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Abstract

Current monitoring tools capture network traffic as it appears on the network but are incapable of capturing traffic
as it progresses through a running protocol stack. Thus, the current generation of tools cannot record true application-
traffic demands and cannot capture protocol-state information at run-time in order to help fine-tune network perfor-
mance. They also lend no insight into the modulating behavior of protocols (e.g., TCP) that have been shown to impact
network performance.

In this paper, we introduce MAGNeT — Monitor for Application-Generated Network Traffic. MAGNeT consists
of both Linux kernel modifications and user-application programs. In addition to describing the implementation of
MAGNeT, we evaluate its performance and its potential use in applications such as network security, protocol tuning
and troubleshooting, and traffic characterization.

I. Introduction

The networking community routinely uses traffic li-
braries such as tcplib [1], network traces such as those
found at the Internet Traffic Archive [2] or the Internet
Traffic Data Repository [3], or mathematical models of
network behavior such as those discussed in [4] to test
the performance of network-protocol enhancements and
other network designs.

However, such libraries, traces, and models are based
on measurements made either by host-based tools such as
tcpdump [5] and CoralReef [6] or by global network-
mapping tools such as NLANR’s Network Analysis In-
frastructure [7]. These tools are only capable of captur-
ing traffic an application sends on the network after the
traffic has passed through the operating system’s protocol
stack (e.g., TCP/IP). Feng et al. [8] suggest that appli-
cation traffic experiences significant modulation by the
protocol stack before it is placed on the network. This
implies that current tools can only capture traffic which
has already been modulated by the protocol stack; the
pre-modulation traffic patterns are unknown.

In order to determine pre-modulation application traf-
fic patterns, as well as determine the modulation expe-
rienced by traffic as it progresses through the protocol
stack, we offer the Monitor for Application-Generated
Network Traffic (MAGNeT). MAGNeT captures traffic
(1) generated by applications, (2) passing through each
layer (e.g., TCP to IP) of the Linux protocol stack, and
(3) entering and leaving the network. Thus, MAGNeT
differs from existing tools in that it monitors traffic not

only as it enters and leaves the network, but also at
the application level and throughout the entire protocol
stack. We are aware of two tools which attempt similar
measurements: TCP kernel monitor from Pittsburgh Su-
percomputing Center (PSC) [9] and tcpmon from ETH
Zurich [10].

MAGNeT differs from the TCP kernel monitor in sev-
eral ways. First, MAGNeT can be used anywhere in the
protocol stack and with any protocol (with very minor
alterations to the protocol’s code); PSC’s kernel monitor
is a TCP-specific solution. Second, MAGNeT monitors
a superset of the data that the TCP kernel monitor does
and operates under Linux 2.4.x, whereas the TCP kernel
monitor only works in NetBSD.

Bolliger and Gross describe a method of extracting
network bandwidth information per TCP connection un-
der BSD in [10]. While their monitor (tcpmon) appears
to have a similar architecture to MAGNeT, it only records
the specific information needed to compute estimated
bandwidth for TCP connections because it was written
primarily to advance their research in other related ar-
eas. In fact, Bolliger and Gross use results obtained from
their tool to argue that network application performance
could be improved with the establishment of a tool such
as MAGNeT.

II. Software Architecture
MAGNeT consists of both Linux kernel modifications

and user application programs. In order to accurately
mark events occurring throughout the protocol stack,
MAGNeT must exist within the kernel; that is, there must
be hooks in the protocol stack code to allow MAGNeT
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Fig. 1. Overview of MAGNeT Operation

to record events at certain points. Running in the kernel
also has the advantage of being able to acquire applica-
tion traffic patterns with unmodified applications (e.g.,
there is no need to re-compile or re-link against a spe-
cial instrumented network library). However, in order to
provide the maximum amount of flexibility in data acqui-
sition and processing, the ability to start and end traffic
monitoring should be controlled by the user. Therefore,
when MAGNeT collects data in the kernel, the data is
placed in a special memory region to be read and used
by a separate user-application program.

The dataflow in a system running MAGNeT is shown
in Figure 1. Unmodified applications run as normal
on the host system, periodically making use of the net-
work communication routines in the kernel (such as the
send() and recv() system calls). These kernel rou-
tines, in turn, make use of TCP, IP, or other network pro-
tocols to transfer data on the network. Under MAGNeT,
each time a network-stack event (e.g., send(), entering
TCP, entering IP, etc.) occurs in the kernel, the function
magnet add() is also called by the kernel. This pro-
cedure saves relevant data to a circular buffer in kernel
space, which is then saved to disk by an user-level ap-
plication program (magnet-read is provided with the
MAGNeT distribution for this purpose but could easily
be replaced by a more sophisticated application).

