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Abstract—A quantum annealer solves optimization problems
by exploiting quantum effects. Problems are represented as
Hamiltonian functions that define an energy landscape. The
quantum-annealing hardware relaxes to a solution corresponding
to the ground state of the energy landscape. Expressing arbitrary
programming problems in terms of real-valued Hamiltonian-
function coefficients is unintuitive and challenging. This paper
addresses the difficulty of programming quantum annealers by
presenting a compilation framework that compiles a subset of C
code to a quantum machine instruction (QMI) to be executed on
a quantum annealer. Our work is based on a modular software
stack that facilitates programming D-Wave quantum annealers
by successively lowering code from C to Verilog to a symbolic
“quantum macro assembly language” and finally to a device-
specific Hamiltonian function. We demonstrate the capabilities
of our software stack on a set of problems written in C and
executed on a D-Wave 2000Q quantum annealer.

Index Terms—Compiler, D-Wave, high-level language, map-
ping, quantum annealing, quantum assembler, macro, quantum
computing, QMASM, Verilog, EDIF

I. INTRODUCTION

One can currently classify a quantum computer as either
a quantum annealer (QA) or a gate-model (or circuit-model)
quantum computer. The latter supports general-purpose quan-
tum computation [1] but with a limited number of qubits.1 On
the other hand, a QA is a special-purpose quantum computer
that scales well in terms of qubits but is oriented to a specific
type of application, namely optimization problems. The largest
available QA is D-Wave’s with 2048 qubits [3]; D-Wave
projects a new platform with more than 5000 qubits, along
with a next-generation Pegasus architecture, for mid-2020 [4].

A classical analogue to quantum annealing is simulated
annealing [5], a well-established technique for finding an
optimal value in a large search space. Annealing in hardware
offers a potential gain over classical solutions in the quality
of the solution attainable in a given length of time. A QA
further increases this potential by exploiting quantum effects,
most notably, quantum tunneling. Quantum tunneling supports
cutting through tall energy barriers to transition from one
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1Currently, Google has the largest reported gate-model quantum computer
with 72 qubits [2].

state to a superior state, leading to a greater probability than
simulated annealing of finding the ground state, given the same
annealing schedule [6].

Because a QA fundamentally differs from the von Neumann
architecture used in classical computing, classical program-
ming techniques are not directly applicable to quantum anneal-
ing. Programming a QA involves defining an energy landscape
in terms of a 2-local Ising-model Hamiltonian function such
that the coordinates of the ground state (i.e., minimum energy
value) correspond to the solution sought. More precisely, a QA
program consists of a list of real numbers that correspond to
linear and quadratic coefficients in the Hamiltonian function.
Programming at this level is tedious and error-prone. Thus, the
question that we seek to answer in this paper is as follows:
Can one compile from a high-level language to an optimization
problem accepted by quantum-annealing hardware?

Our approach centers around the realization of a software
stack that abstracts programmability from a very low-level
quantum language, consisting of a single instruction called a
quantum machine instruction (QMI), to a much higher level of
abstraction, such as C. It encompasses a sequence of tools that
successively compiles from a more user-friendly abstraction
level, namely C, to a more hardware-friendly one, namely a
QMI, as outlined in Figure 1.

Specifically, this paper, as encompassed by Figure 1, intro-
duces C-to-D-Wave, a translator from a stylized subset of C [7]
to Verilog [8]. We then compile the resulting Verilog code to
EDIF [9] using Yosys [10]. Next, we use edifqmasm [11] to
compile EDIF to QMASM, a symbolic, hardware-independent
representation of a Hamiltonian function. This QMASM code
is then compiled to a hardware-dependent 2-local Ising-model
Hamiltonian function using the QMASM tool [12]. Finally,
D-Wave’s solver API (SAPI) libraries [13] generate the corre-
sponding QMI to run on a D-Wave quantum annealer (QA).

The following are the main contributions of this work:
• A novel framework that compiles high-level classical

code to a quantum machine instruction for quantum
annealers like D-Wave.

• An evaluation of the efficacy of our high-level program-
ming abstraction on the D-Wave 2000Q QA.

