] that cor-

respond to different sorting algorithms (such as Odd-Even [21], Bitonic [21], Hibbard [70], and

Bose-Nelson [27]) and the continuing evolution of instruction sets (such as SSE, AVX, AVX2, and

1In this chapter, we distinguish the sorting network and the merging network.

22

IMCI), it is imperative to provide such a framework to hide the instruction-level details of sorting

and allow programmers to focus on the use of the sorting algorithms instead.

ASPaS consists of four major modules: (1) Sorter, (2) Transposer, (3) Merger, and (4) Code

Generator. The SIMD Sorter takes a sorting network as input and generates a sequence of compara-

tors for the sort function. The SIMD Transposer and SIMD Merger formalize the data-reordering

operations in the transpose and merge functions as sequences of vector-matrix multiplications.

The SIMD Code Generator creates an ISA-friendly pattern pool containing the requisite data-

comparing and reordering primitives, builds those sequences with primitives, and then translates

them to the real ISA intrinsics according to the platforms.

We make the following contributions in this chapter. First, for portability, we propose

the ASPaS framework to automatically generate the cross-platform parallel sorting codes using

architecture-specific SIMD instructions, including AVX, AVX2, and IMCI. Second, for function-

ality, using ASPaS, we can generate various parallel sorting codes for the combinations of five

sorting networks, two merging networks, and three datatypes (integer, float, double) on Intel Ivy

Bridge, Haswell CPUs, and Intel Knights Corner MIC. In addition, ASPaS generates the vector-

ization codes not only for the sorting of array, but also for the sorting of {key,data} pairs, which

is a requisite functionality to sort the real-world workloads. Third, for performance, we conduct

a series of rigorous evaluations to demonstrate how the ASPaS-generated codes can yield perfor-

mance benefits by efficiently using the vector units and computing cores on different hardware

architectures.

For the one-word type2, our SIMD codes on CPUs can deliver speedups of up to 4.1x and 6.5x

(10.5x and 7.6x on MIC) over the serial sort and merge kernels, respectively. For the two-word

type, the corresponding speedups are 1.2x and 2x on CPUs (6.0x and 3.2x on MIC), respectively.

Compared with other single-threaded sort implementations, including qsort and sort from

STL [124] and sort from Boost [136], our SIMD codes on CPUs deliver a range of speedups from

2.1x to 5.2x (2.5x to 5.1x on MIC) for the one-word type and 1.7x to 3.8x (1.3x to 3.1x on MIC) for

the two-word type. Our ASPaS framework also improves the memory access pattern and thread-

2We use the 32-bit Integer datatype as the representative of the one-word type, and the 64-bit Double datatype for

the two-word type.

23

level parallelism. That is, we leverage the ASPaS-generated SIMD kernels as building blocks to

create a multi-threaded sort (via multi-way merging). Compared with the parallel sort from

Intel TBB [130], ASPaS delivers speedups of up to 2.5x and 1.7x on CPUs (6.7x and 5.0x on MIC)

for the one-word type and the two-word type, respectively.

3.2 Terminology

This section presents (1) a domain-specific language (DSL) to formalize the data-reordering pat-

terns in our framework, and (2) a sorting and merging network.

3.2.1 DSL for Data-Reordering Operations

To better describe the data-reordering operations, we adopt the representation of a domain-specific

language (DSL) from [64, 192] but with some modification. In the DSL, the first-order operators

are adopted to define operations of basic data-reordering patterns, while the high-order operators

connect such basic operations into complex ones. Those operators are described as below.

First-order operators (x is an input vector):

S2 (x0, x1) �→ (min(x0, x1),max(x0, x1)). The comparing operator resembles the comparator

which accepts two arbitrary values and outputs the sorted data. It can also accept two indexes

explicitly written in following parentheses.

An xi �→ xj, 0 � i, j < n, iff Aij = 1. An represents an arbitrary permutation operators denoted

as a permutation matrix which has exactly one “1” in each row and column.

In xi �→ xi, 0 � i < n. In is the identity operator and outputs the data unchanged as its inputs.

Essentially, In is a diagonal matrix denoted as In = diag(1, 1, · · · , 1).
Lkm
m xik+j �→ xjm+i, 0 � i < m, 0 � j < k. Lkm

m is a special permutation operator, performing a

stride-by-m permutation on the input vector of size km.

High-order operators (A, B are two permutation operators):

24

(◦) The composition operator is used to describe a data flow. An ◦ Bn means a n-element input

vector is first processed by An and then the result vector is processed by Bn. The product

symbol
∏

represents the iterative composition.

(⊕) The direct sum operator is served to merge two operators. An ⊕Bm indicates that the first n

elements of the input vector is processed by An, while the rest m elements follow Bm.

(⊗) The tensor product we used in the chapter will appear like Im ⊗ An, which equals to An ⊕
· · · ⊕ An. This means the input vector is divided into m segments, each of which is mapped

to An.

With the DSL, a sequence of data comparing and reordering patterns can be formalized and

implemented by a sequence of vector-matrix multiplications. Note that we only use the DSL to

describe the data-comparing and data-reordering patterns instead of creating a new DSL.

3.2.2 Sorting and Merging Network

The sorting network is designed to sort the input data by using a sequence of comparisons, which

are planned out in advance regardless of the value of the input data. The sorting network may

depend on the merging network to merge pairs of sorted subarrays. Figure 3.1a exhibits the Knuth

diagram [8] of two identical bitonic sorting networks. Each 4-key sort network accepts 4 input

elements. The paired dots represent the comparators that put the two inputs into the ascending

order. After threaded through the wires of the network, these 4 elements are sorted. Figure 3.1b is

a merging network to merge two sorted 4-key vectors to an entirely sorted 8-key vector. Although

sorting and merging networks are usually adopted in the circuit designs, it is also suitable for SIMD

implementation thanks to the absence of unpredictable branches.

In this chapter, the sorting and merging networks are represented by a list of comparators,

each of which is denoted as CMP(x, y) that indicates a comparison operation between x-th and

y-th elements of the input data.

25

(a) sorting networks (b) merging network

Figure 3.1: Bitonic networks (a) Two 4-key sorting networks (b) One 8-key merging network.

3.3 Framework and Generalized Patterns

The ASPaS parallel sorting uses an iterative bottom-up scheme to sort and merge segmented

data. Algorithm 1 illustrates the scheme: First, the input data are divided into contiguous seg-

ments, each of whose size equals to the built-in SIMD width to the power of 2. Second, these

segments are loaded into vector registers for sorting with the functions of aspas sort and

aspas transpose (the sort stage in loop of line 3). Third, the algorithm will merge neighbor-

ing sorted segments to generate the output by iteratively calling the function of aspas merge (the

merge stage in loop of line 9). The functions of load, store, aspas sort, aspas transpose,

and aspas merge will be generated by ASPaS using the platform-specific intrinsics. Since the

load and store can be directly translated to the intrinsics once the ISA is given, we focus on

other three kernel functions with the prefix aspas in the remaining sections.

Figure 3.2 depicts the structure of the ASPaS framework to generate the sort function. Three

modules —SIMD Sorter, SIMD Transposer, and SIMD Merger — are responsible for building the

sequences of comparing and data-reordering operations for the aforementioned kernel functions.

Then, these sequences are mapped to the real SIMD intrinsics through the module of SIMD Code

Generator, and the codes will be further optimized from the perspectives of memory access pattern

and thread-level parallelism (in § 3.4).

26

Algorithm 1: ASPaS Parallel Sorting Structure

// w is the SIMD width
1 Function aspas::sort(Array a)
2 Vector v1, ..., vw;
3 foreach Segment seg in a do
4 // load seg to v1, ..., vw
5 aspas sort(v1, ..., vw);
6 aspas transpose(v1, ..., vw);
7 // store v1, ..., vw to seg

8 Array b ← new Array[a.size];
9 for s ←w; s < a.size; s*=2 do

10 for i ←0; i < a.size; i+=2*s do
11 // merge subarrays a+ i and a+ i+ s
12 // to b+ i by calling Function aspas::merge()

13 // copy b to a

14 return;
15 Function aspas::merge(Array a, Array b, Array out)
16 Vector v, u;
17 // i0, i1, i2 are offset pointers on a, b, out
18 // load w numbers from a to v
19 // load w numbers from b to u
20 aspas merge(v, u);
21 // store v to out and update i0, i1, i2
22 while i0 � a.size and i1 � b.size do
23 if a[i0]� b[i1] then
24 // load w numbers from a+ i0 to v
25 else
26 // load w numbers from b+ i1 to v
27 aspas merge(v, u);
28 // store v to out+ i2 and update i0, i1, i2
29 // process the remaining elements in a or b
30 return;

Figure 3.2: The structure of ASPaS and the generated sort.

3.3.1 SIMD Sorter

The operations of aspas sort are taken care by the SIMD Sorter. As shown in Figure 3.3,

aspas sort loads n-by-n elements into n n-wide vectors and threads them through the given

sorting network, leading to the data sorted for the aligned positions across vectors. Figure 3.4

presents an example of a 4-by-4 data matrix stored in vectors and a 4-key sorting network (includ-

27

ing its original input macros). Here, each dot represents one vector and each vertical line indicates

a vector comparison. The six comparisons rearrange the original data in ascending order in each

column. Figure 3.4 also shows the data dependency between these comparators. For example,

CMP(0,1) and CMP(2,3) can be issued simultaneously, while CMP(0,3) can occur only after these

two. It is natural to form three groups of comparators for this sorting network. We also have

an optimized grouping mechanism to minimize the number of groups for other more complicated

sorting networks. For more details, please refer to [75].

Figure 3.3: Mechanism of the sort stage: operations generated by SIMD Sorter and SIMD Transposer.

Figure 3.4: Four 4-element vectors go through the 4-key sorting network. Afterwards data is sorted in each

column of the matrix.

Since we have the groups of comparators, we can generate the vector codes for the aspas sort

by keep two sets of vector variables a and b. All the initial data are stored in the vectors of set a.

Then, we jump to the first group of the sorting network. For each comparator in the current group,

we generate the vector operations to compare relevant vector variables, and store the results to the

vectors in set b. The unused vectors are directly copied to set b. For the next group, we flip the

identities of a and b. Therefore, the set b becomes the input, and the results will be stored back to

a. This process continues until all groups of the sorting network have been handled. All the vector

operations in the aspas sort will be mapped to the ISA-specific intrinsics (e.g., mm256 max

and mm256 min on CPUs) later by the SIMD Code Generator. At this point, the data is partially

sorted but stored in column-major order.

28

3.3.2 SIMD Transposer

As illustrated in Figure 3.3, the aspas sort function has scattered the sorted data across different

vectors. The next task is to gather them into the same vectors (i.e., rows) for further operations.

There are two alternative ways to achieve the gathering: one directly uses the gather/scatter SIMD

intrinsics; and the other uses the in-register matrix transpose over loaded vectors. The first scheme

provides a convenient means to handle the non-contiguous data in memory, but with the penalty of

high latency of accessing scattered locations. The second one avoids latency penalty at the expense

of using complicated data-reordering operations. Considering the high latency of the gather/scatter

intrinsics and the incompatibility with architectures that do not support gather/scatter intrinsics, we

adopt the second scheme in the SIMD Transposer. To decouple the binding between the operations

of matrix transpose and the dedicated intrinsics with various SIMD widths, we formalize the data-

reordering operations using the sequence of permutation operators. Subsequently, the sequence

will be handed over to the SIMD Code Generator to generate the platform-specific SIMD codes

for the aspas transpose function.

∏t−1
j=1(L

2t

2 ◦ (I2t−j−1 ⊗ L2j+1

2j) ◦ (I2t−j ⊗ L2j

2) ◦ L2t

2t−1 [vid, vid+2j−1]) (3.1)

Eq. 3.1 gives the operations performed on the preloaded vectors for the matrix transpose,

where w is the SIMD width, t = log(2w), and for each j, id ∈ {i · 2j + n|0 � i < w
2j
, 0 �

n < 2j−1}, which will form w
2j
· 2j−1 = w

2
pairs of operand vectors. The sequence of permutation

operators preceded each operand pair will be applied on them. The square brackets wrap these

pairs of vectors.

Figure 3.5 illustrates an example of in-register transpose with w = 4. The elements are

preloaded into vectors v0, v1, v2, and v3 and have been already sorted vertically. t−1 = 2 indicates

that there are 2 steps denoted as 1© and 2© in the figure. For the step j = 1, the permutation

operators are applied on the pairs [v0, v1] and [v2, v3]; and for j = 2, the operations are on the

pairs [v0, v2] and [v1, v3]. After the the vectors go through the two steps accordingly, the matrix is

transposed, and the elements are gathered in the same vectors.

29

4
22 LI 2

24 LI

4
22 LI 2

24 LI

8
41 LI 4

22 LI

8
41 LI 4

22 LI

8
4L

8
4L

8
4L

8
4L8

2L

8
2L 8

2L

8
2L

Figure 3.5: Four 4-element vectors transpose with the formalized permutation operators of DSL.

3.3.3 SIMD Merger

For now, the data have been sorted in each segment thanks to the aspas sort and aspas transpose.

Then, we use the aspas merge to combine pairs of sorted data into a larger sequence iteratively.

The SIMD Merger is responsible for its comparison and data-reordering operations according to

given merging networks, e.g., odd-even and bitonic networks. In ASPaS, we select the bitonic

merging network for three reasons: (1) the bitonic merging network can be easily scaled to any

2n-sized keys; (2) there is no idle element in the input vectors for each comparison step; and (3)

symmetric operations can facilitate the vector instruction selection (discussed in § 3.4.1). As a

result, it is much easier to vectorize the bitonic merging network than others. In terms of imple-

mentation, we have provided two variants of the bitonic merging networks [192] to achieve the

same functionality. Their data-reordering operations can be formalized, as shown below.

∏t
j=1(I2j−1 ⊗ L2t−j+1

2) ◦ (I2t−1 ⊗ S2) ◦ (I2j−1 ⊗ L2t−j+1

2t−j)[v, u] (3.2)∏t
j=1 L

2t

2 ◦ (I2t−1 ⊗ S2)[v, u] (3.3)

Similar with § 3.3.2, t = log(2w) and w is the SIMD width. The operand vectors v and

u represent two sorted sequences (the elements of vector u are inversely stored in advance). In

Eq. 3.2, the data-reordering operations are controlled by the variable j and varies in each step,

30

while in Eq. 3.3, the permutation operators are independent with j, thereby leading to the uniform

permutation patterns in each step. Hence, we label the pattern in Eq. 3.2 as the inconsistent and that

in Eq. 3.3 as the consistent. These patterns will be transmitted to and processed by the SIMD Code

Generator to generate the aspas merge function. We will present the performance comparison

of these two patterns in § 3.5.

8
2L 8

2L 8
2L

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

8
21 LI 8

41 LI 4
22 LI 4

22 LI 2
24 LI 2

11 LI

Figure 3.6: Two formalized variants of bitonic merging networks: the inconsistent pattern and the consistent

pattern. All elements in vector v and u are sorted, but inversed in vector u.

Figure 3.6 presents an example of the two variants of bitonic merging networks under the

condition of w = 4. The data-reordering operations from the inconsistent pattern keep changing

for each step, while those from the consistent one stay identical. Though the data-reordering

operations of the two variants are quite different, both are able to successfully achieve the same

merging functionality within the same number of steps, which is actually determined by the SIMD

width w.

31

3.4 Code Generation and Optimization

In the section, we will first show the searching mechanism of ASPaS framework to find out the

most efficient SIMD instructions. Then, the generated codes will be optimized to take advantage

of memory hierarchy and multi/manycore resources of x86-based systems.

3.4.1 SIMD Code Generator

This module in ASPaS accepts the comparison operations from SIMD Sorter and the data-reordering

operations from SIMD Transposer and SIMD Merger in order to generate the real ISA-specific

vector codes. We will put emphasis on finding the most efficient intrinsics for the data-reordering

operations, since mapping comparison operations to SIMD intrinsics is straightforward. In the

module, we first define a SIMD-friendly primitive pool based on the characteristics of the data-

ordering operations, then dynamically build the primitive sequences according to the matching

score between what we have achieved on the way and the target pattern, and finally translate the

selected primitives into the real intrinsics for different platforms.

Primitive Pool Building

Some previous research, e.g., the automatic Fast Fourier transform (FFT) vectorization [113],

uses the exhaustive and heuristic search on all possible intrinsics combinations, which is time-

consuming, especially for the richer instruction sets, such as IMCI. To circumvent the limitation,

we first build a primitive pool to prune the search space and the primitives are supposed to be

SIMD-friendly. The most notable feature of the data-reordering operations for the transpose and

merge is the symmetry: all the operations applied on the first half of input are equivalent with those

on the second half in a mirror style. We assume that all the components of the sequences to achieve

these operations are also symmetric. We categorize these components as (1) the primitives for the

symmetric permute operations on the same vector and (2) the primitives for the blend operations

across two vectors.

32

Permute Primitives: Considering 4 elements per lane (e.g., Integer or Float) or 4 lanes per

register (e.g., IMCI register), there are 44 = 256 possibilities for either intra-lane or inter-lane

permute operations. However, only those permutations without duplicated values are useful in our

case, reducing the possibilities to 4! = 24. Among them, merely 8 symmetric data-reordering

patterns will be selected, i.e. DCBA (original order), DBCA, CDAB, BDAC, BADC, CADB, ACBD,

and ABCD, in which each letter denotes an element or a lane. If we are working on 2 elements per

lane (e.g., Double) or 2 lanes per register (e.g., AVX register), there are two symmetric patterns

without duplicated values, i.e. BA (original order) and AB.

Blend Primitives: While blending two vectors into one, the elements are supposed to be

equally and symmetrically distributed from the two input vectors. Hence, we can boil down the

numerous mask modifiers to only a few. We define a pair of blend patterns (0 2i, 2i 2i), where

0 � i < log(w) and w is the vector width. Each blend pattern in the pair represents a 2i+1-bit

stream. The first number 0 or 2i denotes the offset of the first set bit, and the second number 2i

is the number of consecutive set bits. All the other bits are filled with clear bits. The bit streams

need to be extended to the vector width by duplicating themselves w
2i+1 times. For example, if the

w equal to 16, there are 4 possible pairs of patterns: (0 1, 1 1), (0 2, 2 2), (0 4, 4 4), and (0 8,

8 8). Among them, the pair (0 2, 2 2) corresponds to i = 1, representing the bit streams (1100)4

and (0011)4 (The subscript 4 means the repetition times).

Now, we further categorize the primitives into 4 types based on permute or blend and intra-

lane or inter-lane. Table 3.1 illustrates the categories and associative exemplar operations, where

the vector width w is set to 8 (2 lanes) for clarity.

Table 3.1: Primitive Types

Type # Type Example (vector width=8)

0 intra-lane-permute ABCDEFGH→BADCFEHG (cdab)
1 inter-lane-permute ABCDEFGH→EFGHABCD (--ab)
2 intra-lane-blend ABCDEFGH | IJKLMNOP→ABKLEFOP (2 2)
3 inter-lane-blend ABCDEFGH | IJKLMNOP→IJKLEFGH (0 4)

The primitives are materialized into permutation matrices in ASPaS. Since the blend primi-

tives always operate on two vectors (concatenated as one 2w vector), the dimensions of the blend

33

permutation matrices are expanded to 2w by 2w as well. Accordingly, for the permute primi-

tives, we pair an empty vector to the single input vector and specify the primitive works on the

first vector v or the second vector u. Therefore, for example, if w = 16, there are 32=8(permute

primitives)∗2(intra-lane or inter-lane)∗2(operating on v or u) and 8(4 pairs of the blend primitives)

permutation matrices. Figure 3.7 illustrates examples of the permutation matrices. The matrix

“shuffle cdab v” and “shuffle cdab u” correspond to the same permute primitive on the halves of

the concatenated vectors. The matrix “blend 0 1 v” and “blend 1 1 u” correspond to one pair of

blend primitives (0 1, 1 1). So far, 4 sub-pools of permutation matrices are created according to

the 4 primitive types.

0100
1000
0001
0010

4IAs

0000
0100
0000
0001

40 IAb

1000
0000
0010
0000

41 IAb

160
0
I

As

sA
I
0

016

161

0 0
IA

A
b

b

1

016
0 b

b
A
AI

Figure 3.7: Permute matrix representations and the pairing rules.

Sequence Building

Two rules are used in the module to facilitate the searching process. They are based on two obser-

vations from the formalized data-reordering operations illustrated in Eq. 3.1, Eq. 3.2, and Eq. 3.3.

Obs.1 The same data-reordering operations are always conducted on two input vectors. Obs.2

The permute operations always accompany the blend operations to keep the symmetric pattern.

Figure 3.8 exhibits the symmetric patterns, which are essentially the first step in Figure 3.5. The

default blend is limited to pick elements from aligned positions of two input vectors, while the

symmetric blend can achieve an interleaving mode by coupling permute primitives with blend

primitives, as the figure shown. Hence, the usage of the two rules in the sequence building algo-

rithm are described as below.

Rule 1: when a primitive is selected for one vector v, pair the corresponding primitive for the other

34

vector u. For a permute primitive, the corresponding permute has the totally same pattern; while

for a blend primitive, the corresponding blend has the complementary blend pattern (i.e. the bit

stream, which has already been paired).

Rule 2: when a blend primitive is selected, pair it with the corresponding permute primitive: pair

the intra-lane-permute of swapping adjacent elements (CDAB) for (0 1, 1 1) blend, the intra-lane-

permute of swapping adjacent two elements (BADC) for (0 2, 2 2), the inter-lane-permute of swap-

ping adjacent lanes (CDAB) for (0 4, 4 4), and the inter-lane-permute of swapping adjacent two

lanes (BADC) for (0 8, 8 8).

(a) sym-blend (b) sym-blend (details)

Figure 3.8: Symmetric blend operation and its pairing details.

The sequence building algorithm targets at generating sequences of primitives to achieve given

data-reordering patterns for Eq. 3.1, Eq. 3.2, and Eq. 3.3. Two w-sized input vectors of v and u

are used and concatenated into the vecinp. Its initial elements are set to the default indices (from

1 to 2w). The vectrg is the target derived by applying the given data-reordering operators on the

vecinp. Then, the building algorithm will select the permutation matrices from the primitive pool,

do the vector-matrix multiplications over the vecinp, and check whether the intermediate result

vecim approximates the vectrg by using our defined two matching scores:

l-score lane-level matching score, accumulate by one when the corresponding lanes have exactly

same elements (no matter orders).

e-score element-level matching score, increase by one when the element matches its counterpart

in the vectrg.

Suppose we have a vector of w (vector width) and e (number of elements per lane), the max-

imum l-score equals to 2w/e when all the aligned lanes from two vectors match, while the max-

35

imum e-score is 2w when all the aligned elements match. With the matching scores, the process

of sequence building is transformed to finding the maximum scores. For example, if we have the

input “AB|CD|EF|GH” and the output “HG|DC|FE|BA” (assuming four lanes and two elements

per lane), we first search primitives for the inter-lane reordering, e.g, from “AB|CD|EF|GH” to

“GH|CD|EF|AB”, and then search primitives for the intra-lane reordering and reach to, e.g., from

“GH|CD|EF|AB” to “HG|DC|FE|BA”. By checking the primitives hierarchically, we add those

primitives increasing l-score or e-score and thus approximate to the desired output pattern.

Algorithm 2: Sequence Building Algorithm
Input: vecinp, vectrg
Output: seqsret

1 Sequences seqscand ← new Sequences(∅); // put an null sequence
2 Int l scoreinit ←LaneCmp(vecinp, vectrg);
3 if l scoreinit=2w/e then
4 seqsret ← InstSelector(seqscand,Type[0]);
5 else
6 i ←1;
7 while not Threshold() do
8 ty ←Type[i];
9 foreach Sequence seq in seqscand do

10 vecim ←Apply(vecinp, seq);
11 l scoreold ←LaneCmp(vecim, vectrg);
12 foreach Primitive prim in ty do
13 if n=1 then
14 primprd ←Pair(prim, RULE1);
15 vecupd ←Apply(vecim, prim+ primprd);
16 seqext ←prim+ primprd;
17 else
18 primprd ←Pair(prim, RULE1);
19 perm0 ←Pair(prim, RULE2);
20 perm1 ←Pair(primprd, RULE2);
21 vecupd0 ←Apply(vecim, perm0 + prim);
22 vecupd1 ←Apply(vecim, perm1 + primprd);
23 vecupd ←Combine(vecupd0, vecupd1);
24 seqext ←perm0 + prim+ perm1 + primprd;
25 l scorenew ←LaneCmp(vecupd, vectrg);
26 if l scorenew > l scoreold then
27 seqsbuf.add(seq + seqext);
28 seqscand.append(seqsbuf);
29 seqsbuf.clear();
30 i ←((++i)-1)%3+1;
31 seqssel ←PickLaneMatchedSeqs(seqscand);
32 seqsret ← InstSelector(seqssel,Type[0]);
33 Function InstSelector(Sequences seqscand,Type ty)
34 foreach Sequence seq in seqscand do
35 vecim ←Apply(vecinp, seq);
36 foreach Primitive prim in ty do
37 primprd ←Pair(prim, RULE1);
38 vecupd ←Apply(vecim, prim+ primprd);
39 e score ←ElemCmp(vecupd, vectrg);
40 if e score=2w then
41 seqsret.add(seq + prim+ primprd);
42 return seqsret;

36

Algorithm 2 shows the pseudocode of the sequence building algorithm. The input contains

the aforementioned vecinp and vectrg. The output seqsret is a container to hold the built sequences

of primitives, which will be translated to the real ISA intrinsics soon. The seqscand is to store

candidate sequences and initialized to contain a ø sequence. First, the algorithm checks the initial

vecinp with the vectrg and get the l-score. If it equals to 2w/e, meaning aligned lanes have already

matched, we only need to select “intra-lane-permute” primitives (line 4) to improve the e-score.

Otherwise, we will work on the sub-pools of type 1, 2, or 3 in a round-robin manner. In the while

loop, for each sequence in seqscand, we first calculate the l scoreold, and then we will calculate

the l scorenew by tentatively adding primitives one by one from the current sub-pool. If the primi-

tive prim comes from the “inter-lane-permute”, we produce the paired permute primitive primprd

based on the Rule 1 (line 14). If prim is from the blend types, we produce the paired blend prim-

itive primprd based on the Rule 1 and then find their paired permute primitives perm0 and perm1

based on the Rule 2 (line 18-20). The two rules help to form the symmetric operations.

After the selected primitives have been applied, which corresponds to several vector-matrix

multiplications, we can get a vecupd, leading to a new l-score l scorenew compared to vectrg

(line 25). If the l-score is increased, we add the sequence of the selected primitives to seqscand

for further improvement. The threshold (line 7) is a configuration parameter to control the upper

bound of how many iterations the algorithm can tolerate, e.g., we set it to 9 in the evaluation in

order to find the sequences as many as possible. Finally, we use PickLaneMatched to select

those sequences that can make l-score equal to 2w/e, and go to the “intra-lane-permute” selection

(line 32), which can ensure us the complete sequences of primitives.

Primitives Translation

Now, we can map the sequences from the seqsret to the real ISA intrinsics. Although the vector

ISAs from CPU or MIC platforms are distinct from one another, we can still find desired intrinsics

thanks to the SIMD-friendly primitives. If there are multiple selections to achieve same primitive,

we always prefer the selection having least intrinsics.

On MIC: if there are multiple shortest solutions exist, we use the interleaved style of inter-

37

lane and intra-lane primitives, which could be executed with a pipeline mode on MIC as discussed

in § 2.1.1. For the primitives from “intra-lane-permute” and “inter-lane-permute”, we directly map

them into vector intrinsics of mm512 shuffle and mm512 permute4f128 with appropriate

permute parameters. The primitives from “intra-lane-blend” and “inter-lane-blend” are mapped to

the masked permute intrinsics mm512 mask shuffle and mm512 mask permute4f128.

The masks are derived from their blend patterns. Furthermore, when a primitive is from “intra-

lane” and its parameter is supported by the swizzle intrinsics, we will use the light-weighted swiz-

zle intrinsics to optimize the performance.

On CPU: for the primitives from “intra-lane-permute” and “inter-lane-permute”, we map

them into vector intrinsics of AVX’s mm256 permute (or AVX2’s mm256 shuffle3) and

mm256 permute2f128with appropriate permute parameters. For the primitives of blend prim-

itives, we need to find specific combinations of intrinsics, since there are no similar mask mecha-

nisms in AVX or AVX2 as IMCI. For “intra-lane-blend” primitives, if the blend pattern is picking

interleaved numbers from two vectors, e.g., 0101 or 1010, we use the mm256 unpacklo and

mm256 unpackhi to unpack and interleave the neighboring elements. In contrast, for the pat-

terns that select neighboring two elements, e.g., 0011 or 1100, we use AVX’s mm256 shuffle,

which can take two vectors as input and pick every two elements from each input. For the “inter-

lane-blend” primitives, we use mm256 permute2f128. Note that, since many intrinsics in

AVX only support operations on floating point elements, we have to cast the datatypes if we are

working on integers; while on AVX2, we can directly use intrinsics handling integers without cast-

ing. As a result, for parallel sorting on integers, the generated codes on AVX2 may use much less

intrinsics than those on AVX.

3.4.2 Organization of the ASPaS Kernels

So far, we have generated three building kernels in ASPaS: aspas sort(), aspas transpose(),

and aspas merge(). As shown in Figure 3.9, we carefully organize these kernels to form the

aspas::sort as illustrated in Algorithm 1. Note that this figure shows the sort, transpose, and

3AVX’s mm256 shuffle is different from AVX2’s and it reorders data from two input vectors.

38

merge stages on each thread and the multithreaded implementation will be discussed in the next

subsection. First, the aspas sort() and aspas transpose() are performed on every seg-

ment of the input to create a partially sorted array. Second, we enter the merge stage. Rather than

directly merging the sorted segments level by level in our previous research [75], we adopt the mul-

tiway merge [83, 48]: merge the sorted segments for multiple levels in each block, the cache-sized

trunk, to fully utilize the data in the cache until we move to the next block. This strategy is cache-

friendly, since it avoids frequently swapping data in and out the cache. When the merged segments

are small enough to fit into the LLC, which is usual in first several levels, we take this multiway

merge strategy. For the large segments in the later levels, we fall back to the two-way merge.

Similar to existing libraries, e.g., STL, Boost, and TBB, we also provide the merge functionality

for programmers as a separate interface. The interface aspas::merge is similarly organized as

aspas::sort shown in the figure but only uses aspas merge().

Figure 3.9: The organization of ASPaS kernels for the single-threaded aspas::sort.

3.4.3 Thread-level Parallelism

In order to maximize the utilization of multiple cores of modern x86-based systems, we integrate

the aspas::sort and aspas::merge with the thread-level parallelism using Pthreads. Ini-

tially, we split the input data into separate parts, each of which is assigned to one thread. All the

threads can sort their own parts using the aspas::sort independently. Then, we merge each

thread’s sorted part together. The simplest way might be assigning half of the threads to merge two

neighboring sorted parts into one by iteratively calling the aspas::merge until there is only

one thread left. However, this method significantly under-utilizes the computing resources. For

39

example, in the last level of merging, there is only one thread merging two trunks but all the other

threads are idle. Therefore, for the last several levels of merging, we adopt MergePath [68] to let

multiple threads merge two segments. Assume for each two sorted segments with the lengths of

m and n, we have k threads working on them. First, each thread calculates the i/k-th value in the

imagined merged array without actually merging the inputs, where the i is the thread index. This

step can be done in O(log(m + n)). Second, we split the workloads into k exclusive and balanced

portions according to the k splitting values. Finally, each thread can merge their assigned portions

independently. Note, this strategy is capable of minimizing the data access overhead on remote

memory bank of NUMA architecture, since the array is equally split and stored in each memory

bank and a thread will first merge data in the local memory region, and then on demand access re-

mote data in a serial mode [83]. In the evaluation, our multithreaded version adopts this optimized

design.

3.4.4 Sorting of {key,data} Pairs

In many real-world applications, sorting is widely used to reorder some specific data structures

based on their keys. To that end, we extend ASPaS with this functionality: generate the vectoriza-

tion codes to sort {key, data} pairs, where the key represents the target for sorting and the data is

the address to the data structures containing that key. The research work [48] proposes two strate-

gies to sort {key, data} pairs. The first strategy to sort {key, data} pairs is to pack the relative

key and data into a single entry. Then, sorting the entries is equivalent to sorting the keys, since

the keys are placed in the high bits. However, if the sum of lengths of key and data exceeds the

maximum length of the built-in data types, it is non-trivial to carry this strategy out. The second

strategy is to put the keys and data into two separate arrays. While sorting the keys, the comparison

results are stored as masks that will be used to control the data-reordering of associative data. In

this chapter, we use the second method. Differed from [48], which focuses on the 32-bit key and

data, ASPaS is able to handle different combinations of 32/64-bit keys and 32/64-bit data and their

varied data-reordering patterns accordingly.

For implementation, ASPaS uses compare intrinsics rather than max/min intrinsics to get ap-

40

propriate masks. The masks may need be stretched or split depending on the differences between

the lengths of keys and data. With the masks, we use blend intrinsics on both key vectors and data

vectors to reorder elements. Table 3.2 shows how the building modules are used to find the desired

intrinsics for key and data vectors, respectively.

Table 3.2: The building modules to handle the data-reordering for {key,data} pairs in ASPaS

{key,data} Input (key) Building Modules (key) Input (data) Building Modules (data)
32-bit, 32-bit v0,v1,...,vw−1 Transpose[w](v0,v1,...,vw−1) v,0,v,1,...,v,w−1 Transpose[w](v,0,v,1,...,v,w−1)

64-bit, 64-bit v,u Merge Reorder[w](v,u) v,,u, Merge Reorder[w](v,,u,)

32-bit, 64-bit
v0,v1,...,vw−1 Transpose[w](v0,v1,...,vw−1)

v,0,v,1,v,2,v,3,
[

Transpose[w/2](v
,
0 ,v

,
2 ,...,v

,
w−2), Transpose[w/2](v

,
w+0 ,v

,
w+2 ,...,v

,
2w−2)

]
...,v,2w−2,v,2w−1 Transpose[w/2](v

,
1 ,v

,
3 ,...,v

,
w−1), Transpose[w/2](v

,
w+1 ,v

,
w+3 ,...,v

,
2w−1)

v,u Merge Reorder[w](v,u) v,0,v,1,u,
0,u,

1 Merge Reorder[w/2](v,0,u,
0); Merge Reorder[w/2](v,1,u,

1)

64-bit, 32-bit
v0,v1,...,vw−1 Transpose[w](v0,v1,...,vw−1) v,0,v,1,...,v,w−1† Transpose[w](v,0,v,1,...,v,w−1)

v,u Merge Reorder[w](v,u) v,,u,† Merge Reorder[w](v,,u,)

†: On MIC, only the first halves of each vector are effective; On CPU, SSE vectors are adopted.