A. MAGNeT in Kernel Space
The new kernel source file net/magnet/magnet.c

contains the core functionality of MAGNeT. The func-
tion magnet add(), defined in magnet.c, adds a
data point to a circular buffer that is pinned in physical
memory. This function is designed to be very lightweight
so that it can be called at several points in the proto-
col stack without inducing a significant amount of over-
head in the protocol processing. (see Section III-E for an
analysis.) Other code in magnet.c sets up the circular
buffer and the necessary hooks for the user-application
program to read data from the buffer. In addition, a new

struct magnet_data {
void *sockid;
unsigned long long timestamp;
unsigned int event;
int size;
union magnet_ext_data data;

}; /* struct magnet data */

Fig. 2. The MAGNeT Instrumentation Record

item is added to the file space at /proc/net/magnet.
This file may be read by any user to determine the current
state and parameters of the MAGNeT kernel code.

A.1 Instrumentation Record
The C header file include/linux/magnet.h

contains the global definitions for the MAGNeT system.
At the heart of the system is the instrumentation record
structure shown in Figure 2.

The instrumentation record is the data structure that
magnet add() adds to the kernel buffer at each in-
strumentation point. sockid is a unique identifier for
each connection stream, � giving MAGNeT the ability of
separating data traces into individual streams while pro-
tecting user privacy. The timestamp field contains a
CPU cycle count which serves as both a high-fidelity
time measurement for MAGNeT traces, and a synchro-
nization flag between the user and kernel MAGNeT pro-
cesses (See Section II-B.1). Valid values for the event
field (e.g., MAGNET IP SEND) are given by an enum
declaration at the beginning of magnet.h and indicate
what type of the event is being recorded. size is the
number of bytes transferred during a specific event.

�
The

data field (a optional field selected at kernel compila-
tion time) is a union of various structures in which in-
formation specific to particular protocols can be stored.
This field provides a mechanism for MAGNeT to record
protocol-state information along with event transitions.

A.2 Instrumented Events
MAGNeT is designed to be extensible with respect to

the specific events that are monitored. The current distri-
bution instruments the general socket-handling code, the
TCP layer, and the IP layer. Other protocols can be eas-
ily instrumented by adding new MAGNeT event codes
to the enum definition in magnet.h and placing calls
to magnet add() at appropriate places in the proto-
col stack. Thus, the mechanisms provided by MAGNeT
(that is, capturing application-level traces as well as in-
tercepting protocol stack events) are available to all ex-
isting and future Linux networking protocols.

Our current MAGNeT distribution records events



struct magnet_tcp {
/* data from "struct tcp_opt" in

include/net/sock.h */

unsigned short source;
/* TCP source port */
unsigned short dest;
/* TCP destination port */

unsigned long snd_wnd;
/* Expected receiver window */

unsigned long srtt;
/* smothed round trip time << 3 */
unsigned long rto;
/* retransmit timeout */

unsigned long packets_out;
/* Packets which are "in flight" */
unsigned long retrans_out;
/* Retransmitted packets out */

unsigned long snd_ssthresh;
/* Slow start size threshold */
unsigned long snd_cwnd;
/* Sending congestion window */

unsigned long rcv_wnd;
/* Current receiver window */
unsigned long write_seq;
/* Tail+1 of data in send buffer */
unsigned long copied_seq;
/* Head of yet unread data */

/* TCP flags*/
unsigned short fin:1,syn:1,rst:1,

psh:1,ack:1,urg:1,ece:1,cwr:1;
}; /* struct magnet_tcp */

struct magnet_ip {
unsigned char version;
unsigned char tos;
unsigned short id;
unsigned short frag_off;
unsigned char ttl;
unsigned char protocol;

}; /* struct magnet_ip */

Fig. 3. MAGNeT Extended Data for TCP and IP

when the socket-handling code receives data from an ap-
plication, when the TCP layer receives data from the
socket-handling code, when the IP layer receives data
from TCP, and, finally, when IP hands the data off to the
network device driver. MAGNeT records a similar set of
events for the receive pathway.