To that end, we first present background material on quantum
annealing in general and D-Wave systems in particular in
Section II. Section III describes our compilation framework
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Fig. 1: Our C-to-D-Wave quantum annealing software stack

that maps C code to a QMI for execution on a D-Wave
QA. Section IV evaluates our framework’s productivity and
efficiency. Related work, including previous efforts to develop
programming models for quantum annealing, is described in
Section V. Finally, Section VI draws conclusions from our
findings and lays out opportunities for future work.

II. BACKGROUND

This section presents the basics of quantum annealing and
discusses the underlying hardware infrastructure of a D-Wave
QA. We explain how to program a QA at the lowest level
and articulate the semantic and conceptual gaps that must be
overcome to program a QA in a high-level language.

A. Quantum Annealing Basics

A QA is a special-purpose device that specializes in finding
the set of spins that minimize the energy of an Ising-model
Hamiltonian. A D-Wave QA imposes the added restriction
of operating on 2-local Ising-model Hamiltonians. “2-local”
means that the function can contain up to quadratic terms,
which limits interactions to at most two (2) spins. D-Wave’s
problem Hamiltonian can be expressed as follows:

H(σ) =
N∑
i=1

hiσi +
N−1∑
i=1

N∑
j=i+1

Jijσiσj (1)

where σi ∈ {−1,+1}, hi ∈ R, and Jij ∈ R. In other
words, H is a quadratic pseudo-Boolean function. Physically,
a spin σi is implemented with a qubit (i.e., quantum bit);
an hi coefficient represents the strength of the external field
applied to σi; and a Jij coefficient represents the strength of
the interaction between σi and σj .

A QA program is merely a list of hi and Jij coefficients
for Equation (1). This list is referred to as a quantum machine
instruction (QMI). Although a QMI is semantically simple,
expressing non-trivial programs in terms of Equation (1)’s hi
and Jij coefficients requires substantial effort.

B. D-Wave System Architecture and Low-Level Interface

1) Hardware architecture: The fundamental component of
a D-Wave system is a flux qubit, implemented with a super-
conducting loop. A D-Wave quantum processing unit (QPU) is
a sparsely connected graph of connected qubits. The topology,
called a Chimera graph [14], is a 2-D grid of unit cells, where
each unit cell consists of eight qubits linked with a bipartite
connectivity structure, as shown in Figure 2. In addition, each
qubit in a unit cell is connected to its peers in two adjacent
unit cells (either “north and south” or “east and west” but not
both). A Chimera graph is therefore of degree six: each qubit
has four (4) internal connections within a unit cell and two
connections to neighboring unit cells.
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Fig. 2: AND gate embedded on D-Wave’s quantum annealer
(QA) unit cell

2) Chains and embedding: A Hamiltonian function is log-
ically represented as a graph, with the hi corresponding to
node weights and the Jij corresponding to edge weights. A
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problem’s logical representation does not necessarily follow a
Chimera graph’s structure. Therefore, one must map the log-
ical representation of a problem onto the hardware’s physical
topology in a process known as minor embedding [14], in
which high-degree logical qubits are implemented in terms
of multiple degree-6 physical qubits. The efficiency of this
mapping process is critical because it determines the number
of utilized physical qubits. An example of an AND gate
embedded on the physical hardware is shown in Figure 2.
Using fewer qubits is preferred in order to fit larger problems
on the limited hardware resources.

3) Solver API (SAPI): SAPI is the lowest-level software
interface to D-Wave’s QPU [15]. SAPI includes multiple
features needed to interact with the QPU such as querying
and connecting to a solver (an actual D-Wave or a local
simulator), minor-embedding a logical problem onto the phys-
ical hardware, constructing a QMI from a list of Hamiltonian
function coefficients, submitting QMIs to the solver, and post-
processing the solutions returned.

C. D-Wave Compatible High-Level Programming Style

Here we outline the conceptual differences between pro-
gramming a conventional processor and programming a QA.

• A QA has no notion of a clock. QA code cannot include
sequential dependencies. This can be faked by replicating
the entire program per discrete time step—entire program
at time 0, entire program at time 1, and so forth—and
linking each time step to its successor [11]. However,
this trade-off of time for space is often impractical in
terms of the required qubit count.