In the table, w represents the number of keys the built-in vector can hold. The modules are

in the format of modName[count](vlist), which means generating the modName data-reordering

intrinsics for vectors in vlist and each vector contains count elements. There are three possible

combinations for different keys and data: (1) When the key and data has the same length, we use

the totally same data-reordering intrinsics on the key and data vectors. (2) When the data length

doubles the key length, we correspondingly double the number of vectors to hold the enlarged data

values. Then, the building modules are performed on halves of the input data vectors as shown in

the table: for transpose, we need to use four times intrinsics on data vectors than key vectors to

transpose four blocks of data vectors, and change the layout of data vectors from [00, 01, 10, 11] to

[00, 10, 01, 11]; for merge, we need to double the intrinsics on data vectors than key vectors since

the input vectors are doubled. (3) When the key length exceeds the data length, we take distinct

strategies according to the platforms. On CPU, we simply use the SSE vector ISA, because of the

backward compatibility of AVX. On MIC, since the platform doesn’t support previous vector ISA,

we keep the effective values always in the first halves of each 512-bit vectors.

One may wonder why we need to reorder the data along with the key in each step rather than

do it only in the final step. The reason is that this alternative requires an additional “index” vector

to keep track of key movement, which occurs during each step of reordering of the keys. Thus,

it is same to our strategy because the data in our method is the address to the real data structure.

41

Moreover, the reordering of data in our method has adopted ISA intrinsics for vectorization, which

can avoid the irregular memory access. In the perspective of performance, the execution time of

sorting {key,data} pairs grows asymptotically compared to sorting the pure key array. Henceforth,

we will focus on the performance analysis of sorting pure key array in the evaluation section.

3.5 Performance Analysis

ASPaS supports major built-in data types, i.e., integers, single and double precision floating point

numbers. In our evaluation, we use the Integer for the one-word type (32-bit) and the Double

for the two-word type (64-bit). Our codes use different ISA intrinsics according to the different

platforms. Table 3.3 shows the configurations of the three platforms with Intel Ivy Bridge (IVB),

Haswell (HSW), and Knights Corner (KNC), respectively. The ASPaS programs are implemented

in C++11 and compiled using Intel compiler icpc 15.3 for HSW and KNC and icpc 13.1 for IVB.

On CPUs, we use the compiler options of -xavx and -xCORE-AVX2 to enable AVX and AVX2,

respectively. On MIC, we run the experiments using the native mode and compile the codes with

-mmic. All codes in our evaluations are optimized in the level of -O3. All the input data are

generated randomly ranging from 0 to the data size, except in § 3.5.5. This chapter focuses on the

efficiency of vectorization; and we show detailed performance analysis on a single thread in most

sections, while § 3.5.4 evaluates the best vectorized codes in a multi-core design.

Table 3.3: Testbeds for ASPaS

Model Intel Xeon CPU (E5-2697 v2) Intel Xeon CPU (E5-2680 v3) Intel Xeon Phi (5110P)
Codename Ivy Bridge Haswell Knights Corner

Frequency 2.70GHz 2.50GHz 1.05GHz

Cores 24 24 60

Threads/Core 2 1 4

Sockets 2 2 -

L1/L2/L3 32kb/256kb/30mb 32kb/256kb/30mb 32kb/512kb/-

Vector ISA AVX AVX2 IMCI

Memory 64GB 128GB 8GB

Mem Type DDR3 DDR3 GDDR5

42

3.5.1 Performance of Different Sorting Networks

We first test the performance of the aspas sort and aspas merge kernels, whose implemen-

tation depends on the input sorting and merging networks. For brevity, we only show the graphical

results of Integer datatype. We repeat the execution of the kernels for 10 million times and report

the total seconds in Figure 3.10.

In the sort stage, ASPaS can accept any type of sorting networks and generate the aspas sort

function. We use five sorting networks, including Hibbard (HI) [70], Odd-Even (OE) [21], Green

(GR) [67], Bose-Nelson (BN) [27], and Bitonic (BI) [21]. In Figure 3.10, since GR cannot take 8

elements as input, the performance for it on CPUs is not available. The labels of x-axis also indi-

cate how many comparators and groups of comparators in each sorting network are. On CPUs, the

sorting networks have same number of comparators except the BI sort, thereby yielding negligible

time difference with a slight advantage to BN sort on IVB. On MIC, GR sort has the best perfor-

mance that stems from the less comparators and groups, i.e., (60, 10). Although BI sort follows

a balanced way to compare all elements in each step and is usually considered as a candidate for

better performance, it uses more comparators, leading to the relatively weak performance for the

sort stage. Base on the results, in the remaining experiments, we choose the BN, OE, and GR sorts

for the Integer datatype on IVB, HSW, and KNC, respectively. For the Double datatype, we also

choose the best one, i.e., OE sort, for the rest of the experiments.

(a) IVB (b) HSW (c) KNC

Figure 3.10: Performance comparison of aspas sort and aspas merge with different sorting and

merging networks. The kernels are repeated by 10 million times over a built-in vector-length array and

total times are reported. The numbers of comparators and groups are given in parenthesis for sorting net-

works.

43

In the merge stage, we set two variants of bitonic merging networks (Eq. 3.2 and Eq. 3.3 in

§ 3.3.3) as the input of ASPaS. Figure 3.10 also presents the performance comparisons for these

two variants. The inconsistent merging can outperform the consistent one by 12.3%, 20.5%, and

43.3% on IVB, HSW, and KNC, respectively. Although the consistent merging has uniform data-

reordering operations in each step as shown in Figure 3.6, the operations are not ISA-friendly and

thus requires a longer sequence of intrinsics. For example, based on Eq. 3.3, the consistent merging

uses 5 times of the L32
2 data reordering operations on MIC, each of which needs 8 permute/shuffle

IMCI intrinsics. In contrast, the inconsistent merging only uses L32
2 once and compensate it with

much lighter operations (e.g., I1 ⊗ L32
16 ◦ I2 ⊗ L16

2 and I2 ⊗ L16
8 ◦ I4 ⊗ L8

2, each of which can be

implemented by an average of 2 IMCI intrinsics). On CPUs, the L16
2 operation in the consistent

variant only needs 4 AVX intrinsics, leading to the smaller disparity. But, in all cases, the inconsis-

tent bitonic merge provides the best performance. The Double datatype exhibits similar behaviors.

Thus we will adopt the inconsistent merging in the remaining experiments.

3.5.2 Speedups from the ASPaS Framework

In this section, we compare the ASPaS sort and merge stages with their serial counterparts. The

counterparts of aspas sort and aspas merge are serial sorting and merging networks (one

comparison and exchange at a time) respectively. Note, in the sort stage, the aspas transpose

is not required in the serial version, since the partially sorted data can be stored directly in a

consecutive manner. Ideally, the speedups from the ASPaS should approximate the built-in vector

width; though this is impractical because of the extra and required data reordering instructions.

By default, the compiler will auto-vectorize the serial codes4, which is denoted as “compiler-vec”.

Besides, we explicitly turn off the auto-vectorization, which is shown as “no-vec”.

For the sort stages with Integer datatype on CPUs in Figure 3.11 (a,c), the ASPaS codes

can deliver more performance improvements on HSW over IVB, since the AVX on IVB does

not support native integer operations as in AVX2. Thus, we have to split the AVX vector to two

SSE vectors before resorting to the SSE ISA for comparisons. For the sort stages with Double

4We also use the SIMD pragma pragma vector always on the target loops.

44

(a) IVB (integer) (b) IVB (double)

(c) HSW (integer) (d) HSW (double)

(e) KNC (integer) (f) KNC (double)

Figure 3.11: ASPaS vs. icpc optimized (“compiler-vec”) and serial (“no-vec”) codes. For the merge stages,

the lines of “compiler-vec” and “no-vec” usually overlap.

in Figure 3.11 (b,d), the ASPaS codes exhibit similar performance gains over “no-vec”, achieving

slight 1.1˜1.2x speedups. The vectorization benefits of Double drop down because less elements in

each vector than Integer, leading to relatively higher data reordering overhead. On KNC, ASPaS

Integer and Double sort codes in Figure 3.11 (e,f) outperform the “no-vec” counterparts up to 10.5x

and 6.0x. In addition, the ASPaS codes can also achieve better performance than the “compiler-

vec” versions in most cases. By analyzing the generated assembly codes in “compiler-vec”, we

find: on IVB, the compiler uses multiple insert instructions to construct vectors slot by slot

from non-contiguous memory locations; instead, the gather instructions are used on HSW and

KNC. However, neither can mitigate the high latency of non-contiguous memory access. The

45

ASPaS codes, in contrast, can outperform the “compiler-vec” by using the load/store on the

contiguous data and the shuffle/permute for the transpose in registers. We also observe that

in Figure 3.11 (d) the “compiler-vec” of sort stage slowdowns the execution compared to the “no-

vec”. This may stem from the fact that the HSW supports vector gather but no equivalent vector

scatter operations. The asymmetric load-and-store fashion on non-contiguous data with larger

memory footprint (Double) causes negative impacts on the performance [108].

The merge stages in Figure 3.11 on the three platforms show that the “compiler-vec” versions

have the similar performance with the “no-vec”. This demonstrates that even with the most ag-

gressive vectorization pragma, the compiler fails to vectorize the merge codes due to the complex

data dependency within the loops.

3.5.3 Comparison to Previous SIMD Kernels

In this section, we compare our generated kernels with those manually optimized kernels pro-

posed in previous research. These existing vector codes also focus on using vector instructions and

sorting networks to sort small arrays with sizes of multiple of SIMD-vector’s length. The reasons

for comparing kernels with smaller data sizes rather than any large data size are following: (1) the

kernels for sorting small arrays are usually adopted to construct efficient parallel sort algorithms

in a divide-and-conquer manner (e.g., quick-sort [49, 29], merge-sort [134, 48]), where input data

is split into small chunks each of which fits into registers, the sort kernel is applied on each chunk,

and the merge kernel is called iteratively to merge chunks until there is only one chunk left. Under

this circumstance, the overall performance significantly depends on the vectorization kernels [49];

(2) Our major motivation of this chapter is to efficiently generate combinations of permutation

instructions instead of proposing a new divide-and-conquer strategy for any large data size. As

a result, we compare vector codes from Chhugani et al. (CH) [48] and Inoue et al. (IN) [83] on

CPUs; while on MICs, we compare vector codes from Xiaochen et al. (XI) [161] and Bramas

(BR) [29]. The datatype in this experiment is the 32-bit integer5. We use one core (vector unit) to

5The BR paper [29] only provides AVX-512 codes for Knights Landing (KNL). Therefore, we have

46

process randomly-generated data in the segment of 8x8=64 integers for CPUs and of 16x16=256

integers for MICs, respectively. The experiments are repeated for 1 million times and we report

the total execution time.

Figure 3.12: ASPaS kernels vs. Previous manual approaches. We repeatedly (1 million times) sort 8x8=64

integers for CPUs and 16x16=256 integers for MICs, respectively. The time on data load from memory to

registers and store from registers to memory are included with the sort and merge in registers.

Figure 3.12 shows the performance comparison. On CPUs, both CH and IN methods use

SSE instructions to handle intra-lane data-reordering, leading to extra instructions used to pro-

cess inter-lane communications. Compared to our generated codes using AVX/AVX2 instructions,

these solutions are relatively easier to implement, because they only need to process vector lanes

one by one and there are always one unused lane for every operation, thus delivering suboptimal

performance. To use the AVX/AVX2 instructions, one has to redesign their method and consider

the different register length and corresponding instructions. In contrast, our solution automatically

looks for the architecture-specific instructions to handle both intra- and inter-lane communications

and deliver up to 3.4x speedups over these manual approaches. On MICs, the XI method adopts

mask instructions to disable some elements for each min/max operation. These unused slots in-

evitably under-utilize the vector resources. The BR method, on the other hand, directly uses the

expensive permutexvar instructions to conduct the global data-reordering. As a contrast, our

code generation framework can satisfy the underlying architectures, e.g., preferring lightweight

intra-lane and swizzle instructions when making the code generation. Therefore, on the KNC plat-

form, our codes can provide up to 1.7x performance improvements over the manually optimized

methods.

to port the codes using corresponding IMCI instructions on KNC, e.g., replacing permutexvar pd with

permutevar epi32 and correct parameters.

47

3.5.4 Comparison to Sorting from Libraries

In the section, we will evaluate the single-threaded aspas::sort and the multi-threaded as-

pas::parallel sort by comparing them with their related mergesorts and various sorting

tools from existing libraries.

Single-threaded ASPaS: ASPaS is essentially based on the bottom-up mergesort as the par-

tition strategy. We first compare the single-threaded aspas::sort with two mergesort variants:

top-down and bottom-up. The top-down mergesort recursively splits the input array until the split

segments only have one element. Subsequently, the segments are merged together. As a contrast,

the bottom-up mergesort, which directly works on the elements in the input array and iteratively

merge them into sorted segments. For their implementation, we use the std::inplace merge

as the kernel to conduct the actual merging operations. Figure 3.13 (a,b,c) illustrate the correspond-

ing performance comparison on IVB, HSW, and KNC. The bottom-up mergesort can outperform

the top-down slightly due to the recursion overhead in the top-down method. The ASPaS of In-

teger datatype outperforms the bottom-up mergesorts by 4.3x to 5.6x, while the Double datatype

provides 3.1x to 3.8x speedups.

ASPaS can efficiently vectorize the merge stage, even though the complexity of ASPaS merg-

ing is higher than the std::inplace merge used in the bottom-up mergesort. In ASPaS, when

merging each pair of two sorted segments, we fetch w elements into a buffer from each segment

and then merge these 2w elements using the 2w-way bitonic merging. After that, we store the first

half of merged 2w elements back to the result, and load w elements from the segment with the

smaller first element into the buffer; and then, the next round of bitonic merge will occur (ln. 18-28

in Algorithm 1). Since the 2w-way bitonic merging network contains 2log(2w)2log(2w)−2 compara-

tors [21], for every w elements, the total number of comparisons is (N/w) ∗ 2log(2w)2log(2w)−2 =

log(2w)N . As a contrast, the std::inplace merge conducts exactly N-1 comparisons if

enough additional memory is available. Therefore, the comparisons in the bottom-up mergesort

are considerably less than what we use in Algorithm 1. However, because our code carries out

better memory access pattern: fetching multiple contiguous data from the memory and then con-

ducting the comparisons in registers with a cache-friendly manner, we observe better performance

48

of aspas::sort over any of the bottom-up mergesort on all three platforms in Figure 3.13

(a,b,c).

(a) IVB (mergesort) (b) HSW (mergesort)

(c) KNC (mergesort) (d) IVB (tbb’s sort)

(e) HSW (tbb’s sort) (f) KNC (tbb’s sort)

Figure 3.13: (a,b,c): aspas::sort vs. the top-down and bottom-up mergesorts; (d,e,f):

aspas::parallel sort vs. the Intel TBB parallel sort.

Then, we compare the aspas::sort with other existing sorting tools from widely-used

libraries, including the qsort and sort from STL (libstdc++.so.6.0.19), sort from Boost

(v.1.55), and parallel sort from Intel TBB (v.4.1) (using a single thread). Figure 3.14

presents that the ASPaS codes can provide the highest performance over the other four sorts. The

aspas::sort on the Integer array can achieve 4.2x, 5.2x, and 5.1x speedups over the qsort on

49

IVB, HSW, and KNC, respectively (qsort is also notorious about its function callback for every

comparison.). Over the other sorting tools, it can still provide up to 2.1x, 3.0x, and 2.5x speedups.

For Double datatype, the performance benefits of aspas::sort become 3.8x, 2.9x, and 3.1x

speedups over the qsort, and 1.8x, 1.7x, 1.3x speedups over others on the three platforms corre-

spondingly.

(a) IVB (general sorts) (b) HSW (general sorts)

(c) KNC (general sorts) (d) Legends

Figure 3.14: aspas::sort vs. library sorting tools.

Multi-threaded ASPaS: In Figure 3.13 (d,e,f), we compare the multi-threaded ASPaS to the

Intel TBB’s parallel sort for a larger dataset from 12.5 to 400 million Integer and Double

elements. We configure the thread numbers to the integral multiples of cores and select the one that

can provide the best performance. On the three platforms, our aspas::parallel sort can

outperform the tbb::parallel sort by up to 2.5x, 2.3x, and 6.7x speedups for the Integer

datatype and 1.2x, 1.7x, and 5.0x speedups for the Double datatype.

3.5.5 Sorting Different Input Patterns

50

Finally, we evaluate the aspas::sort using different input patterns. As shown in Fig-

ure 3.15 (d), we use five input patterns defined in the previous research [49], including random,

even/odd, pipe organ, sorted, and push front input. With these input patterns, we can further

evaluate the performance of our generated vector codes with existing methods from widely used

libraries.

(a) IVB (b) HSW

(c) KNC

Random

Even/Odd

Pipe Organ

Sorted

Push Front

(d) Legends and Input Patterns

Figure 3.15: Performance of ASPaS sorting different input patterns.

In Figure 3.15 (d), we can find that the sorting tools from modern libraries can provide better

performance than our generated codes for the almost sorted inputs, i.e., “sorted” and “push front”.

That is because these libraries can be adaptive to different patterns by using multiple sorting al-

gorithms. For example, std::sort uses a combination of quick sort and insertion sort. For an

almost sorted input array, std::sort switches from the partition of the quick sort to the insertion

sort, which is good at handling the sorted input within O(n). As a contrast, our work focuses on

automatically generating efficient sorting kernels for more general cases, e.g., random, even/odd,

and pipe organ. At these cases, our sorting codes can yield superior performance.

51

3.6 Chapter Summary

In this chapter, we propose the ASPaS framework to automatically generate vectorized sorting code

for x86-based multicore and manycore processors. ASPaS can formalize the sorting and merging

networks to the sequences of comparing and reordering operators of DSL. Based on the charac-

teristics of such operators, ASPaS first creates an ISA-friendly pool to contain the requisite data

comparing and reordering primitives, then builds those sequences with primitives, and finally maps

them to the real ISA intrinsics. Besides, the ASPaS codes can exhibit a efficient memory access

pattern and thread-level parallelism. The ASPaS-generated codes can outperform the compiler-

optimized ones and meanwhile yield highest performance over multiple library sorting tools on

Ivy Bridge, Haswell, and Knights Corner architectures.

With the emerge of Skylake and Knights Landing architecture, our work can be easily ported

to AVX-512, since the ISA subset AVX-512F contains all the permute/shuffle instructions we need

for sorting. For GPUs, we will also extend ASPaS to search shuffle instructions to support fast data

permutation at register level.

Chapter 4

Data-thread Binding in Parallel Segmented

Sort

4.1 Introduction

Sort is one of the most fundamental operations in computer science. A sorting algorithm or-

ders entries of an array by their ranks. Even though sorting algorithms have been extensively

studied on various parallel platforms [133, 114, 89, 139], two recent trends necessitate revisit-

ing them on throughput-oriented processors. The first trend is that manycore processors such as

GPUs are more and more used both for traditional HPC applications and for big data process-

ing. In these cases, a large amount of independent arrays often need to be sorted as a whole,

either because of algorithm characteristics (e.g., suffix array construction in prefix doubling al-

gorithms from bioinformatics [63, 154]), or dataset properties (e.g., sparse matrices in linear al-

gebra [23, 150, 102, 103, 104, 101]), or real-time requests from web users (e.g., queries in data

warehouse [175, 157, 187]). The second trend is that with the rapidly increased computational

power of new processors, sorting a single array at a time usually cannot fully utilize the devices,

thus grouping multiple independent arrays and sorting them simultaneously are crucial for high

utilization.

As a result, the segmented sort that involves sorting a batch of segments of non-uniform length

52

53

concatenated in a single array becomes an important computational kernel. Although directly sort-

ing each segment in parallel could work well on multicore CPUs with dynamic scheduling [138],

applying similar methods such as “dynamic parallelism” on manycore GPUs may cause degraded

performance due to high overhead for context switch [153, 165, 60, 158]. On the other hand,

the distribution of segment lengths often exhibits the skewed characteristics, where a dominant

number of segments are relatively short but the rest of them can be much longer. In this context,

the existing approaches, such as the “one-size-fits-all” philosophy [122] (i.e., treating different seg-

ments equally) and some variants of global sort [53, 22] (i.e., traditional sort methods plus segment

boundary check at runtime), may not give best performance due to load imbalance and low on-chip

resource utilization.

We in this work propose a fast segmented sort mechanism on GPUs. To improve load bal-

ance and increase resource utilization, our method first constructs basic work units composed of

adaptively defined elements from multiple short segments of various sizes or part of long seg-

ments, and then uses appropriate parallel strategies for different work units. We further propose a

register-based sort method to support N -to-M data-thread binding and in-register data communi-

cation. We also design a shared memory-based merge method to support variable-length chunks

merge via multiple warps. For the grouped short and medium work units, our mechanism does the

segmented sort in the registers and shared memory; and for those long segments, our mechanism

can also exploit on-chip memories as much as possible.

Using segments of uniform and synthetic power-law length on NVIDIA K80-Kepler and

TitanX-Pascal GPUs, our segmented sort can exceed state-of-the-art methods in three vendor li-

braries CUB [122], CUSP [53] and ModernGPU [22] by up to 86.1x, 16.5x, and 3.8x, respec-

tively. Furthermore, we integrate our mechanism with two real-world applications to confirm their

efficiency. For the suffix array construction (SAC) in bioinformatics, our mechanism results in

a factor of 2.3–2.6 speedup over the latest skew-SA method [154] with CUDPP [69]. For the

sparse matrix-matrix multiplication (SpGEMM) in linear algebra, our method delivers a factor of

1.4–86.5, 1.5–2.3, and 1.4–2.3 speedups over approaches from cuSPARSE [121], CUSP [53], and

bhSPARSE [102], respectively. The contributions of this chapter are listed as follows:

54

• We identify the importance of segmented sort on various applications by exploring segment

length distribution in real-world datasets and uncovering performance issues of existing tools.

• We propose an adaptive segmented sort mechanism for GPUs, whose key techniques contain:

(1) a differentiated method for different segment lengths to eliminate load imbalance, thread

divergence, and irregular memory access; and (2) an algorithm that extends sorting networks to

support N -to-M data-thread binding and thread communication at GPU register level.

• We carry out a comprehensive evaluation on both kernel level and application level to demon-

strate the efficacy and generality of our mechanism on two NVIDIA GPU platforms.

4.2 Motivation

4.2.1 Segmented Sort

Segmented sort (SegSort) performs a segment-by-segment sort on a given array composed of mul-

tiple segments. If there is only one segment, the operation converts into the classical sort problem

that gains much attention in the past decades. Thus sort can be seen as a special case of segmented

sort. The complexity of segmented sort can be
∑p

i=1 ni log ni
1, where p is the number of segments

in the problem and ni is length of each segment. Figure 4.1 shows an example of segmented sort,

where an array stores a list of keys (integer in this case) plus an additional array seg ptr used for

storing head pointers of each segment.

4 1 2 11 8 1 6 5

0 3 5 7 seg_ptr

input output
1 2 4 8 11 1 6 5

Segmented sort

Figure 4.1: An example of segmented sort with four integer segments of various lengths pointed by seg ptr.

1For generality, we only focus on comparison-based sort in this work.

55

4.2.2 Skewed Segment Length Distribution

We use real-world datasets from two applications to analyze the characteristics of data distribution

in segmented sort. The first application is the suffix array construction (SAC) from Bioinformatics,

where the prefix doubling algorithm [63, 154] is used. This algorithm calls SegSort to sort each

segment in one iteration step, and the duplicated elements will form another sets of segments

for the next iteration. This procedure continues until no duplicated element exists. The second

one is the sparse matrix-matrix multiplication (SpGEMM). In this algorithm, SegSort is used for

reordering entries in each row by their column indices.

(a) Segments from squaring three different matrices in SpGEMM

(b) Segments from the first three iterations in SAC

Figure 4.2: Histogram of segment length changes in SpGEMM and SAC.

As shown in Figure 4.2, the statistics of segments derived from these two algorithms shares

one feature that the small/medium segments dominate the distribution, where around 96% seg-

ments in SpGEMM and 99% segments in SAC have less than 2000 elements, and the rest can

be much longer but contributes less to the number of entries in the whole problem. Such highly

skewed data stems from either the input data or the intermediate data generated by the algorithm at

runtime. As a result, the segments of various lengths require differentiate processing methods for

56

high efficiency. Later on, we will present an adaptive mechanism that constructs basic work units

composed of multiple short segments of various sizes or part of long segments, and processes them

in a very fine grained way for achieving load balance on manycore GPUs.

4.2.3 Sorting Networks and Their Limitations

A sorting network consisting of a sequence of independent comparisons is usually used as a basic

primitive to build the corresponding sorting algorithm. Figure 4.3a provides an example of bitonic

sorting network that accepts 8 random integers as input. Each vertical line in the sorting network

represents a comparison of input elements. Through theses comparisons, the 8 integers are sorted.

Although a sorting network provides a view of how to compare input data, it does not give a

parallel solution of how the data are distributed into multiple threads. A straightforward solution

is directly mapping one element of input data to one GPU thread. However, this method will

waste the computational power of GPU, because every comparison represented by a vertical line

is conducted by two threads. This method also leads to poor instruction-level parallelism (ILP),

since the insufficient operations per thread cannot fully take advantage of instruction pipelining.

Therefore, it is important to investigate how many elements in a sorting network processed by a

GPU thread can lead to best performance on GPU memory hierarchy. In this chapter, we call it the

data-thread binding on GPUs.

un
so
rt
ed

so
rt
ed

7
3
1
2
6
0
5
4

0
1
2
3
4
5
6
7

(a) A 8-way bitonic sorting network

rg0
rg1
rg2
rg3

tid=0

rg0
rg0
rg0
rg0

tid=0
tid=1
tid=2
tid=3

1. All-to-one
data-thread

binding

2. One-to-one
data-thread

binding

(b) Data-thread bindings

Figure 4.3: One sorting network and existing strategies using registers on GPUs.

Figure 4.3b presents two examples of using data-thread binding to realize a part of sorting

network shown in Figure 4.3a. Figure 4.3b-1 shows the most straightforward method of simply

57

conducting all the computation within a single thread [22]. This option can exhibit better ILP but

at the expense of requesting too many register resources. On the contrary, Figure 4.3b-2 shows

the example to bind one element to one thread [57]. Unfortunately, this method wastes computing

resources, i.e., the first two threads perform the comparison on the same operands as the last two

threads do. Therefore, we will investigate a more sophisticated solution that allows N -to-M data-

thread binding (N elements binding to M threads) and evaluate the performance after applying

this solution to different lengths of segments on different GPU architectures.

Another related but distinct issue is that even if we know the best N -to-M data-thread bind-

ing for a given segment on a GPU architecture, how to efficiently exchange data within/between

threads is still challenging, especially at GPU register level. Different with the communications

via the global and shared memory of GPU that have been studied extensively, data sharing through

registers may require more research.

4.3 Methodology

4.3.1 Adaptive GPU SegSort Mechanism

The key idea of our SegSort mechanism is to construct relatively balanced work units to be con-

sumed by a large amount of warps (i.e., a group of 32 threads in NVIDIA CUDA semantics)

running on GPUs. Such work units can be a combination of multiple segments of small sizes,

or part of a long segment split by a certain interval. To prepare the construction, we first group

different lengths of segments into different bins, then combine or split segments for making the

balanced work units, finally apply differentiated sort approaches in appropriate memory levels to

those units.

Specifically, we categorize segments into four types of bins as shown in Figure 4.4: (1) A

unit bin, which segments only contain 1 or 0 element. For these segments, we simply copy them

into the output in the global memory. (2) Several warp bins, which segments are short enough. In

some warp bins, a segment will be processed by a single thread, while in others, a segment will be

handled by several threads, but a warp of threads at most. That way, we only use GPU registers to

58

sort these segments. This register-based sort is called reg-sort (§ 4.3.2), which allows the N -to-M

data-thread binding and data communication between threads. Once these segments are sorted in

registers, we write data from the registers to the global memory, and bypass the shared memory.

To achieve the coalesced memory access, the sorted results may be written to the global memory

in a striped manner after an in-register transpose stage (§ 4.3.4). (3) Several block bins, which

consist of medium size segments. In these bins, multiple warps in a thread block cooperate to

sort a segment. Besides of using the reg-sort method in GPU registers, a shared memory based

merge method, called smem-merge, is designed to merge multiple sorted chunks from reg-sort in

a segment (§ 4.3.3). After that, the merged results will be written into the output array from the

shared memory to the global memory. As shown in the figure, the number of warps in the thread

block is configurable. (4) A grid bin, designed for the sufficient long segments. For these segments,

multiple blocks work together to sort and merge data. Different with the block bins, multiple

rounds of smem-merge have to move data back and forth between the shared memory and the

global memory to process these extremely long segments. In each round of calling smem-merge,

the synchronization between multiple thread blocks is necessary: after the execution of reg-sort

and smem-merge in each block, intermediate results need to be synchronized across all cooperative

blocks via the global memory [163]. After that, the partially sorted data will be repartitioned

and assigned to each block by using a similar partitioning method in smem-merge, and utilizing

inter-block locality will in general further improve overall performance [91].

As shown in Figure 4.4, the binning is the first step of our mechanism and a specific require-

ment of segmented sort compared to the standard sort. It is crucial to design an efficient binning

approach on GPUs. Such an approach usually needs carefully designed histogram and scan ker-

nels, such as those proposed in previous research [86, 163]. We adopt a simple and efficient

“histogram-scan-bin” strategy generating the bins across GPU memory hierarchy. We launch a

GPU kernel which number of threads is equal to the number of segments. Each thread will process

one element in the segs ptr array. Histogram: each thread has a boolean array as the predicates

and the array length is equal to the number of total bins. Then, each thread calculates its segment

length from segs ptr and sets the corresponding predicate to true if the segment length is in the

59

unit-bin warp-bin block-bin grid-bin

Segments (seg_ptr & input)

w

Global memory: sorted segments (output)

… … … … … … … … … …

w
w w w w w w w w

b bb bt

… …

t t t

t = thread
w = warp
b = block

ww

reg-sort
smem-mergestriped-write

Figure 4.4: Overview of our GPU Segsort design.

current bin. After that, we use the warp vote function ballot() and the bit counting function

popc() to accumulate the predicates for all threads in a warp for the warp-level histogram.

Finally, the first thread of each warp atomically accumulates the bin sizes in the shared memory

to produce the block-level histogram, and after that the first thread in each block does the same

accumulation in the global memory to generate the final histogram. Scan: We use an exclusive

scan on the histogram bin sizes to get starting positions for each bin. Binning: all threads put their

corresponding segment IDs to positions atomically obtained from the scanned histogram. With

such highly efficient designs, the overhead of grouping is limited and will be evaluated in § 4.4.2.

4.3.2 Reg-sort: Register-based Sort

Our reg-sort algorithm is designed to sort data in GPU registers for all bins. As a result, our

method needs to support N -to-M data-thread binding, meaning M threads cooperate on sorting N

elements. In order to leverage GPU registers to implement fast data exchange for sorting networks,

M is set up to 32, which is the warp size. For the medium and long segments where multiple warps

are involved, we still use reg-sort to sort each chunk of a segment and use smem-merge to merge

these sorted chunks. On the other hand, although our method theoretically supports any value of

N , N is bound to the number of registers: if N is too large, the occupancy is degraded significantly

60

because too many registers are used.

rg0
rg1
rg0
rg1

tid=0

① _shuf_xor(rg1, 0x1); // Shuffle data in rg1
② cmp_swp(rg0, rg1); // Compare data of rg0 & rg1 locally
③ if(bfe(tid,0)) swp(rg0, rg1); // Swap data of rg0 & rg1 if 0 bit of tid is set
④ _shuf_xor(rg1, 0x1); // Shuffle data in rg1

① ② ③ ④

_exch_primtive(rg0,rg1,tmask,swbit):

tid=1

rg0(4)
rg1(3)
rg0(2)
rg1(1)

(4)
(3)
(2)
(1)

(1)
(2)
(3)
(4)

(4)
(1)
(2)
(3)

(1)
(4)
(2)
(3)

(1)
(4)
(3)
(2)

(1)
(2)
(3)
(4)

_exch_primtive(rg0,rg1,0x1,0)

Figure 4.5: Primitive communication pattern and its implementation.

Figure 4.5 shows the data exchange primitive in the bitonic sorting network 4.3a with the

details of implementation on GPU registers by using shuffle instructions. In this example, each

thread holds two elements as the input: the thread 0 has 4 and 3 in its register rg0 and rg1; and the

thread 1 has 2 and 1 accordingly. This situation corresponds to a 4-to-2 data-thread binding. The

primitive is implemented in four steps. First, each thread needs to know the communicating thread

by the parameter tmask. The line 12 of Algorithm 3 shows how to calculate its value, which is

equal to the current cooperative thread group size minus 1. In this example, M is 2 because there

are two threads in a cooperative group, and tmask is 1 (represented as 0x1 in the figure). This step

uses the shuffle instruction shfl xor(rg1, 0x1)2 to shuffle data in rg1: the thread 0 gets

data from the rg1 of thread 1, and similar to the thread 1. This step makes the data changed from

“4, 3, 2, 1” to “4, 1, 2, 3”. Second, each thread will compare and swap data in rg0 and rg1 locally

to change the data to “1, 4, 2, 3”. After the second step, the rg0 in each thread has the smaller data

and the rg1 has the larger one. Thus, the third step is necessary to exchange the data in thread 1

to make the smaller data in its rg1 and the larger data in it rg0 for the following shuffle, because

the shuffle instruction can only exchange data in registers having the same variable name, i.e., rg1.