Without the optionally-compiled data field, MAG-
NeT records only the timestamp and associated data
size for each transition between network-stack layers.
With the data field compiled in, MAGNeT records
more extensive data about the instantaneous state of
the protocol being monitored. This data typically con-
tains all protocol-header information as well as run-time,
protocol-state variables, which are not usually available
outside of experimental situations. As an example of the
kind of information stored within the data field, Fig-
ure 3 shows the union members for TCP and IP events.

A.3 Event Loss
Because the kernel portion of MAGNeT saves events

to a fixed-sized buffer, there is a possibility that events
may occur when the buffer is full. In this case, MAG-
NeT is unable to save the event. MAGNeT keeps track
of the number of unrecorded events and reports this in-
formation as soon as possible. (See Section II-B.1 for
details.)

Our experience to date indicates that unrecorded in-
strumentation records rarely occur during the monitor-
ing of actual users. MAGNeT provides the capability of
tuning its operation, trading between resource utilization
and performance. As discussed in [11], with appropri-
ately tuned values MAGNeT is able to record events with
less than a 1% loss when a sender saturates a 100Mbps
network for a sustained time. Since the majority of users
do not approach continuous network-saturation levels,
MAGNeT efficiently records virtually all application-
generated network traffic.

B. MAGNeT in User Space
The MAGNeT user interface is designed to be mod-

ular; that is, as long as the MAGNeT API is followed,
any application can be a MAGNeT user-level applica-
tion. Thus, this section first discusses the basic elements
required of a MAGNeT user-level application and then
describes the user applications that are supplied with the
current MAGNeT software distribution.

B.1 User/Kernel Interface and Synchroniza-
tion

The MAGNeT additions to the kernel export the cir-
cular buffer to user-space applications via Linux ker-
nel/user shared memory. That is, a device file

�

serves as
an user-level handle to the kernel’s shared-memory re-
gion. Opening this file causes Linux to create a mapping
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Fig. 4. MAGNeT Kernel Operation

between the kernel-memory region and the user-address
space. With this mapping in place, no additional kernel
code is executed; the application program simply reads
the shared memory and writes it to disk.

Because the kernel and user processes share the same
area of physical memory, they must have a means of syn-
chronization. This is accomplished by using the time-
stamp field of the instrumentation record as a synchro-
nization flag between the MAGNeT user and kernel pro-
cesses, as shown in Figures 4 and 5.

Before writing to a slot in the circular buffer, the
MAGNeT kernel code checks the value of the time-
stamp field for that slot. A non-zero value indicates
that the slot has not yet been copied to user space and
that the kernel buffer is full. In this case, the kernel
code increments a count of the number of instrumenta-
tion records that could not be saved due to the buffer be-
ing full. Otherwise, the kernel code writes a new instru-
mentation record and advances its pointer to the next slot
in the circular buffer.

The user application accesses the same circular buffer
via kernel/user shared memory and maintains a pointer to
its current slot in the buffer. When the timestamp field
at this slot becomes non-zero, the application reads the
entire record, saves it to disk, and sets the timestamp
field back to zero to signal the kernel that the slot is once
again available. It then advances its pointer to the next
slot in the circular buffer.

If the kernel has a non-zero count of unsaved events
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Fig. 5. MAGNeT User Operation

and buffer space becomes available (i.e., the time-
stamp field of the kernel’s currently active slot is set
to zero by the user application), the kernel writes a spe-
cial instrumentation record with an event type of MAG-
NET LOST and with the size field set to the number
of instrumentation records that were not recorded. Thus,
during post-processing of the data, the fact that events
were lost is detected at the appropriate chronological
place in the data stream and in time.

B.2 MAGNeT System Information

In order to accurately gauge the amount of time spent
in protocol-stack layers, MAGNeT requires very high-
fidelity timing. To this end, MAGNeT timestamp val-
ues are recorded in units of processor-clock cycles by
the kernel’s get cycles() function. In addition, the
first record stored by MAGNeT in the circular buffer
is a record of type MAGNET SYSINFO, whose size
field contains the processor-clock speed estimated by the
kernel. This information allows for easy conversion of
MAGNeT timestamp values to wall-clock time.