• A QA has no notion of registers. Mutable state is not
supported by a QA.

• A QA has no notion of explicit inputs. All a QA does is
minimize a Hamiltonian function. Inputs must be encoded
as function coefficients (hi and Jij).

In Section III, we illustrate how to compile C code in a way
that satisfies the above constraints and runs on a D-Wave QA.

III. C-TO-D-WAVE

This section discusses the C code compilation framework
that transforms a subset of C code to a QMI. We chose C
as the programming language because it is low level enough
to provide precise control over the hardware yet high level
enough to be accessible to a wide range of developers.
We leverage the large engineering effort spent developing
a software stack [10]–[13] that abstracts quantum annealing
programming to the level of Verilog, a hardware description
language. Figure 1 illustrates the levels of the software stack,
including both programming languages and tools. It also
articulates the basic features of each abstraction level in this
toolchain, which highlights the challenges in compiling high-
level code to lower-level code—generally, lower levels offer
a more restricted feature set. Finally, Figure 1 presents code
samples at all but the bottom two levels, where code size is
prohibitively large.

The work presented in this paper extends the previously
implemented toolchain (blue boxes) from Verilog to a C
compilation environment (green box). However, the challenge
is that the C code and the resulting Verilog code must be
compatible with the underlying toolchain and in turn the
limitations of QA hardware (discussed in Section II-C).

We used Clang [16] release 6.0 for constructing an abstract
syntax tree (AST) from a C program. Then we used Clang’s
Libtool to create a standalone tool that uses the rewriter class
along with Clang’s AST recursive visitor for the conversion
from C to Verilog. This approach provides us the flexibility
we need to generate Verilog code compatible with the coding
style of D-Wave’s software stack. The tool is open-source and
available at https://github.com/lanl/c2dwave.

A. Verilog to a QMI

The previously existing portion of the toolchain generates
D-Wave QMIs from Verilog code through a sequence of trans-
lation and compilation steps. The first step of the compilation
process compiles a hardware specification expressed in Ver-
ilog [8] to a digital circuit in EDIF (Electronic Design Inter-
change Format) format [17]. EDIF is a vendor-neutral format
for expressing the netlist (description of the connectivity of
an electronic circuit) of a synthesized design. For this step we
use the Yosys hardware synthesizer [10] to synthesize Verilog
to hardware and the open-source ABC circuit-optimization
tool [18] to optimize the synthesized circuit.

The second step uses edif2qmasm [11] to compile EDIF
code to a logical Hamiltonian function expressed in QMASM
format [12].

The third step uses the QMASM tool [12], a quantum macro
assembler that allows qubits to be referenced symbolically
(string variable names) as opposed to numerically (physical
qubit number). QMASM codes can be run immediately by
the tool on any D-Wave solver, either real hardware or a
simulator, using SAPI [13] to map them to a QMI. QMASM
can also generate input for D-Wave’s qbsolv [19] tool, which
can split a large problem into hardware-sized QMIs, execute
these, and combine the results into a solution to the full
problem. Regardless of how QMASM is run, execution re-
sults are automatically expressed in terms of their program-
specified symbolic names, which greatly facilitates program
development and debugging.

B. C-to-D-Wave Supported Features

Verilog is a hardware-centric language that is not readily
accessible to the mainstream software community. This short-
coming is overcome by the work presented in this paper (C
to D-Wave), which abstracts the programming environment to
the level of C code.

C-to-D-Wave supports a feature set that has enabled the suc-
cessful generation of Verilog modules for multiple problems,
on which we will elaborate in Section IV. Supported constructs
include arithmetic operations (Add, Sub, Mul, Div, Mod), logic
operations (NOT, AND, OR, XOR), branching operations (for
loops, while loops, if conditions, and C’s ternary operator,
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“? :”), integer and Boolean variables, array declarations, and
return statements. These constructs can be used as building
blocks to implement more complex problems.

However, some of these constructs have limited support.
Integer variables default to being only five bits wide, and
branch conditions (such as the if statement condition and the
for loop exit condition) are assumed to be constant to avoid
synthesizing a sequential circuit.