In a more general case where there are more threads are involved, we use the parameter swbit to

control which threads need to execute this local swap operation. The line 13 of Algorithm 3 shows

how to calculate the value of swbit, which is equal to log coop thrd size − 1. In this case, the

current cooperative thread group size is 2, the swbit is 0, and the thread 1 will do the swap when

2The shuffle operation shfl xor(v, mask) lets the calling thread x obtain register data v from thread x ˆ
mask, and the operation shfl(v, y) lets the calling thread x fetch data v from thread y.

61

bfe(1, 0) returns 1. After the third step, we get “1, 4, 3, 2”. Fourth, we shuffle again on rg1 to

move the larger data of thread 0 to thread 1 and the smaller data of thread 1 to thread 0, and then

get the output “1, 2, 3, 4”.

Based on the primitive, we extend two patterns of the N -to-M binding to implement the

bitonic sorting network, which are (1) exch intxn: The differences of corresponding data indices

for comparisons decrease as the register indices increase in the first thread. (2) exch paral: The

differences of corresponding data indices for comparisons keep consistent as the register indices

increase in the first thread. The left hand sides of Figure 4.6a and Figure 4.6b show these two

patterns. In these figures, each thread handling k elements, where k = N/M of the N -to-M data-

thread binding. These two patterns can be easily constructed from the primitive exch primitive by

simply swapping corresponding registers in each thread locally as shown in the right hand side of

Figure 4.6a and Figure 4.6b. Different with these two patterns involving the inter-thread communi-

cation, a third pattern in the N -to-M data-thread binding only has the intra-thread communication.

As shown in Figure 4.6d, we can directly use the compare and swap operation for the implemen-

tation without any shuffle-based inter-thread communication. We call this pattern exch local. This

pattern can be an extreme case of N -to-M binding, i.e., N -to-1, where the whole sorting network is

processed by one thread. All of these three patterns are used in Algorithm 3 to implement a general

N -to-M binding and the corresponding data communication for the bitonic sorting network.

The pseudo-codes are shown in Algorithm 3, which essentially combine exch intxn and exch paral

patterns (line 14 and line 28) in each iteration, and use exch local when no inter-thread communi-

cation is needed. In each step where all comparisons can be performed in parallel, we group data

elements as coop elem num, representing the maximum number of groups that the comparisons

can be conducted without any interaction with elements in other group (line 4 and line 16); and

the coop elem size represents how many elements in each group. For example, in the step 1 of

Figure 4.6d, the data is put into 4 groups, each of which has 2 elements. Thus, coop elem num

is 4 and coop elem size is 2. In the step 4 of this figure, there is only 1 group with the size of

8 elements. Thus, coop elem num is 1 and coop elem sizeis 8. Similarly, the algorithm groups

threads into coop thrd num and coop thrd size for each step to represent the maximum number of

62

Algorithm 3: Reg-sort: N -to-M data-thread binding and communication for bitonic sort

/* segment size N, thread number M, workloads per thread wpt = N/M, regList is a group of
wpt registers. */

1 int p = (int) logN;
2 int pt = (int) logM;
3 for l ←p; l >= 1; l-- do
4 int coop elem num = (int)pow(2, l − 1);
5 int coop thrd num = (int)pow(2,min(pt, l − 1));
6 int coop elem size = (int)pow(2, p− l + 1);
7 int coop thrd size = (int)pow(2, pt−min(pt, l − 1));
8 if coop thrd size == 1 then
9 int rmask = coop elem size − 1;

10 exch local(regList, rmask);
11 else
12 int tmask = coop thrd size − 1;
13 int swbit = (int) log coop thrd size − 1;
14 exch intxn(regList, tmask, swbit);
15 for k ← l + 1; k <=p; k ++ do
16 int coop elem num = (int)pow(2, k − 1);
17 int coop thrd num = (int)pow(2,min(pt, k − 1));
18 int coop elem size = (int)pow(2, p− k + 1);
19 int coop thrd size = (int)pow(2, pt−min(pt, k − 1));
20 if coop thrd size == 1 then
21 int rmask = coop elem num − 1;
22 rmask = rmask − (rmask >> 1);
23 exch local(regList, rmask);
24 else
25 int tmask = coop thrd num − 1;
26 tmask = tmask − (tmask >> 1);
27 int swbit = (int)logcoop thrd size − 1;
28 exch paral(regList, tmask, swbit);

cooperative thread groups and the number of threads in each group. For example, the step 1 of

Figure 4.6d has 4 cooperative thread groups and each group has 1 thread. Thus, coop thrd num is

4 and coop thrd size is 1. In contrast, the step 4, coop thrd num is 1 and coop thrd size is 4 that

means the 4 threads need to communicate with each other to get required data for the comparisons

in this step.

If there is only one thread in a cooperative thread group (line 8 and line 20), the algorithm

will switch to the local mode exch local because the thread already has all comparison operands.

Once there are more than one thread in a cooperative thread group, the algorithm uses exch intxn

and exch paral patterns and calculates corresponding tmask and swbit to determine the thread

for the communication pair and the thread that needs the local data rearrange aforementioned in

the previous paragraph. In the step 1 of this figure, where coop thrd size is 1 and exch local

is executed, the algorithm calculates rmask, which controls the local comparison on registers

(line 9). In the step 4, where coop elem size is 8 and coop thrd size is 4, all 8 elements will be

63

rg0
rg1

rgk-2
rgk-1
rg0
rg1

rgk-2
rgk-1

if(bfe(tid,swbit))
swp(rg0,rgk-2)
swp(rg1,rgk-1)
…

_exch_intxn(rg0, rg1,…,rgk-1,tmask,swbit):

rg0
rg1

rgk-2
rgk-1
rg0
rg1

rgk-2
rgk-1

swapt0

t1

(a) exch intxn pattern

rg0
rg1

rgk-2
rgk-1
rg0
rg1

rgk-2
rgk-1

if(bfe(tid,swbit))
swp(rg0,rg1)
swp(rg2,rg3)
…

_exch_paral(rg0, rg1,…,rgk-1,tmask,swbit):

rg0
rg1

rgk-2
rgk-1
rg0
rg1

rgk-2
rgk-1

swapt0

t1

(b) exch paral pattern

rg0
rg1

rgk-2
rgk-1
rg0
rg1

rgk-2
rgk-1

_exch_local(rg0, rg1,…,rgk-1,rmask):

t0

t1

(c) exch local pattern

reg_sort(N=8,M=4)

①_exch_local(rg0,rg1);
②_exch_intxn(rg0,rg1,0x1,0);
③_exch_local(rg0,rg1);
④_exch_intxn(rg0,rg1,0x3,1);
⑤_exch_paral(rg0,rg1,0x1,0);
⑥_exch_local(rg0, rg1);

t0
rg0
rg1
rg0
rg1
rg0
rg1
rg0
rg1

t1

t2

t3

① ② ③ ④ ⑤ ⑥

(d) An example of bitonic sorting where N = 8 and M = 4

Figure 4.6: Generic exch intxn, exch paral and exch local patterns, shown in (a,b,c). The transformed

patterns can be easily implemented by using primitives. A code example of Algorithm 3 for is shown in (d).

compared across all 4 threads. In this case, the tmask is 0x3 (line 12) and swbit is 1 (line 13).

In the step 5 where the exch paral pattern is used, the algorithm calculates coop elem size is 4

and coop thrd size is 2. Thus, the tmask is 0x1 and swbit is 0. Note that although our design

in Algorithm 3 is for bitonic sorter, our ideas are also applicable to other sorting networks by

swapping and padding registers based on the primitive pattern.

4.3.3 Smem-merge: Shared Memory-based Merge

As shown in Figure 4.4, for medium and large sized segments in the block bins and grid bin,

multiple warps are launched to handle one segment and the sorted intermediate data from each

warp need to merge. The smem-merge algorithm is designed to merge such data in the shared

memory.

Our smem-merge method enables multiple warps to merge chunks having different numbers

of elements. We assign first m warps with x-warp size and the last m′ warps with y-warp size

64

to keep load balance between warps as possible as we can. Inside each warp, we also try to keep

balance among cooperative threads in the merge. We design a searching algorithm based on the

MergePath algorithm [68] to search the splitting points to divide the target segments into balanced

partitions for each threads.

smem_merge(4,spA,spB) smem_merge(5,spA,spB)

spA spBStage0

t0 = smem[spA];
t1 = smem[spB];
// Repeat …
p = (spB >= lenB) ||

((spA < lenA) && (t0 <= t1));
rg0 = p ? t0 : t1;
if(p) t0 = smem[++spA];
else t1 = smem[++spB];
// … for registers rg1, rg2

smem_merge(5,spA,spB):
1st thread merges 2 data
2nd thread merges 3 data2 4 6 8 1 12 14 17 3 5 9 15 7 10 11 13 16

Warp 0

(shared)
inp

Warp 1 Warp 2 Warp 3

1 2 4 6 8 12 14 17 3 5 7 9 10 11 13 15 16

Stage1
1 2 4 6 8 12 14 17 3 5 7 9 10 11 13 15 16

spA spB

(shared)
out

(shared)
inp

(global)
out

smem_merge(4,spA,spB) smem_merge(5,spA,spB)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

lenA lenB

lenA lenB

Figure 4.7: An example of warp-based merge using shared memory.

Figure 4.7 shows an example of smem-merge. In this case, there are 4 sorted chunks in the

shared memory belonging to a segment. They have 4, 4, 4, and 5 elements, respectively. We

assume each warp has 2 threads. As a result, the first 3 warps will merge 4 elements, and each

thread in these warps will merge two elements; while the last warp will work on 5 elements, and

the first thread will merge 2 elements and second thread will merge 3 elements. In the figure, the

splitting points spA and spB for the second thread of warp 3 (in blue color) are computed by the

MergePath algorithm. The right part of the figure shows the merge codes executed by this thread

that process 3 elements. Our merge method first loads data from spA and spB to two temporary

registers t0 and t1. By checking if spA and spB is out-of-bound and comparing t0 and t1,

the merge algorithm selects the smaller element to fill first result register rg0. The algorithm

continues loading the next element to fill t0 or t1 from corresponding chunks pointed by spA or

spB, until assigned number of elements is encountered. After that, the merged data in registers,

e.g., rg0, rg1 for first thread, and rg0, rg1, rg2 for the second thread, will be stored back to shared

memory for another iteration of merge. As shown in the figure, two iterations of smem-merge are

used to merge four chunks belonging to one segment.

65

4.3.4 Other Optimizations

Load data from global memory to registers: we decouple the data load from global memory to

registers and the actual segmented sort in registers. Our data load kernel uses successive threads

to load contiguous data for coalesced memory access. Although we don’t keep the original global

indices of input data in registers, that doesn’t matter because the input data is unsorted and the

global indices are not critical for the following sort routine.

1 2
3 4
5 6
7 8

1 2
4 3
5 6
8 7

swap
1 3
4 2
5 7
8 6

shuf_xor(rg1,0x1)

1 3
2 4
5 7
6 8

1 3
2 4
7 5
8 6

swap swap
1 5
2 6
7 3
8 4

shuf_xor(rg1,0x2)

swap

input

rg0 rg1

t0
t1
t2
t3

exchange exchange
1 5
2 6
3 7
4 8
output

Stride=1 Stride=2

Figure 4.8: An example of in-register transpose.

Store data from registers to global memory: when the segments in the warp bins are sorted, we

directly store them back to global memory without the merge stage. However, because the sorted

data may distributed into different registers of threads in a warp, directly storing them back will

lead to uncoalesced memory access. When the number of elements per thread grows, the situation

will become even worse. Therefore, as well as keeping the direct store back method, which is

labeled as orig in our evaluation, we design the striped write method, which is labeled as strd in

the evaluation. We implement an in-register transpose method to scatter the sorted data in registers

of threads. The transpose method starts from shuffling registers by the stride of 1, then doubles the

stride to 2, and finishes the shuffles until log 32 = 5 iterations, where 32 is the warp size. After that,

the successive threads can write data to global memory in a cyclic manner for coalesced memory

access. Figure 4.8 shows an example of using 4 threads to transpose data in their two registers. This

example shows that the number of iterations for the in-register transpose depends on the number of

threads but not on the number of elements each thread has3. As a result, after log 4 = 2 iterations,

the successive elements are scattered to these threads. In the evaluation, we will investigate the

best scenarios for orig and strd, considering the orig method has the uncoalesced memory access

3The number of elements each thread has will determine how many shuffle instructions are needed in each iteration.

66

problem, while the strid method has the in-register transpose overhead.

4.4 Performance Results

We conduct the experiments on two generations of NVIDIA GPUs K80-Kepler and TitanX-Pascal.

Tab. 4.1 lists the specifications of the two platforms. The input dataset is two arrays holding key

and value pairs separately. The total dataset size is fixed at 228 and segment numbers are varied

accordingly to the target segment sizes. We report the throughput in the experiments equal to 228/t

pairs/s, where t is the execution time.

Table 4.1: Experiment Testbeds

Tesla K80 (Kepler-GK210) TitanX (Pascal-GP102)
Cores 2496 @ 824 MHz 3584 @ 1531 MHz

Register/L1/LDS per core 256/16/48 KB 256/16/48 KB

Global memory 12 GB @ 240 GB/s 12 GB @ 480 GB/s

Software CUDA 7.5 CUDA 8.0

4.4.1 Kernel Performance

For the reg-sort kernels, we alternate the thread group size M in {2, 4, 8, 16, 32}. At the same

time, each thread varies its bound data N/M in {1, 2, 4, 8, 16} (N/M is labeled as pairs per

thread ppt in figures). We use the maximum bound data of 16 because we observe the performance

deteriorates obviously for higher numbers than 16. Thus, the target segment size N is a variable

number ranging from 2 (i.e., 2 threads each bind 1 pair) to 512 (i.e., 32 threads each bind 16 pairs).

Since reg-sort might exhaust register resources, we also vary the block sizes as 64, 128, 256, and

512 for maximizing occupancy. Figure 4.9 shows the diversified performance numbers of reg-sort

kernels, which actually demonstrates that choosing a single solution for all segments would lead

to suboptimal performance even among GPUs from the same vendor.

In Figure 4.9, we notice that the impact of data-thread binding policies varies widely de-

pending on the GPU devices. For example, when the segment size N equals to 16, the possible

candidates are 2(threads):8(ppt), 4:4, 8:2, and 16:1. On K80-Kepler GPU, the highest perfor-

67

(a) K80-Kepler

(b) TitanX-Pascal

Figure 4.9: Performance of reg-sort routines with different combinations of data-thread binding policies,

write methods, and block sizes.

mance is given by 8:2, achieving 30% speedups over the slowest policy of 2:8. In contrast, the

TitanX-Pascal GPU shows very similar performance for these policies. This insensitivity to regis-

68

ter resources exhibited on Pascal architecture can contribute to its larger available register files per

thread. Note, the policies of each thread binding only 1 pair is equivalent to the method proposed

in [57]. This method actually wastes computing resources, because each comparison over two

operands is conducted twice by two threads, resulting in suboptimal performance numbers.

The striped write method (strd) in reg-sort kernels is particularly effective when each thread

binds more than 4 pairs. This is because when the ppt is small (<4), consecutive threads can

still access almost consecutive memory locations for coalesced memory transaction. However,

larger ppt indicates the thread access locations are highly scattered, causing inefficiently memory

transaction instead. In this case, the striped write method is of great necessity. On the other hand,

the block size also has the effect on the performance and the optimal one is usually achieved by

using 128 or 256 threads.

For the smem-merge kernels, Figure 4.10 shows the performance numbers of changing the

number of cooperative warps and ppt. The warp numbers are in {2, 4, 8, 16}, while the ppt

varies among {2, 4, 8, 16}. In this scenario, the target segment size N ranges from 128 (i.e., 2

warps each merge 32x2 pairs) to 4096 (i.e., 16 warps each merge 32x8 pairs). Differed from reg-

sort kernels, the best data-thread binding policies are more consistent for smem-merge on the two

devices. For example, to merge 1024-length segment, both devices prefer to use 8 warps with 4

ppt. Considering memory access, the striped method provides similar performance with original

method, which directly exploits random access of shared memory in order to achieve coalesced

transaction on global memory. Note, in our implementation, we carefully select shared memory

dimensions and sizes to avoid band conflicts.

Now, we can select best kernels for different segments with length of the power of two. Other

segments can be handled by directly padding them to the nearest upper power of two in reg-sort

kernels. For smem-merge kernels, we use different ppt for different warps to minimize padding

values. Since our method is based on the pre-defined sorting networks, the characteristics of input

datasets will cause negligible to the selection of best kernels. Moreover, for each GPU, we only

need to conduct the offline selection once. The results show that we only need 13 bins to handle

all the segments. The first 8 and 9 bins use reg-sort to handle up to 256 pairs on Kepler GPU and

69

512 on Pascal respectively. Then, other segments less than 2048 can be handled by smem-merge

kernels using 3 and 2 bins on the two platforms. Finally, our grid-bin kernels can efficiently sort

the segments longer than 2048, which are all assigned to the last bin.

(a) K80-Kepler

(b) TitanX-Pascal

Figure 4.10: Performance of smem-merge routines with different combinations of data-thread binding poli-

cies and write methods. The results for 16 warps with 16 ppt are not available due to exhaustion of shared

memory resources.

4.4.2 Segmented Sort Performance

We conduct performance comparison of our best kernels over three existing tools: (1) cusp-segsort

from CUSP [53] library that extends the segment pointer seg ptr to form an another layer of pri-

mary keys, attaches it to the input keys and values, and performs the global sort from Thrust

library [71] on the new data structure; (2) cub-segsort [122] that assigns each block to order a

segment and uses radix sort scheme; and (3) mgpu-segsort [22] that evolves from the global merge

sort with runtime segment delimiter checking, thus can ensure the sort only occurs within segment.

Datasets of uniform distribution: We test a batch of uniform segments to evaluate the per-

70

formance of our segsort kernels, which are plotted in Figure 4.11. Since the cusp-segsort and

mgpu-segsort are designed from the global sort, their performance is determined by the total in-

put size. This “one-size-fit-all” philosophy ignores the characteristics of the segments and thus

shows the plateau performance. For the short segments (<256 on Kepler and <512 on Pascal), our

segsort can achieve an average of 13.4x and 3.1x speedups over cusp-segsort and mgpu-segsort re-

spectively on Kepler. These speedups rise to 15.5x and 3.2x on Pascal. For the other segments, our

segsort provides an average of 5.6x and 1.2x improvements on Kepler (10.0x and 2.1x on Pascal).

The performance improvements are mainly from our reg-sort and smem-merge, which minimize

shared/global memory transactions.

cub_segsort cuSP_segsort mgpu_segsort segsort(this work)

Th
ro

ug
hp

ut
 (p

ai
rs

/s
)

Segment Size
0 400 800 1200 1600 2000

0e+0

1e+9
2e+9

3e+9

4e+9

5e+9
6e+9

7e+9

8e+9

Segment Size
0 400 800 1200 1600 2000

0e+0

1e+9

2e+9

3e+9

4e+9

5e+9

6e+9

(a) K80-Kepler: lhs is 32-bit values; rhs is 64-bit values

Th
ro

ug
hp

ut
 (p

ai
rs

/s
)

Segment Size
0 400 800 1200 1600 2000

0e+0
2e+9
4e+9
6e+9
8e+9

1e+10
1.2e+10
1.4e+10
1.6e+10
1.8e+10

2e+10

Segment Size
0 400 800 1200 1600 2000

0e+0

2e+9

4e+9

6e+9

8e+9

1e+10

1.2e+10

1.4e+10

(b) TitanX-Pascal: lhs is 32-bit values; rhs is 64-bit values

Figure 4.11: Performance of different segsort over segments with uniform distribution.

In contrast, although cub-segsort conducts a more “real” segmented sort with each block

working on one segment, this strategy falls short when the segments are of great amount and of

short lengths. The maximum number of segments can be processed in parallel in cub-segment

71

is only 65535 (limitation of gridDim.x), which requires multiple rounds of calling if the segment

number is too large. Furthermore, assigning a block to handle one segment may waste computing

resources severely, especially when the segments are very short. Thus, our segsort can achieve an

average of 211.2x and 30.4x speedups on Kepler and Pascal devices respectively. As the segment

size increases, we can still keep 3.7x and 3.2x average improvements on the two platforms. Note,

the staircase-like performance of our segsort is caused by the padding used in our method.

Datasets of power-law distribution: In this test, we use a collection of synthetic power-low

data. Since segment lengths are non-uniform, we include binning overhead and use overall wall

time for our segsort. The data generation tool is from PowerGraph [66] and its generated samples

follow a Zipf distribution [7]. The equation of P (l) ∝ l−α shows the probability of segments with

length l is proportional to l−α, where α is a positive number. This implies that the higher α will

result in high skewness to shorter segments. For different segment bounds, we vary the skewness

to test our segsort. We vary α from 0.1 to 1.6 (with stride of 0.1) and limit maximum segment size

from 50 to 2000 (with stride of 50). Therefore, each method is tested with 640 sampling points of

different parameter configurations.

Figure 4.12 plots the speedups of our segsort over the existing tools on both 32-bit and 64-bit

values. For cusp-segsort and mgpu-segsort, we fix the total key-value pairs as 228. However, for

the cub-segsort, we set the segment number to 65535. Otherwise, multiple rounds of calling are

required. Figure 4.12(a,b) show the speedups of our segsort over the cub-segsort. Because of high

cost for radix sort on short segments, our segsort can provide significant speedups, reaching up

to 63.3x and 86.1x (top-left corner). For longer segment lengths with power-law distribution, our

method can keep 1.9x speedups on both GPU devices due to better load balancing strategy.

Compared to cusp-segsort in Figure 4.12(c,d), our segsort achieves up to 12.5x and 16.5x

improvements on Kepler and Pascal, and compared with mgpu-segsort in Figure 4.12(e,f), our

method gets up to 3.0x and 3.8x performance gains. In both situations, we can notice that the

top-left corners are blue, indicating less speedups (vs. cusp-segsort) or similar performance (vs.

mgpu-segsort). This is because that the condition of α = 1.6 and segment bound of 50 make almost

all the segments to be 1. Thus, the segmented sorts become a copying procedure and exhibit the

72

similar performance. On the other hand, we observe that the Pascal shows higher performance

benefits over Kepler. The reasons are two-fold: faster atomic operations for binning and larger

register files for sorting. Moreover, for the 64-bit values, we usually get higher performance gains

compared to 32-bit values. This is mainly because we can handle the permutation indices more

efficiently in the registers rather than the shared memory or global memory. To evaluate the binning

overhead, we calculate the arithmetic mean for the ratio of binning to overall kernel time, which

are only 5.9% for Kepler and 3.4% for Pascal.

4.5 SegSort in Real-World Applications

In order to further evaluate our approach, we choose two real-world applications, characterized

by skewed segment distribution: (i) The suffix array construction to solve problems of pattern

matching, data compression, etc. in text processing and bioinformatics [154, 63]. (ii) The sparse

general matrix-matrix multiplication (SpGEMM) to solve graph and linear solver problems, e.g.,

sub-graphs, shortest paths, and algebraic multigrid [148, 30, 23]. We use our approach to optimize

the applications and compare the results with state-of-the-art tools, i.e., skew/DC3-SA [154, 69],

ESC(CUSP) [23, 53], cuSPARSE [121], and bhSPARSE [102].

4.5.1 Suffix Array Construction

The suffix array stores lexicographically sorted indices of all suffixes of a given sequence. Our

approach for the suffix array construction is based on the prefix doubling algorithm [109] with the

computational complexity of O(Nlog(N)), where N is the length of input sequence. The main

idea is that we can deduce the orders of two same 2h-size strings Si and Sj , if the orders of all

h-size strings are known, which is stored in an unfinished suffix array h-SA. For example, we treat

Si as two concatenated h-size prefixes Sia and Sib. Similarly, Sj is split into two Sja and Sjb.

Then, by looking up the known h-SA, the comparison rule for Si and Sj becomes: if the prefix Sia

differs from Sja, we can directly determine the order of Si and Sj accordingly; otherwise, we need

to check the order of Sib and Sjb. That way, if they are different, the order of Si and Sj can also be

73

64.0 57.8 51.6 45.4 39.2 33.0 26.7 20.5 14.3 8.1 1.9 87.0 79.2 71.3 63.5 55.6 47.8 39.9 32.1 24.2 16.4 8.5

al
ph

a

max seg size

0

40
0

80
0

12
00

16
00

20
00

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

max seg size

0

40
0

80
0

12
00

16
00

20
00

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

(a) K80-Kepler: speedups over cub segsort

(32- and 64-bit values)

max seg size

0

40
0

80
0

12
00

16
00

20
00

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

max seg size

0

40
0

80
0

12
00

16
00

20
00

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

(b) TitanX-Pascal: speedups over cub segsort

(32- and 64-bit values)

13.0 12.1 11.1 10.2 9.2 8.3 7.3 6.4 5.4 4.5 3.5 17.0 15.7 14.4 13.1 11.8 10.5 9.2 7.9 6.6 5.3 4.0

al
ph

a

max seg size

0

40
0

80
0

12
00

16
00

20
00

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

max seg size

0

40
0

80
0

12
00

16
00

20
00

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

(c) K80-Kepler: speedups over cusp segsort

(32- and 64-bit values)

max seg size

0

40
0

80
0

12
00

16
00

20
00

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

max seg size

0

40
0

80
0

12
00

16
00

20
00

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

(d) TitanX-Pascal: speedups over cusp segsort

(32- and 64-bit values)

3.00 2.80 2.60 2.40 2.20 2.00 1.80 1.60 1.40 1.20 1.00 4.00 3.70 3.40 3.10 2.80 2.50 2.20 1.90 1.60 1.30 1.00

al
ph

a

max seg size

0

40
0

80
0

12
00

16
00

20
00

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

max seg size

0

40
0

80
0

12
00

16
00

20
00

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

(e) K80-Kepler: speedups over mgpu segsort (32-

and 64-bit values)

max seg size

0

40
0

80
0

12
00

16
00

20
00

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

max seg size

0

40
0

80
0

12
00

16
00

20
00

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

(f) TitanX-Pascal: speedups over mgpu segsort

(32- and 64-bit values)

Figure 4.12: Segmented sort v.s. existing tools over segments of power-law distribution.

74

induced. However, if they are same, we have to mark Si and Sj unsolved and put them under the

same category (i.e., updating h-SA to 2h-SA with position i and j storing the same value). The

ordering will proceed for O(log(N)) iterations by doubling the prefix length. This is a segmented

sort with the customized comparison, and a segment corresponds to a category that contains a

group of suffixes whose orders are not determined.

We use our method to optimize the prefix doubling, i.e., PDSS-SA, and use the baseline from

the cuDPP library [69], which is based on the DC3/skew algorithm on GPUs [154]. Figure 4.13

presents the performance comparison over six DNA sequences of different lengths from NCBI

NR datasets [115]. Our PDSS-SA can provide up to 2.2x and 2.6x speedups over the baseline on

the K80-Kepler and TitanX-Pascal platforms, respectively. The improvement can be explained in

two folds. First, although the baseline takes a linear time algorithm, the prefix doubling exhibits

more ease of performing parallelization, e.g., global radix sort, prefix sum, etc. Second, for the

dominant kernels (taking up 30% to 60% of total time), we use efficient segmented sort to handle

the considerable amounts of short segments iteratively, while the baseline uses more expensive sort

and merge kernels recursively.

(a) K80-Kepler (b) TitanX-Pascal

Figure 4.13: Performance of suffix array construction using our segmented sort.

75

4.5.2 Sparse Matrix-Matrix Multiplication

The SpGEMM operation multiplies a sparse matrix A with another sparse matrix B and obtains a

resulting sparse matrix C. This operation may be the most complex routine in sparse basic linear

algebra subprograms because all the three involved matrices are sparse. The expansion, sorting

and compression (ESC) algorithm developed by Bell et al. [23] is one of several representative

methods that aim to utilize wide SIMD units for accelerating SpGEMM on GPUs [23, 121, 102].

The ESC method includes three stages: (1) expanding all candidate nonzero entries generated

by the necessary arithmetic operations into an intermediate sparse matrix Ĉ, (2) sorting Ĉ by its

indices of rows and columns, and (3) compressing Ĉ into the resulting matrix C by fusing entries

with duplicate column indices in each row.

We use the ESC SpGEMM in the CUSP library [53] as the baseline, and replace its orig-

inal sort in the second stage of its ESC implementation with our segmented sort by mapping

row-column information of the intermediate matrix Ĉ to segment-element data in the context of

segmented sort. Since we have segmented sort instead of sort in the ESC method, we call our

method ESSC (expansion, segmented sorting and compression). Note that to better understand

the effectiveness of segmented sort for SpGEMM, all other stages of the SpGEMM code remain

unchanged. We select six widely used sparse matrices cit-Patents, email-Enron, rajat22, webbase-

1M, web-Google and web-NotreDame from the University of Florida Sparse Matrix Collection [56]

as our benchmark suite. Squaring those matrices will generate a Ĉ including rows in power-law

distribution. We also include two state-of-the-art SpGEMM methods in cuSPARSE [121] and

bhSPARSE [102] into our comparison.

Figure 4.14 plots the performance of the four participating methods. It can be seen that our

ESSC method achieves up to 2.3x and 1.9x speedups over the ESC method on the Kepler and

Pascal architectures, respectively. The performance gain is from the fact that the sorting stage takes

up to 85% (from 45%) overall cost of ESC SpGEMM, and our segmented sort is up to 8x (from

3.2x) faster than the sort method used in CUSP. Compared with the latest libraries cuSPARSE

and bhSPARSE, our ESSC method brings performance improvement of up to 86.5x and 2.3x,

respectively. The performance gain is mainly from the irregularity of the row distribution of Ĉ.

76

(a) K80-Kepler (b) TitanX-Pascal

Figure 4.14: Performance of SpGEMM using our segmented sort.

4.6 Chapter Summary

In this chapter, we have presented an efficient segmented sort mechanism that adaptively combine

or split segments of different sizes for load balanced processing on GPUs, and have proposed a

register-based sort algorithm with N -to-M data-thread binding and in-register communication for

fast sorting networks on multiple memory hierarchies. The experimental results illustrate that our

mechanism is greatly faster than existing segmented sort methods in vendor support libraries on

two generations of GPUs. Furthermore, our approach improves overall performance of applica-

tions SAC from bioinformatics and SpGEMM from linear algebra.

Chapter 5

SIMD Operations in Sequence Alignment

5.1 Introduction

The pairwise sequence alignment algorithms, e.g., Smith-Waterman (SW) [140] and Needleman-

Wunsch (NW) [116], are important computing kernels in bioinformatics applications ([132, 142,

105]) to quantify the similarity between pairs of DNA, RNA, or protein sequences. This simi-

larity is captured by a matching score, which indicates the minimum number of deletion, inser-

tion, or substitution operations with penalty or award values to transform one sequence to another.

To boost their performance on modern multi- and many-core processors, it is crucial to utilize

the vector processing units (VPU), which essentially conduct the single instruction, multiple data

(SIMD) operations. However, the strong data dependencies among neighboring cells prevent such

algorithms from taking advantage of compiler auto-vectorization. Thus, programmers need to ex-

plicitly vectorize their code or even resort to writing assembly code to attain better performance.

5codes.

The manual vectorization of such algorithms often relies on two strategies: (1) iterate [62],

[142], [105]: partially ignore the dependencies in one direction, vectorize computations, and may

compensate the results by using multiple rounds of corrections; (2) scan [87]: completely ig-

nore the dependencies in one direction, vectorize computations, and recalculate the results with

“weighted scan” operations and another round of correction. Either strategy has its own bene-

77

78

fits depending on selected algorithms (e.g., SW or NW), gap systems (linear or affine), and input

sequences.

There are two main challenges facing programmers. First, the manual vectorization requires

huge coding efforts to handle the idiosyncratic vector instructions. For applications having com-

plex data dependencies, the expert knowledge of vector instruction sets and proficient skills to

organize vector instructions is necessary to achieve desired functionality. Moreover, current vector

ISAs evolve very fast and some versions are not backwards compatible [127]. Porting existing

vectorized codes to another platforms becomes a boring and tedious task. Second, even the highly

optimized vector codes may not get the optimal performance at the application level. For the pair-

wise sequence alignment, the combinations of algorithms, vectorization strategies, configurations

(gap penalty systems), and input sequences at runtime may lead to significantly variable perfor-

mance. It increases the complexity to optimize applications on modern multi- and many-core

processors. Therefore, looking for a way to get around these obstacles is of great importance.

In this chapter, we propose a framework AAlign to automatically vectorize pairwise sequence

alignment algorithms across ISAs. Our framework takes sequential algorithms, which need to

follow our generalized paradigm for the pairwise sequence alignment, as the input and generate

vectorized computing kernels as the output by using the formalized vector code constructs and

linking to the platform-specific vector primitives. Two vectorizing strategies are formalized as the

striped-iterate and striped-scan in our framework. In addition, a hybrid mechanism is introduced

to take advantage of both of them. That means the hybrid mechanism can automatically switch

between the striped-iterate and striped-scan based on the context of runtime, and then provide

better performance than the basic mechanisms.

The major contributions of our work include the following. First, we propose the AAlign

framework that can automatically generate parallel codes for pairwise sequence alignment with

combinations of algorithms, vectorizing strategies, and configurations. Second, we identify the

existing vectorizing strategies cannot always provide the optimal performance even the codes are

highly vectorized and optimized. As a result, we design a hybrid mechanism to take advantages

of two vectorizing strategies. Third, using AAlign, we generate various parallel codes for the

79

combinations of algorithms (SW and NW), vectorizing strategies (striped-iterate, striped-scan, and

hybrid), and configurations (linear and affine gap penalty systems) on two x86-based platforms,

i.e., the Advanced Vector eXtension (AVX2) supported multicore and the Initial Many Core In-

structions (IMCI) supported manycore.