The MAGNET SYSINFO event record also provides
endian-awareness. Since this field is guaranteed to be
the first record in the circular buffer every time the MAG-
NeT device file is opened, it will be the first record that
the user-application reads. The value of the event field
of this record lets data processing software determine
if the records were saved on a big- or little-endian ma-
chine (e.g., if the records are saved to a file for later
processing on a different machine). Specifically, MAG-
NET SYSINFO is defined in magnet.h to have a value
of 0x01234567. If the first record read by the data pro-
cessor has an event field of this value, no endian trans-
lation is necessary. On the other hand, if the first record’s
event field contains a different value (e.g., a value of
0x67452301), the file was saved on a machine with a dif-
ferent endian orientation than the processing machine, so
endian translation is necessary.



B.3 /proc/net/magnet

The /proc/net/magnet file allows user applica-
tions to determine the state of MAGNeT’s kernel pro-
cess. The existence of this file serves as proof that the
MAGNeT code is active in the kernel. This file contains
information such as the major and minor numbers for the
MAGNeT shared-memory device file, the size of the cir-
cular buffer, and other information that may be useful to
user-level applications.

B.4 MAGNeT User Implementation
As provided in our current distribution of MAGNeT,

the user interface consists of three programs, magnet-
read, mkmagnet, and magnet-parse, along with a
couple of scripts to automate traffic collection.
magnet-read is the primary means of obtaining

MAGNeT traffic traces; its function is to read the data
from the kernel’s circular buffer. Our first version of
magnet-read copied records out of the shared mem-
ory and wrote them to a file on disk. We found, however,
that this approach was unable to keep up with the de-
mands of a simple test application that tries to saturate
a 100-Mbps Ethernet network. Instead, the current ver-
sion of magnet-read uses the memory-mapped I/O
features in the Linux kernel. Once an empty “binary
trace file” exists, magnet-read maps this file into its
memory space and then saves data to disk by simply per-
forming a memory copy between the kernel/user shared
memory and the memory region mapped to the binary
trace file. This approach reduces overhead significantly
and allows MAGNeT to record data on even high-speed
networks with little chance of record loss. The mkmag-
net application creates and initializes the binary trace
file prior to it being mapped into memory by magnet-
read. Finally, magnet-parse reads data collected by
magnet-read and dumps a tab-delimited ASCII table
of the collected data for further processing, performing
endian translation as necessary.

The MAGNeT distribution also includes two shell
scripts that allow network administrators to create an
automated application-monitoring environment. mag-
net.cron, the overall MAGNeT management script,
ensures that the MAGNeT device file exists and that a
binary trace file has been created by mkmagnet. Ad-
ditionally, if invoked while magnet-read is running,
magnet.cron terminates the current MAGNeT data
collection session and calls magnet.copy to transfer
the data to a remote archive.

�

Before exiting, mag-
net.cron starts magnet-read as a background pro-
cess to save network events to disk. Thus, the manage-
ment script may be added as a crontab event (e.g., run
everyday at midnight) to collect data on a diverse set of
machines without requiring special action by the users of
the network.

III. MAGNeT Performance
In this section, we determine the effect of running

MAGNeT through a variety of tests. We compare over-
all attainable bandwidth on a system running MAGNeT
to that of a system running tcpdump as well as a sys-
tem running no monitoring software. We also look at
CPU utilization under these conditions and at the effect
of MAGNeT on real-time traffic streams such as multi-
media traffic. We conclude the section with a brief dis-
cussion of how the different design decisions made in
MAGNeT and other monitors result in the observed per-
formance differences.

A. Experimental Environment
We use a common environment for all the tests dis-

cussed in this section. This environment consists of
two identical, dual 400-MHz Pentium IIs connected to
each other via an Extreme Networks Summit 7i Giga-
bit Ethernet switch. Each machine contains 128MB of
RAM, ATA-33 IDE hard drives, and both 100-Mbps
(NetGear) and 1000Mbps (Alteon) Ethernet cards. All
non-essential Linux services are disabled on the test ma-
chines, and no extraneous traffic is allowed on the net-
work. MAGNeT is set to record a minimal set of infor-
mation per event (i.e., the data field is not compiled into
the MAGNeT build).

B. Network Throughput
As an indication of how much MAGNeT affects net-

work applications, we measure the maximum data rate
between a sender and receiver. We also measure the over-
head of running tcpdump as a point of comparison.

