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Abstract—There is a lack of support for explicit synchro-
nization in GPUs between the streaming multiprocessors (SMs)
adversely impacts the performance of the GPUs to efficiently per-
form inter-block communication. In this paper, we present several
approaches to inter-block synchronization using explicit/implicit
CPU-based and dynamic parallelism (DP) mechanisms. Although
this topic has been addressed in previous research studies, there
has been neither a solid quantification of such overhead, nor
guidance on when to use each of the different approaches.
Therefore, we quantify the synchronization overhead relative to
the number of kernel launches and the input data sizes. The
quantification, in turn, provides insight as to when to use each
of the aforementioned synchronization mechanisms in a target
application. Our results show that implicit CPU synchronization
has a significant overhead that hurts the application perfor-
mance when using medium to large data sizes with relatively
large number of kernel launches (i.e. ∼1100-5000). Hence, it is
recommended to use explicit CPU synchronization with these
configurations. In addition, among the three different approaches,
we conclude that dynamic parallelism (DP) is the most efficient
with small data sizes (i.e., ≤128k bytes), regardless of the number
of kernel launches. Also, Dynamic Parallelism (DP), implicitly,
performs inter-block (i.e. global) synchronization with no CPU
intervention. Therefore, DP significantly reduces the power con-
sumed by the CPU and PCIe for global synchronization. Our
findings show that DP reduces the power consumption by ∼8-
10%. However, DP-based synchronization is a trade-off, in which
it is accompanied by ∼2-5% performance loss.

Index Terms—GPU, CPU Synchronization, Dynamic Paral-
lelism

I. INTRODUCTION

To address the lack of direct support for native inter-block
synchronization on the GPU, researchers have adopted indirect
mechanisms such as GPU barrier synchronization [2], implicit
CPU barrier synchronization, explicit CPU barrier synchro-
nization, and more recently, dynamic parallelism (DP). How-
ever, these mechanisms incur non-trivial overhead compared
to a hypothetical native synchronization primitive implemented
in hardware.

Synchronization within a GPU can be classified into intra-
block and inter-block synchronization. Intra-block synchro-
nization coordinates the threads within a streaming multipro-
cessor (SM) in the context of shared on-chip memory. On
the other hand, inter-block synchronization coordinates data

communication between threads that span across different
streaming multiprocessors (SMs) in the context of global
off-chip memory. Off-chip (i.e., global) memory access la-
tency is significantly higher than that of the on-chip (i.e.,
local) memory. Therefore, inter-block synchronization incurs
orders of magnitude higher overhead than that of the intra-
block synchronization. In this study, we focus on inter-block
communication/global barrier synchronization, which is also
referred to as inter-streaming-multiprocessor (i.e., inter-SM)
synchronization.

Traditionally, global synchronization is done via terminating
the current kernel execution, then re-launching it again or
even launching another kernel. By default, the CUDA kernel
launches are asynchronous. That means the CPU will offload
the computation to the GPU and return immediately, as shown
in Figure 1(a). We refer to this mechanism as implicit CPU
global synchronization. On the other hand, NVIDIA provides
a mechanism to support synchronous (i.e. blocking) kernel
launches by calling “cudaDeviceSynchronize()” API after the
kernel launch. This API blocks at the CPU until the GPU
finishes the current kernel computation, as shown in Fig-
ure 1(b). We refer to this mechanism as explicit CPU global
synchronization. For this, the latter incurs larger overhead.
However, under specific circumstances, our study shows that
the implicit CPU global synchronization may experience a
significant performance degradation, thus the use of explicit
CPU global synchronization is required.