We conduct a serial of evaluations of the generated vector codes. Compared to the opti-

mized sequential codes on Haswell CPU, our codes using the striped-scan can deliver 4 to 6.2-fold

speedups, while switching to the striped-scan, our codes can provide 4.7 to 10-fold speedups.

The vector codes continue showing performance advantages on Intel MIC, and can achieve 9.1 to

16-fold speedups using striped-scan and 9.5 to 25.9-fold speedups using striped-iterate over the

optimized sequential counterparts, respectively. We also compare the proposed hybrid mechanism

with the striped-iterate and striped-scan mechanisms, and demonstrate the hybrid mechanism can

achieve better performance on both platforms. After wrapping our vector codes with the multi-

threading, we compare our codes using the hybrid vectoring strategy with the highly optimized

sequence alignment tools SWPS3 [142] on CPU and SWAPHI [105] on MIC. While aligning

the given query sequences to a whole database, our codes can achieve up to 2.5-fold speedup over

SWPS3 on CPU and 1.6-fold speedup over SWAPHI on MIC.

5.2 Motivation and Challenges

This section describes a brief overview of the pairwise sequence alignment algorithms and the

motivation for this work.

5.2.1 Pairwise Sequence Alignment Algorithms

The pairwise sequence alignment is to quantify the best-matching score between piecewise or

whole region of two input sequences of DNA, RNA, or protein. Specifically, the alignment uses

the edit distance to describe how to transform one sequence into another by using minimum number

of predefined operations, including insertion, deletion, and substitution, with associate penalty or

award. One common technique is the dynamic programming using tabular computations shown

80

in Figure 5.1. If the input sequences are query Qm with m characters and subject Sn with n

characters, we need a m ∗ n table T , and every cell Ti,j in the table stores the optimal score of

matching the substring Qi and Sj . To assist in the computation, we define three additional tables:

Li,j , Ui,j , Di,j denoting the optimal scores of matching with substring Qi and Sj but ending with

the insertion, deletion, and substitution respectively. We can derive:

Ti,j = max(Li,j , Ui,j , Di,j) (5.1)

Figure 5.1 also shows the data dependencies. Visually, Li,j , Ui,j , Di,j rely on its left, upper, di-

agonal neighbors. Although the algorithm takes O(m ∗ n) time and space complexity, by using

the double-buffering technique shown in the two solid rectangles of the figure, we lower the space

complexity to O(m) assuming the computation goes along the Qm.

Di-1,j-1Ui-1,j-1

Li-1,j-1 Ti-1,j-1

Di,j-1 Ui,j-1

Li,j-1 Ti,j-1

Di-1,j Ui-1,j

Li-1,j Ti-1,j

Di,j Ui,j

Li,j Ti,j

Vertical Dep.Diagonal Dep.

Horizontal Dep.

Q
ue

ry
Q

m

Subject Sn
i = 0

j = 0

double -buffering(a) (b)

Figure 5.1: Data dependencies in the alignment algorithms using dynamic programming.

There are two major classes of pairwise sequence alignment algorithms, i.e. the local and

global alignment. For the global alignment, the Needleman-Wunsch algorithm [116] can find the

best-matching score regarding the entire sequences. For the local alignment, the Smith-Waterman

algorithm [140] can quantify the optimal score regarding the partial regions. Both algorithms have

multiple variants by using linear or affine gap penalties. We will show the generalized paradigm

for the pairwise sequence alignment algorithms in § 5.3.

81

5.2.2 Challenges

Algorithm 4 shows the sequential code of SW with the affine gap penalty system. Though writing

the sequential code is relatively simple, vectorizing such an algorithm is nontrivial due to the strong

data dependencies among the neighbors shown in Figure 5.1.

Algorithm 4: Sequential Smith-Waterman following the paradigm (§ 5.3)

/* GAPOPEN and GAPEXT are constants; BLOSUM62 is a substitution matrix; ctoi is a
user-defined function to map given character to the index number in the substitution
matrix */

1 for i ←0; i < n+1; i++ do
2 T0,i = U0,i = L0,i = 0;
3 for j ←0; j < m+1; j++ do
4 Tj,0 = Uj,0 = Lj,0 = 0;
5 for i ←1; i < n+1; i++ do
6 for j ←1; j < m+1; j++ do
7 Li,j = max(Li−1,j + GAPEXT,Ti−1,j + GAPOPEN);
8 Ui,j = max(Ui,j−1 + GAPEXT,Ti,j−1 + GAPOPEN);
9 Di,j = Ti−1,j−1 + BLOSUM62ctoi(Qj−1),ctoi(Si−1)

;
10 Ti,j = max(0, Li,j ,Ui,j ,Di,j);
11 // resultant score is the maximum value in T

We already introduce the two vectoring strategies to re-construct the data dependencies in

§ 5.1. We describe the major differences in this section: (1) iterate [62], partially ignores the ver-

tical dependencies in Figure 5.1, and processes the vertical cells simultaneously along the column.

This round of computations only ensures a part of the results are correct, leading to potentially

multiple rounds of corrections. (2) scan [87], originally designed for GPU, completely ignores

the vertical dependencies at the beginning. The vertical cells can be processed in a SIMD way,

giving us the preliminary results. After that, a parallel max-scan operation will be conducted on

the preliminary results, and the scan results will be applied to correct the results in another round

of computation. The fundamental difference in these two strategies is in the correction: iterate

may not need any correction, or finish the correction with one or several steps of re-computations

once reach convergence, while scan will always take two rounds of re-computations, i.e., the scan

on all vertical cells and then a round of much lighter correction.

Comparing the vector codes in Algorithm 5 and Algorithm 61 to the sequential code in Al-

gorithm 4, we can find writing vector codes involves expert knowledge of the algorithms and the

1Although we use our formalized codes as the examples, the hand-written vector codes presented in previous

research, e.g., [62], are similar to ours.

82

platform-specific ISAs, even though the detailed low-level intrinsics are hidden by our formalized

codes. As a result, the first question we want to answer is whether we can automatically vectorize

these types of applications with multiple combinations of parameters.

Figure 5.2: Example of comparing two vectorizing strategies under various conditions on MIC (the cases

are from § 5.5).

On the other hand, the differences in the two strategies indicate they would have their own

benefits. Figure 5.2 takes some evaluation numbers from § 5.5 to show our another motivation:

because the algorithms, configurations, and input sequences at runtime can affect the performance

and no one combination can always provide best performance, the second question in this chapter

is whether we can design a mechanism to automatically select the favorable vectorization strategies

at runtime.

5.3 Generalized Pairwise Alignment Paradigm

In the section, we present our generalized paradigm for the pairwise sequence alignment algorithms

with adjustable gap penalties. Any sequential codes following the paradigm can be processed by

our framework to generate real vector codes.

Ti,j = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

max0�l<j(Ti,l + θi,l +
∑j

k=l+1 βi,k)

max0�l<i(Tl,j + θ′l,j +
∑j

k=l+1 βk,j)

Ti−1,j−1 + γi,j

(5.2)

83

In the paradigm in Equation(2), the T is the working-set table and Ti,j stores the suboptimal score.

0 is optional and used only in local alignment. θi,l (θ′l,j) is the gap penalty of initiating a gap at the

position l of Qm (Sn). βi,k (β′
k,j) is the gap penalty of continuing a gap at the position k of Qm

(Sn). γi,j is the substitution score of matching base j of Qm and base i of Sn. In bioinformatics,

the substitution scores are usually from the scoring matrix, such as BLOSUM62. Both θi,l (θ′l,j)

and βi,k (β′
k,j) can be configured to be either constants or variables. By using the dynamic pro-

gramming, one can use three assistant symbols, i.e., Ui,j , Li,j , Di,j , to represent the influence from

Ti,j’s upper, left, and diagonal neighbors. Therefore, the paradigm is equivalent to Equation (3-6).

Ti,j = max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0

Ui,j

Li,j

Di,j

(3)

Ui,j = max

{
Ui,j−1 + βi,j

Ti,j−1 + θi,j−1 + βi,j
(4)

Li,j = max

{
Li−1,j + β′

i,j

Ti−1,j + θ′i−1,j + β′
i,j

(5)

Di,j = Ti−1,j−1 + γi,j (6)

Now, we can fit the real algorithms into the paradigm. Smith-Waterman: Because it is a local

alignment algorithm, we need to keep 0 as the initial. If we simply use the linear gap penalty, the

θi,l (θ′l,j) is set to 0 and βi,k (β′
k,j) is the gap penalty value. If we use affine gap penalty, the θi,l (θ′l,j)

is the gap open penalty value and βi,k (β′
k,j) is the gap extension penalty value. If these parameters

are variables, other gap penalty systems can be used. Needleman-Wunsch: Because it is a global

alignment algorithm, we don’t need the 0. The configuration of other parameters is similar with

the SW. Actually, line 7 to line 10 in Algorithm 4 follow the paradigm with necessary initialization

codes in line 1 to line 4.

5.4 AAlign Framework

The AAlign framework adopts the “striped-iterate” and “striped-scan” as the basic vectorization

strategies. We make a few modifications to the original methods derived from [62] and [87] to

fit our framework. Figure 5.3 illustrates the overview of AAlign. The framework can accept any

kind of sequential codes following our generalized paradigm in § 5.3. After analyzing the Abstract

84

Syntax Tree (AST) of the sequential code, AAlign can obtain the required information, such as

the type of the given alignment algorithm and the selected gap penalty system. Then, AAlign

will input the information to the “vec code constructs” which are formalized according to the

aforementioned vectorizing strategies. Finally, the framework can generate real codes by using

proper vector modules. These modules include primitive vector operations whose implementation

is ISA-specific.

seq code

vec code
constructs

Clang
framework

Traverse
Identify

Build vec code
Use hybrid method

AST (seq code) AST (vec code constructs)

vec codemod

mod

ISA-specific
modules

Figure 5.3: High-level overview of the structure of AAlign framework.

5.4.1 Vector Code Constructs

In this section, we will first describe the SIMD-friendly data layout used in AAlign. Based on

it, we will present two vector code constructs containing the vector modules (§ 5.4.3) and the

configurable parameters (§ 5.4.4).

a b c d eA B C D E

a b c d e A B C D E

v1 v2 v5v3 v4

Original:

Striped:

i

i

Figure 5.4: The original and SIMD-friendly striped layouts.

Striped layout: AAlign always conducts the tabular computation along the query sequence

Qm. After loading the data from the same column in Figure 5.1 to the buffer, AAlign transforms

the data layout to the striped format, which is SIMD-friendly because the data dependency among

adjacent elements are eliminated. Figure 5.4 shows the data layouts before and after the striped

transformation. In the original buffer, we have 20 elements from the same column of the tabular;

and each element depends on its preceding neighbor (the vertical direction in Figure 5.1). If we

85

load the elements directly into five vectors, the data dependencies will hinder efficient vector op-

erations. By rearranging the buffer into the striped format, dependent elements are distributed to

different vectors, making the interaction happening among vectors rather than within vectors.

Algorithm 5: Vector code constructs for striped-iterate

/* m is the aligned length of Q, n is the length of S, k is number of vectors in Q, equal
to m/veclen. If the linear gap penalty system is taken, the AAlign will ignore the
asterisked statements */

1 vec vTdia, vTleft, vTup, vT;
2 vec vTmax = broadcast(INT MIN);
3 vec vGapTleft = broadcast(GAP LEFT);
4 vec vGapTup = broadcast(GAP UP);
5 *vec vL, vU;
6 *vec vGapL = broadcast(GAP LEFT EXT);
7 *vec vGapU = broadcast(GAP UP EXT);
8 *vec vZero = broadcast(0);
9 for i ←0; i < n; i++ do

10 vTdia = rshift x fill(arrT1 + (k − 1) ∗ veclen, 1, INIT T);
11 vTup = set vector(m, INIT T,GAP UP);
12 vTup = add vector(vTup, vGapTup);
13 *vU = set vector(m, INIT U,GAP UP EXT);
14 *vU = add vector(vU, vGapU);
15 *vU = max vector(vU, vTup);
16 for j ←0; j < k; j++ do
17 vTdia = add array(prof + ctoi(Si) ∗m+ j ∗ veclen, vTdia);
18 vTleft = add array(arrT1 + j ∗ veclen, vGapTleft);
19 *vL = add array(arrL + j ∗ veclen, vGapL);
20 *vL = max vector(vL, vTleft);
21 *store vector(arrL + j ∗ veclen, vL);
22 vT = max vector(vTdia,MAX OPRD);
23 store vector(arrT2 + j ∗ veclen, vT);
24 vTmax = max vector(vTmax, vT);
25 vTdia = load vector(arrT1 + j ∗ veclen);
26 vTup = vT;
27 vTup = add array(vTup + vGapTup);
28 *vU = add vector(vU + vGapU);
29 *vU = max vector(vTup, vU);
30 REC UP = rshift x fill(REC UP, 1,REC FILL);
31 int j = 0;
32 vT = load vector(arrT2 + j ∗ veclen);
33 while influence test(REC UP,REC CRT) do
34 vT = max vector(vT,REC UP);
35 store vector(arrT2 + j ∗ veclen, vT);
36 vTmax = max vector(vTmax, vT);
37 REC UP = add vector(REC UP,REC UP GAP);
38 if ++j >= k then
39 REC UP = rshift x fill(REC UP, 1,REC FILL);
40 j=0;
41 vT = load vector(arrT2 + j ∗ veclen);
42 swap(arrT1, arrT2);

Striped-iterate: This vectorizing strategy is based on [62]. The modified vector code con-

structs are shown in Algorithm 5. We use two m-element buffers arrT1 and arrT2 to store the best-

matching scores. Additionally, a m-element buffer arrL stores the scores denoting best-matching

with ending gap in Q. The scores denoting best-matching with ending gap in S are stored in the

86

vector register Tup or vU if affine gap penalty system is taken. In this strategy, we first partially

ignore the data dependencies within the buffer (along the Q) and use the predefined vectors (line 11

and line 13) to set lower bounds. In the predefined vectors (Tup or vU), only first elements come

from the real initialization expressions (INIT T and INIT U), while other elements are derived

from them and corresponding gap penalties (GAP UP and GAP UP EXT). As a result, the

first round of preliminary computations (line 16 to line 29) only ensures the first elements in each

vector are correct (a-e cells in Figure 5.4).

We need to correct the results if the updated predefined vectors affect the results (line 33).

The re-computations of correction (line 34 to line 41) will take at most veclen-1 times to ensure all

the other elements in the vectors are correct. After that, we continue the for loop (line 9) to process

the next character in S, which corresponds to another column in Figure 5.1.

Algorithm 6: Vector code constructs for striped-scan

// m is the aligned length of Q, n is the length of S, k is number of vectors in Q, equal
to m/veclen. If the linear gap penalty system is taken, the AAlign will ignore the
asterisked statements

1 vec vTdia, vTleft, vTup, vT;
2 vec vTmax = broadcast(INT MIN);
3 vec vGapTleft = broadcast(GAP LEFT);
4 *vec vL;
5 *vec vGapL = broadcast(GAP LEFT EXT);
6 *vec vZero = broadcast(0);
7 for i ←0; i < n; i++ do
8 vTdia = rshift x fill(arrT1 + (k − 1) ∗ veclen, 1, INIT T);
9 for j ←0; j < k; j++ do

10 vTdia = add array(prof + ctoi(Si) ∗m+ j ∗ veclen, vTdia);
11 vTleft = add array(arrT1 + j ∗ veclen, vGapTleft);
12 *vL = add array(arrL + j ∗ veclen, vGapL);
13 *vL = max vector(vL, vTleft);
14 *store vector(arrL + j ∗ veclen, vL);
15 vT = max vector(vTdia,MAX OPRD);
16 store vector(arrT2 + j ∗ veclen, vT);
17 vTdia = load vector(arrT1 + j ∗ veclen);
18 wgt max scan(arrT2, arrScan,m, INIT T,GAP UP EXT,GAP UP);
19 for j ←0; j < k; j++ do
20 vTup = load vector(arrScan + j ∗ veclen);
21 vT = load vector(arrT2 + j ∗ veclen);
22 vT = max vector(vT, vTup);
23 vTmax = max vector(vTmax, vT);
24 store vector(arrT2 + j ∗ veclen, vT);
25 swap(arrT1, arrT2);

Striped-scan: The scan strategy in AAlign is based on the GPU method [87]. We modify

it by using the striped format on x86-based platforms, shown in Algorithm 6. Similar with the

striped-iterate, we define three m-element buffers arrT1, arrT2, and arrL. In addition, an extra

87

buffer arrscan is used to store the scan results. In this strategy, we first completely ignore the data

dependencies within the buffer (along the Q) to do the tentative computation (line 9 to line 17).

Unlike the striped-iterate, we conduct “weighted” scan over the tentative results arrT2 and store the

scan results to arrscan (line 18). Finally, we use the values in arrscan to correct the results (line 19

to line 24). After that, we continue to process the next character in S (line 7).

5.4.2 Hybrid Method

As we discussed in § 5.2.2, no one combination of the algorithms (SW or NW), vectoring strategies

(iterate or scan), gap penalty systems (linear or affine) can always provide optimal performance for

different pairs of input sequences. Before we provide a better solution, we investigate the reason

under what circumstances a specific combination can win. We test various query sequences, whose

lengths range from 100 to 36k characters. We fix the algorithm to SW and the gap penalty system to

the affine gap, and change the vectoring strategies. We find that the striped-scan strategy performs

better when the number of re-computations in striped-iterate is around 1.5 times more on MIC,

and 2.5 times on Haswell (For other combinations of algorithms and gap systems, the ratios are

similar due to the similar computational pattern and workloads). Generally, if the best-matching

score before the re-computations is high, meaning that the two input sequences may be close to

each other, the striped-iterate has to carefully and iteratively check each position with more re-

computation steps in order to eliminate the false negative; while in striped-scan, no matter what

the matching scores are, the fix number of re-computations are needed. Paradoxically, we cannot

rely on this observation to determine which strategy should be taken, because unless we finish the

alignment algorithm and get the real matching scores, we don’t know how similar or dissimilar in

the input pair of sequences, or even in a specific rang of pairs.

In the chapter, we propose an input-agnostic hybrid method that can automatically select the

efficient vectorizing strategy at the runtime. Our hybrid method starts from the striped-iterate strat-

egy, in which we maintain a counter to record the number of re-computations. When the counter

exceeds the configured threshold, the method will switch to the striped-scan. For example, based

on the experiments for the combination of SW with the affine gap presented in the previous para-

88

graph, we set the threshold to be 2 for MIC and 3 for Haswell CPU. However, switching back from

striped-scan to striped-iterate is nontrivial, because we don’t know the amount of re-computations

for striped-iterate when the algorithm is working in the striped-scan mode. Alternatively, we de-

sign a solution to “probe” the re-computation overhead at a configurable interval stride. That way,

after processing stride characters in the subject sequence using the striped-scan, we tentatively

switch back to the striped-iterate and rely on the counter to determine the next switch. Once the

counter is above the threshold, we switch back again to the striped-scan for another round of pro-

cessing stride characters. Otherwise, our method will stay in the striped-iterate mode and continue

checking the counter.

Figure 5.5 shows an example of the hybrid method. If we only rely on the striped-iterate

method, the re-computations in the middle part of the subject sequence will kill the performance

due to the overhead of re-computations. In contrast, if we only use the striped-scan, the benefits of

the head and tail parts in the striped-iterate will be wasted. Our hybrid method uses the counter to

find the amount of re-computations is above the threshold around processing the 800-th character,

and thus switch to striped-scan method. Then, it will probe the counter periodically by going back

to the iterate method until the counter drops below the threshold or the end of the sequence S is

achieved.

Figure 5.5: The mechanism of the hybrid method.

One may wonder why the hybrid mechanism starts from the striped-iterate, conservatively

switches from striped-iterate to striped-scan only when the counter exceeds the threshold, and

aggressively switches back by using the proactive probe. The reason is related with the character-

istics of sequence search: although the sequence alignment is designed to find similar sequences

89

of databases for the input query, it cannot identify too many similar sequences because statistically

most of the sequences of databases are dissimilar with a specific input. Even if a sequence is de-

termined similar to the input, their exactly match regions are few. Considering the much faster

convergence speed of striped-iterate for dissimilar pairs, we prefer it, and conservatively switch to

striped-scan only when we find current aligned regions are highly matched.

5.4.3 Vector Modules

We’ve already seen the usage of the vector modules in Algorithm 5 and Algorithm 6. These vector

modules are designed to express the required primitive vector operations in our vector code con-

structs and hide the ISA-specific vector instruction details. Therefore, when the platform changes,

AAlign only needs to re-link the vector code to the proper set of vector modules. Table 5.1 defines

the vector primitive modules. The first group of modules are designed to conduct basic vector oper-

ations over given arrays or vectors. Specifically, they are wrapper functions of the directly-mapped

ISA intrinsics. As a contrast, the second group of modules carry out an application-specific opera-

tions, customized to our formalized vector code constructs.

Table 5.1: The vector modules in AAlign

Module Name Description
Basic Vector Operation API

load vector(void *ad); Load/store a vector from/to the memory address ad, which can be char*,

short*, or int* (the same below)store vector(void *ad, vec v);

add vector(vec va, vec v);
Add a vector of va or from the memory address ad by vector v,

add array(void *ad, vec v);

max vector(vec v1, ...); Take any count of input vectors, and return the vector with largest integers in each

aligned position

App-specific Vector Operation API
set vector(int m, int i, int g); Init a new vector, in which i is the default Ti,j or Fi,j value when j=0, g is their

corresponding gap βi,j or θi,j
rshift x fill(vec v, int n, ...); Right shift the vector of v or loaded from ad by n of positions and fill the gaps

with specified valuesrshift x fill(void *ad, int n, ...);

influence test(vec va, vec vb); Check if vector va can affect the values in vb
wgt max scan(void *in, void *out,
int m, int i, int g, int G);

“weighted” max-scan over the values in in of the striped format, store the results

to out. i is the default Ti,j value when j=0, g, G are the corresponding βi,j , θi,j

set vector: is to set the lower-bound vector in the striped-iterate strategy. Figure 5.6 shows

that AAlign will set the first value of the lower-bound vector to be the initial value i Then, the

lower-bound values of the rest are set to be i + l ∗ k ∗ g, where l is the element’s index, k is the

90

total number of vectors, and g is the associate gap penalty. The implementation of the module is

to use the proper mm256/512 set instrinsics.

i

a

b

c

d

e

A

B

C

D

E

v1

v2

v3

v4

v5

set_vector(20,i,g)

e Ex
rshift_x_fill (v5,1,x)

v0 influence_test (
v0-vGap , v1-vGap);a

b

c

d

e

A

B

C

D

E

v1

v2

v3

v4

v5

e E
1st

ro
un

d
of

 co
m

pu
ta

tio
n

ca
n

on
ly

en

su
re

 th
e

1st
co

lu
m

n
is

co
rr

ec
t

2nd round of re-
computation might be

avoided depending on the
influence_test result

lower-
bound

Figure 5.6: Vector modules used in the striped-iterate.

rshift x fill: is to right shift the vector elements with the value x filled. AAlign uses this

module to adjust the data dependencies between vectors. As shown in Figure 5.6, the 1st round

of computation can ensure the values in the first column (a-e cells) are correct, since they are

calculated based on the real initial value i. Therefore, the test of the need for correction is required.

Before that, we observe that in the 2nd round, the current “true” value e would affect A according

to the original layout in Figure 5.4. As a result, we shift the vector v5 to right by 1 position and fill

the gap using a small enough number x to make sure there is no influence caused by it.

The implementation is essentially a combination of data-reordering operations. However,

the selection of instructions is quite different because of different ISAs and desired data types.

Figure 5.7 shows how to achieve the same functionality with different intrinsics. Because the

shortest integer data type supported by IMCI is 32-bit, we only show IMCI with 32-bit int, which

uses a combination of the cross 128-bit lane permutevar and swizzle intrinsics. As a contrast,

we directly insert the value x after the permutevar completes on AVX2 with 32-bit int. If we

work on the 16-bit values, there is no equivalent permutevar intrinsics so that we use shufflehi/hi,

permute8x32 and blend intrinsics for this functionality, followed by the insert.

influence test: is to check if an extra re-computation of correction is necessary in the striped-

iterate method. Specifically, the module is a vector comparison. The comparison results containing

1s mean the 1st operand will affect the 2nd one. In IMCI, the results are stored in a 16-bit mask and

then we simply check if this value is larger than 0 or not. However, in AVX2, the “mask” is stored

91

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516

x x x x x x x x x x x x x x xx

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15x

1 2 3 4 5 6 7 8

1 2 3 4 5 6 78

1 2 3 4 5 6 7x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 8 5 6 7 12 9 10 11 16 13 14 154

1 2 3 8 5 6 7 12 9 10 1116 13 14 15 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15x

__m512_permutevar_epi32

__m512_mask_swizzle_epi32

__m256_permutevar_epi32

__m256_insert_epi32

__m256_shufflehi/lo_epi16

__m256_permutevar8x32_epi16

__m256_blend_epi16

__m256_insert_epi16

rshift_x_fill (IMCI 32-bit int)

rshift_x_fill (AVX2 32-bit int)

rshift_x_fill (AVX2 16-bit int)

__m512_set1_epi32

Figure 5.7: Example of chosen ISA intrinsics for rshift x fill (only blend operations are shown with arrows).

in a 256-bit vector, and there is no single instruction to peek how many set bits inside. Our solution

is to split the vector to two 128-bit SSE vectors and use the intrinsic mm test all zeros to

detect if there are set bits.

wgt max scan: is to implement the “weighted” scan along the buffer holding the tentative

results (denoted as T̃i,j and stored in arrT1 from line 18 of Algorithm 6). Mathematically, we

perform the calculation of max0�l<j(T̃i,l + θi,l +
∑j

k=l+1 βi,k). For simplicity, let’s suppose θi,l,

βi,k are two constants θ and β and only use 8 characters as the example for the striped sequence

shown in Figure 5.4. In Figure 5.8, we use three steps to achieve the wgt max scan. First, we

conduct a preliminary round of inter-vector weighted scan on v1 and v2 with initial weight θ + β

and extensive weight β. The results will be stored in the intermediate vectors u1 and u2. Second,

an intra-vector and exclusive weighted scan is performed on vector u2 with the weight of k ∗ β,

where k is the total number of vectors. The results are stored in s. Third, the last round of inter-

vector and exclusive weighted broadcast is performed on s, u1 and u2 with the weight of β. The

final scan results are stored in arrT1.

92

Weighted scan result
(in original order)

wgt_max_scan (arrT,arrScan,i, ,)

a+ +

i+ +

Striped:

1. Inter-vector weighted scan

+2 +2 +2

2. Intra-vector weighted scan

3. Inter-vector
weighted
broadcast

av1

v2

u1

u2

sr1

r2

u1=v1+vGap +vGap
u2=max(v2+vGap +vGap , u1+vGap)

s1=i+ + s2=max(u21,s1+2)
s3=max(u22,s2+2) s4=max(u23,s3+2)

r1=s
r2=u1+(s+vGap)

c e g

b d f h

c+ + e+ + g+ +

c+ +2
d+ +

e+ +2
f+ +

g+ +2
h+ +

a+ +2
b+ +

i+ +3
a+ +2
b+ +

i+ +5
a+ +4
…
d+ +

i+ +7
a+ +6
…
f+ +

i+ +
i+ +3
a+ +2
b+ +

i+ +5
a+ +4
…
d+ +

i+ +7
a+ +6
…
f+ +

i+ +

i+ +4
a+ +3
b+ +2
c+ +

i+ +6
a+ +5
…
e+ +

i+ +8
a+ +7
…
g+ +

i+ +2
a+ +

i+ +3
a+ +2
b+ +

i+ +5
a+ +4
…
d+ +

i+ +7
a+ +6
…
f+ +

i+ +

i+ +4
a+ +3
b+ +2
c+ +

i+ +6
a+ +5
…
e+ +

i+ +8
a+ +7
…
g+ +

i+ +2
a+ +

arrScan

a c e g b d f h
arrT

a b c d e f g hOriginal: i

Figure 5.8: Orchestration mechanism in the wgt max scan (Maximum operations are applied on each cell).

5.4.4 Code Translation

The AAlign framework takes the sequential codes following our generalized paradigm as the in-

put. After the analysis of the codes, the framework will decide how to modify the vector code

constructs. We make use of Clang driver [3] to create the Abstract Syntax Tree (AST) for both the

sequential codes and vector code constructs, shown in Figure 5.3. To traverse the trees, we build

our Matcher and Visitor classes in Clang’s AST Consumer class. Once the information from the

AST nodes of interest is identified and retrieved, we use our Rewriter class to modify the AST

tree of the vector code constructs with the information and its derivative results. Note, present

framework only supports the constant gap penalties (e.g., βi,k, θi,l). We will leave it to future work

to support variable penalties used in, for example, the dynamic time warping (DTW) algorithm.

Table 5.2 shows the configurable expressions in Algorithm 5 and Algorithm 6. The infor-

mation can be retrieved from the sequential codes in four groups: 1. Identify which type of the

pairwise alignment algorithm is used: local or global. This can be done by checking if there is a

constant 0 set to T or not. 2. Identify what kind of gap penalty system is used. We can check

93

if θ is set to 0 or not (row 1-4 in Table 5.2). 3. Learn how to initialize the boundary values (row

5,6). 4. Derive other information of how to organize the vectors (row 7-11). After the vector

code constructs have been rewritten, we use the hybrid method to generate our pairwise sequence

alignment kernels.

Table 5.2: Configurable expressions in vector code contructs

Expression Description & Format Example*

GAP LEFT Gap penalty from the left T cell (i.e. θ′+β′); constants or variables GAPOPEN (line7)

GAP UP Gap penalty from the upper T cell (i.e. θ+β); constants or variables GAPOPEN (line8)

GAP LEFT EXT Gap penalty from the left L cell (i.e. β′); constants or variables GAPEXT (line7)

GAP UP EXT Gap penalty from the upper U cell (i.e. β); constants or variables GAPEXT (line8)

INIT T Upper boundary value of T cell; func(i) 0 (line2)

INIT U Upper boundary value of U cell; func(i) 0 (line2)

MAX OPRD Operands required by the max operation; vec variables vU, vL, vZero
REC FILL Value to fill the right shifted gap; constant GAPOPEN (line8)

REC UP Operand for checking the re-computation; vec variable vU
REC UP GAP Gap operand for REC UP; vec variable vGapU
REC CRIT Criterion for checking re-computation; vec variable vGapTup-vGapU
*: The examples are fetched or derived from Algorithm 4

5.4.5 Multi-threaded version

The AAlign framework can also utilize the thread-level parallelism of the multi- and many-cores

to align a given query with all subject sequences in a database. We first assign the generated kernel

to each thread, and a thread will get a subject sequence from the database to conduct the alignment

until all subject sequences are aligned. After we sort the database by the subject sequence length,

this dynamic binding mechanism is extremely efficient because of the load balance among threads.

For the implementation, we don’t need to create the profile array of substitution matrix for the

query every time (prof in line 17 of Algorithm 5 or line 10 of Algorithm 6). Therefore, the only

change of the kernel is to extract the part of building profile array and perform it once before

launching multiple threads.

5.5 Evaluation

In the section, we evaluate the AAlign-generated pairwise sequence alignment codes on Haswell

CPU and Knights Corner MIC. For Haswell, we use 2 sockets of E5-2680 v3, which totally contain

94

24 cores running on 2.5 GHz with 128 GB DDR3 memory. Each core has 32 KB L1, 256 KB L2,

and shares 30 MB L3 cache. For MIC, we use the Intel Xeon Phi 5110P coprocessor in the native

mode. The coprocessor consists of 60 cores running on 1.05 GHz with 8 GB GDDR5 memory, and

each core includes 32 KB L1 and 512 KB L2 cache. We use icpc in Intel compiler 15.3 with -O3

option to compile the codes. To specialize the desired vector ISA, we also include -xCORE-AVX2

for CPU and -mmic for MIC. All the sequences are from NCBI-protein database [4]. The number

of characters is integrated into the query name.

Our objectives include: (1) Compare AAlign-generated codes with the optimized sequential

codes. (2) Compare the proposed hybrid method with the iterate and scan method, respectively.

(3) Compare multi-threaded versions of AAlign-generated codes with the existing tools.

5.5.1 Speedups from Our Framework

We first compare the AAlign-generated codes (32-bit int) with the sequential codes (32-bit int)

to evaluate the vectorization efficiency. The subject sequence is a Q282. The sequential codes

are following the same logic of the vector codes. We also add “#pragma vector always” in the

inner-loop of the codes. The speedups, shown in Figure 5.9, are the performance benefits brought

by the AAlign using striped-iterate and striped-scan respectively. By using the striped-scan, the

SW and NW can achieve an average of 4.8 and 13.6-fold speedups over the sequential codes on

CPU and MIC respectively. In contrast, the speedups of the striped-iterate SW and NW vary in a

wider range of 4.7 to 10-fold on CPU and 9.5 to 25.9-fold on MIC. The superlinear speedups of the

striped-iterate are mainly because the striped-iterate avoids a considerable amount of computation

along the Q if the influence test fails.

We can see that the performance variance of the striped-scan is smaller than the striped-

iterate. For example, though the SW approximates the NW in terms of computational workloads,

the performance of the striped-iterate SW-affine (Figure 5.9c) and NW-affine (Figure 5.9d) changes

a lot, while the striped-scan keeps relatively consistent. Actually, the performance difference of

the two methods depends on the processed numerical values which are affected by the algorithms,

gap systems, and input sequences.

95

(a) SW (CPU) (b) NW (CPU)

(c) SW (MIC) (d) NW (MIC)

Figure 5.9: AAlign codes vs. Baseline sequential codes. The baselines are different and they are optimized

to follow the similar logic with the corresponding AAlign codes.

5.5.2 Performance for Pairwise Alignment

In the preceding section, we observe that the algorithm and gap penalty system will affect the

choice of the better vectorizing strategy. This section changes the input sequences. We first borrow

the concepts of query coverage (QC) and max identity (MI) [1] from the bioinformatics community

to describe the similarity of the input sequences. QC means the percent of query sequence Q

overlapping the subject S, while the MI is the percentage of the similarity between Q and S over

the length of the overlapped area. Additionally, we define three ranges of hi (>70%), md (70%-

30%), and lo (<30%). That way, we have 9 combinations of QC MI to represent the similarity

and dissimilarity of two input sequences. For example, lo hi means only a small portion of two

sequences overlaps each other, but the overlapped areas are highly similar. In the experiment, we

use Q2000 against the “nr” database using NCBI-BLAST [1] and pick out 9 typical subjects for

the aforementioned criteria.