In total, we run six different configurations, each on
100-Mbps and Gigabit Ethernet networks. The first con-
figuration, our baseline, runs between two machines with
stock Linux 2.4.3 kernels. The second configuration
(i.e., MAGNeTized) uses the same machines but with the
MAGNeT patches installed on both sender and receiver.
Although present in the kernel, MAGNeT instrumenta-
tion records are not saved to disk. The third configura-
tion is the same as the second except magnet-read
runs on the receiver to drain the kernel-event buffer. The
fourth configuration is also the same as the second ex-
cept magnet-read runs on the sender. For the fifth
and sixth configurations, we run tcpdump on either the
sender or the receiver, with a stock Linux 2.4.3 kernel
(i.e., no MAGNeT code installed). For each trial, we run
netperf [12] on the sender to transmit data as fast as
possible.

�

Table I shows the results of our bandwidth experi-
ments. Along with the mean, the width of the 95% confi-
dence interval is given. As shown in this table, MAGNeT
never reduces the achievable network bandwidth by more
than 4.5%. By comparison, while tcpdump has roughly



TABLE I
NETWORK THROUGHPUT REDUCTION

Configuration Fast Ethernet (100Mbps) Gigabit Ethernet (1000Mbps)
Throughput % Reduction Throughput % Reduction

Linux 2.4.3 94.1
�

0.0 - 459.5
�

1.6 -

MAGNeTized 94.1
�

0.1 0.01 452.5
�

1.8 1.53
magnet-read/rcv 90.8

�
0.8 3.56 444.3

�
1.7 3.30

magnet-read/snd 90.7
�

0.9 3.67 440.2
�

2.1 4.19

tcpdump/rcv 89.4
�

1.5 5.04 290.7
�

15.6 36.74
tcpdump/snd 89.4

�
0.8 5.42 343.2

�
18.7 25.30

the same impact on performance for Fast Ethernet, it suf-
fers dramatically as network speeds increase to Gigabit
Ethernet. Thus, we conclude that MAGNeT is better able
to adapt to tomorrow’s networking infrastructure than the
current version of tcpdump.

It is worth noting that these comparisons are not en-
tirely fair. As discussed in Section III-F, MAGNeT and
tcpdump are designed to record different (but simi-
lar) sets of information. However, since no tool exists
which captures the same information as MAGNeT, we
use tcpdump as the closest commonly-available tool.

By default (and as used in our experiments), tcp-
dump stores the first 68 bytes of every packet. Dur-
ing these tests, the MAGNeT per-event record size is 24
bytes. However, since MAGNeT instruments the entire
network stack, it records the packet’s transitions between
the application, TCP, and IP layers, as well as transmis-
sion onto the network. Thus, although MAGNeT stores
approximately 1/3 less data than tcpdump per event,
MAGNeT records up to four events per packet whereas
tcpdump only records one event per packet. Hence, the
total data saved by MAGNeT per packet is up to 96 bytes
per packet or 41% more than tcpdump.

C. CPU Utilization
Under Linux, netperf estimates CPU load by cre-

ating a low-priority process which increments a counter.
This process, being the lowest priority task in the sys-
tem, should only execute when the CPU has nothing else
to execute, so the counter is only incremented when the
CPU would otherwise be idle. Thus, a low counter value
implies a high CPU utilization, and a high counter value
implies low CPU utilization. Using this feature with the
above set of tests, we estimate the additional CPU load
incurred by both MAGNeT and tcpdump. The increase
in CPU load, averaged over the sender and receiver dur-
ing the above tests, is shown in Figure 6.

As can be seen, MAGNeT uses proportionally less
CPU than tcpdump, which is expected given the results
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of our bandwidth tests. Also apparent is a decrease in
CPU utilization when moving from 100-Mbps to 1000-
Mbps. This drop is a result of the fact that our Gigabit
Ethernet cards perform interrupt coalescing by default.
That is, they wait for several packets to arrive from the
network before interrupting the CPU. Thus, the cost of
servicing the network device interrupt is amortized over
several packets. This reduces the total amount of work
performed by the CPU, as shown in Figure 6. Had in-
terrupt coalescing been disabled, the average CPU uti-
lization for both MAGNeT and tcpdump would have
increased.

D. Streaming MAGNeT

In order to determine what visible effect the opera-
tion of MAGNeT has on streaming media we set up a
web server on one of our test machines to stream an 8-
minute, 51-second MPEG clip of Crocodile Dundee. We
then viewed the clip with MAGNeT running only on the
server, with MAGNeT executing only on the client, and
with MAGNeT not installed at all.