Recently, an indirect method for GPU-based synchroniza-
tion, namely Dynamic Parallelism (DP) [10], [11], has been
introduced in recent NVIDIA architectures (e.g. GK110), in
an attempt to lessen the CPU-GPU communication overhead
and enhance the dynamic load balancing as shown in [6],
[7], [8], [12]. DP represents implicit On-GPU global barrier
synchronization without CPU intervention. However, much of
the recent work that has been done with DP indicates that
it incurs significant overhead [6], [8], [9], [13], [14], thus
it is claimed to be impractical. On the other hand, several
researches [20], [21] took place to introduce alternatives to
the Dynamic Parallelism because of its high overhead. Our
analysis uncovers scenarios where DP outperforms the other
synchronization mechanisms.
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Fig. 1. The CPU Synchronization Mechanisms

The explicit GPU global synchronization [2] might
be competitive with DP. However, NVIDIA introduces
“ threadfence()” API to, theoretically, ensure correctness of
inter-block communication. The overhead of the explicit GPU
synchronization with the “ threadfence()” is significantly
high [5]. In addition, it comes with a limitation on the number
of blocks executing on the GPU, in which it should not exceed
the number of the Streaming Multiprocessors (SMs). As such,
explicit GPU global synchronization is opted to be out of scope
of this paper.

Previous work in GPU kernel launch and synchronization
has not provided guidance on when it is appropriate to use each
of the aforementioned approaches to synchronization within a
specific target application. Although some work has been done
to characterize the overhead of synchronization primitives and
protocols, it has been mainly from the hardware (i.e., platform)
point of view. In addition, dynamic parallelism (DP) is missing
from these previous studies.

Therefore, in this paper, we conduct a comprehensive study
and characterization of the overhead for the different ap-
proaches to synchronization for the GPU. Our contributions
are as follows.

• Guidelines to choose the most appropriate synchroniza-
tion mechanism based on application’s parameters.

• Quantification of the kernel launch time and the synchro-
nization overhead for each of the mechanisms vs. the
number of kernel launches and the data sizes.

• We are the first to use the Dynamic Parallelism as a
mean of global synchronization. In addition, We show
its power consumption advantage compared to the other
mechanisms (i.e.,CPU-based global synchronization).

• Realization of synthetic micro-kernel and application
benchmarks to stress-test the different approaches to
synchronization.

The rest of the paper is organized as follows. Section II
presents the work related to synchronization and dynamic
parallelism (DP). Section III discusses the applications and
its role in studying the overhead of the synchronization mech-
anisms. Section IV, then, analyzes and quantifies this overhead
of each synchronization mechanism. In addition, we conduct
a comparison of performance vs. power consumption for
both the DP-based and the other synchronization mechanisms.
Finally, section V concludes our work and discusses future
work.

II. RELATED WORK

Our work is related to the area of synchronization proto-
cols for many-core architectures and characterization of the
Dynamic Parallelism.

The explicit GPU-based synchronization can be realized by
either lock-based or lock-free techniques as introduced in [2].
Both techniques require the number of blocks to be less than
or equal to the number of the streaming multiprocessors in the
GPU to avoid the potential deadlock. Their study shows that
the explicit GPU-based synchronization may incur a signifi-
cant overhead, relative to the implicit CPU synchronization,
when using the memory fence API. Mehmet et al. [3] have
used the wavefront parallelism to mitigate the explicit GPU-
based synchronization overhead. Meanwhile, Gupta et al. [15]
have introduced the persistent thread concept to overcome the
limitations on the number of blocks in the explicit GPU-based
synchronization mechanism. However, none of these work
considered the Dynamic Parallelism.

The work of David et al. [4] focus on the synchroniza-
tion over multiple layers with the emphasis on the cache-
coherency and locks. Stuart et al. [18] conducted a research on
the efficient synchronization primitives (e.g. atomic accesses)
over many-core architectures. However, the their work is on
characterizing the synchronization overhead based on many-
core architecture and hardware targets. Both don’t consider
the applications configurations and parameters. In addition, the
former study is meant for the CPU but it cannot be directly
mapped to the GPU environment.