Figure 5.10 shows the performance of AAlign using different vectorizing strategies, including

96

(a) SW w/ linear gap (CPU) (b) SW w/ affine gap (CPU) (c) NW w/ linear gap (CPU)

(d) NW w/ affine gap (CPU) (e) SW w/ linear gap (MIC) (f) SW w/ affine gap (MIC)

(g) NW w/ linear gap (MIC) (h) NW w/ affine gap (MIC)

Figure 5.10: AAlign codes using striped-iterate, striped-scan, and hybrid method. The x-axis represents

the similarity of the two sequences using the format of QC MI in which the query coverage (QC) and max

identity (MI) metrics are in three levels: high (>70%), medium (70%-30%), and low(<30%).

striped-iterate, striped-scan, and hybrid, on CPU and MIC. For the alignment algorithms with

linear gap penalty, the striped-iterate method always outperforms the striped-scan, because the

effects of the zero θ cause the number of re-computations falling into a very small number. The

results also show that with the linear gap penalty, our hybrid method will fall back to the striped-

iterate and has very similar performance with it. For the algorithms with affine gap penalty, the

striped-scan is better than the striped-iterate when two sequences have high or medium scores of

QC and MI, meaning that the input sequences are very similar. For example, for the sequences

labeled as hi hi, hi md, md hi, md md, in Figure 5.10b, 5.10d, 5.10f, 5.10h, the striped-scan is the

97

better solution, thanks to its fixed rounds of re-computation. In the cases of the NW with the affine

gap, the striped-scan can deliver up to 3.5 fold speedup on MIC and up to 1.9 fold speedup on CPU

over the striped-iterate. For other inputs (dissimilar input sequences), the striped-iterate is better.

Because the hybrid method can automatically switch to the better solution, in most test cases, the

hybrid method has better performance than either of the striped-iterate and striped-scan method. In

the corner cases, the hybrid method approximates to the better solution instead of the worse one.

5.5.3 Performance for Multi-threaded Codes

In the section, we compare AAlign’s multi-threaded SW with affine gap penalty system with the

tools of SWPS3 and SWAPHI. The database is the “swiss-prot” containing more than 570k se-

quences [6]. SWPS3 [142] uses a modified version of the striped-iterate method working on CPUs.

The buffers of the table T are of char and short data types. SWAPHI [105] supports both inter-

sequence and intra-sequence vectorization in the multi-threaded on MIC. In the experiment, we

only focus on their intra-sequence method of int data type. Correspondingly, we use our generated

kernel of short and int data type on CPU and MIC respectively.

(a) vs. SWPS3 on CPU (b) vs. SWAPHI on MIC

Figure 5.11: AAlign Smith-Waterman w/ affine gap vs. existing highly-optimized tools.

Figure 5.11 presents the results of AAlign SW algorithms comparing with the two highly-

optimized tools. On the CPU, the generated AAlign codes can outperform the SWPS3 for up

to 2.5 times, especially for the short query sequences. However, in Figure 5.11a, for the long

sequences Q4000, SWPS3 is better. This mainly because rather than working entirely on the short

data type (16 bits), SWPS3 also uses the char-type (8 bits) buffers. Only when the overflow occurs,

98

the tool will switch to the short. This is especially beneficial for long query sequences by lowering

the cache pressure. For the MIC, we can outperform the SWAPHI on an average of 1.6 times,

thanks to our hybrid method and the efficient vector modules.

5.6 Chapter Summary

The AAlign framework can generate the vector codes based on “striped-iterate” and “striped-scan”.

Moreover, we design an input-agnostic hybrid method, which can take advantage of both the vec-

torization strategies. The generated codes will be linked to a set of platform-specific vector mod-

ules. To do this, the AAlign only needs the input sequential codes following our generalized

paradigm. The results show that the vector codes can deliver considerable performance gains over

the sequential counterparts by utilizing the data-level parallelism and decreasing the amount of

computation. We also demonstrate that our hybrid method is able to automatically switch to the

better vectorization strategy at runtime. Finally, compared to the existing highly-optimized multi-

threaded tools, the multi-threaded AAlign codes can also achieve competitive performance.

Chapter 6

Data Dependencies in Wavefront Loops

6.1 Introduction

Modern accelerators, e.g., GPUs, feature wide vector-like compute units and a complex memory

hierarchy. If parallel applications can be organized to follow the SIMD processing paradigm,

coalesced memory access patterns, and data reuse at different levels of the memory hierarchy,

GPUs can often deliver superior performance over CPUs. However, wavefront loops, which can

be found in many scientific applications, including partial differential equation (PDE) solvers and

sequence alignment tools, are exceptions. Because their computations (including the association

operator and the distribution operator, discussed in § 6.2.1) update each entry of a two-dimensional

(2-D) matrix based on the already-updated values from its upper, left, and (optional) diagonal

neighbors, this strong data dependency hinders the optimizing of computation and memory access

on GPUs at the same time. That is, if data is stored in a row- or column-major order, the data

can be processed in parallel but from non-contiguous memory addresses. In other words, data

dependencies prevent consecutively stored data to be processed in parallel. Alternatively, if the

data is stored in an anti-diagonal-major order, parallel computation can naturally follow the data

dependency, but the exposed parallelism may result in severe load imbalance and underutilization

of the compute units.

Figure 6.1 provides an overview of existing approaches to optimize waverfront loops on

99

100

GPUs. In 1©, the parallelism on anti-diagonal data is directly exposed by applying loop trans-

formation techniques, e.g., loop skewing and loop interchange [20, 156]. These methods may

lead to severe performance penalties due to non-contiguous memory access and load imbalance.

In 2©, the tiling-based methods [110, 59, 24] block the reusable data in local memories, e.g.,

caches, to reduce the overhead of uncoalesced memory access. However, as their computation still

strictly follows the anti-diagonal order, the load imbalance occurs at the beginning and ending anti-

diagonals, causing the underutilization of computing resources. Although the recent tiling-based

method called PeerWave [24] can mitigate the problem, it incurs extra overhead to transform the

data layout. In contrast, instead of mainly optimizing memory accesses on GPUs, the recent stud-

ies [62, 87] in 3© focus on accelerating computations and resolving the load imbalance. The core

idea is to ignore the data dependency along a row at first, compute data entries in a row in par-

allel, and finally correct the intermediate results. We call this method as a compensation-based

parallelism for wavefront loops. However, this method requires expensive global synchronizations

within and between processing each row, leading to frequent global synchronizations and the loss

of data reuse. More importantly, because this method does not follow the original data dependency

and has changed the sequence of computation operators on data entries, the domain knowledge

from developers is required for the correctness of the final results, which makes it a privilege for

experienced users only.

Memory Access Optimization

Computation
optimization

[this work]

Comput. Refactoring
(domain-specific solution)

compensation

Locality
tiling

Direct Parallelism
loop transf.

Figure 6.1: Parallelization landscape for wavefront loops.

In this chapter, we first investigate under which circumstances, the compensation-based method

that breaks through the data dependency and changes the sequence of computation operators prop-

erly can be used to optimize wavefront loops. We prove that if the accumulation operator is asso-

ciative and commutative and the distribution operator is either distributive over or same with the

101

accumulation operator, changing the sequence of operators properly doesn’t affect the correctness

of results. We also analyze that several popular algorithms, including a successive over-relaxation

(SOR) solver [58], Smith-Waterman (SW) algorithm [140], summed-area table (SAT) computa-

tion [118], and integral histogram (IHist) algorithm [125], satisfy such requirements. Due to its

generality, we design a highly efficient compensation-based solution for wavefront loops on GPUs:

we propose a weighted scan-based method to accelerate the computation and combine it with the

tiling method to optimize memory access and reduce global synchronization overhead.

In the evaluation, we first compare the performance of the weighted scan-based GPU kernels

with those based on widely-used libraries, i.e., Thrust [71] and ModernGPU [22], and our kernels

can deliver an average of 3.5x and 4.7x speedups on NVIDIA K80 and P100 GPUs, respectively.

We also use our methods to optimize SOR, SW, SAT, and IHist application kernels, yielding up

to 22.1x (43.3x) speedups on K80 (P100) over state-of-the-art optimizations [24]. Even for their

best scenarios, we can still obtain an average of 1.1x (1.8x) improvements on K80 (P100). The key

contributions of this chapter are summarized below.

• We prove that in wavefront loops, if the accumulation operator is associative and commu-

tative and the distribution operator is either distributive over or same with the accumulation

operator, breaking through the data dependency and changing the sequence of computation

operators properly does not affect the correctness of results. This provides the guidance for

developers under which circumstances, the compensation-based method can be used. (In 3©
and 4© of Figure 6.1.)

• We design a highly efficient compensation-based method on GPUs. Our method provides

the weighted scan-based GPU kernels to optimize the computation, and combines with the

tiling method to optimize the memory access and synchronization. (In 4© of Figure 6.1.)

• We carry out a comprehensive evaluation on both kernel level and application level to demon-

strate the efficiency of our method over the state-of-the-art research for wavefront loops.

102

6.2 Motivation

6.2.1 Wavefront Loops and Direct Parallelism

When loop-carried dependencies are present, compilers are oftentimes hard to parallelize the loops

effectively, even with the auto-vectorization technologies and user-provided directives [108]. Al-

gorithm 6.1 shows an example of the original loop nests with such data dependencies. The cor-

responding iterations and memory spaces are shown in Figure 6.2a. This loop can be parallelized

for neither the i-loop nor j-loop, if we admit the row-major memory access pattern1. Fortunately,

the parallelism-inhibiting dependencies can be ‘eliminated’ by applying loop transformation tech-

niques, e.g., loop skewing and loop interchange [156, 20]. The transformed loop is also shown in

Algorithm 6.1. Thereafter, the potential parallelism can be exposed from the iteration space in Fig-

ure 6.2b. However, this approach has two significant drawbacks: (a) load imbalance, especially at

the beginning and the ending iterations (shown in the iteration space); (b) non-contiguous memory

access (shown in the memory space).

Algorithm 6.1 Original & transformed loop nests with wavefront parallelism.

1 // Original
2 for(int i = 0; i < m; i++)
3 for(int j = 0; j < n; j++)
4 A[i][j] = A[i][j-1] * 0.5 + A[i-1][j] * 0.5;
5 // Transformed via loop skewing and interchange
6 for(int I = 0; I < m+n-1; I++)
7 for(int J = max(0, I-n+1); J < min(m, I+1); J++)
8 A[J][I-J] = A[J][I-J-1] * 0.5 + A[J-1][I-J] * 0.5;

Algorithm 6.1 also shows there are two types of binary operators in wavefront loops. The

distribution operator will distribute a part of the value of one entry to another. For example, in

this example, the multiplication “∗” is the distribution operator, which distributes a portion of

A[i][j-1] and A[i-1][j] to A[i][j]. Another operator is the accumulation operator, which

will accumulate incoming values into an entry. Here, the accumulation operator is “+”. Most

existing studies strictly follow the sequence of operators, which means an entry will be updated by

the accumulation operator only after receiving the distributed values from all prerequisites.

1By default, we assume the row-major layout for all arrays.

103

j

i

Iteration Space Memory Space (A[y][x])

y

x

(a) Original

J

I

Iteration Space Memory Space (A[y][x])

y

x

(b) Transformed

Figure 6.2: Exposed parallelism and corresponding memory access pattern of the two forms of loop nests in

Algorithm 6.1. In the iteration space, the arrow represents the data dependency, e.g., a←b means iteration b

depends on a.

6.2.2 Tiling-based Solutions and Their Limitations

To reduce the cost of load imbalance and amortize the overhead of non-contiguous memory access,

many studies [24, 152, 110] apply the tiling-based methods, where the spatial locality can be

improved and the expensive synchronization among each entry will convert to the synchronization

among tiles. However, there are two other issues.

Data layouts: In a basic design using the tiling optimizations, one can divide the working

set into tiles and follow the anti-diagonal direction to parallelize the computation. The overhead

of accessing non-contiguous data is mitigated by the cache. However, the non-contiguous data

access still exists inside each tile, and at the beginning and the ending of anti diagonals, there are

no enough entries that can be executed in parallel. This motivates the anti-diagonal major storage

and hyperplane on GPUs [59, 24]. However, there are two another problems emerging:

(1) Wasted memory and computing resources. Suppose the dimensions of the working matrix

A are m by n and it is divided into hyperplane tiles of h by w, shown in Figure 6.3a. To store the

array A, we need to allocate
⌈
m
h

⌉ · ⌈n+h−1
w

⌉
hyperplane tiles, where n + h − 1 is to process n row

entries plus the longest preceding padding entries that is equal to h − 1. As a result, the actual

memory usage for all hyperplane tiles must be larger than m · (n+h). Therefore, in the hyperplane

mode, the percentage of effective memory usage is approximately n/(n + h). Apparently, the

padding overhead is not negligible when n+ h is sufficiently larger than n.

One might wonder that the padding could be removed by adding rules to skip out-of-bound

access. However, this strategy will break the uniform access that is preferred by GPUs. Figure 6.3b

104

h

w

n

m

(a) Hyperplane tiles

x

x

x x

Padding

No padding

pos-4

pos

pos-4

pos

pos-2

pos

pos-3

pos

Diverged access patt.

Uniform access patt.

(b) Access patterns

Figure 6.3: Splitting the array A into hyperplane tiles and their access patterns w/ and w/o padding.

demonstrates the diverged access in the padding-free scenario. Compared to the uniform pattern,

each highlighted element needs to use different indexing formulas to obtain their north neighbors,

e.g., pos − 2 and pos − 3 in the figure. Therefore, the padding-free strategy may greatly increase

the complexity of indexing and lead to more branches in GPU kernels, resulting in the performance

degradation.

(2) Layout transformation overhead. To remove the non-contiguous memory access, the data

layout can be transformed from the row-major to the anti-diagonal major [33, 24]. However, this

conversion not only requires developers refactoring the implementations, but causes significant

transformation overhead. In the evaluation, we have observed the transformation time makes up

to 31˜60% and 40˜72% of computation time on on NVIDIA K80 and P100 GPUs, respectively

(§ 6.6.2).

Task scheduling: The tile-based solutions, e.g., [110, 24, 160], assigns a complete row of

tiles to one compute unit, e.g., a Multiprocessor (MP) of GPU. In that way, the sequential ex-

ecution order by a MP naturally satisfies the dependency between tiles on the same row; while

the dependencies between tiles on different rows can be satisfied via lightweight local synchro-

nizations, e.g., the spin-lock, leading to a pipeline-like execution mode. This methodology works

very well for square matrices (e.g., m ≈ n), because the load balance among compute units can

be quickly achieved by the large amounts of parallel tiles along the anti-diagonal. However, for

rectangular matrices, especially when m n, such a methodology may lose the efficiency, since

there are no sufficient tiles in most anti-diagonals.

105

6.2.3 Compensation-based Solutions and Their Limitations

In recent years, several studies [87, 76, 62] have offered another type of solutions for parallelizing

wavefront loops. Overall, the computation is conducted in a row-by-row manner. The contiguous

data entries in a row are divided into groups and scheduled to different compute units. Figure 6.4

shows three main steps on processing the bottom row: (1) each compute unit ignores the horizontal

data dependency and computes its data entries in parallel to generate the intermediate results; (2)

a compensation step is performed to compute ignored data for each entry in a scan-like process;

(3) each compute unit corrects the intermediate results with the compensations for the final results.

Each step of this method can be parallelism-friendly, and also easy to balance entries between

compute units.

1: Ignore horiz. dep. 2: Compensate the partial results 3: Combine the results of 2 & 1

Figure 6.4: Compensation-based solutions decompose the processing into three steps, each of which can be

parallelism-friendly and load balanced.

However, this solution requires multiple expensive global synchronizations within and be-

tween processing each row. Within a row, in the step 2, after a compute unit finish its local com-

putation on the ignored data, it has to wait for the finish of all preceding compute units to get their

compensation results, because the data dependency is propagated from the start to the end along

a row. Between rows, only after the third step finishes at all compute units, they can continue

processing the next row to avoid the data dependency between rows. Thus, the performance might

deteriorate without a highly optimized compensation design. More importantly, previous research

illustrates the compensation-based parallelism works well for string matching operators, e.g., max

and +, but its generality to other domains is still unclear. As a consequence, in this chapter, we will

determine the boundary of the compensation-based method and answer the question: under which

circumstances, can the compensation-based method be used to optimize wavefront loops?

106

6.3 Compensation-based Computation – Theory

6.3.1 Standard Wavefront Computation Pattern

We define our target wavefront computation pattern by capturing the key operations and formaliz-

ing their data dependencies.

Definition 1. (Wavefront Pattern) Let A = (Ai,j) be a m by n matrix to store the output of the

wavefront computation. For any entry Ai,j , where 0 < i < m and 0 < j < n, the relationships

with its neighbors, e.g., Ai,j−1, are defined by applying two generic binary operators � and ◦ as

shown in Equation I. Besides, a constant or variable value b can be applied on the operator ◦. Note,

when i = 0 or j = 0, Ai,j can be predefined according to application-specific rules.

Ai,j = (Ai,j−1 ◦ b0) � (Ai−1,j ◦ b1) � (Ai−1,j−1 ◦ b2) (I)

In the definition, ◦ is the distribution operator and � is the accumulation operator, while we

will use these symbolic representations in the proof. This abstracted definition can cover various

real-world wavefront loops by transforming the generic operators into concrete ones. The practical

cases will be discussed in § 6.4.

6.3.2 Compensation-based Computation Pattern

We can present the compensation-based computation pattern with the generic operators in Equa-

tion I. First, the data dependencies along the j-direction are ignored and the partial results are

represented as Ãi,j , leading to Equation II-1. Second, an additional compensation step of Equa-

tion II-2 is carried out to produce the compensation values Bi,j . Third, the compensation values

are used to correct the partial results Ãi,j for the loss caused by the loosened dependencies, as

shown in Equation II-3. The symbols
∏

and
∑

represent the iterative binary operations ◦ and �,
respectively.

Ãi,j = (Ai−1,j ◦ b1) � (Ai−1,j−1 ◦ b2) (II-1)

107

Bi,j =

⎧⎪⎨⎪⎩
∑j−1

u=0(Ãi,u ◦
∏j−1

v=u b0) when ◦ �= �∑j−1
u=0(Ãi,u � b0) when ◦ = �

(II-2)

Ai,j = Ãi,j �Bi,j (II-3)

Obviously, this new pattern has changed the computation ordering in Equation I. Thus, to

show the validity, we need to prove that under which circumstances, the Equation II-3 (with the

Equation II-1 and Equation II-2) is equivalent to the Equation I.

Theorem 1. The compensation-based computation shown in Equation II-3 (incl. Equation II-1

and II-2) is equivalent with the original computation in Equation I, provided the binary operators �
is associative and commutative, and (1) ◦ has the distributive property over �, or (2) ◦ is same with

� (where, for brevity, we only use �).

Proof. We use the induction method to prove the equivalence of the two equations. First, we focus

on a base case to prove the statement holds for updating the first element A1,1. Starting from

Equation II-3, we have A1,1 = Ã1,1 � B1,1. According to Equation II-2 and A1,0 is predefined, the

item B1,1 = Ã1,0 ◦ b0 = A1,0 ◦ b0, no matter ◦ is same with � or not. Then, putting Equation II-1 and

Equation II-2 into Equation II-3, we can get A1,1 = (A0,1 ◦ b1) � (A0,0 ◦ b2) � (A1,0 ◦ b0). Since � has

the commutative property, this is equal to (A1,0 ◦ b0) � (A0,1 ◦ b1) � (A0,0 ◦ b2), which is A1,1 defined

by Equation I. Thus the statement is true for the base case.

Then, we focus on the inductive step: if the statement holds for j = k − 1, then it also holds

for j = k.

In the case of ◦ �= �, based on the Equation II-2, we know Bi,k =
∑k−1

u=0(Ãi,u ◦
∏k−1

v=u b0). We

unfold
∑

to get:

Bi,k =
∑k−2

u=0(Ãi,u ◦
∏k−1

v=u b0) � (Ãi,k−1 ◦ b0) (6.1)

Since � has the commutative and associative properties, this can be transformed to:

Bi,k = (Ãi,k−1 ◦ b0) � (
∑k−2

u=0(Ãi,u ◦
∏k−1

v=u b0)) (6.2)

Since ◦ has the distributive property over �, we can “factor out” a b0 from each term and get:

Bi,k = (Ãi,k−1 � (
∑k−2

u=0(Ãi,u ◦
∏k−2

v=u b0))) ◦ b0 (6.3)

108

Using Equation II-2 when j = k − 1, Equation 6.3 can be simplified to:

Bi,k = (Ãi,k−1 �Bi,k−1) ◦ b0 (6.4)

Because the induction hypothesis that j = k− 1 holds, meaning Ai,k−1 = Ãi,k−1 �Bi,k−1 is true, we

can get:

Bi,k = Ai,k−1 ◦ b0 (6.5)

Then, putting Equation II-1 and Equation 6.5 to Equation II-3, we get Ai,k = (Ai−1,k ◦ b1) �
(Ai−1,k−1 ◦ b2) � (Ai,k−1 ◦ b0). Due to the commutative property of �, this is equal to Equation I.

Therefore, we demonstrate the statement also holds for j = k in the case of ◦ �= �.
Now, we consider the case of ◦ = �, where Bi,k =

∑k−1
u=0(Ãi,u�b0). Then, due to the associative

and commutative property of �, Bi,k can be transformed to:

Bi,k = (Ãi,k−1 � (
∑k−2

u=0(Ãi,u � b0))) � b0 (6.6)

Equation 6.6 can be simplified by using Equation II-2 when j = k − 1.

Bi,k = (Ãi,k−1 �Bi,k−1) � b0 (6.7)

Using the induction hypothesis that j = k− 1 holds, we can get Bi,k = Ai,k−1 ◦ b0. Then, similar to

the case of ◦ �= �, we can prove Equation II-3 is equal to Equation I for the case of ◦ = � in j = k.

Since both the base and inductive cases have been performed, the statement holds for all

natural numbers j.

Now, we compare the complexity of the proposed compensation-based method with the origi-

nal one. Obviously, the key difference of the two methods relies on how to satisfy the dependencies

along the j-direction. In the original method, it is done by Ai,j−1 ◦ b0 with O(1) complexity, while

in the proposed method, Equation II-2 is used for the same purpose, leading to O(n) complex-

ity. Nevertheless, Equation II-2 can be also optimized to O(1) by using dynamic programming

techniques, i.e., Bi,j = (Bi,j−1 ◦ b0) � (Ãi,j−1 ◦ b0) for ◦ �= � or Bi,j = Bi,j−1 � (Ãi,j−1 ◦ b0) for

◦ = �. However, updating Bi,j is still more expensive than the original Ai,j−1 ◦ b0 operation. We

will show the proposed method can expose more parallelisms in § 6.5, and thus it provides better

performance in § 6.6.

109

6.4 Compensation-based Computation – Practice

In this section, we discuss four representative wavefront loops from real-world applications. In

addition, we demonstrate whether and how these loops can be expressed in the compensation-

based parallelism patterns shown in § 6.3.

SOR Solver (SOR) [58]: The method of successive over-relaxation (SOR) conducts a stencil-

like computation to solve a linear system of equations in an iterative fashion. As shown below,

A[i][j] represents a discrete gridpoint and its new value depends on its neighbors: some are the

most recently updated (i.e., A[i][j-1], A[i-1][j]), while others are from the previous time

step (i.e., A[i][j], A[i+1][j], A[i][j+1]), resulting in a wavefront computation pattern.

A[i][j] = (A[i][j] + A[i][j-1] + A[i-1][j] + A[i+1][j] + A[i][j+1]) / 5;

To express the computation in the compensation-based parallelism pattern in § 6.3, we map (�,
◦) to (+, ·) and b0, b1, b2 to 0.2. Obviously, the operator + and · satisfy the requirements of the

Theorem 1.

Smith-Waterman (SW) [140]: It is a well-known algorithm to align the input sequences a and

b. A[i][j] stores the maximum score for aligning the sub-sequences 0-i of a and 0-j of b. The

s(i,j) is the substitution function (i.e., b2) to check if the corresponding amino acids are same at

i of a and j of b. The constant 2 is the insertion/deletion penalty (i.e., b0 and b1). For the operators,

we map (�, ◦) to (max,+). Note, max is a binary operator, but for brevity, we put four operands

in this form.

A[i][j] = max(A[i][j-1] - 2, A[i-1][j] - 2, A[i-1][j-1] + s(i,j), 0);

Summed-area Table (SAT) [118]: It is used to accelerate texture filtering in image processing,

where A[i][j] stores the sum of all pixels above and to the left of the point (i,j). Thus, p[i][j]

is the pixel value (i.e., b2). In addition, the operator ◦ is equal to � and is +; b0 and b1 are both

0. Note that, the computation order in the compensation-based method discussed in the previous

section is along the j-direction. In this case, all entries at the row i − 1 have been updated when

processing the row i. As a result, the negation on A[i-1][j-1] will not affect the correctness.

110

A[i][j] = p[i][j] + A[i][j-1] + A[i-1][j] - A[i-1][j-1];

Integral Histogram (IHist) [125]: It extends the SAT and enables the multi-scale histogram-based

search. In this method, A[i][j] is the histogram position for a bin z of its top-left sub-image,

and thus, Q(i,j,z) checks if the pixel (i,j) belongs to bin z or not (i.e., b2). The other parts are

similar with SAT: ◦ is equal to � and is +; b0 and b1 are both 0.

A[i][j] = A[i][j-1] + A[i-1][j] - A[i-1][j-1] + Q(i,j,z);

6.5 Design and Implementation on GPUs

This section presents our efficient design of the compensation-based parallelism on GPUs. Because

Equation II-1 and Equation II-3 naturally present no dependencies between neighboring entries and

are easy to parallelize, we focus on Equation II-2, the compensation step.

6.5.1 Compensation-based Computation on GPUs

For the compensation step, based on Equation II-2, we can transform the computation to a fixed

number of operations, i.e., Bi,j = (Bi,j−1 ◦ b0) � (Ãi,j−1 ◦ b0) for the case of ◦ �= �, andBi,j =

Bi,j−1 �(Ãi,j−1 ◦b0) for the case of ◦ = �. This method is used by previous research [87]. However,

it will make every cell in B to depend on all preceding entries, causing strong data dependencies.

Besides, the two formulas indicate different strategies to cope with parallelization, setting obstacles

for the implementations on GPUs.

Therefore, we propose the efficient scan- and weighted scan-based methods to process the

compensation computation. For the case of ◦ = �, because all previous Ã contribute equally to

current B, they only need to add a single b0 on the operator (◦). For example, to calculate B1,3,

Ã1,0◦b0, Ã1,1◦b0, and Ã1,2◦b0 are used and each of them only needs to add a single b0 on the operator

without the consideration of the index. This actually corresponds to a typical scan operation, which

has be well understood on GPUs [163]. However, the case ◦ �= � is much complicated, because

each previous Ã has different impacts on current B. For example, to calculate B1,3, Ã1,0 ◦ 3b0,

111

Ã1,1 ◦ 2b0, and Ã1,2 ◦ b0 are applied2. Thus, the index (or distance) information of each operand

has to be considered. We call this as the weighted scan pattern and its parallel design is shown in

Figure 6.5.

Weighted Scan Weighted Shift

Figure 6.5: Parallel design of the weighted scan-based compensation computation. The operands lhs and

rhs represent the left-hand side and the right-hand side of the � operator.

In the design, we conduct the compensation computation in two stages. (1) the weighted scan.

This is an iterative computation to consider the effects of each preceding operand lhs on the current

operand rhs. Suppose the size of the input array Ã is n, we need log2n steps (from log2n− 1 to 0)

to finish the weighted scan. In each step, an entry lhs will contribute the weight (2i)b0 to the entry

rhs with the distance (2i). For example, as shown in the figure, when the input array is 4, there

are 2 steps in the weighted scan. In the step i = 1, the lhs operand Ã0 contributes (21)b0 to the rhs

operand Ã2, leading to (Ã0 ◦ (21)b0) � Ã2 on the position of Ã2. Note, if the position of rhs is less

than the current distance 2i, the lhs doesn’t need to contribute anything to rhs. (2) the weighted

shift. According to Equation II-2, Bi,j stores only the summation of previous weighted Ãi,u with u

up to j − 1. Thus we need to compensate the previous results from the weighted scan to eliminate

the effects of current operand. This can be achieved by shifting each item and add an additional

weight b0, as shown in the right part of Figure 6.5.

In order to better fit the underlying architecture of GPU, our implementation carries out the

warp-aware SIMD computation by explicitly operating data at the register level. Algorithm 6.2

shows our weighted scan GPU kernel for the operator (+, ·). The function blk wscan in line 2

2In the following sections, for brevity, the coefficient before b0 means the number of ◦ operations on b0, e.g., 2b0
equals to

∏2
k=1 b0.

112

processes data assigned to each block. First, we load current data to rhs (line 8-9), followed by a

series of warp-level shuffle operations to realize the inner-warp weighted scan (line 11-15) using

the scaling weight w with the distance i (line 13). The intermediate results are stored on shared

memory. Then, a single thread will handle the inter-warp weighted scan over the intermediate

results, where the weight grows by the distance of a WRP SIZE (line 18-26). Finally, we broadcast

the values on shared memory (representing the effects from preceding warps) to the local value in

current warp; still, the weight should be scaled up with the local index (line 29). Note, in line 31,

f determines if an additional weight w is needed for modifying the current value (corresponding to

the aforementioned weighted shift).

The function cpst based comput in line 34 is a recursive function to deal with the data

exceeding a block size and the basic case is identified in line 39. The function blk wreduce is

a variant of blk wscan to perform weighted reduction operations over the data for each block,

whose intermediate results are stored in part d. Then, we recursively call the weighted scan to

process part d using the weight with the distance of BLK SIZE (line 45). At last, blk wscan is

used to carry out the inner-block weighted prefix sum (line 47).

Algorithm 6.2 Weighted prefix sum for the operator (+, ·)
1 __global__ // BLK SIZE: block size; WRP SIZE: warp size
2 void blk_wscan(float *in, float *out, int n,
3 float w, float *partial, bool f) {
4 __shared__ float smem[BLK_SIZE/WRP_SIZE];
5 // gid: global idx; tid: thread idx; bid: block idx;
6 // lid: lane idx; wid: warp idx;
7 float rhs, lhs;
8 if(tid == 0) rhs = partial[bid];
9 else rhs = (gid<n)?in[gid-1]:0;

10 /* Inner-warp weighted prefix-sum */
11 for(int i = (WRP_SIZE>>1); i >= 1; i >>= 1) {
12 lhs = __shfl_up(rhs, i);
13 if(lid >= i) rhs = lhs*__powf(w, i) + rhs;
14 }
15 if(lid == WRP_SIZE-1) smem[wid] = rhs;
16 /* Inter-warp weighted prefix-sum */
17 __syncthreads();
18 if(tid == 0) {
19 float lhs2 = smem[0]*w, rhs2;
20 smem[0] = partial[0];
21 for(int i=1; i<BLK_SIZE/WRP_SIZE; i++) {
22 rhs2 = smem[i];
23 smem[i] = lhs2;
24 lhs2 = lhs2*__powf(w,WRP_SIZE)+rhs2*w;
25 }}
26 __syncthreads();
27 /* Inner-warp broadcast */

113

28 rhs = rhs +
29 ((!lid)?smem[wid]:smem[wid]*__powf(w, lid));
30 /* Modification */
31 if(f) if(tid != 0) rhs *= w;
32 if(gid < n) out[gid] = rhs;
33 }
34 void cpst_based_comput(float *in, float *out, int n,
35 float base, float w, bool f=true) {
36 dim3 blks(BLK_SIZE, 1, 1);
37 dim3 grds(CEIL_DIV(n, BLK_SIZE), 1, 1);
38 // Device malloc part d for partial results
39 if(dimGrid.x == 1) {
40 // D2H: copy base to part_d
41 blk_wscan<<<grds, blks>>>(in, out, n, w, part_d, f);
42 return;
43 }
44 blk_wreduce<<<grds, blks>>>(in, out, n, w, part_d, f);
45 cpst_based_comput(part_d, part_d, grds.x,
46 base, pow(w,BLK_SIZE), false);
47 blk_wscan<<<grds, blks>>>(in, out, n, w, part_d, f);
48 }

One can also implement the weighted scan-based compensation method on GPUs by leverag-

ing the scan functions from GPU library, e.g., Thrust and ModernGPU. The appendix shows how

to prepare corresponding customized comparators for the library-based scan functions, which will

be used as one of the baselines in the evaluation.

6.5.2 Synchronizations on GPUs: Global vs. P2P

As discussed in § 6.2.3, the compensation-based method may encounter the performance degrada-

tion due to the synchronizations within and between rows. The weighted scan method can mostly

mitigate the synchronization overhead within a row; while between rows, the synchronization still

affects the performance, because existing compensation-based solutions [62, 87] schedule thread

blocks in a row-by-row manner, and each thread block have to wait for the finish of all others

before processing the next row. We call this scheduling method as the global synchronization. On

the contrary, the tile-based solutions [24, 110] use a pipeline-like mode: the tiles in a same row

will be assigned to a thread block and be processed sequentially, which guarantees the horizontal

dependencies; when the computations on a tile finish, it will trigger the processing on tiles below

through a lightweight peer-to-peer (P2P) synchronization, e.g., spin locks, which guarantees the

vertical dependencies.

Figure 6.6 exhibits these two methods to solve Algorithm 6.1 over different working matrices

114

by varying their dimensions of m and n. When m and n are close to each other, sufficient tile-level

parallelism can be exposed, since there are many parallel tiles along the anti-diagonal. Thus, in the

tile-based method, the poor performance of sequential processing at the beginning and the ending

diagonals can be effectively hidden. In this scenario, i.e., m and n are close, processing the matrix

row by row would cause high overhead due to the frequent global synchronizations. This is shown

in the right part of Figure 6.6. On the other hand, when m is much larger than n, the portion

of the beginning and ending diagonals is not negligible in the anti-diagonal-major method; in the

extreme case, the whole computation would be serialized. For example, each row/anti-diagonal

only contains a single tile, and thus, no tiles can be processed in parallel. In this scenario, as shown

in the left part of Figure 6.6, the row-major method with the global synchronization can provide

much better performance.