Our results are summarized in Figure 7. Note that
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most streaming MPEG clients buffer data to maintain a
constant framerate. This fact implies that frames-per-
second is a misleading measure of streaming network
performance. Therefore, the metric we have chosen is
the total wall-clock time taken for the entire clip to be
sent to the client.

As can be seen, MAGNeT has minimal effect on
MPEG streaming. Over 100 trials, the average time to
stream the movie clip without MAGNeT is 46.02 sec-
onds, with a 95% confidence interval of

�
0.07 seconds.

To transfer the movie clip with MAGNeT running on the
server took an average 46.07 seconds, and with MAG-
NeT on the client, 46.05 seconds. (Both of the MAG-
NeT cases have a 95% confidence interval of

�
0.06 sec-

onds.) As a point of comparison, tcpdump increases
the streaming time to approximately 52 seconds.

E. Network Perturbation

Adding CPU cycle-counting code in magnet add()
allows us to determine the amount of time taken to save
events to the buffer. In a similar manner (by instrument-
ing the relevant areas of magnet-read), we can deter-
mine the average time taken to events from the buffer to
disk. The sum of these values is the amount of time taken
by MAGNeT to record events.

Our tests indicate magnet add() uses 556 cycles
per 1500-byte packet while magnet-read uses 425 cy-
cles. So, on our 400-MHz machines, MAGNeT takes�������

cycles ���
	 � cycles �
� � ����� Mcycles/second ���
	�� ��� sec to record each packet. On a 100-
Mbps Ethernet, a minimal TCP packet (that is, a
packet of 40 bytes) will take at least

� �
� bytes ��
bits/byte ��������� Megabits/second ����� 	�� sec to trans-

fer. This comparison suggests MAGNeT-induced distur-
bances into TCP traffic streams should be quite small.  

F. Design of tcpdump vs. MAGNeT
While tcpdump and MAGNeT are similar in that

they are both monitors of network traffic, they are also
very different in that they monitor different aspects of the
traffic and are based on different design philosophies.
tcpdump, like magnet-read, is an user-interface

application relying on functionality contained in a lower
layer. In the case of tcpdump, the lower layer is called
libpcap and has been used successfully with other ap-
plications, such as CoralReef. The critical difference is
that while MAGNeT operates largely within the Linux
kernel, libpcap is implemented as a library working
in user space under a variety of operating systems.

The exact method used by libpcap to intercept net-
work packets varies depending on the features available
in the root operating system, but it always involves a sys-
tem call or similar facility that causes a switch into ker-
nel mode and a copy of memory from the kernel to the
user-level library. This call-and-copy is repeated for ev-
ery packet traveling across the interface being monitored.
At high network speeds (and thus high packet-transfer
rates), the overhead of copying each individual packet
between kernel and user space becomes a significant bur-
den. MAGNeT benefits from having code embedded in
the kernel to aggregate multiple network packets into a
single space which then is copied in bulk, thus amor-
tizing the cost of the copy over multiple packets. This
approach incurs less overhead but is not as portable as
libpcap’s method.

Finally, we note again that the kind of data collected
by tcpdump and MAGNeT is not exactly the same. As
used in the experiments in this paper, ! MAGNeT col-
lects only packet generation time and data size. tcp-
dump, on the other hand, collects packet time informa-
tion along with a sampling of the actual data contained
in the packet. MAGNeT ignores this data mostly out of
privacy concerns.

IV. Applications of MAGNeT
MAGNeT provides network implementors with the

ability to discover true application-traffic demands while
maintaining application transparency. This ability has
many practical applications, some of which we discuss
in this section.

A. Network Security
A standard method of detecting network intrusion is

to have an automated system continually watching net-
work traffic patterns and flagging anomalous behavior
for a human operator to investigate. This approach re-
quires all traffic on the network to flow through a cen-
tralized monitoring station, which not only introduces a
single point of failure to the network but also provides
a potential bottleneck that may reduce achieved network



bandwidth significantly (while, at the same time, increas-
ing network latency).

MAGNeT provides an alternative solution. We have
shown that MAGNeT, unlike tcpdump, runs almost
transparently for most applications, even on high-speed
networks. Thus, MAGNeT may be deployed on every
computer in an installation. If this is the case, there is no
need for all traffic to flow through a central monitoring
machine. Instead, each machine may collect its own traf-
fic patterns and then periodically have magnet.cron
send its collected data to a central processor. This pro-
cessor is then able to analyze campus-wide network ac-
tivity with a finer granularity than currently available. �
Unlike current solutions, if for some reason the central
processor goes down, the rest of the computers on the
network continue to operate without difficulty. Thus, the
problems of a single network-traffic sink are eliminated.