C. Generating Verilog Code

Here we describe the basic operation of C-to-D-Wave that
maps a form of C code to a form of Verilog that is compatible
with the programming style discussed earlier. A function’s
inputs and outputs are converted to their Verilog equivalent
in the generated Verilog module, while the function body is
transformed into a logic circuit to be implemented in Verilog.
We begin by describing C-to-D-Wave’s conversion of a C
function signature to the signature of a Verilog module:

• Function parameters are considered inputs.
• The return statement defines the output.
• Integers are converted to 5-bit variables (arbitrary; can be

changed) in Verilog.
• bool variables are converted to 1-bit variables in Verilog.
• The register keyword is used before the variable decla-

ration to force the generation of a register in Verilog.
Registers are required in Verilog in two cases: when a

variable is going to be used as an induction variable of a loop,
and when a variable is going to be reassigned mid-code, as in
“temp = temp + val;”. In this case, the variable “temp” should
be a register.

Now we shift our focus to the C code function body, which
we convert to a logic circuit expressed in Verilog. In Verilog,
combinatorial assign statements assign a value or the result
of an operation to a given variable. Loops in Verilog require
a genvar directive, which is linked to the loop’s induction
variable. The last aspect we consider is “always @ (clk)”
blocks, which are commonly used to specify actions to take
on a clock signal. This implies sequential logic controlled by
the specified clock signal in the sensitivity list targeting the
logic inside that block.

Because a QA has no clock (Section II-C), we convert all
code to a combinational circuit. Consequently, we encapsulate
the entire function body in an “always @*” block, where using
“*” allows the hardware synthesizer to infer combinational
logic. Inside an “always @*” block, we do not need to
generate assign statements. Also, loops inside “always @*”
blocks do not need a genvar directive. Instead, the induction
variable can be a register. In this case, the use of registers
does not necessarily imply that the circuit becomes sequential
because the loop bounds are assumed to be static, and the
loop will be completely unrolled to be synthesized as a
combinational circuit.

IV. TESTING AND EVALUATION

In this section, we explore what C-to-D-Wave is capable
of expressing. We step in detail through the compilation of

Listing 1: C-code example of max-cut problem
1 bool max cut (bool a,bool b,bool c,bool d,bool e) {
2 register bool valid = 0; // output
3 int cut = 4; // variable to set the number of cuts
4 register int temp = 0; // calculate number of cuts
5 register int x; // induction variable
6 register int y; // induction variable
7 bool in val[5]; // array to hold input
8 bool arr[5][5]; // 2−D array for graph connectivity
9 for (x = 0 ; x < 5 ; x = x + 1)

10 for (y = 0 ; y < 5 ; y = y + 1)
11 if((arr[x][y]==1)&&(in val[x]!=in val[y]))
12 temp=temp+1;
13 if(temp>=2*cut)
14 valid = 1;
15 else
16 valid = 0;
17 return valid; }
a maximum-cut problem from C code to Verilog. We have
compiled more complex codes but omit the details of their
compilation from this paper due to space purposes. However,
we do present graphs of qubit utilization for the logical and
physical representations of these problems. We also quantify
the productivity of our software stack in terms of SLOC
(source lines of code). C-to-D-Wave successfully generates
D-Wave-compatible Verilog code for multiple problems in-
cluding the traveling salesman problem (TSP), subset sum,
map coloring, max-cut, sorting, and multiplication/factoring.

A. Example of Lowering C Code to Verilog

Here we provide an example of a max-cut problem ex-
pressed in C code and the generated Verilog code. Code
listing 1 shows a shrunk-down portion of the C code used to
represent a max-cut problem (finding a subset S of a graph’s
nodes that maximizes the number of cut edges between S
and the complementary subset). We explain the approach of
constructing the max-cut problem as a validation program for
specific inputs.