Figure 6.6: Performance comparison between the row-major computation with global sync. and the anti-

diagonal-major computation with peer-to-peer (p2p) sync. The row-major kernel is based on our weight

scan based method, while the diagonal-major kernel is based on a tiled solution [24].

6.5.3 Putting Them All Together

As discussed in the previous subsection, there is no single scheduling and synchronization method

that can fit in different scenarios of workloads. Therefore, we propose a two-level hybrid method

for wavefront problems, as shown in Figure 6.7. We use the compensation-based computation for

the matrices which can expose sufficient parallelism for each row and the row number is limited to

reduce the overhead of the global synchronization; otherwise, we switch to a tile and compensation

hybrid method that organizes data into tiles and utilize p2p synchronization between tiles, while

115

inside each tile, still uses the compensation-based method to accelerate the computation. To find

the optimal switching points, we build a simple offline auto-tuner based on the logistic regression

to learn how the software and hardware configuration factors, including the operational intensity

on each entry, the m and n of working matrix, and the generation of GPUs, determine the switch

point. In the evaluation, we take 200 combinations of factors to determine the likelihood function

offline.

In
pu

t A
na

ly
ze

r

Proposed hybrid method
Different wavefront problems

& workspace matrices
Compensation-based Comput. + Global Sync.

Compensation-based Comput. + P2P Sync.

Switching
point

Data dependency
Comput. direction
Spin-lock

Figure 6.7: Proposed hybrid method to adapt the computation and synchronization to different wavefront

problems and workspace matrices.

6.5.4 Library-based Implementations

It is invalid to use ‘address-of’ operator (&) for indexing on GPUs, since the data are controled

explicitly in memory hierarchies with different address spaces. Moreover, restricted by the inter-

face of comparators, we can only define the behavior of two given operands rather than the scan

itself. Based on these, we implement the custom comparator in Algorithm 6.3. A new data struc-

ture concat t is introduced to associate the original value v, its index i, and the flag f to mark if

its distance needs modification (weighted shift). Then, the comparator is shown from line 6: k is

the distance between the two operands to add weights on lhsv in line 11 or 14. f makes sure the

weight is modified if the weighted shift occurs (e.g., line 11). The branch in line 10 guarantees the

lhsv is always preceding rhsv.

Algorithm 6.3 Custom comparator in library-based solution for Algorithm 6.1, where the operator combination is

(+, ·) and the weight is 0.5.

1 typedef struct {

116

2 float v; int i; bool f = false;
3 } concat_t;
4 template<typename T=concat_t> struct bin_opt {
5 __device__
6 T operator()(const T &lhs, const T &rhs) const {
7 int k = abs(rhs.i - lhs.i);
8 float lhsv, rhsv;
9 int idx = max(lhs.i, rhs.i);

10 if(lhs.i < rhs.i) {
11 lhsv = lhs.v * __powf(0.5, lhs.f?k:k+1);
12 rhsv = rhs.v * (rhs.f?1:0.5);
13 } else {
14 lhsv = rhs.v * __powf(0.5, rhs.f?k:k+1);
15 rhsv = lhs.v * (lhs.f?1:0.5);
16 }
17 T res(lhsv+rhsv, index, true);
18 return res;
19 }};

6.6 Evaluation

We conduct the experiments on two generations of NVIDIA GPUs, i.e., Tesla K80 and P100. The

specifications are listed in Table 6.1. First, we evaluate the performance of the core kernel in the

compensation-based solution. Then, we investigate how the tile sizes affect the performance of our

hybrid method. Finally, we report on the performance of the wavefront problems solved by our

method compared with state-of-the-art optimizations.

Table 6.1: Experiment Testbeds

Tesla K80-Kepler Tesla P100-Pascal

Cores 2496 @ 824 MHz 3584 @ 405 MHz

Multiprocessors (MP) 13 56

Reg/Smem per MP 256/48 KB 256/48 KB

Global memory 12 GB @ 240 GB/s 12 GB @ 720 GB/s

Software CUDA 7.5 CUDA 8.0

6.6.1 Performance of Compensation-based Kernels

We first study the weighted scan performance in the compensation-based solution by comparing

the performance of our own design in Algorithm 6.2 with the scan functions based on Thrust and

ModernGPU. The customized comparators for the library-based solutions are shown in appendix.

As indicated by the four wavefront problems in § 6.4, we only need three combinations of binary

117

operators, i.e., (+, ·), (max,+), and (+,+). The input matrices contain random sizes of m and n

varying from 214 to 228.

Figure 6.8: Throughput comparison of the weighted scan kernels.

As shown in Figure 6.8, for the case of ◦ �= �, i.e., (+, ·), (max,+), our design can yield

significant performance improvements over Thrust and ModernGPU, achieving an average of 3.5x

(4.7x) and 2.4x (3.9x) speedups on K80 (P100). The implementation of ModernGPU explicitly

exploits GPU register for data reuse and permutation3. However, our implementations not only

take advantage of GPU registers, but also optimize the performance due to the following two rea-

sons: (1) we calculate the distance-related weights more efficiently within the kernels; while the

library-based methods put all the checking and calculating in the comparators, leading to redun-

dant computations; (2) our algorithm directly operates on the original data and keep track of their

location in GPU kernels; while the library-based design has to pack and unpack such information

before and after the actual computation, causing extra performance penalty.

For the case of ◦ = �, i.e., (+,+), where there is no need to deal with the varied weights,

3Since ModernGPU is an open source library, our analysis for library-based solutions is mainly based on it.

118

our solution falls back to a typical scan algorithm and can achieve comparable performance to

the highly-optimized library codes. We also observe that our design is particularly effective for

the middle range of input sizes. For example, it can deliver an average 5.5x improvements for

the inputs ranging from 216 to 222 on P100. This is due to the different parallel strategies. In

ModernGPU, each thread is “coarsened” to handle multiple data elements to better utilize the on-

chip memory. However, this might result in the degraded GPU occupancy that less threads can be

running in a multiprocessors (MP) to hide memory latency for middle-sized inputs. As a contrast,

considering the potential heavy use of registers for the weight computation, we schedule a thread

to process one element at one time. Besides, this thread-data scheduling strategy can also avoid

uncoalesced memory transaction.

6.6.2 Performance of Hybrid Kernels

Optimal Tile Sizes

Our hybrid method conducts compensation-based computation in tiles when sufficient parallelism

is available on anti-diagonals. Thus we first investigate how the tile sizes influence the perfor-

mance. In the experiment, a large square matrix of 215x215 is used to represent the case with

sufficient anti-diagonal parallelism. In addition, we maximize the shared memory usage (40 KB

for each block and other 8 KB for the inter-warp weighted prefix-sum), by using the persistent

thread block mechanism [24, 160], where each MP only hosts one thread block to avoid dead-

lock for the spin-lock in the p2p synchronization. The tile sizes (height * width) are shown in

Figure 6.9. The width corresponds to the thread block size, meaning threads will perform the row-

major compensation-based computation. In Figure 6.9, we observe that our hybrid method prefers

rectangular tiles, because they allow more threads to handle entries in parallel and the resources

of registers and shared memory for intermediate values can be more efficiently utilized. For the

SOR and SW, the complex weight computation needs more thread warps per block to exploit the

high parallelism and data reuse in registers. In contrast, for the SAT and IHist, the computation

is relatively simple and small blocks are sufficient. In the following experiments, we set tile sizes

119

to 10x1024 for SOR and SW on K80 and P100, and 20x512 (40x256) for SAT and IHist on K80

(P100). For the other tiling-based solutions, i.e., tile and hypertile method in § 6.6.2, similar tun-

ing procedures are performed, and we select the best tile sizes for them (i.e., the tiles 80x128 or

40x256).

Figure 6.9: Performance of our hybrid method with varying tile sizes (height * width).

Comparison to Previous Work

Now, we evaluate the wavefront problems optimized by our method and state-of-the-art solutions.

We fix the total size of the working matrix A to 230 with varying dimensions as shown in Fig-

ure 6.10. The dashed vertical lines mark the switching points in our hybrid method to use the

global and p2p synchronization, whose calculation is based on the auto-tuner presented in § 6.5.3.

For the tiling-based methods, the tile kernel uses the original row-major data layout, while the

hypertile uses the hyperplane tiles with the anti-diagonal major layout via the affine transforma-

tion. Most of the codes can be found in previous research [24]. For the library-based strategy,

lib-mgpu and lib-thrust are the compensation-based solution with the global synchronization using

ModernGPU and Thrust libraries, respectively.

We first focus on the left parts of the vertical dashed lines, where our hybrid methods use

the weighted scan with the global synchronization. For SOR and SW, the library-based solutions

can achieve an average of 3.7x (4.3x) speedups over tiling-based ones on K80 (P100), because a

matrix (height * width) with the longer width can expose more parallelism in a row and at the same

time the shorter height places less demands on global synchronization. These scenarios will cause

severe serialization of tiling-based solutions, which explains the drastic improvements from our

120

Figure 6.10: Performance comparison of the library-based (lib-thrust, lib-mgpu), tiling-based (tile, hyper-
tile) and our hybrid method on different input matrices (height * width). The transformation of data layouts

in hypertile is also presented. The vertical dashed lines indicate the switch points in our method.

solution of up to 22.1x (43.3x) speedups on K80 (P100). Compared to the library-based solutions,

our design can provide an average of 1.9x and 3.1x speedups on K80 and P100, respectively. This

can mainly attribute to our native support to the complex weight computation and elimination of

pack and unpack overhead, as discussed in § 6.6.1. For SAT and IHist, our design can deliver the

significant speedups: up to 4.8x (6.5x) speedup over the library-based solutions on K80 (P100)

when the width of the input matrix falls into the range of 216 to 222, which is consistent with the

results in § 6.6.1.

Then, we focus on the right parts of the dashed lines, where our hybrid methods switch to

the p2p synchronization. In these cases, the performance of library-based solution deteriorates

121

significantly, as more expensive global synchronizations are required. As a contrast, the tiling-

based solutions exhibit superior performance as the square-like matrices contain more parallel tiles

along anti-diagonals. Compared to the tile kernel, our solution takes advantage of both row-major

computation and lightweight local synchronization, achieving an average of 3.6x (3.1x) speedups

on K80 (P100). For the hypertile kernel, its computation is improved significantly for the square-

like matrices due to the increased number of entries in each tile that exposes more parallelism

opportunities; however, the transformation overhead becomes non-negligible. Our method, by

contrast, is able to provide an average of 1.1x speedup on K80 if the transformation overhead is

considered, and on P100 we can achieve to an average of 1.8x speedup. Even if we only consider

the computation part, our method can still yield an average of 1.3x speedups on P100.

6.6.3 Discussion

Precision: For the integer datatype, our compensation-based method can obtain exactly same

results with the original methods, e.g., tiling-based ones. However, we also need to consider the

precision for float and double datatypes, because changing the computation order may lead to

different rounding results. In SOR experiments, we observe the small relative errors are around

10−6 if the float datatype is used. The error can be further reduced to 10−8 for double datatype.

We believe this is acceptable to the applications using float and double datatypes.

Generality: Theorem 1 poses the requirements on the operators ◦ and � along the horizontal di-

mension; however, in practice, the requirements can be loosened or differentiated along the vertical

and diagonal dependencies (e.g., the negation in SAT from § 6.4). On the other hand, the proof

demonstrates this compensation-based method only relies on standard properties of binary opera-

tors. Therefore, it could benefit applications in a more general data dependency (e.g., FSM [85])

than the wavefront pattern that only has the dependencies with the horizontal, vertical, and anti-

diagonal neighbors.

122

6.7 Chapter Summary

In this chapter, we target on the compensation-based parallelism for wavefront loops on GPUs.

We prove that for the compensation-based method, if the accumulation operator is associative and

commutative, and the distribution operator is either distributive over or same with the accumulation

operator, breaking through the data dependency and changing the sequence of computation opera-

tors properly will not affect the correctness of results. We also propose a highly efficient design of

the compensation-based parallelism on GPUs, which uses the weighted scan-based GPU kernels to

accelerate the computation and the tiling method to optimize data access and synchronization. Ex-

periments demonstrate that our work can achieve significant performance improvements for four

wavefront problems on various input workloads.

Chapter 7

Data Reuse in Stencil Computations

7.1 Introduction

Spatial blocking is a critical memory-access optimization that seeks to put spatially reusable data

in fast memory (e.g., L1 cache, scratchpad memory, or registers) before actual computation. It has

been proven to be effective in utilizing the parallel computing potential of modern accelerators,

especially for stencil kernels, where the kernels perform the same computations and data-access

patterns over each cell in a multi-dimensional grid. Extensive research efforts have been taken to

explore different blocking schemes and develop high-performance stencil programs [117, 61, 128,

129].

In stencil computations, each cell is visited multiple times by its neighbors with the com-

putation sweeping over a spatial grid. Consequently, cache blocking should be done to avoid

unnecessary off-chip DRAM loads. Besides global memory, modern GPUs come with multiple

low-latency cache levels within each compute unit (CU): (1) L1 cache: hardware-managed cache;

(2) scratchpad memory: fast, programmable memory that is shared by threads assigned to the same

CU, but which developers must explicitly manage; and (3) registers: fastest memory that can be

accessed by each thread. In addition, recent GPUs support data exchange between threads in the

same wavefront [9] or warp [120].

Different spatial blocking techniques have been proposed for these caches. By using scratch-

123

124

pad memory, one can explicitly load the requisite stencil data into cache from global memory.

Then, all the working threads synchronize before doing the actual computation. After the compu-

tation, the results are stored back to global memory [117]. With the regularity of access pattern in

stencils (based on Cartesian grids), simply relying on the L1 cache can also provide competitive

performance [149, 111, 80]. That way, developers only need to focus on the workload partitioning

and thread organization. In addition, the advent of register-based data exchange between threads

enables each thread to load data into its individual registers and then directly communicate with

the threads who own its neighboring data [61, 25, 73].

However, optimizing stencil kernels via spatial blocking introduces three major challenges.

First, writing blocking code requires substantial coding effort – especially when using registers, as

developers must handle the complex and convoluted data communication patterns amongst threads.

For stencils with different dimensionalities, where communication patterns must change accord-

ingly, developers must possess extensive coding expertise to reorganize the threads and recalculate

the data exchange patterns. Second, different GPU architectures have different ISAs, specifica-

tions, and run-time configurations – all of which impact the communication patterns, and in turn,

lead to rewriting of the stencil codes. For example, the sizes of hardware scheduling unit (e.g.,

wavefront) and data exchange instructions differ between AMD and NVIDIA GPUs, causing is-

sues with code portability for the stencil kernels. Third, even when a selected stencil is mapped

onto a selected GPU, the redesign of the kernel still requires changes in the target cache levels (e.g.,

scratchpad memory or registers) or blocking strategies (e.g., 2D, 2.5D, or 3D blocking schemes).

While existing stencil frameworks for parallel code generation and performance auto-tuning

focus on mapping an entire stencil computation onto an accelerator with dedicated blocking op-

timizations [147, 112], we focus on a cross-platform framework called GPU-UNICACHE that

automatically generates spatial blocking codes for different stencils, GPU architectures, and cache

levels, while still allowing developers the option to change their desired stencils. That is, GPU-

UNICACHE analyzes the characteristic parameters of both stencils and GPUs as input and gen-

erates highly-optimized blocking codes for the designated cache level. For example, for register-

based methods, the GPU-UNICACHE framework handles the distribution of grid data to minimize

125

register conflict and realizes the communication patterns of given blocking strategies by minimiz-

ing the number of permute/shuffle instructions.

The contributions of our work include the following: (1) GPU-UNICACHE, a framework to

automatically generate spatial blocking codes for stencil kernels on GPUs, and (2) a comprehensive

evaluation of the GPU-UNICACHE framework on AMD and NVIDIA GPUs. GPU-UNICACHE

not only improves programming productivity by unifying the interfaces of spatial blocking for

different stencils, GPU architectures, and cache levels; but it also provides high performance by

optimizing data distribution, indexing conversion, thread communication, and synchronization to

facilitate data access in GPU kernels. Compared to hardware-managed memory (L1 cache), with

single-precision arithmetic, our automatically-generated codes deliver up to 1.7-fold and 1.8-fold

speedups at the scratchpad memory level and register level, respectively, when running on an AMD

GCN3 GPU and up to 1.6-fold and 1.8-fold, respectively, when running on a NVIDIA Maxwell

GPU. For double precision, it delivers up to a 1.3-fold speedup on both GPU platforms. Compared

to the state-of-the-art benchmarks (incl. Parboil [141], PolyBench [126], SHOC [54]), it can also

provide up to 1.5-fold improvement.

7.2 Motivation and Challenges

7.2.1 Stencil Computation

A stencil computation defines the point p in a multi-dimensional grid at time t (stored in v) that is

updated based on a function f of surrounding grid points P at the previous time step t− 1 (stored

in u). It sweeps the stencil computation over all the points at t before moving to the next time step

t+ 1 and then the next. The stencil order h defines the distance between the central point p and its

farthest neighbor q ∈ P. The stencil size N is |p⋃P|. Equation (7.1) shows a stencil computation

pattern in a 2-dimensional (i.e., 2D) grid; its h is 1; and N is 5. For brevity, we refer to this stencil

as “2D5Pt.”

vi,j = f(P) = a0ui−1,j + a1ui+1,j + a2ui,j + a3ui,j−1 + a4ui,j+1 (7.1)

126

Due to the application-specific f, there exists no common libraries for stencils that users can directly

use without defining the specific stencil patterns. Thus, to evaluate the potential benefits of our

GPU-UNICACHE library framework, we collect a benchmark of stencils representing different

dimensionalities and memory-access patterns, as noted in Table 7.1. Although we distinguish

between low and high data-reuse kernels for each dimensionality, their arithmetic intensities (AI),

defined as FLOPS/byte [155], are similar.1 Additionally, data-access patterns differ in that one-

dimensional (i.e., 1D) stencils make unit-stride access, whereas higher-dimensional stencils make

non-contiguous access of memory. Irrespective of the access pattern, if the data can be ideally

cached and reused, the stencil computation will benefit with respect to performance.

Table 7.1: Summary of the stencil computations

Name jacobi-1d [126] gaussian X7 [177] jacobi-2d [126] seidel-2d [126] heat-3d [126] jacobi-3d [55]

Stencil 1D3Pt 1D7Pt 2D5Pt 2D9Pt 3D7Pt 3D27Pt

h 1 3 1 1 1 1

N 3 7 5 9 7 27

#FLOPS 5 13 9 17 13 53

Bytes 12 28 20 36 28 108

AI 0.42 0.46 0.45 0.47 0.46 0.49

7.2.2 Spatial Blocking Schemes

In spatial cache-blocking optimizations, one needs to load data into the cache, and then do the

stencil computation using the cached data before the results are stored back to global memory.

Figure 7.1 shows examples of different blocking schemes. A 2D stencil can be optimized by using

2D tiles. Likewise, for 3D stencils, a 3D block is a natural way to buffer data for high reuse.

Alternatively, one can use a 2D-slice layout, allowing stencil computations to be carried out from

the bottom to the top (i.e., 2.5D blocking). In addition, temporal blocking [117], consisting of

multiple rounds of spatial blocking within the cache, can also be used.

Figure 7.1 shows which data domains are loaded into the cache. However, when designing real

GPU kernels, one must explore implementation details, such as how to load domain data. As shown

in the figure, when loading a 2D-square tile, the task of loading boundary points (Bs) outside the

1We use the Roofline model with emphasis on loading data from memory of a machine model without cache.

127

2D blocking 2.5D blocking 3D blocking
sq tile rect tile

3D stencil problem2D stencil problem

x
y z

x
y z

x
y

x
y

B B B B B
B C C C B
B C C C B
B C C C B
B B B B B

Figure 7.1: Blocking schemes for 2D and 3D stencils.

current tile is assigned to point Bs rather than Cs. This method introduces branch divergence to

the GPU kernels. Alternatively, with an (additional) amount of remapping calculation, the data

can be evenly assigned to threads (not shown in the figure). In addition, when loading data, one

must decide on either a square tile for high data reuse or a rectangle tile for more regular memory

access. All the above choices will affect the later realization of fetching data from caches, which

in turn, produces significant performance differences (as captured in Figure 7.2b).

On the other hand, the temporal cache-blocking essentially adds another dimension (i.e. time)

to the spatial blocking by conducting multiple rounds of computations over reusable data (loaded

in cache). This procedure also follows a fixed or predictable pattern, which matches the idea of our

GPU-UNICACHE framework. However, considering that the spatial blocking is more fundamental

and essential in blocking techniques, we focus on analyzing the patterns in spatial blocking for

stencils in this paper. Our idea is general and can be used to construct temporal blocking as

reported in previous research [117, 129].

7.2.3 Challenges

Performance It is critical to take advantage of the cached memory hierarchy in a GPU via blocking

optimizations. Though modern GPUs provide different options, such as L1 cache, scratchpad

memory, and registers, it is still unclear where data should be cached for the different stencils.

Figure 7.2a shows two types of stencils (i.e., jacobi-2d and jacobi-3d) that prefer different cache

options for the same platform. On the other hand, for the different blocking strategies, developers

need to adjust the optimizations to achieve best performance. Figure 7.2b shows the diversified

128

performance of “seidel-2d” stencil on two types of caches (i.e., LDS and registers), for each of

which we use different loading styles. These simple examples illustrate the challenges encountered

by programmers when implementing stencil codes on GPUs. They also demonstrate that choosing

a “one-size-fits-all” optimization strategy for any kind of stencil or GPU would be ineffective.

(a) Diff Stencils/GPUs (b) Diff Variants

Figure 7.2: Diversified performance of stencils under different situations. BRC and CYC refer to different

loading modes, while 1DWav and 2DWav mean different wave layouts (discussed in § 7.5).

Programmability The second challenge encountered by developers is the programmability

issue. They might be involved in complex implementation details, where, for example, one needs to

figure out how to efficiently organize domain data into individual registers across threads in a wave

while using registers as cache. Many other factors can affect how GPU kernel codes are written,

including stencil types, GPU architectures, and blocking strategies. To address these issues, we

present a framework called GPU-UNICACHE to automatically generate spatial-blocking codes

that manage data reuse within a GPU.

7.3 GPU-UniCache Framework

Figure 7.3 highlights the major components of our GPU-UNICACHE framework: (1) feature ex-

traction, (2) code generation, and (3) stencil buffer library. Feature extraction discovers the user-

defined conigurations, the stencil types, and the underlying GPU platforms. Code generation au-

tomatically produces stencil codes for the different cached systems, i.e. L1 cache, scratchpad

129

memory, and registers. In essence, the codes focus on loading from and storing to the global

store, during which GPU-UNICACHE needs to deal with problems like indexing, synchroniza-

tion, workload partition, and thread communications. Finally, the stencil buffer library wraps the

generated codes inside a set of functions with uniform interfaces. We provide details of how our

GPU-UNICACHE library framework works below.

Framework

Inputs
Analyzer

• Stencil types;
• GPU configs;
• Block configs;
• …

Code
Generation

L1-Cache
Model

LDS-Cache
Model

Reg-Cache
Model

Unified
Caching
Interface

Stencil
Buffer Lib

Figure 7.3: An overview of the GPU-UNICACHE framework.

At the first step, the inputs analyzer component conducts analysis on the user input parameters

and some features extracted from the underlying GPU platforms. This information includes stencil

types (e.g., stencil order, stencil size), block configs (e.g., block and warp dimensions, blocking

strategies), GPU specifications (e.g., built-in warp size, ISAs about data exchange). These param-

eters assist the framework in realizing the generalized stencil patterns.

The code generation component uses three models on each cache level for given stencils.

In L1-cache model, it mainly uses the hardware’s capability to access the contiguous data. In

scratchpad memory model, it solves the problem of eliminating branches, index conversion under

different blocking strategies. In register model, it solves how the data are distributed into registers

of each thread, and how the threads communicate with each other to obtain desired neighbors.

The generated codes are for three purposes: cache declaration, which allocates required space

for scratchpad or registers; cache initialization, which loads central and halo data from global

store; cache fetch, which fetches the desired data by using the offsets away from the current point.

The codes are finally wrapped into a set of functions by the stencil buffer library component.

Developers can call the functions through unified interfaces to design dedicated stencil kernels for

efficacy.

130

7.3.1 GPU-UNICACHE API

The GPU-UNICACHE library provides the operation functions for moving data between on-chip

storage and off-chip DRAM memory for stencil computations. Figure 7.1 lists the cache classes

and their core member functions. The GPU-UNICACHE API is object oriented. The base class

defines interface to initialize the cache, i.e. init(), and access the locations with given rela-

tive offsets, i.e. fetch(). Since all these member functions are executed on GPU devices, we

have device qualifiers for NVIDIA GPU, and [[hc]] attribute specifiers for AMD GCN3

GPU. Internally, the classes use load() and store() to access locations in cache using local

indices. Sub-classes are devised for different cache storage.

Algorithm 7.1 Interface of GPU-UNICACHE functions

1 template<class T>
2 class GPU_UniCache
3 {
4 protected:
5 virtual T _load(int z, int y=0, int x=0)=0;
6 virtual void _store(T v, int z, int y=0, int x=0)=0;
7 public:
8 virtual void init(T *in, int off, int mode=CYCLIC)=0;
9 virtual T fetch(int z, int y, int x, int tc_i=0)=0;

10 };
11 // Derived classes
12 class L1Cache : public GPU_UniCache{ ... };
13 class LDSCache: public GPU_UniCache{ ... };
14 class RegCache: public GPU_UniCache{ ... };

In Table 7.2, we list the member functions and corresponding descriptions. Note, all the

member functions need location information of the running thread, such as global or local index.

For NVIDIA GPU, no specific arguments need to be transferred to the functions, since CUDA

supports built-in constants regarding the thread index. For AMD GCN3 GPU, we need to explicitly

transfer such information of tiled index by reference. For brevity, we don’t list them in the

table. In practice, developers create a inherited GPU-UNICACHE object (e.g., LDSCache) within

a device kernel to declare an empty cache space. After the data have been stored into cache,

they can use the object to get data in neighbors. We present a working example to show how the

GPU-UNICACHE API works.

131

Table 7.2: GPU-UNICACHE and its subclass member functions

Function Name Description

(Constructor)(int dz, int dy, int dx,

int h, int tc)

Constructs a specific cache, initializing its attributes of the stencil domain dimen-

sions(dz, dy, dx), order(h), and thread coarsening factor(tc).

load(int z, int y, int x) Loads data from cache using local indices(z, y, x). If only z is set, z is the register index.

store(T v, int z, int y, int x) Stores data(v) to cache using local indices(z, y, x). If only z is set, z is the register index.

init(T *in, int off, int mode) Initializes the cache from source in. The target domain will be located using info. got

from the constructor or user-defined offset off. Workload distribution can switch by

mode, which currently supports CYCLIC and BRANCH styles.

fetch(int z, int y, int x) Fetches data using the offsets(z, y, x) away from the central point.

7.3.2 GPU-UNICACHE Example

We use an example of 2D5Pt GPU kernel (Equation 7.1) in Figure 7.2 to illustrate how to use

the API. This stencil simply uses a 2D blocking optimization strategy and registers as cache. In

line 4, the kernel declares a RegCache with thread coarsening factor of 4, which means each thread

will perform 4 iterations of stencil computation over 4 points. It is demonstrated that using thread

coarsening is useful for stencils [25, 107] and we will discuss it in details in § 7.4. Then, we fill

in the register cache by calling init() member function. Here, we use the loading mode as

CYCLYC in line 5, which means the kernel will distribute all the domain data evenly into each

thread in a round-robin fashion. While performing the actual stencil computation (line 8 to 12),

users only need to provide relative offsets of target neighbors and the fetch() will figure out

where to get the data.

The GPU-UNICACHE APIs aim to facilitate the process of accessing cached data in stencils

on Cartesian grids and allow GPU programmers to develop efficient kernel codes optimized by

different blocking strategies. The codes can be easily changed to work on another cache levels for

more efficiency. We can also use multiple types of caches at the same time by declaring different

GPU-UNICACHE objects. This could benefit programs which place significantly high resource

pressure on a single type of cache. More importantly, the kernel codes are portable across different

GPU platforms. We will cover how the GPU-UNICACHE framework assists in automatically

generating the codes for these functions in § 7.4.

132

Algorithm 7.2 Example of 2D5Pt stencil CUDA kernel using RegCache APIs with thread coarsening factor csr fct of

4, which means each thread will update 4 cell points. The current cell point is located by using csr id.

1 __global__
2 void kern_2d5pt(float *in, float *out, float a0-4)
3 {
4 RegCache<float> buf(m, n, h, 4);
5 buf.init(in, 0, CYCLIC);
6 // each thread processes 4 points since csr_fct = 4;
7 for (csr_id = 0; csr_id < 4; csr_id++)
8 out[/*global_idx w/ offset csr_id*/] = a0 * buf.fetch(-1, 0, csr_id)+
9 a1 * buf.fetch(0,-1, csr_id)+

10 a2 * buf.fetch(0, 0, csr_id)+
11 a3 * buf.fetch(0, 1, csr_id)+
12 a4 * buf.fetch(1, 0, csr_id);
13 }

7.4 Code Generation

In this section, we put emphasis on the register and scratchpad memory methods, since both meth-

ods need to explicitly handle how to access the data. For the member functions of sub-classes in

§ 7.3, we generate the real codes based on our generalized code constructs and algorithms.

7.4.1 Input Parameters

The input parameters are used by the framework to understand the features of target stencil and

running environment. Table 7.3 shows the list of the required parameters in three types. Among

them, the crs fct and crs dim are used specifically for thread coarsening in RegCache methods.

RegCache methods handle the computation based on the unit of wave, whose thread number is

usually much smaller than a thread block, meaning we need to load more halo data. In contrast,

thread coarsening [107] is an optimization technique to increase the workload of each thread and

enable loaded data to be more reused. Therefore, we use thread coarsening to compensate low

data-reuse rate in RegCache methods.

133

Table 7.3: List of input parameters for the code generation

Parameter Name Description
User-defined thread layout

blk dim[3] Thread block dimensions in exponent notations (with a base of 2). The least significant di-

mension is blk dim[0].

wav dim[3] Wave dimensions in exponent notations (with a base of 2). The least significant dimension is

wav dim[0].

crs fct Thread coarsening factor. It defines the number of iterative process the wave will conduct.

crs dim Thread coarsening occurs along which dimension.

Stencil computation characteristics
h Stencil order.

N Stencil size.

sten dim Stencil dimensionality.

GPU architecture characteristics
blk sync() Built-in block-level synchronization barrier.

wav size Number of threads in a wave.

wav shfl(v, id) Machine-dependent register-level data exchange instruction. Data exchange occurs between

calling thread and thread id on value v.

7.4.2 RegCache Methods

We first look at a specific example of “2D9Pt” stencil and analyze its data distribution and com-

putation patterns. Figure 7.4 shows a wave with thread layout of 2× 4 = 8 (i.e., wav dim[1] = 1

and wav dim[0] = 2) loads required grid points of 4 × 6 = 24 (i.e., h = 1). The 24 points are

distributed evenly into registers of each thread in a round-robin fashion, meaning �24/8� = 3 it-

erations and registers are needed. To achieve this CYCLIC loading method, we map these threads

to assigned points by using (y, x) = ((i · wav size + tid)/(2wav dim[0] + 2h), (i · wav size +

tid)%(2wav dim[0] + 2h)), where tid is thread index and i is iteration number. Therefore, for exam-

ple, thread 0 will deal with points (0,0), (1,2), (2,4) and store them in register r, s, t respectively.

The destination points (gray area) are updated by fetching registers from their neighbors.

However, this raises two further questions: 1, which threads to communicate with; 2, which regis-

ters store the desired neighbors. We observe from Figure 7.4 that these information can be calcu-

lated from neighbors of thread 0 in the wave (located in the red circle). For example, when handling

the northeast (NE) neighbors, we need to know the first neighbor is stored in register 0 (r) of thread

2. Then, the other neighbor thread index and register index can be calculated by each thread ap-

plying (tid+2+ tid/2wav dim[0] · 2h)%wav size and 0+ (2+ tid/2wav dim[0] · 2h+ tid)/wav size

respectively. That way, thread 0 will interact with thread 2 on register 0 (r), and simultaneously,

thread 4 will fetch value of register 1 (s) of thread 0.

134

0r 1r 2r 3r 4r 5r

6r 7r 0s 1s 2s 3s

4s 5s 6s 7s 0t 1t

2t 3t 4t 5t 6t 7t

dom

Tailing points
dom.begin() dom.end_x()

x-axis

y-
ax

is
2r 3r 4r 5r

0s 1s 2s 3s

friend_id = (lane_id+2+(lane_id>>2)*2)&7;
tx = _shfl(r, friend_id);
ty = _shfl(s, friend_id);
return lane_id < 4? tx: ty;

Accessing NE neighbors
col_lb col_rb

Generated CUDA codes
to access NE neighbors:

Figure 7.4: Example of data exchange for “2D9Pt” stencil. The figure illustrates 2 steps of loading and

computing. For loading, all the data are distributed across threads in a 2x4 wave. The ‘2r’ in cell, for

example, means the corresponding value will be stored in register r of thread 2. For computing, the wave

updates the gray area. The thread 0 in the wave is in deep gray. The CUDA codes below are to access the

NE neighbors.

With the variety of stencils and options (e.g., thread coarsening factors and neighbor direc-

tions), manually calculating these parameters is a painful task. As size and complexity of the target

stencil grow, so does the development cost. Therefore, in our framework, we first generalize the

stencil computation in registers by means of code constructs. Then, we calculate the parameters

using our proposed formula and algorithm.