B. Protocol Tuning and Troubleshooting

With the optional data filed compiled in, MAGNeT
has the ability to return snapshots of complete protocol
state (information previously only available in simula-
tion environments) during execution of real applications
on real-world networks. This kind of data is a powerful
tool for aiding the debugging and fine-tuning of network-
protocol implementations such as TCP.

C. Traffic Pattern Analysis

MAGNeT is a useful tool for investigating differences
between traffic generated by an application and that same
traffic but after modulation by the protocol stack, i.e.,
when the traffic hits the network. An example of this
kind of modulation is shown in Figure 8. This figure is
the MAGNeT trace of using FTP to send a Linux 2.2.18
bzipped tar file from our facilities in Los Alamos, NM to
a location in Dallas, TX. As can be seen by examining the
graph, the FTP application attempts to send 10KB seg-
ments of data every 1/5 of a second. However, the Linux
protocol stack (TCP and IP in the case of FTP) modulates
this traffic pattern into approximately 1500 byte packets
at considerably shorter intervals.

It may be assumed that since the maximum data size
on an Ethernet network is 1500 bytes, the protocol stack
is simply modulating the data to this size to obtain valid
Ethernet traffic. However, if the traffic stream as it was
delivered to the network is sent through another TCP
stack (this is exactly the case when using a tcpdump-
derived traffic trace as input to a network simulation), we
again see modulation. Every successive run of network-
delivered traffic through TCP further modulates the traf-
fic, as shown in Table II. The table reflects the average
data size of output TCP packets and the average time
in seconds between output TCP packets, using the data
stream from the previous TCP output as input. Likewise,
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Fig. 8. MAGNeT FTP Trace

Figure 9 shows the effect of successive TCP stacks on
achieved bandwidth across the same WAN pathway used
for the original FTP transfer.

TABLE II
EFFECT OF MULTIPLE TCP STACKS

Trial Data Size Interpacket Spacing
(sec)

Application 3284 0.124
1st TCP stack 1016 0.045
2nd TCP stack 919 0.037
3rd TCP stack 761 0.079
4th TCP stack 723 0.122

As shown in Table II, successive TCPs reduce the data
size of each packet in an exponential fashion. In addition,
the first TCP stack (that is, the TCP stack used by the
application) radically reduces the inter-packet spacing,
while each successive TCP stack (e.g., the TCP stacks of
a network simulation) slowly increases the inter-packet
delay. The ultimate effect is to drastically reduce the
achieved bandwidth during actual transfers, as reflected
in Figure 9. After just three TCP stacks, the achievable
bandwidth has been reduced by 76%.

D. Application-Generated Trace Library
Currently existing models of network traffic have been

developed using network traffic traces gathered via tradi-
tional network monitoring systems. These models are
then used to develop new network protocols and net-
working enhancements.

However, the kind of results typified by Figure 8 indi-
cate that network traffic demands of applications are not
accurately reflected by traffic on the network wire (since
the traffic pattern has already been modified by the cur-
rent network protocol). Hence, while current network
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models may accurately reflect current network-wire traf-
fic, they are not useful in optimizing application commu-
nications.

We have seen (in Section IV-C) that recursively pass-
ing traffic through TCP stacks results in decreased net-
work performance. Yet the current tools available to net-
work researchers (such as tcpdump) only allow traffic
collection after that traffic has passed through at least one
TCP stack. Thus, the results of simulations using this
traffic data are corrupt; the input data has already been
modulated. This is a critical observation for the develop-
ment of next-generation, high-speed network protocols.

Traffic traces generated by MAGNeT provide a real-
istic picture of the protocol-independent traffic demands
generated by applications running on today’s networks.
Thus, MAGNeT provides network researchers and devel-
opers with a better understanding of applications’ actual
communication needs.

V. Future Work
MAGNeT currently exists as a prototype implementa-

tion, and as such, its user interface is not highly refined.
We plan to improve the interface by allowing the user to
set various MAGNeT parameters (i.e., the kinds of events
to be recorded, the size of the kernel buffer, etc.) at run-
time rather than at kernel compile-time. This is possible
by making the current /proc file writable and would
greatly increase the usability and flexibility of MAGNeT.