The problem constructs a graph of five nodes, where the
graph connectivity structure is defined in the 2-D matrix “arr”
(line 8 of Listing 1). However, defining the graph connectivity
has been elided from Listing 1 for space purposes. The
function inputs five bool (Boolean) variables that are set to
either 0 or 1, which represent the two sets of the cut graph. The
nested loop that starts on line 9 is responsible for iterating on
the connectivity matrix of the graph. This nested loop performs
a check if two nodes are connected (according to the connec-
tivity matrix) and are located in different sets (according to the
input). If so, the “temp” variable is incremented for a valid cut.
Then, on line 13, “temp” is compared to the number of cuts
set to a value of 4 to decide whether the max-cut constraint
is satisfied for a valid solution. The output “valid” is of type
bool, which if true means that the input did partition the graph
into two sets with a number of cuts more than that specified
in the code.
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Listing 2: Verilog example of max-cut problem
1 module max cut (input a,input b,input c,input d,

input e,output result);
2 wire arr [4:0][4:0];
3 wire in val [4:0];
4 reg [4:0] y;
5 reg [4:0] x;
6 reg [4:0] temp;
7 wire [4:0] cut;
8 reg valid;
9 always@*

10 begin
11 for (x = 0 ; x < 5 ; x = x + 1)
12 begin
13 for (y = 0 ; y < 5 ; y = y + 1)
14 begin
15 if((arr[x][y]==1)&&(in val[x]!=in val[y]))
16 begin
17 temp=temp+1;
18 end
19 end
20 end
21 if(temp>=2*cut)
22 begin
23 valid = 1;
24 end
25 else
26 begin
27 valid = 0;
28 end
29 result = valid;
30 end
31 endmodule

The generated Verilog code is illustrated in Listing 2. The
return type of the C-function being bool specifies that the
output of the Verilog module “result” is a one-bit variable.
The Boolean arguments of the C code “a”, “b”, “c”, “d”,
and “e” are translated to one-bit inputs to the Verilog module.
int variables are translated to 5-bit wires, while register int
variables are translated to 5-bit reg variables in Verilog. The
return statement on line 17 of the C code specifies “valid” as
the internal variable to set the output, which is generated in
the Listing 2 Verilog code on line 29.

B. Quantifying Productivity

We use a count of source lines of code (SLOC) as a metric
for quantifying the productivity of our software stack. We are
particularly interested in C-to-D-Wave’s SLOC counts relative
to those of the lower-level languages in the stack. As shown in
Figure 3, the two higher-level programming languages (C and
Verilog) require fewer SLOC, which is to be expected. In fact,
the C and Verilog versions have similar SLOC, with Verilog
slightly higher in all cases. SLOC is substantially higher at
the QMASM level (and higher still at the EDIF level, but
EDIF is not intended to be written explicitly by programmers).

For the logical-Hamiltonian abstraction level, we consider the
SLOC to be the number of coefficients of qubit weights and
coupler strengths. SLOC is higher here than in any of the other
implementations.
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Fig. 3: SLOC count for the tested application set across the
abstraction levels of the software stack

The structure of a problem has a large effect on the
utilization of scarce hardware resources (qubits). The max-
cut problem embeds well onto the D-Wave’s Chimera-graph
topology, while map-coloring requires a more qubit-hungry
minor embedding. Figure 3 shows that in spite of both appli-
cations having almost the same C code SLOC count (max-
cut: 52, map-coloring: 55), the logical-Hamiltonian SLOC
count is different by an order of magnitude (max-cut: 123,
map-coloring: 2608). As a matter of fact, the max-cut problem
shows the most efficient hardware embedding out of the tested
application set. Although the efficiency of this application set
may be improved by hand-crafting and manually optimizing
Hamiltonian functions, it is infeasible to attempt doing so by
hand.

C. Qubit Utilization Report

Although QAs have a large number of qubits compared
to gate model quantum computers, they are still a scarce
resource. Hence, the number of logical and physical qubits for
a problem is a very important metric in this context. We show
in Figure 4 the reported qubit utilization for the set of problems
implemented by C-to-D-Wave. The number of logical qubits is
constant for a given problem from compilation to compilation.
However, the number of physical qubits changes from one
compilation to the other because it depends on a stochastic
minor-embedding algorithm [20]. We report the average of 25
runs for each problem, with 100,000 samples and 1µs anneal
time per run.