On the other hand, several efforts has been introduced to
reduce or eliminate the global barrier synchronizations [16],
[17], [19]. These are optimization studies to lessen the syn-
chronization points within an application. They didn’t provide
any characterization of the overhead of the synchronization
mechanisms.

Jin et al. [9] lead a study for characterizing the dynamically-
formed parallelism on irregular (i.e. unstructured) applications
on GPUs. They conclude that the Dynamic Parallelism causes
∼1.21x slowdown due to its non-trivial overhead. Dimarco et
al. [8] carried out a study on the use of the Dynamic Paral-
lelism to accelerate clustering algorithms, which also confirms
its significant overhead. However, both works are addressing
DP for dynamic load balancing in irregularity in applications.
It didn’t discuss synchronization overhead. In addition, they
didn’t cover structured or regular applications. Our analysis
provides DP overhead quantification and guidelines on when
to use each of the global barrier synchronization, including
the Dynamic Parallelism, for each target application.

III. APPROACH AND APPLICATIONS

We implement a synthetic micro-benchmark to analyze and
understand the behavior of the CPU and GPU (i.e. Dynamic
Parallelism) synchronization mechanisms over a variety spec-
trum of workloads. The micro-benchmark represents com-
putations with different memory access characteristics. The
kernels (i.e. computations) that require low to no read/write
global memory access are classified as light-weight kernels.
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On the other hand the kernels that require average to intense
read/write global memory accesses are classified as average-to-
heavy-weight kernels. Our micro-benchmark includes kernels
with memory access patterns as follows.

• Empty Kernel.
• Shared-Memory Kernel: Computations read/write from/to

shared memory only.
• Global Memory Kernel: Computations read/write from/to

global memory. Allocation is done by either the CPU or
the GPU.

• Local Memory Kernel: Computations read/write from/to
private memory or registers only.

• Others: combination of the above primitives.
Apart from the micro-bench mark, we have selected two

applications for more insights and evaluation. They are a good
approximation of real-world applications.

• The Lid-Driven Cavity (LDC): A computational fluid
dynamic application that has stress, viscosity and pressure
calculations on a mesh of a default size 3x4096x4096.
Each mesh cell is a double-precision floating point that
occupies 8 bytes [22].

• The Heat2D: NVIDIA open source heat transfer simu-
lation in a two-dimensional space [1].

IV. EXPERIMENTS DISCUSSION AND EVALUATION

For each of the experiments, we did 20 runs and then
took the average to make our results resilient to the external
uncontrolled errors.

In order to quantify the synchronization overhead, we
examine each of the synchronization mechanisms versus the
number of kernel launches and the input data sizes (i.e. mesh
sizes). The data type, in all applications, is double-precision
floating point (i.e., 8 bytes). That means, mesh size can be
translated into “bytes” unit via multiplying the dimensions
by “8”. For instance, mesh size of 128x128 is equivalent to
128x128x8 = 128 KBytes (KB). In addition, the mesh size
affects directly on the number of blocks running on the GPU.
Thus, it relates to the number of synchronization points and its
overhead. The block size is fixed to 16x8 threads. Therefore,
alternatively, the mesh size can be translated to the number of
blocks which can be calculated as shown in 1. For instance,
data mesh size of 128x128 is equivalent to 128 Blocks.

Blocks =

⌈
Mesh Dim X

16

⌉
∗
⌈
Mesh Dim Y

8

⌉
(1)

We implement the applications with the three different
synchronization mechanisms: the implicit CPU, the explicit
CPU and the Dynamic Parallelism. We evaluate their power
consumption, performance and overhead on both Kepler K20c
and Tesla K20Xm GPUs with CUDA 6.0. The computational
kernel is kept the same across all the variants. The explicit
CPU synchronization mechanism requires the addition of
“cudaDeviceSynchronize()” at the host side only. As for the
Dynamic Parallelism, we implemented an auxiliary kernel that
is launched once from the CPU side, and then it will manage

Fig. 2. The Synchronization Overhead Across Multiple Workloads

all the launches and synchronization of the computational
kernel within the GPU.