Another potential area of improvement in MAGNeT is
the mechanism used to store saved data from the kernel
buffer to disk. As it is currently implemented, the mecha-
nism works but requires a user well-versed in how to op-
erate MAGNeT (or a script which takes care of the details
for the user). A better approach may be to utilize kernel
threads to perform all steps of the instrumentation. With
this methodology, the need for the special device file, the
file created by mkmagnet, and the kernel/user shared
memory would be eliminated. In addition, kernel threads

may lower MAGNeT’s current low event loss rate by re-
ducing the need for a context switch to save data. How-
ever, the execution of kernel threads can break an ap-
plication’s usage-pattern transparency which MAGNeT
currently is able to achieve. Additionally, kernel threads
may remove the ability of easily integrating MAGNeT
data-collection facilities into new user applications. The
use of kernel threads may be explored for future versions
of MAGNeT, along with other options for improving
this interface, such as the Turbo Packet scheme used by
Alexey Kuznetsov to increase tcpdump’s performance
under Linux.

Timing with the CPU cycle counter can be problematic
on contemporary CPUs which are able to change their
clock rate in response to power-management policies. If
the kernel can detect such changes, MAGNeT can easily
hook into the clock-rate change detection code and out-
put a new MAGNET SYSINFO event with the new timing
information. This would keep timing relatively consis-
tent across CPU clock-rate changes. However, there is
currently no way for production Linux kernels to detect
CPU clock rate changes at run-time.

�

VI. Conclusion
We have developed a new kind of monitor for

the Linux networking community. Our Monitor for
Application-Generated Network Traffic (MAGNeT) col-
lects run-time data about the network protocol stack as
well as application traffic demands before modulation
by any protocol stack. In addition, MAGNeT collects
this data while maintaining user and application trans-
parency. Thus, MAGNeT may be used in live systems to
obtain real-world, application-traffic traces and protocol-
state information in production environments.

The resulting data may be used, among other things,
for debugging existing protocol implementations, un-
derstanding possible performance degradation seen un-
der various network architectures, designing new net-
working protocols that specifically take advantage of true
application-traffic patterns, and developing more realis-
tic models of network traffic. The data-collection capa-
bilities of MAGNeT also have potential use in fields such
as network security which rely on a detailed understand-
ing of the traffic existing in an institutional network.

The combination of capabilities offered by MAGNeT
make it a valuable tool to network designers, imple-
mentors, researchers, and administrators. We intend for
MAGNeT development to continue and lead to further
advances in high-performance networking.

Availability

MAGNeT patches for Linux 2.4 kernels (known to
work on i386 and PowerPC code branches), the user-
application program magnet-read, and supporting



material including additional published and unpublished
documents relating to MAGNeT, are available from
http://www.lanl.gov/radiant under the GNU
Public License (GPL).
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those of the author(s) and do not necessarily reflect the
views of DOE, Los Alamos National Laboratory, or the
Los Alamos Computer Science Institute. This paper is
Los Alamos Unclassified Report (LA-UR) 01-5065.

Notes

� The sockid field is, in fact, the run-time value of
the pointer to the kernel’s status information for the spe-
cific connection.�

A negative value in the size field reflects the error
code returned by the function causing the event.

�

The major and minor numbers for this device are
system specific and can be discovered by inspecting
/proc/net/magnet.

�

Since magnet.copy is called while magnet-
read is not running, any traffic produced by the data
archiving will not be captured by MAGNeT. This behav-
ior can easily be changed by re-ordering the commands
in magnet.cron.

�

The command used was “netperf -P 0 -c�
local CPU index � -C

�
remote CPU index �

-H
�
hostname � ”

 Of course, with 1000-Mbps networks, the time taken
to send a minimal TCP packet is reduced by an order of
magnitude. In this case, MAGNeT takes significantly
longer to record a packet than the transmission time.
However, it is likely that Gigabit networks will be used
with much faster machines than our test machines, thus
reducing this discrepancy.

! By utilizing the data field of the instrumentation
record, MAGNeT captures much more detail (but still
not actual packet data).

� Since MAGNeT never collects actual data (only traf-
fic patterns), the privacy of each individual machine is
maintained.

�

Dynamic CPU clock changing is also an issue with
many aspects of the Linux kernel. For instance, short de-
lay loops in the kernel rely on � number of loops taking �
amount of time to compute. This relation is also affected
by CPU clock-rate changes.
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