The logical-to-physical qubit mapping depicted in Figure 4
shows nonlinear growth of the physical qubit count as the
logical qubit count increases. The max-cut problem shows
the lowest qubit utilization which proves that this problem
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is well suited for the target architecture. The 20 logical qubits
used to represent this problem are expanded to 64 physical
qubits, which is a 3.2x expansion. On the other hand, the
traveling salesman problem is represented using 130 logical
qubits which expanded to 776 physical qubits—an almost
6x expansion. The map-coloring problem’s qubit utilization
was not reported, as the design failed to embed on the
D-Wave 2000Q. This emphasizes the importance of efficient
logical representation of the problem in addition to efficient
embedding heuristic.

V. RELATED WORK

There are multiple tools available to convert high-level
codes such as C and OpenCL to Verilog, including commercial
high-level synthesis tools (e.g., Vivado HLS [21], Altera
Offline Compiler (aoc) [22]) and open-source tools that use
LLVM’s intermediate representation [16] to do the conversion
(e.g., LegUp [23]). However, the above tools target field-
programmable gate array (FPGA) compilation, which imposes
two major problems when targeting a QA:

• Converting the code to a finite state machine (FSM),
while appropriate for FPGA, is not compatible with
quantum combinational-style circuits.

• Inserting FPGA board-specific code for the memory
interface, registers, and clock control, while required for
FPGA, is unnecessary overhead for QA.

Hence, programming a QA using the software stack presented
in Figure 1 required a Verilog generation tool that is flex-
ible enough to comply with the restriction imposed by the
underlying hardware (Section II-C) and avoids generating the
FPGA-specific overhead of HLS tools.

A. General-Purpose Quantum Annealing Programming

QA Prolog [24] converts constraint logic programs ex-
pressed in Prolog into a QMI for D-Wave systems. QA Prolog
implements fully parallel, constraint-based logic programming

on the QA. It leverages the lower portion of the software
stack discussed in this paper. Because Prolog is less commonly
used than C, this paper presents our C-to-D-Wave compilation
framework.

The D-Wave Ocean software suite [25] incorporates higher-
level programming abstractions but not expressed as stan-
dalone general-purpose programming languages. An example
is D-Wave NetworkX, which is a Python library based on the
NetworkX graph library [26]. This library focuses on solving
NP-complete and NP-hard graph problems on a D-Wave
system. D-Wave NetworkX programming model simply trans-
forms a constraint satisfaction problem to a Hamiltonian
objective function.

Most other programming tools targeting the D-Wave QA,
such as qbsolv [19], are lower level than discussed in this
work. Qbsolv takes as input a logical QUBO (a 2-local Ising-
model Hamiltonian with {0, 1} variables instead of {−1,+1}
variables), which could be naturally dense and not conformant
with the Chimera graph structure. It maps the QUBO to the
physical hardware of the D-Wave QA.

B. Domain-Specific Quantum Annealing Programming

Other work targeting QAs generally focuses on domain-
specific conversion of an algorithm (or a class of algorithms)
to an Ising-model Hamiltonian, such as set-partitioning [27],
max-cut [28], clique partitioning [29], and the vertex-coloring
problem [30]. In contrast, our work is a general-purpose
programming paradigm that subsumes these applications (and
others) in one programming framework.

VI. CONCLUSION

Programming a quantum annealer (QA) is fundamentally
different and significantly more difficult from programming a
classical computer. Therefore, to better facilitate the productive
programming of a QA, we present a compilation framework
that compiles a subset of C code to a quantum machine
instruction (QMI) to be executed on a QA. To demonstrate
the efficacy of our framework, we compile a diverse set of
problems, ranging from arithmetic problems (such as mul-
tiplication and factoring) to optimization problems (such as
traveling salesman and max-cut problems).

We quantify the productivity of our framework by reporting
source lines of code (SLOC) as a metric. Based on this metric,
our C to D-Wave compilation framework significantly reduces
the burden of programming and compiling programs for a
D-Wave QA. Specifically, our framework reduces the SLOC
of the selected problems by three orders of magnitude when
comparing the high-level C code to the low-level Hamiltonian
used to generate the QMI.

With the next-generation D-Wave system slated to increase
the number of qubits by 2.5× and the connectivity by 2.5×,
our compilation framework provides a general abstraction that
allows quantum developers to seamlessly compile and run their
C code across both current and future QAs. Furthermore, the
modular design of the software stack makes it easy to add
support for new generations of QA hardware.
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