We used NVIDIA Profiler to collect numbers and analysis
reports. It reports a breakdown that shows the kernel launch
time (i.e. Overhead) and the execution time (i.e. Computation
time) separately for the CPU synchronization mechanisms.
However, with Dynamic Parallelism, it reports an integrated
number for both launch and execution times . Since the compu-
tational kernel is untouched, the execution time should remain
the same across all the synchronization mechanisms. Thus, we
subtract the execution time, of the CPU synchronization run,
from the integrated number reported in the DP run, to obtain
the overall synchronization overhead (i.e. launch and sync).

The implicit CPU synchronization mechanism is recognized
for its best performance and its least overhead among the
aforementioned synchronization mechanisms. Therefore, we
use it to characterize and classify our benchmark as shown
in Figure 2. It shows the overhead of the three mechanisms
with 1000 kernel launches and 4096x4096 mesh size each. The
number of kernel launches (i.e., 1000) is recommended by the
domain scientists for the LDC. The implicit CPU synchroniza-
tion outperforms both the explicit CPU synchronization and
the Dynamic Parallelism, which is already expected. It is worth
to mention that the Dynamic Parallelism has significantly
larger overhead with light-weight kernels (e.g. empty, local
or shared memory computations) than that of the medium-to-
heavy-weight kernels (e.g. global memory computations, LDC
and Heat2D).

In the next subsections, we pick representatives of each
of the light-weight and medium-to-heavy-weight kernels for
further analysis. The “Empty” and the “Shared-Memory”
Kernels represent the former category. Meanwhile, the “Lid-
Driven Cavity” and the “Heat2D” Kernels represent the latter
category.

A. Light-Weight Kernels

We examined the synchronization overhead versus the num-
ber of kernel launches (i.e. 1-10k) for the light-weight kernels.
Figure 3 and 4 show the synchronization overhead for the
“Empty” Kernel and the “Shared-Memory” kernel respec-
tively. This experiment answers the research question on which
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Fig. 3. The Synchronization Overhead vs. No. of Kernel Launches – Empty
Kernel

Fig. 4. The Synchronization Overhead vs. No. of Kernel Launches – Shared-
Memory Kernel

synchronization mechanism is appropriate for the light-weight
kernels, given the number of kernel launches. It shows the cut-
off (i.e. ∼5k launches), at which the Dynamic Parallelism and
the Explicit CPU synchronization outperform the Implicit CPU
synchronization. This is due to the fact that the implicit CPU
synchronization is a non-blocking mechanism. That means, it
allows multiple kernel launches from the CPU side, even if it
can’t be all served and hence queued. So at a certain limit, it
has to do a time consuming flush for the accumulated tasks
in the queues. This limit is at 5k kernel launches with the
light-weight kernels.

B. Medium-to-Heavy-Weight Kernels

Similarly, we examined the synchronization overhead versus
the number of kernel launches (i.e. 1-10k) for the medium-to-
heavy-weight kernels. Figure 5 and 6 show the synchroniza-
tion overhead for the “Heat2D” and the “LDC” Kernels. In
this case, we aim to answer the research question on which
synchronization mechanism is appropriate for the medium-to-
heavy-weight kernels, given the number of kernel launches. It
shows the cut-off (i.e. 1100 launches), at which the Dynamic
Parallelism and the Explicit CPU synchronization outperform
the Implicit CPU synchronization. This is due to the same
reason of queues flushing.

Fig. 5. The Synchronization Overhead vs. No. of Kernel Launches – Heat2D
Kernel

Fig. 6. The Synchronization Overhead vs. No. of Kernel Launches – LDC
Kernel

C. Synchronization Overhead vs. Data Size

The data size is an effective factor in determining the
number of blocks that are executing on the GPU. We believe
that the synchronization overhead increases with the increase
of the data size. Therefore, we need to answer the research
question about the data size cut-off at which the implicit CPU
synchronization mechanism remains robust (i.e. No perfor-
mance degradation) given the previous cut-offs of the number
of kernel launches. Figure 7 shows that the data size should be
≤ 128x128 (128 KB), in order to achieve high performance
with large number of kernel launches (i.e. ≥ 1000).