Method init(): we only support loading method of CYCLIC rather than BRANCH in

RegCache. The reasons are two-fold: (1) BRANCH mode will make boundary threads hold too

many registers and thus all the other threads in the same wave have to keep same number of “idle”

registers, leading to register pressure problem; (2) While accessing neighbors, extra branches are

needed to distinguish the meaningful from these “idle” registers. Code constructs in Figure 7.3

show how we distribute the DRAM data to registers. The remapping occurs in line 3 to 6 and the

fetched data are stored to registers (line 8).

Algorithm 7.3 Code constructs for RegCache init() method

1 // **** CYCLIC ****
2 int it = _lane_id();
3 c_0 = (wav_id0<<wav dim[0]) + it%(2wav dim[0] + 2h);
4 c_1 = (wav_id1<<wav dim[1]) + it/(2wav dim[0] + 2h)
5 %(2wav dim[1] + 2h);
6 c_2 = (wav_id2<<wav dim[2]) + it%(

∏1
k=0(2

wav dim[k] + 2h));
7 reg_id = 0;
8 _store(in(off,c_2,c_1,c_0),reg_id++);

135

9 it += wav size;

10 // repeat for
⌈∏2

k=0(2
wav dim[k] + 2h)/wav size

⌉
times

Method fetch(): Figure 7.4 exhibits the generalized data exchange code constructs to fetch

data in given direction. The neighbor thread index is represented by friend id, which depends on

the parameter F. The registers of interest are ranged from regN1 to regN3. Parameter M is the cut-

off marker to select values from different registers. Here, we only use up to three data exchange

operations to fetch the data, since this number fits in our benchmark of stencils and different wave

dimensions. For other stencils with higher stencil order, for example, it is easy to extend the pattern

to support more data exchange operations.

Algorithm 7.4 Code constructs for RegCache fetch() method

1 // **** Fetch a given neighbor ****
2 friend_id = (lane_id+F+
3 ((lane_id>>wav dim[0]*2*h))&(wav size-1);
4 tx = wav shfl(regN1, friend_id);
5 ty = wav shfl(regN2, friend_id);
6 tz = wav shfl(regN3, friend_id);
7 return ((lane_id < M1)? tx: ((lane_id < M2)? ty: tz));

Figure 7.5 shows the pseudo code of calculating the parameters based on given inputs from

Table 7.3 (Each direction of neighbors need a set of the parameters). We define a domain as a set

of points surrounding the first thread in a wave. Since threads might be coarsened by the factor of

crs fct, there are multiple domains stored in dom (line 1 and 17). In the function calculating

parameter F (line 1), the identifier of the starting point in each domain is computed in line 8. Then,

we sweep all the other points and record the relative order within the wave (line 9). The order is

the parameter F, which can be used later by other threads in the wave to find neighbors towards

the same direction (line 2 in Figure 7.4). Additionally, we record the round number in line 10,

indicating how many registers we have already used in each thread. Note, the out-of-domain

points should be skipped in line 12 to 14.

Subsequently, we need to calculate which registers are used to store the target neighbors in the

wave and how to select data from these registers. This can be achieved by computing parameters N

and M through the function in line 17. The register identifier in line 24 indicates the register storing

the first value of neighbors toward the given direction. Then, we can calculate the boundaries of

136

neighbors of the entire wave (line 27 and 28, also shown in Figure 7.4) which will be used to skip

other irrelevant points. If an incoming point is identified as using a new register in line 36 and it

is within the boundary in line 38, the new register is recorded with the counter cnt showing the

cut-off location.

Algorithm 7.5 Algorithms to calculate the F, N, and M.

1 void calculate_F(domain* dom)
2 { // compute param F used in friend_id formula
3 for(int c = 0; c < csr_fct; c++)
4 {
5 for(auto pt: dom[c]) // each point in domain
6 {
7 if(pt == dom[c].begin())

8 id = c *
∏csr dim−1

k=0 (2wav dim[k] + 2h);
9 pt.F = id % wav size;

10 pt.rid = id / wav size;
11 id++;
12 if(pt == dom[c].end_x()) // skip tailing points
13 id += 2wav dim[0];
14 if(pt == dom[c].end_yx()) //skip tailing lines
15 id += 2wav dim[1] · (2wav dim[0] + 2h);
16 } } }
17 void calculate_NM(domain* dom)
18 { // compute param N M used in data exchange patterns
19 for(int c = 0; c < csr_fct; c++)
20 {
21 for(auto pt: dom[c]) // each point in domain
22 {
23 int i = 1, j = 1;
24 int reg_id = pt.rid;
25 pt.N[i++] = reg_id;
26 int skipped_pts = pt.F + reg_id * wav size;
27 int col_lb = skipped_pts % (2wav dim[0] + 2h);
28 int col_rb = lb + 2wav dim[0];
29 int cnt = 1;
30 bool reg_update = false;
31 while(cnt < wav size)
32 {
33 skipped_pts++;
34 int col_id = skipped_pts % (2wav dim[0] + 2h);
35 int wav_id = skipped_pts % wav size;
36 if(wav_id == 0) // end of current wave
37 reg_id++, reg_update = true;
38 if(col_lb <= col_id && col_id < col_rb)
39 {
40 if(reg_update) // mark the divergence
41 {
42 pt.N[i++] = reg_id;
43 pt.M[j++] = cnt;
44 reg_update = false;
45 } } } } } }

After we calculate these parameters, we replace wav shfl() with “ shfl()” for NVIDIA

GPUs and “amdgcn bs bpermute()” for AMD GCN3 GPUs. Note, for AMD GCN3 GPUs, we

137

need to right shift the friend id by 2 (§ 2.1.2). If the datatype is double precision number, we

will first split the value into two 32-bit ones, perform two data exchange instructions, and then

concatenate the results.

7.4.3 LDSCache Methods

Method init(): The major problem encountered by using scratchpad memory is conditional

branching, since the sizes of thread block and working data domain don’t match each other. In

LDSCache, we support two loading modes: BRANCH, boundary threads handle more workloads

(i.e. halo points); CYCLIC, threads address the data domain in a round-robin fashion by remapping

themselves. This way, we can minimize the branches at the expense of more index conversion

calculation. The code constructs of BRANCH are comprised of multiple conditional statements to

assign additional workloads to boundary threads. The CYCLIC code constructs are similar with

RegCache method (in Figure 7.3), but replaced with the granularity of blk size rather than wav size.

In addition, the destination locations are changed to scratchpad memory. Note, we need to use an

explicit synchronization blk sync() at the end of loading.

Method fetch(): This method is straightforward and we only need to use the thread local

index to fetch desired data, since the loaded points follow original data layouts and are same by

using BRANCH or CYCLIC mode.

7.5 Evaluation

7.5.1 Experiment Setup

In the section, we evaluate the stencil codes using GPU-UNICACHE library. The details of the

two platforms are listed in Table 7.4. We conduct the tests using both single precision and double

precision numbers.

The benchmark of stencils are listed in § 7.2.1. We optimize them using the GPU-UNICACHE

APIs with different blocking strategies. The blocking strategies used in 1D and 2D stencils are

138

Table 7.4: Experiment Testbeds

AMD NVIDIA
Model Radeon R9 Nano GeForce GTX 980

Codename Fiji XT GM204(Maxwell)

Cores 4096 2048

Core frequency 1000 MHz 1126 MHz

Register file size 256 kB* 256 kB

L1/LDS/L2 16/64/1024 kB -/96/2048 kB

Memory bus HBM GDDR5

Memory capacity 4096 MB 4096 MB

Memory BW 512 GB/s 224 GB/s

GFLOPS float/double 8192/512 4612/144

Software HCC/ROCM 1.2 CUDA 7.5

* Each CU has 256 kB vector registers and an additional 8 kB scalar registers.

straightforward, while in 3D kernels, we use 2.5D and 3D blocking [117] (labeled as 1DBlk,

2DBlk, 2.5DBlk, and 3DBlk). For LDSCache version, we try both loading modes: BRANCH and

CYCLIC (as BRC and CYC), while for RegCache, we vary dimensionalities of wave: 1D and 2D

(as 1DWav and 2DWav). The 1DWav is 64×1 for AMD and 32×1 for NVIDIA, while the 2DWav

is 8 × 8 and 8 × 4 on the two platforms. The sizes of data set are 225, 212 × 212, 28 × 28 × 28 for

1D, 2D, 3D stencils respectively. The test iterates for 100 times. The metric we use is GFLOPS

calculated by (FLOPS · dim2 · dim1 · dim0)/time.

7.5.2 AMD GCN3 GPU

We use the best speedup achievable when the kernel is optimized by RegCache or LDSCache,

if not mentioned otherwise. For 1D stencils, the performance numbers are shown in Figure 7.5.

Different cache levels show very similar performance. Using LDSCache or RegCache do not

show significant improvements over L1Cache, because 1D stencil has unit-stride memory access

pattern where the data can be effectively put into cache by hardware. The optimal achieved with

RegCache leads to 15% improvement; LDSCache achieves up to 13% improvement. We also

notice that performance deteriorates with LDSCache in BRANCH mode for gaussianX7 stencil,

due to extra loading operations to perform data transfer between L1 cache to scratchpad memory

and overhead of branches, which can be offset by using CYCLIC mode.

For 2D stencils, L1Cache methods still exhibit competitive performance on AMD GCN3

GPUs (shown in Figure 7.6a and 7.6b). The maximum speedups with LDSCache and RegCache

139

(a) jacobi-1d l: single; r: double (b) gaussianX7 l: single; r: double

Figure 7.5: 1D stencils with HCC by GPU-UNICACHE on AMD GPU.

surpass L1Cache when data reuse grows in seidel-2d stencil. In the LDSCache solution, we first

observe that 2D stencils are more sensitive to the loading mode, where CYCLIC mode is generally

superior to BRANCH mode averaging 25% better performance, since more branches are needed to

load surrounding data in 2D stencils. The maximum improvement of LDSCache over L1Cache is

9%. In RegCache solution, using 1D wave variant is particularly effective over 2D wave. 1D wave

have longer dimension while conducting memory access, which can better utilize the hardware

bandwidth but at the expense of relatively low data reuse. 2D wave, by contrast, exhibits high data

reuse rate. For example, considering the wave size of 64 on AMD GPUs, if we organize the wave

threads as 64 by 1, we have to load 66*3=198 elements for the 2D problem with stencil order of

1. However, if we organize them as 8 by 8, we only need to load 9*9=81 elements. On the other

hand, the former thread layout can load the data in less memory transactions, leading to its superior

performance. If we consider the effect of thread coarsening on performance, 2D wave can barely

benefit from it, because the narrowed access stride makes it bound by memory latency. We record

the best speedup of RegCache is 15% over L1Cache.

Figure 7.7 shows more significant and diversified speedups with RegCache and LDSCache.

Differences in the performance are first reflected in the speedups of the 2.5D and 3D blocking. 2.5D

blocking gives a speedup of 1.58x over 3D blocking on average. This is because 3D blocking has

smaller dimensions for the block than 2.5D blocking if we assume the blocks have same number

of threads. That way, uncoalesced memory access would occur even though it has better data

reuse rate. In the low data-reuse kernels (heat-3d), L1Cache solution is similar with LDSCache,

140

(a) jacobi-2d l: single; r: double (b) seidel-2d l: single; r: double

Figure 7.6: 2D stencils with HCC by GPU-UNICACHE on AMD GPU.

(a) heat-3d l: single; r: double

(b) jacobi-3d l: single; r: double

Figure 7.7: 3D stencils with HCC by GPU-UNICACHE on AMD GPU.

while the additional gain is achieved from using RegCache, resulting in up to 30% improvement.

This is mainly because of the elimination of explicit synchronization of RegCache in this iterative

2D method. For high data-reuse kernels (jacobi-3d), LDSCache or RegCache are critical to get

optimal performance. The best improvements are 1.70x for LDSCache and 1.81x for RegCache

over their L1Cache counterpart. Moreover, we prefer CYCLIC mode in LDSCache in high data-

reuse kernels, observing that the overhead of branches is significantly high, because, for example,

141

the jacobi-3d stencil has nearly 4 times more halo elements to load than the heat-3d stencil. For

RegCache solutions, we only record the performance of 2D wave in 3D blocking, because using

1D wave instead would be equivalent to the 2.5D blocking with 1D wave. Also, we only show the

results of 1D wave for 2.5D blocking, since this strategy is preferable and has been demonstrated.

Similarly, 3D blocking encounters higher memory latency, making itself benefit little from thread

coarsening. As a contrast, 2.5D blocking with 1D wave improves significant after applying thread

coarsening.

The speedups given by thread coarsening in the cases of double precision numbers are less

consistent, where the optimal thread coarsening factors are only 1 or 2, since operating doubles

requires more space from register files and register pressure would be more easily reached. Fur-

thermore, because the built-in data exchange of 64-bit data is not supported, we need more oper-

ations to achieve the same functionality, i.e. split the data into two 32-bit data, do two permutes,

and concatenate the two data together.

7.5.3 NVIDIA Maxwell GPU

On NVIDIA GPU, Figure 7.8, 7.9b and 7.9c show the performance of 1D and 2D stencils on

Maxwell GPU. For low data reuse kernels, the optimal is achieved by simply using L1Cache. This

demonstrates the need to “opt-in” to enable the global caching in the Maxwell GPU (§ 2.1.2),

which is particularly effective for solving 1D and 2D arrays. The benefits of using LDSCache

or RegCache become obvious when there are high data reuse, achieving up to 5% and 20% im-

provements for gaussianX7 and seidel-2d stencils respectively. However, for double datatype, we

observe a slowdown experienced by LDSCache and RegCache. For LDSCache, since the shared

memory banking in Maxwell only supports 4 bytes width per bank, overhead of accessing 8-byte

data is accordingly higher; for RegCache, more instructions are needed to conduct every data ex-

change operations for 8-byte data. Similar to 2D stencils on GCN3 GPU, CYCLIC mode is of

necessity in seidel-2d kernels and 1D wave is preferable because all the threads in the same wave

are able to access consecutive locations to achieve a coalesced memory transaction.

The performance of 3D stencils shown in Figure 7.10 shows diversified speedups after apply-

142

(a) jacobi-1d l: single; r: double (b) gaussianX7 l: single; r: double

Figure 7.8: 1D stencils with CUDA by GPU-UNICACHE on NVIDIA GPU.

(b) jacobi-2d l: single; r: double (c) seidel-2d l: single; r: double

Figure 7.9: 2D stencils with CUDA by GPU-UNICACHE on NVIDIA GPU.

ing different cache levels. Speedups of using LDSCache or RegCache range from a few percent

on the low data reuse kernels up to 1.64x and 1.83x for high data reuse kernels with LDSCache

and RegCache respectively. The 2.5D blocking is still preferred in the 3D stencils and for float

datatype, we record 4% to 12% improvements of the best RegCache over LDSCache. 2.5D block-

ing needs to iteratively load a 2D slice before conducting actual computation, which will result

in overhead of block-level synchronization. In contrast, RegCache can eliminate this explicit syn-

chronization, leading to better performance. For double datatype, using our L1Cache interface can

provide competitive performance, mainly because the overhead of operating doubles in RegCache

and LDSCache is relatively high in Maxwell.

143

(a) heat-3d l: single; r: double

(b) jacobi-3d l: single; r: double

Figure 7.10: 3D stencils with CUDA by GPU-UNICACHE on NVIDIA GPU.

7.5.4 Speedups to Existing Benchmarks

In the section, we optimize third-party benchmarks by using GPU-UNICACHE. They have been

optimized via different spatial blocking strategies: 2DConv and 3DConv (PloyBench [126]) use

2D and 3D blocking with L1 cache respectively; stencil (Parboil [141]) is a “3D7Pt” stencil op-

timized by 2.5D blocking with shared memory; stencil2d (SHOC [54]) adopts 2D blocking with

shared memory. We optimize these kernels by using GPU-UNICACHE and only report the best

performance. Figure 7.11 presents the results of the comparisons on NVIDIA GPU (There are

no equivalent benchmarks using HCC yet). For single datatype, all the optimal GPU-UNICACHE

codes are using RegCache and can outperform the baselines for up to 1.5x. For double datatype,

GPU-UNICACHE selects L1Cache for 2D stencils and LDSCache for 3D stencils, mainly because

the overhead of register shuffle on double grows. The best improvement is as high as 1.3x speedup.

144

(a) single datatype (b) double datatype

Figure 7.11: GPU-UNICACHE optimized codes vs. existing stencil benchmarks optimized by spatial block-

ing on NVIDIA Maxwell GPU.

7.5.5 Discussion

Running Parameters In the experiments, we use the same settings for the kernels to evaluate the

performance for two main reasons. First, we can limit the variables to the options of cache levels

and focus on the correlation between performance and different GPU-UNICACHE functions. One

exception is that we need to shrink the total number of threads as the thread coarsening factor

grows up in RegCache kernels. Second, the GPU-UNICACHE APIs are also designed to enable

GPU programmers access to the different caches simultaneously, especially when the programs

encounter high pressure on one single type of resource. Therefore, we need to test the APIs under

the same circumstances. Despite of this, we still observe the diversified speedups, indicating an

auto-tuning framework is of necessity [106, 72]. We leave this as our future work.

Register Pressure Using too many registers in GPU programs could reduce the active waves per

CU. Table 7.5 shows the profiling numbers of register usage from the jacobi-3d stencil which

exhibits the highest data reuse rate. First, as the coarsening factor doubles, the number of regis-

ters increases logarithmically, because coarsening technique can improve data reuse. Additionally,

2.5D blocking generally uses more registers than 3D blocking as we discussed in § 7.5.2. The

kernel of 2.5D blocking with the best performance can attain 40% occupancy on both GPU plat-

forms. However, considering its better memory access and high FLOPs, the active waves can still

effectively utilize the computing resources.

145

Table 7.5: Register usage of jacobi-3d stencil*

GPU

L1Cache LDSCache RegCache

3DBlk 2.5DBlk 3DBlk BRC 3DBlk CYC 2.5DBlk BRC2.5DBlk CYC 3DBlk 2DWav
TC1

3DBlk 2DWav
TC2

3DBlk 2DWav
TC4

2.5DBlk
1DWav TC1

2.5DBlk
1DWav TC2

2.5DBlk
1DWav TC4

AMD 37 101 21 18 40 31 19 31 48 48 59 74
NVIDIA 32 32 30 28 31 31 32 40 56 42 56 80

* Collected by CodeXL 2.2 for AMD GPU and nvprof tool for NVIDIA GPU

7.6 Chapter Summary

In the chapter, we propose a framework GPU-UNICACHE to automatically generate the library

codes to access cached data L1, scratchpad memory, and registers of the spatial blocking opti-

mizations for stencils computations. The codes to achieve these functionalities are automatically

generated by our GPU-UNICACHE framework based on the information of stencils and under-

lying architectures. The GPU-UNICACHE has facilitated efficiently accessing cache-loaded data

without a tedious code rewrite, a major advantage in designing different stencil codebases. The

evaluation demonstrates that we can get up to 1.8x improvements by only changing the GPU-

UNICACHE API calls on different GPU platforms.

Chapter 8

Conclusion and Future Work

The key goal of this dissertation is to develop and propose innovative solutions to performance

portability issues in parallel computing. In this dissertation, we have successfully applied the

methodology built on parallel patterns to solve critical issues in accelerating scientific kernels.

This methodology leads to a series of novel and effective automation frameworks that takes into

consideration characteristics of both algorithm and hardware. For example, our propose ASPaS

framework [75] features the fast search for the optimal instruction combinations based on given

data-reordering patterns and ISAs.

This dissertation is motivated by the increasing complexity and cost encountered by develop-

ers to manage efficient and portable parallel codes for various parallel systems. We launch from

two aspects to discuss our approaches using parallel patterns: (1) domain-specific languages to

tackle the vector data reordering on x86-based platforms and the data-thread binding in GPU envi-

ronments [75, 78, 73]; (2) algorithmic skeletons to deal with SIMD operations, data dependencies,

and data reuse problems in different computational kernels [76, 79, 77]. These work is realized

by performing extensive analysis to uncover and identify the performance/programmability issues,

formalizing patterns from target algorithms, and building corresponding frameworks to generate

efficient codes across platforms. We demonstrate, in this dissertation, improved performance ef-

ficiency from various modern accelerator without the need for developers programming the low

level.

146

147

8.1 Summary

The growing demand for extreme performance from modern accelerators is driving the use of pro-

gramming models defined by each vendor (e.g., CUDA, HCC) with low level codes (e.g., compiler

intrinsics). This will inevitably lead to the complexity and cost on application development, and

even worse, result in the performance portability issues, meaning the efficient codes for one plat-

form may be not portable to another. This dissertation along this line handles the above issues by

introducing an additional abstraction layer with parallel patterns to exploit both characteristics of

algorithms and hardware, to generate efficient codes across platforms, and to mitigate the tricky

details in programming accelerators.

We first focus on the research problem on data reordering in parallel sort, a commonly used

kernel in many scientific applications. We present an automation framework ASPaS [75, 78] to

generate highly efficient vector codes on x86-based processors, i.e., CPUs and MICs. In the frame-

work, we formalize the base cases (e.g., sorting networks) as sequences of comparing and reorder-

ing operators using DSL. ASPaS performs fast search for the vector instructions, by exploiting the

symmetric features of data reordering patterns, and from our proposed pools storing ISA-friendly

operation primitives. The ASPaS-generated codes can outperform compiler optimized codes and

deliver substantial performance gains over existing sorting tools from libraries, e.g., STL, BOOST,

and TBB, on Ivy Bridge, Haswell, and Knights Corner architectures.

Second, we target the segmented sort and associative data-thread binding issues in GPUs. The

demand for processing a large amount of independent workloads is on the rise in the “big data”

era. Segmented sort is one example. The existing parallel solutions on GPUs often fail to take full

advantage of computing resources. We first uncover the performance issue of their processing the

skewed data, a common input scenario in real-world applications. Then, we present a novel and

efficient segmented sort [73] that can adaptively adjust its solutions to process different segments.

In this mechanism, we generalize the register-based sort algorithm as a N-to-M data-thread binding

and communication problem: how to assign the target data to threads and how the data reordering

changes correspondingly. We formalize the binding patterns and look for the best realization to

perform the sorting networks on multiple memory hierarchies of registers, shared memory, etc.

148

We show the performance improvements over previous tools from CUB, ModernGPU, CUSP. The

performance advantage is also demonstrated by integrating our segmented sort into real-world

applications in bioinformatics and linear algebra.

Third, we tackle the performance portability problem caused by vectorizing sequence align-

ment algorithms. The existing vectorization strategies—“striped-iterate” and “striped-scan”—all

require explicit programming with low-level and platform-specific vector intrinsics. Thus, we

present AAlign framework [76], where the SIMD operations are generalized as a series of vector

modules to hide the underlying platform-specific vector implementations. In addition, we reveal

that the existing vectorization strategies can only deliver optimal performance on certain inputs.

Based on these findings, AAlign supports a new input-agnostic hybrid method to achieve optimal

performance regardless input scenarios. AAlign accepts sequential codes following our general-

ized patterns and transforms them into efficient parallel codes. The results show our hybrid method

can yield superior performance over other sequence alignment tools, such as SWPS3 and SWAPHI.

This dissertation then looks at a more general computation—wavefront loops—extended from

the sequence alignment algorithms. For the parallel strategies, we claim using a compensation-

based computational order is preferable over the traditional anti-diagonal major ones on GPUs.

The compensation-based method is originally from parallelizing alignment algorithms in bioinfor-

matics. Therefore, we first need to answer the research question: under which circumstances, can

the computation-based method be used to optimize general wavefront loops?. In this work [79],

we uncover the boundary of this method by resorting to the relations of our introduced distributive

and accumulative operators. Based on the findings, we present a highly efficient “weighted” scan

as the skeleton to parallelize different wavefront problems on GPUs. Experiments demonstrate

that our optimized four wavefront loops can achieve high performance not only for various input

workloads, but also across generations of GPUs.

Finally, this dissertation tackles the data reuse problem in stencil computations. Modern accel-

erators feature multiple levels of memory hierarchy (including L1 cache or local memory), mean-

ing efficient data reuse strategies should be carefully designed to take full advantage of them. The

framework GPU-UNICACHE [77] is therefore proposed to automatically generate library codes

149

to access cached data in L1, local memory, and registers in GPU settings. The code generation

is based on the information of given stencils and underlying architectures. These library codes

have uniform APIs to lift the burden from developers on designing separate stencil codes for dif-

ferent memory hierarchies as cache. With GPU-UNICACHE, the performance improvements can

be achieved by only substituting the data access codes with GPU-UNICACHE API calls.

8.2 Future Directions

This dissertation focuses on the research on parallel patterns: how parallel patterns bridge the gap

between practical applications and modern accelerators. The research questions for future work

can be stated in terms of two aspects: (1) Platforms, how can we efficiently exploit other emerging

accelerators, heterogeneous platforms, clusters, and clouds?; (2) Applications, how can we extend

this methodology to other hot applications (e.g. computer security, deep learning, data mining,

etc.)? In the following, we discuss the potential future directions from these two aspects.

8.2.1 Utilizing Heterogeneous Accelerators and Clusters

The heterogeneous platforms are increasingly adopted in state-of-the-art supercomputers [5]. How-

ever, developers might encounter two major scheduling problems, since their jobs usually need to

share computing resources or migrate among computing units (e.g., job consolidation [181] and

job pipeline on GPU+CPU [51, 52]. It is known that efficient solution requires careful design of

scheduling algorithms for given parallel platforms and applications, which paradoxically hinders

the usage of supercomputers or heterogeneous platforms. In the short term, we plan to (1) study

and understand the scheduling patterns in applications, and (2) abstract these patterns to automate

the code generation of scheduling that aims to exploiting different underlying resources.

As enterprises are increasingly moving their infrastructure services to the cloud with the goal

of reducing the administration cost, advanced techniques should be used to enhance the quality of

service experience of data-intensive applications [151, 44, 43, 42, 17, 45, 13, 14, 15, 16, 191] and

reduce the cost for both cloud service providers and tenants [46, 47]. Unfortunately, such tech-

150

niques also require significant efforts from developers, forming a huge gap between applications

and underlying distributed clusters; thus, we plan to apply our methodology so that we can gener-

alize the essential operations as an intermediate layer, which can enable an application-managed

hardware design [42].

It is also promising to build a software hardware infrastructure to measure function level per-

formance and power consumption of HPC applications [93, 92, 95]. It enables the measurement of

power consumption of system components such as CPU, memory, and PCI-E based accelerators

(e.g. Intel Xeon Phi, GPU). To reduce the total energy consumption of data centers, a decentralized

replica selection mechanism can be used to allocate data intensive workload across geographically

located data centers [96, 97]. To improve the energy efficiency of supercomputers, different throt-

tling techniques [94, 32, 31, 159] and their impact on performance and power consumption should

be investigated.

8.2.2 Accelerating Big Data Applications for Parallel Platforms

We are particularly interested in designing solutions for the big data applications in security, data

mining, and pattern matching. Mining security risks are becoming more challenging as the amount

of data grows rapidly. New techniques [100, 98, 28, 40, 137, 99] are needed to detect, prioritize and

measure the security risks from massive datasets. Within these designs, many search/sort/align-

ments algorithms are used to compose tools for detecting security risks, which actually can directly

benefit from our optimized kernels to exploit parallel platforms.

Another area we are interested in is to accelerate computation patterns in data mining. These

patterns oftentimes involve irregular computation and memory access, which is challenging for

parallel computing. For example, many tree-based data structures are used in the Data-Aware

Vaccination problem to find healthy people based on the data from social media (e.g., Twit-

ter) [189, 190]. Another example is the CT (computed tomography) image reconstruction in medi-

cal imaging diagnostics, which needs to operate over large-scaled sparse matrices [173, 174]. The

problem is challenging when applying our methods to optimize the irregular data processing, since

its patterns are usually unpredictable and dynamic. One potential solution is to find the patterns by

151

preprocessing the data, which could benefit from our methods.

Pattern matching is an another kernel to filter information from large-scaled data. It is chal-

lenging to parallelize it onto the parallel architectures, e.g., GPU and the emerging AP (Au-

tomata Processor) [119], which involves many tricky designs, such as fine-grained data paral-

lelism, speculative computation, and mastering low level instructions [169, 172, 168, 167, 166].

We believe many core computations can be formalized by using parallel patterns. In reality,

Robotomata [171, 170] is a recent work on abstracting the pattern matching for APs, which is

able to provide not only superior performance but also user-accessible programmability.

Bibliography

[1] BLAST. http://blast.ncbi.nlm.nih.gov/Blast.cgi.

[2] Clang 6: Clang Language Extensions. https://clang.llvm.org/docs/Langua

geExtensions.html.

[3] Clang: a C Language Family Frontend for LLVM. http://clang.llvm.org/.

[4] NCBI-protein. http://blast.ncbi.nlm.nih.gov/protein.

[5] TOP500 Supercomputing List. https://www.top500.org/.

[6] UniProt: Universal Protein Resource. http://www.uniprot.org/.

[7] L. A. Adamic and B. A. Huberman. Zipf’s Law and the Internet. Glottometrics 3, 2002.

[8] S. W. Al-Haj Baddar and K. W. Batcher. Designing Sorting Networks: A New Paradigm.

Springer, 2011.

[9] AMD. Graphics Core Next Architecture, Generation 3 Reference Guide, 2016. Rev.1.1.

[10] S. E. Amiri, L. Chen, and B. A. Prakash. Segmenting Sequences of Node-Labeled Graphs.

In IEEE Int. Conf. on Data Mining Workshops (ICDMW), 2016.

[11] S. E. Amiri, L. Chen, and B. A. Prakash. SnapNETS: Automatic Segmentation of Network

Sequences with Node Labels. In AAAI Conf. on Artif. Intell., 2017.

[12] S. E. Amiri, L. Chen, and B. A. Prakash. Automatic Segmentation of Dynamic Network

Sequences with Node Labels. IEEE Trans. on Knowledge Data Engineer., 2018.

152

153

[13] A. Anwar, Y. Cheng, and A. R. Butt. Towards Managing Variability in the Cloud. In IEEE

Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW), 2016.

[14] A. Anwar, Y. Cheng, A. Gupta, and A. R. Butt. Taming the Cloud Object Storage with

MOS. In ACM Parallel Data Storage Workshop (PDSW), 2015.

[15] A. Anwar, Y. Cheng, A. Gupta, and A. R. Butt. MOS: Workload-aware Elasticity for Cloud

Object Stores. In ACM Int. Symp. High-Perform. Parallel Distrib. Comput. (HPDC), 2016.

[16] A. Anwar, Y. Cheng, H. Huang, and A. R. Butt. ClusterOn: Building Highly Configurable

and Reusable Clustered Data Services Using Simple Data Nodes. In USENIX Workshop Hot

Top. Storage File Syst. (HotStorage), 2016.

[17] A. Anwar, M. Mohamed, V. Tarasov, M. Littley, L. Rupprecht, Y. Cheng, N. Zhao, D. Sk-

ourtis, A. S. Warke, H. Ludwig, D. Hildebrand, and A. R. Butt. Improving Docker Registry

Design based on Production Workload Analysis. In USENIX Conf. File Storage Technol.

(FAST), 2018.

[18] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan,

D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A View of the Parallel

Computing Landscape. Commun. ACM, 2009.

[19] R. Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse, C. Reddy, S. Verdoolaege,

A. Betts, A. F. Donaldson, J. Ketema, J. Absar, S. v. Haastregt, A. Kravets, A. Lokhmotov,

R. David, and E. Hajiyev. PENCIL: A Platform-Neutral Compute Intermediate Language

for Accelerator Programming. In IEEE Int. Conf. Parallel Archit. Compil. Tech. (PACT),

2015.

[20] M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-CUDA Code Genera-

tion for Affine Programs. In Int. Conf. Compiler Constr. (CC), Springer, 2010.

[21] K. E. Batcher. Sorting Networks and Their Applications. In AFIPS Spring Joint Comput.

Conf., 1968.

154

[22] S. Baxter. ModernGPU 2.0: A Productivity Library for General-purpose Computing on

GPUs. https://github.com/moderngpu/moderngpu.

[23] N. Bell, S. Dalton, and L. N. Olson. Exposing Fine-Grained Parallelism in Algebraic Multi-

grid Methods. SIAM J. Sci. Comput., 2012.

[24] M. E. Belviranli, P. Deng, L. N. Bhuyan, R. Gupta, and Q. Zhu. PeerWave: Exploiting

Wavefront Parallelism on GPUs with Peer-SM Synchronization. In ACM Int. Conf. on Su-

percomput. (ICS), 2015.

[25] E. Ben-Sasson, M. Hamilis, M. Silberstein, and E. Tromer. Fast Multiplication in Binary

Fields on GPUs via Register Cache. In ACM Int. Conf. Supercomput. (ICS), 2016.

[26] U. Bondhugula, V. Bandishti, A. Cohen, G. Potron, and N. Vasilache. Tiling and Optimiz-

ing Time-iterated Computations on Periodic Domains. In IEEE Int. Conf. Parallel Archit.

Compil. Tech. (PACT), 2014.

[27] R. C. Bose and R. J. Nelson. A Sorting Problem. J. ACM, 1962.

[28] A. Bosu, F. Liu, D. D. Yao, and G. Wang. Collusive Data Leak and More: Large-scale Threat

Analysis of Inter-app Communications. In ACM Asia Conf. Comput. Commun. Secur. (Asia

CCS), 2017.

[29] B. Bramas. Fast Sorting Algorithms using AVX-512 on Intel Knights Landing. CoRR, 2017.

[30] T. M. Chan. More Algorithms for All-pairs Shortest Paths in Weighted Graphs. In ACM

Symp. Theory Comput. (STOC), 2007.

[31] H. C. Chang, B. Li, G. Back, A. R. Butt, and K. W. Cameron. LUC: Limiting the Unintended

Consequences of Power Scaling on Parallel Transaction-Oriented Workloads. In IEEE Int.

Parallel Distrib. Process. Symp. (IPDPS), 2015.

[32] H. C. Chang, B. Li, M. Grove, and K. W. Cameron. How Processor Speedups Can Slow

Down I/O Performance. In IEEE Int. Symp. Model. Anal. Simul. Comput. Telecommun.

Syst., 2014.

155

[33] S. Che, J. W. Sheaffer, and K. Skadron. Dymaxion: Optimizing Memory Access Patterns

for Heterogeneous Systems. In ACM/IEEE Int. Conf. High Perf. Comput., Netw., Storage

and Anal. (SC), 2011.

[34] L. Chen, S. E. Amiri, and B. A. Prakash. Automatic Segmentation of Data Sequences. In

AAAI, 2018.

[35] L. Chen, K. S. M. T. Hossain, P. Butler, N. Ramakrishnan, and B. A. Prakash. Flu Gone

Viral: Syndromic Surveillance of Flu on Twitter Using Temporal Topic Models. In IEEE

Int. Conf. on Data Mining ICDM, 2014.

[36] L. Chen, K. S. M. T. Hossain, P. Butler, N. Ramakrishnan, and B. A. Prakash. Syndromic

Surveillance of Flu on Twitter using Weakly Supervised Temporal Topic Models. Data Min.

Knowl. Discov., 2016.

[37] L. Chen, N. Muralidhar, S. Chinthavali, N. Ramakrishnan, and B. A. Prakash. Segmenta-

tions with Explanations for Outage Analysis. Computer Science Technical Reports TR-18-

02, VTechWorks, 2018.

[38] L. Chen and B. A. Prakash. Modeling Influence using Weak Supervision: A Joint Link and

Post-level Analysis. Computer Science Technical Reports TR-18-03, VTechWorks, 2018.

[39] L. Chen, X. Xu, S. Lee, S. Duan, A. G. Tarditi, S. Chinthavali, and B. A. Prakash. HotSpots:

Failure Cascades on Heterogeneous Critical Infrastructure Networks. In CIKM, 2017.

[40] L. Cheng, F. Liu, and D. D. Yao. Enterprise Data Breach: Causes, Challenges, Prevention,

and Future Directions. Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery, 2017.

[41] L. Cheng, K. Tian, and D. D. Yao. Orpheus: Enforcing Cyber-physical Execution Semantics

to Defend against Data-oriented Attacks. In ACM Computer Secur. App. Conf., 2017.

[42] Y. Cheng, F. Douglis, P. Shilane, G. Wallace, P. Desnoyers, and K. Li. Erasing Belady’s

Limitations: In Search of Flash Cache Offline Optimality. In USENIX Annu. Tech. Conf.

(ATC), 2016.

156

[43] Y. Cheng, A. Gupta, and A. R. Butt. An In-memory Object Caching Framework with Adap-

tive Load Balancing. In ACM Eur. Conf. Comput. Syst. (EuroSys), 2015.

[44] Y. Cheng, A. Gupta, A. Povzner, and A. R. Butt. High Performance In-memory Caching

Through Flexible Fine-grained Services. In ACM Ann. Symp. Cloud Comput. (SOCC), 2013.

[45] Y. Cheng, M. S. Iqbal, A. Gupta, and A. R. Butt. CAST: Tiering Storage for Data Analytics

in the Cloud. In ACM Int. Symp. High-Perform. Parallel Distrib. Comput. (HPDC), 2015.

[46] Y. Cheng, M. S. Iqbal, A. Gupta, and A. R. Butt. Pricing Games for Hybrid Object Stores in

the Cloud: Provider vs. Tenant. In USENIX Workshop Hot Top. Cloud Comput. (HotCloud),

2015.

[47] Y. Cheng, M. S. Iqbal, A. Gupta, and A. R. Butt. Provider versus Tenant Pricing Games for

Hybrid Object Stores in the Cloud. IEEE Internet Comput., 2016.

[48] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K. Chen, A. Baransi, S. Ku-

mar, and P. Dubey. Efficient Implementation of Sorting on Multi-core SIMD CPU Archi-

tecture. Proc. VLDB Endow. (PVLDB), 2008.

[49] M. Codish, L. Cruz-Filipe, M. Nebel, and P. Schneider-Kamp. Applying Sorting Networks

to Synthesize Optimized Sorting Libraries. In Int. Symp. Logic-Based Program Synth.

Transform. (LOPSTR), 2015.

[50] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. MIT

Press, 1991.

[51] X. Cui, T. R. Scogland, B. R. de Supinski, and W.-C. Feng. Directive-based pipelining

extension for openmp. In IEEE Int. Conf. Cluster Comput. (CLUSTER), 2016.

[52] X. Cui, T. R. Scogland, B. R. de Supinski, and W.-c. Feng. Directive-based Partitioning

and Pipelining for Graphics Processing Units. In IEEE Int. Parallel Distrib. Process. Symp.

(IPDPS), 2017.

157

[53] S. Dalton, N. Bell, L. Olson, and M. Garland. CUSP: Generic Parallel Algorithms for Sparse

Matrix and Graph Computations, 2014. http://cusplibrary.github.io/ v.0.5.0.

[54] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tipparaju,

and J. S. Vetter. The Scalable Heterogeneous Computing (SHOC) Benchmark Suite. In

ACM Workshop Gen. Purpose Process. Graphics Process. Unit (GPGPU), 2010.

[55] K. Datta, S. Williams, V. Volkov, J. Carter, L. Oliker, J. Shalf, and K. Yelick. Auto-tuning

the 27-point Stencil for Multicore. In Int. Workshop Autom. Perform. Tuning (iWAPT), 2009.

[56] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM Trans.

Math. Softw., 2011.

[57] J. Demouth. Shuffle: Tips and Tricks, 2013. GTC’13 Presentation.

[58] P. Di and J. Xue. Model-driven Tile Size Selection for DOACROSS Loops on GPUs. In

Parallel Process.: Int. Eur. Conf. Parallel Distrib. Comput. (EuroPar), 2011.

[59] P. Di, D. Ye, Y. Su, Y. Sui, and J. Xue. Automatic Parallelization of Tiled Loop Nests with

Enhanced Fine-Grained Parallelism on GPUs. In Int. Conf. on Parallel Process. (ICPP),

2012.

[60] I. El Hajj, J. Gómez-Luna, C. Li, L.-W. Chang, D. Milojicic, and W.-m. Hwu. KLAP: Kernel

Launch Aggregation and Promotion for Optimizing Dynamic Parallelism. In IEEE/ACM Int.

Symp. Microarchit. (MICRO), 2016.

[61] T. L. Falch and A. C. Elster. Register Caching for Stencil Computations on GPUs. In Int.

Symp. Symbolic Numer. Algorithms Sci. Comp. (SYNASC), 2014.

[62] M. Farrar. Striped Smith-Waterman Speeds Database Searches Six Times over other SIMD

Implementations. Oxford Bioinf., 2007.

[63] P. Flick and S. Aluru. Parallel Distributed Memory Construction of Suffix and Longest

Common Prefix Arrays. In ACM Int. Conf. High Perf. Comput., Netw., Storage and Anal.

(SC), 2015.

158

[64] F. Franchetti, F. Mesmay, D. Mcfarlin, and M. Püschel. Operator Language: A Program

Generation Framework for Fast Kernels. In IFIP TC 2 Working Conf. Domain-Specific

Lang. (DSL), Springer, 2009.

[65] T. Furtak, J. N. Amaral, and R. Niewiadomski. Using SIMD Registers and Instructions to

Enable Instruction-level Parallelism in Sorting Algorithms. In ACM Symp. Parallel Alg.

Arch. (SPAA), 2007.

[66] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph: Distributed

Graph-Parallel Computation on Natural Graphs. In USENIX Symp. Oper. Syst. Des. Impl.

(OSDI), 2012.

[67] M. W. Green. Some Improvements in Non-adaptive Sorting Algorithms. In Annu. Princeton

Conf. Inf. Sci. Syst., 1972.

[68] O. Green, R. McColl, and D. A. Bader. GPU Merge Path: A GPU Merging Algorithm. In

ACM Int. Conf. Supercomput. (ICS), 2012.

[69] M. Harris, J. D. Owens, S. Sengupta, S. Tzeng, Y. Zhang, A. Davidson, R. Patel, L. Wang,

and S. Ashkiani. CUDPP: CUDA Data-Parallel Primitives Library. http://cudpp.gi

thub.io/.

[70] T. N. Hibbard. An Empirical Study of Minimal Storage Sorting. Commun. ACM, 1963.

[71] J. Hoberock and N. Bell. Thrust: A Parallel Algorithms Library, 2015. https://thru

st.github.io/.

[72] K. Hou, W.-c. Feng, and S. Che. Auto-Tuning Strategies for Parallelizing Sparse Matrix-

Vector (SpMV) Multiplication on Multi- and Many-Core Processors. In IEEE Int. Parallel

Distrib. Process. Symp. Workshops (IPDPSW), 2017.

[73] K. Hou, W. Liu, H. Wang, and W.-c. Feng. Fast Segmented Sort on GPUs. In ACM Int.

Conf. Supercomput. (ICS), 2017.

159

[74] K. Hou, H. Wang, and W.-c. Feng. Delivering Parallel Programmability to the Masses via the

Intel MIC Ecosystem: A Case Study. In Int. Conf. Parallel Process. Workshops (ICPPW),

2014.

[75] K. Hou, H. Wang, and W.-c. Feng. ASPaS: A Framework for Automatic SIMDization

of Parallel Sorting on x86-based Many-core Processors. In ACM Int. Conf. Supercomput.

(ICS), 2015.

[76] K. Hou, H. Wang, and W.-c. Feng. AAlign: A SIMD Framework for Pairwise Sequence

Alignment on x86-Based Multi-and Many-Core Processors. In IEEE Int. Parallel Distrib.

Process. Symp. (IPDPS), 2016.

[77] K. Hou, H. Wang, and W.-c. Feng. GPU-UniCache: Automatic Code Generation of Spatial

Blocking for Stencils on GPUs. In ACM Conf. Comput. Front. (CF), 2017.

[78] K. Hou, H. Wang, and W.-c. Feng. A Framework for the Automatic Vectorization of Parallel

Sort on x86-based Processors. IEEE Trans. Parallel Distrib. Syst. (TPDS), 2018.

[79] K. Hou, H. Wang, W.-c. Feng, J. Vetter, and S. Lee. Highly Efcient Compensation-based

Parallelism for Wavefront Loops on GPUs. In IEEE Int. Parallel and Distrib. Process. Symp.

(IPDPS), 2018.

[80] K. Hou, Y. Zhao, J. Huang, and L. Zhang. Performance Evaluation of the Three-

Dimensional Finite-Difference Time-Domain(FDTD) Method on Fermi Architecture GPUs.

In Int. Conf. Algorithms Archit. Parallel Process. (ICA3PP), Springer, 2011.

[81] X. Huo, B. Ren, and G. Agrawal. A Programming System for Xeon Phis with Runtime

SIMD Parallelization. In ACM Int. Conf. Supercomput. (ICS), 2014.

[82] H. Inoue, T. Moriyama, H. Komatsu, and T. Nakatani. AA-Sort: A New Parallel Sorting

Algorithm for Multi-Core SIMD Processors. In ACM Int. Conf. Parallel Arch. Compil. Tech.

(PACT), 2007.

160

[83] H. Inoue and K. Taura. SIMD- and Cache-friendly Algorithm for Sorting an Array of Struc-

tures. Proc. VLDB Endow. (VLDB), 2015.

[84] Intel Co. Intel Xeon Phi Coprocessor System Software Developers Guide, 2012. Doc. ID:

488596.

[85] P. Jiang and G. Agrawal. Combining SIMD and Many/Multi-core Parallelism for Finite

State Machines with Enumerative Speculation. In ACM SIGPLAN Symp. Principles Pract.

Parallel Program. (PPoPP), 2017.

[86] W. Jung, J. Park, and J. Lee. Versatile and Scalable Parallel Histogram Construction. In

IEEE Int. Conf. Parallel Archit. Compil. Tech. (PACT), 2014.

[87] A. Khajeh-Saeed, S. Poole, and J. B. Perot. Acceleration of the Smith-Waterman Algorithm

using Single and Multiple Graphics Processors. J. Comput. Phys., Elsevier, 2010.

[88] S. Lee, L. Chen, S. Duan, S. Chinthavali, M. Shankar, and B. A. Prakash. URBAN-NET: A

Network-based Infrastructure Monitoring and Analysis System for Emergency Management

and Public Safety. In IEEE Int. Conf. on Big Data (BigData), 2016.

[89] N. Leischner, V. Osipov, and P. Sanders. GPU Sample Sort. In IEEE Int. Parallel Distrib.

Process. Symp. (IPDPS), 2010.

[90] A. Li, W. Liu, M. R. Kristensen, B. Vinter, H. Wang, K. Hou, A. Marquez, and S. L. Song.

Exploring and Analyzing the Real Impact of Modern On-package Memory on HPC Scien-

tific Kernels. In ACM/IEEE Int. Conf. High Perf. Comput., Netw., Storage and Anal. (SC),

2017.

[91] A. Li, S. L. Song, W. Liu, X. Liu, A. Kumar, and H. Corporaal. Locality-Aware CTA

Clustering for Modern GPUs. In ACM Int. Conf. Archit. Support Program. Lang. Oper.

Syst. (ASPLOS), 2017.

161

[92] B. Li, H.-C. Chang, S. Song, C.-Y. Su, T. Meyer, J. Mooring, and K. Cameron. Extending

PowerPack for Profiling and Analysis of High-Performance Accelerator-Based Systems.

Parallel Process. Lett., 2014.

[93] B. Li, H. C. Chang, S. Song, C. Y. Su, T. Meyer, J. Mooring, and K. W. Cameron. The

Power-Performance Tradeoffs of the Intel Xeon Phi on HPC Applications. In IEEE Int.

Parallel Distrib. Process. Symp. Workshops (IPDPSW), 2014.

[94] B. Li and E. A. León. Memory Throttling on BG/Q: A Case Study with Explicit Hydrody-

namics. In USENIX Workshop Power-Aware Comput. Syst. (HotPower), 2014.

[95] B. Li, E. A. León, and K. W. Cameron. COS: A Parallel Performance Model for Dynamic

Variations in Processor Speed, Memory Speed, and Thread Concurrency. In ACM Int. Symp.

High-Perform. Parallel Distrib. Comput. (HPDC), 2017.

[96] B. Li, S. Song, I. Bezakova, and K. W. Cameron. Energy-Aware Replica Selection for Data-

Intensive Services in Cloud. In IEEE Int. Symp. Model. Anal. Simul. Comput. Telecommun.

Syst., 2012.

[97] B. Li, S. L. Song, I. Bezakova, and K. W. Cameron. EDR: An Energy-aware Runtime Load

Distribution System for Data-intensive Applications in the Cloud. In IEEE Int. Conf. Cluster

Comput. (CLUSTER), 2013.

[98] F. Liu, H. Cai, G. Wang, D. D. Yao, K. O. Elish, and B. G. Ryder. MR-Droid: A Scalable and

Prioritized Analysis of Inter-App Communication Risks. In Mobile Secur. Technol. (MoST),

2017.

[99] F. Liu, X. Shu, D. Yao, and A. R. Butt. Privacy-preserving scanning of big content for sensi-

tive data exposure with MapReduce. In ACM Conf. Data Appl. Secur. Privacy (CODASPY),

2015.

[100] F. Liu, C. Wang, A. Pico, D. Yao, and G. Wang. Measuring the Insecurity of Mobile Deep

Links. In USENIX Secur. Symp. (Security), 2017.

162

[101] W. Liu, A. Li, J. Hogg, I. S. Duff, and B. Vinter. A Synchronization-Free Algorithm for

Parallel Sparse Triangular Solvers. In Parallel Process.: Int. Eur. Conf. Parallel Distrib.

Comput. (EuroPar). Springer Berlin Heidelberg, 2016.

[102] W. Liu and B. Vinter. A Framework for General Sparse Matrix-Matrix Multiplication on

GPUs and Heterogeneous Processors. J. Parallel Distrib. Comput. (JPDC), 2015.

[103] W. Liu and B. Vinter. CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-

Vector Multiplication. In ACM Int. Conf. Supercomput. (ICS), 2015.

[104] W. Liu and B. Vinter. Speculative Segmented Sum for Sparse Matrix-Vector Multiplication

on Heterogeneous Processors. Parallel Comput. (ParCo), 2015.

[105] Y. Liu and B. Schmidt. SWAPHI: Smith-Waterman Protein Database Search on Xeon Phi

Coprocessors. In IEEE Int. Conf. Appl.-spec. Syst. Archit. Process. (ASAP), 2014.

[106] Y. Luo, G. Tan, Z. Mo, and N. Sun. FAST: A Fast Stencil Autotuning Framework Based On

An Optimal-solution Space Model. In ACM Int. Conf. Supercomput. (ICS), 2015.

[107] A. Magni, C. Dubach, and M. F. P. O’Boyle. A Large-scale Cross-architecture Evaluation of

Thread-coarsening. In ACM/IEEE Int. Conf. High Perf. Comput., Netw., Storage and Anal.

(SC), 2013.

[108] S. Maleki, Y. Gao, M. J. Garzarán, T. Wong, and D. A. Padua. An Evaluation of Vectorizing

Compilers. In IEEE Int. Conf. Parallel Archit. Compil. Tech. (PACT), 2011.

[109] U. Manber and G. Myers. Suffix Arrays: A New Method for On-Line String Searches.

SIAM J. Comput., 1993.

[110] N. Manjikian and T. S. Abdelrahman. Exploiting Wavefront Parallelism on Large-Scale

Shared-Memory Multiprocessors. IEEE Trans. Parallel Distrib. Syst. (TPDS), 2001.

[111] N. Maruyama and T. Aoki. Optimizing Stencil Computations for NVIDIA Kepler GPUs. In

Int. Workshop High-Perform. Stencil Comput. (HiStencils), 2014.

163

[112] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka. Physis: An Implicitly Parallel Pro-

gramming Model for Stencil Computations on Large-scale GPU-accelerated Supercomput-

ers. In ACM Int. Conf. High Perf. Comput., Netw., Storage and Anal. (SC), 2011.

[113] D. S. McFarlin, V. Arbatov, F. Franchetti, and M. Püschel. Automatic SIMD Vectorization

of Fast Fourier Transforms for the Larrabee and AVX Instruction Sets. In ACM Int. Conf.

Supercomput. (ICS), 2011.

[114] D. Merrill and A. Grimshaw. High Performance and Scalable Radix Sorting: A Case Study

of Implementing Dynamic Parallelism for GPU Computing. Parallel Process. Lett., 2011.

[115] NCBI. Genbank. ftp://ftp.ncbi.nlm.nih.gov/genbank.

[116] S. B. Needleman and C. D. Wunsch. A General Method Applicable to the Search for Simi-

larities in the Amino Acid Sequence of Two Proteins. J. Mol. Bio., Elsevier, 1970.

[117] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey. 3.5-D Blocking Optimization

for Stencil Computations on Modern CPUs and GPUs. In ACM/IEEE Int. Conf. High Perf.

Comput., Netw., Storage and Anal. (SC), 2010.

[118] H. Nguyen. GPU Gems 3. Addison-Wesley Professional, first edition, 2007.

[119] M. Nourian, X. Wang, X. Yu, W.-c. Feng, and M. Becchi. Demystifying Automata Process-

ing: GPUs, FPGAs or Micron’s AP? In ACM Int. Conf. Supercomput. (ICS), 2017.

[120] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture Kepler GK110, 2014.

v1.0.

[121] NVIDIA. cuSPARSE lib, 2016. https://developer.nvidia.com/cuSPARSE.

[122] NVIDIA Research. CUB 1.6.4, 2016. http://nvlabs.github.io/cub/.

[123] M. Pharr and W. Mark. ISPC: A SPMD Compiler for High-Performance CPU Program-

ming. In Innovative Parallel Comput. (InPar), 2012.

164

[124] P. Plauger, M. Lee, D. Musser, and A. A. Stepanov. C++ Standard Template Lib. Prentice

Hall PTR, 2000.

[125] F. Porikli. Integral Histogram: a Fast Way to Extract Histograms in Cartesian Spaces. In

IEEE Comput. Soc. Conf. on Comput. Vision Pattern Recognit. (CVPR), 2005.

[126] L.-N. Pouchet. Polybench: The Polyhedral Benchmark Suite, 2015. http://web.cse.

ohio-state.edu/pouchet/software/polybench.

[127] R. Rahman. Intel Xeon Phi Coprocessor Architecture and Tools: The Guide for Application

Developers. Apress, 2013.

[128] P. S. Rawat, C. Hong, M. Ravishankar, V. Grover, L.-N. Pouchet, A. Rountev, and P. Sa-

dayappan. Resource Conscious Reuse-Driven Tiling for GPUs. In ACM Int. Conf. Parallel

Archit. Compil. (PACT), 2016.

[129] P. S. Rawat, C. Hong, M. Ravishankar, V. Grover, L.-N. Pouchet, and P. Sadayappan. Effec-

tive Resource Management for Enhancing Performance of 2D and 3D Stencils on GPUs. In

ACM Workshop Gen. Purpose Process. Graphics Process. Unit (GPGPU), 2016.

[130] J. Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc., 2007.

[131] G. Ren, P. Wu, and D. Padua. Optimizing Data Permutations for SIMD Devices. In ACM

SIGPLAN Conf. Program. Lang. Design Impl. (PLDI), 2006.

[132] P. Rice, I. Longden, A. Bleasby, et al. EMBOSS: the European Molecular Biology Open

Software Suite.

[133] N. Satish, M. Harris, and M. Garland. Designing Efficient Sorting Algorithms for Manycore

GPUs. In IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), 2009.

[134] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and P. Dubey. Fast Sort

on CPUs and GPUs: A Case for Bandwidth Oblivious SIMD Sort. In ACM SIGMOD Int.

Conf. Manage. Data (SIGMOD), 2010.

165

[135] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy, M. Girkar, and

P. Dubey. Can Traditional Programming Bridge the Ninja Performance Gap for Parallel

Computing Applications? In IEEE Int. Symp. Comput. Archit. (ISCA), 2012.

[136] B. Schling. The Boost C++ Libraries. XML Press, 2011.

[137] X. Shu, F. Liu, and D. (Daphne) Yao. Rapid Screening of Big Data Against Inadvertent

Leaks. In Big Data Concepts, Theories, and Applications. Springer, 2016.

[138] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V. Simhadri, and

K. Tangwongsan. Brief Announcement: The Problem Based Benchmark Suite. In ACM

Symp. Parallel Alg. Arch. (SPAA), 2012.

[139] E. Sintorn and U. Assarsson. Fast Parallel GPU-sorting Using a Hybrid Algorithm. J.

Parallel Distrib. Comput. (JPDC), 2008.

[140] T. F. Smith and M. S. Waterman. Identification of Common Molecular Subsequences. J.

Mol. Bio., Elsevier, 1981.

[141] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G. D. Liu,

and W.-m. W. Hwu. Parboil: A Revised Benchmark Suite for Scientific and Commercial

Throughput Computing. Center for Reliable and HPC, 2012.

[142] A. Szalkowski, C. Ledergerber, P. Krhenbhl, and C. Dessimoz. SWPS3 fast multi-threaded

vectorized Smith-Waterman for IBM Cell/B.E. and 86/SSE2. BMC Res Notes, 2008.

[143] K. Tian, Z. Li, K. Bowers, and D. D. Yao. FrameHanger: Evaluating and Classifying

Iframe Injection at Large Scale. In EAI Int. Conf. Secur. Privacy Commun. Networks (Se-

cureComm), 2018.

[144] K. Tian, G. Tan, D. D. Yao, and B. G. Ryder. ReDroid: Prioritizing Data Flows and Sinks

for App Security Transformation. In ACM Workshop Forming an Ecosyst. Around Software

Transform., 2017.

166

[145] K. Tian, D. Yao, B. G. Ryder, and G. Tan. Analysis of Code Heterogeneity for High-

precision Classification of Repackaged Malware. In IEEE Secur. Privacy Workshops (SPW),

2016.

[146] K. Tian, D. D. Yao, B. G. Ryder, G. Tan, and G. Peng. Detection of Repackaged An-

droid Malware with Code-heterogeneity Features. IEEE Trans. Dependable Secure Com-

put., 2017.

[147] D. Unat, X. Cai, and S. B. Baden. Mint: Realizing CUDA Performance in 3D Stencil

Methods with Annotated C. In ACM Int. Conf. Supercomput. (ICS), 2011.

[148] V. Vassilevska, R. Williams, and R. Yuster. Finding Heaviest H-subgraphs in Real Weighted

Graphs, with Applications. ACM Trans. Algorithms, 2010.

[149] A. Vizitiu, L. Itu, C. Ni, and C. Suciu. Optimized Three-dimensional Stencil Computation

on Fermi and Kepler GPUs. In High Perform. Extreme Comput. Conf. (HPEC), 2014.

[150] H. Wang, W. Liu, K. Hou, and W.-c. Feng. Parallel Transposition of Sparse Data Structures.

In ACM Int. Conf. Supercomput. (ICS), 2016.

[151] J. Wang, P. Shang, and J. Yin. DRAW: A New Data-gRouping-AWare Data Placement

Scheme for Data Intensive Applications with Interest Locality. In Cloud Comput. Data-

Intensive Appl. Springer, 2014.

[152] J. Wang, X. Xie, and J. Cong. Communication Optimization on GPU: A Case Study of

Sequence Alignment Algorithms. In IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),

2017.

[153] J. Wang and S. Yalamanchili. Characterization and Analysis of Dynamic Parallelism in

Unstructured GPU Applications. In IEEE Int. Symp. Workload Charact. (IISWC), 2014.

[154] L. Wang, S. Baxter, and J. D. Owens. Fast Parallel Suffix Array on the GPU. In Parallel

Process.: Int. Eur. Conf. Parallel Distrib. Comput. (EuroPar). Springer Berlin Heidelberg,

2015.

167

[155] S. Williams, A. Waterman, and D. Patterson. Roofline: An Insightful Visual Performance

Model for Multicore Architectures. Comm. ACM, 2009.

[156] M. Wolfe. Loops Skewing: the Wavefront Method Revisited. Int. J. Parallel Program.,

1986.

[157] H. Wu, G. Diamos, T. Sheard, M. Aref, S. Baxter, M. Garland, and S. Yalamanchili. Red

Fox: An Execution Environment for Relational Query Processing on GPUs. In IEEE/ACM

Int. Symp. Code Gener. Optim. (CGO), 2014.

[158] H. Wu, D. Li, and M. Becchi. Compiler-Assisted Workload Consolidation for Efficient

Dynamic Parallelism on GPU. In IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), 2016.

[159] X. Wu, C. Lively, V. Taylor, H. C. Chang, C. Y. Su, K. Cameron, S. Moore, D. Terpstra, and

V. Weaver. MuMMI: Multiple Metrics Modeling Infrastructure. In ACIS Int. Conf. Software

Eng., Artif. Intell. Networking Parallel/Distrib. Comput., 2013.

[160] S. Xiao, A. M. Aji, and W. c. Feng. On the Robust Mapping of Dynamic Programming onto

a Graphics Processing Unit. In IEEE Int. Conf. Parallel Distrib. Syst. (ICPADS), 2009.

[161] T. Xiaochen, K. Rocki, and R. Suda. Register Level Sort Algorithm on Multi-core SIMD

Processors. In ACM Workshop Irregular App.: Arch. Alg. (IA3), 2013.

[162] K. Xu, K. Tian, D. Yao, and B. G. Ryder. A Sharper Sense of Self: Probabilistic Reasoning

of Program Behaviors for Anomaly Detection with Context Sensitivity. In IEEE/IFIP Int.

Conf. Dependable Systems Networks (DSN), 2016.

[163] S. Yan, G. Long, and Y. Zhang. StreamScan: Fast Scan Algorithms for GPUs Without

Global Barrier Synchronization. In ACM SIGPLAN Symp. Principles Pract. Parallel Pro-

gram. (PPoPP), 2013.

[164] S. Yang, H. Chung, X. Lin, S. Lee, L. Chen, A. Wood, A. L. Kavanaugh, S. D. Sheetz, D. J.

Shoemaker, and E. A. Fox. PhaseVis1: What, When, Where, and Who in Visualizing the

168

Four Phases of Emergency Management through the Lens of Social Media. In Int. ISCRAM

Conf., 2013.

[165] Y. Yang and H. Zhou. CUDA-NP: Realizing Nested Thread-level Parallelism in GPGPU

Applications. In ACM SIGPLAN Symp. Principles Pract. Parallel Program. (PPoPP), 2014.

[166] X. Yu. Deep Packet Inspection on Large Datasets: Algorithmic and Parallelization Tech-

niques for Accelerating Regular Expression Matching on Many-core Processors. University

of Missouri-Columbia, 2013.

[167] X. Yu and M. Becchi. Exploring Different Automata Representations for Efficient Regular

Expression Matching on GPUs. ACM SIGPLAN Not., 2013.

[168] X. Yu and M. Becchi. GPU Acceleration of Regular Expression Matching for Large

Datasets: Exploring the Implementation Space. In ACM Conf. Comput. Front. (CF), 2013.

[169] X. Yu, W.-c. Feng, D. D. Yao, and M. Becchi. O3FA: A Scalable Finite Automata-based

Pattern-Matching Engine for Out-of-Order Deep Packet Inspection. In ACM Symp. Archit.

Networking Commun. Syst. (ANCS), 2016.

[170] X. Yu, K. Hou, H. Wang, and W.-c. Feng. A Framework for Fast and Fair Evaluation of

Automata Processing Hardware. In IEEE Int. Symp. Workload Charact. (IISWC), 2017.

[171] X. Yu, K. Hou, H. Wang, and W.-c. Feng. Robotomata: A Framework for Approximate

Pattern Matching of Big Data on an Automata Processor. In IEEE Int. Conf. on Big Data

(BigData), 2017.

[172] X. Yu, B. Lin, and M. Becchi. Revisiting State Blow-Up: Automatically Building

Augmented-FA While Preserving Functional Equivalence. IEEE J. Selected Areas Com-

mun., 2014.

[173] X. Yu, H. Wang, W.-c. Feng, H. Gong, and G. Cao. cuART: Fine-Grained Algebraic Recon-

struction Technique for Computed Tomography Images on GPUs. In IEEE/ACM Int. Symp.

Cluster Cloud Grid Comput. (CCGrid), 2016.

169

[174] X. Yu, H. Wang, W.-c. Feng, H. Gong, and G. Cao. An Enhanced Image Reconstruction

Tool for Computed Tomography on GPUs. In ACM Conf. Comput. Front. (CF), 2017.

[175] Y. Yuan, R. Lee, and X. Zhang. The Yin and Yang of Processing Data Warehousing Queries

on GPU Devices. Proc. VLDB Endow. (PVLDB), 2013.

[176] D. Zhang, H. Wang, K. Hou, J. Zhang, and W.-c. Feng. pDindel: Accelerating InDel De-

tection on a Multicore CPU Architecture with SIMD. In IEEE Int. Conf. Comput. Adv. Bio

Med. Sci. (ICCABS), 2015.

[177] F. Zhang. Automatic Loop Tuning and Memory Management for Stencil Computations,

2014. http://scholarcommons.sc.edu/etd/3012 (Doctoral Dissertation).

[178] H. Zhang, D. Yao, and N. Ramakrishnan. Causality-based Sensemaking of Network Traffic

for Android Application Security. In ACM Workshop on Artif. Intell. Secur. (AISec), 2016.

[179] H. Zhang, D. Yao, N. Ramakrishnan, and Z. Zhang. Causality Reasoning about Network

Events for Detecting Stealthy Malware Activities. Computers & Security, 2016.

[180] H. Zhang, D. D. Yao, and N. Ramakrishnan. Detection of Stealthy Malware Activities

with Traffic Causality and Scalable Triggering Relation Discovery. In ACM Symp. on Inf.

Comput. Commun. Secur., 2014.

[181] J. Zhang, H. Lin, P. Balaji, and W.-c. Feng. Consolidating Applications for Energy Effi-

ciency in Heterogeneous Computing Systems. In IEEE Int. Conf. High Perform. Comput.

and Commun. (HPCC), 2013.

[182] J. Zhang, H. Lin, P. Balaji, and W.-c. Feng. Optimizing Burrows-Wheeler Transform-Based

Sequence Alignment on Multicore Architectures. In IEEE/ACM Int. Symp. Cluster Cloud

Grid Comput. (CCGrid), 2013.

[183] J. Zhang, S. Misra, H. Wang, and W.-c. Feng. muBLASTP: Database-Indexed Protein

Sequence Search on Multicore CPUs. BMC Bioinf., 2016.

170

[184] J. Zhang, S. Misra, H. Wang, and W.-c. Feng. Eliminating Irregularities of Protein Sequence

Search on Multicore Architectures. In IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),

2017.

[185] J. Zhang, H. Wang, and W.-c. Feng. cuBLASTP: Fine-Grained Parallelization of Protein

Sequence Search on CPU+GPU. IEEE/ACM Trans. Comput. Bio. Bioinf. (TCBB), 2016.

[186] J. Zhang, H. Wang, H. Lin, and W.-c. Feng. cuBLASTP: Fine-Grained Parallelization of

Protein Sequence Search on a GPU. In IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),

2014.

[187] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang. Mega-KV: A Case for GPUs to

Maximize the Throughput of In-memory Key-value Stores. Proc. VLDB Endow. (PVLDB),

2015.

[188] Y. Zhang and F. Mueller. Autogeneration and Autotuning of 3D Stencil Codes on Homoge-

neous and Heterogeneous GPU Clusters. IEEE Trans. Parallel Distrib. Syst. (TPDS), 2013.

[189] Y. Zhang and B. A. Prakash. DAVA: Distributing Vaccines over Networks under Prior

Information. In SIAM Int. Conf. Data Mining, 2014.

[190] Y. Zhang and B. A. Prakash. Scalable Vaccine Distribution in Large Graphs given Uncertain

Data. In ACM Int. Conf. Inf. Knowledge Manage., 2014.

[191] N. Zhao, A. Anwar, Y. Cheng, M. Salman, D. Li, J. Wan, C. Xie, X. He, F. Wang, and A. R.

Butt. Chameleon: An Adaptive Wear Balancer for Flash Clusters. In IEEE Int. Parallel

Distrib. Process. Symp. (IPDPS), 2018.

[192] M. Zuluaga, P. Milder, and M. Püschel. Computer Generation of Streaming Sorting Net-

works. In ACM Des. Autom. Conf. (DAC), 2012.