On the other hand, we evaluate the overhead of the im-
plicit CPU vs. the explicit CPU vs. the Dynamic Parallelism
synchronization mechanism across the different data sizes.
Figure 8 shows that the overhead of dynamic parallelism is
the least among the three synchronization mechanisms, when
the data size is small (i.e. <= 128x128 or 128 KB) regardless
of the number of kernel launches. Therefore, the Dynamic
Parallelism is the most appropriate synchronization mechanism
for applications of relatively small input data sizes. This
conclusion is confirmed and clarified in figure 9, that shows the
synchronization overhead with the Lid-Driven Cavity (LDC)
of 32 KB data size .
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Fig. 7. The Implicit CPU Synchronization Overhead vs. Data Size – LDC
Kernel

Fig. 8. The Synchronization Overhead vs. Data Size – LDC Kernel

D. Power vs. Performance Trade-Off

Unlike CPU-based global synchronization, DP globally
synchronize the kernel running on the GPU without CPU
intervention. Hence, Dynamic Parallelism reduces the power
significantly by cutting the portions consumed by the CPU
and the PCIe. We are concerned since power/energy saving is
critical towards the exascale computing realization.

We used the NVIDIA Management Library (NVML) to
collect power readings using “nvmlDeviceGetPowerUsage()”

Fig. 9. The Synchronization Overhead vs. 64x64 Data Size – LDC Kernel

Fig. 10. DP vs. CPU: Power Consumption of the LDC and Heat2D Over
Tesla K20c and Tesla K20Xm

Fig. 11. DP vs. CPU: Execution Time of the LDC and Heat2D Over Tesla
K20c and Tesla K20Xm

API. The power reading is sampled during the execution
lifetime and then averaged out. The sample count is ∼25-30.

In this section, implicit CPU-based and the DP-based global
synchronizations have been compared with respect to the
power and performance (i.e. execution time). we exclude the
synthetic micro-benchmarks as numbers/readings will not be
realistic with respect to the power consumption. Therefore,
we report only the LDC and the Heat2D benchmarks. Our
experiments are performed over both Tesla K20c and K20Xm
platforms. Figure 10 shows the power consumption of the
LDC and the Heat2D for both the implicit CPU-based and
the Dynamic Parallelism GPU-based global synchronization
mechanisms. DP global synchronization reduced the power
consumption significantly by ∼8-10% and ∼8-9% for both
the LDC and the Heat2D respectively. However, this power
consumption improvement has a trade-off, in which there is
a slight performance degradation accompanied with the DP
mechanism compared to the CPU-based mechanism. Figure 11
shows that the DP global synchronization slightly increases the
execution time by ∼4-5% and ∼2-3% for both the LDC and
the Heat2D respectively.

V. CONCLUSION AND FUTURE WORK

There is no explicit support for the Inter-Block synchro-
nization. Several global synchronization mechanisms and pro-
tocols have been introduced during the past couple of years.
However, there is still neither solid quantification nor com-
prehensive characterization for the overhead of the different
synchronization mechanisms. Hence, we carried out a study
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to characterize the overhead of the known synchronization
mechanisms. Our goal is to answer research questions about
when and for which application, a specific synchronization
mechanism should be used. We covered the implicit CPU
synchronization, the explicit CPU synchronization and the
Dynamic Parallelism in this study. Meanwhile, we are looking
into extending our work by including the explicit GPU-based
synchronization [2] with the Persistent Thread [15] approach
.

Our results have challenged the idea that the implicit CPU
synchronization mechanism always has the best performance
and the least overhead. With the large number of kernel
launches, the implicit CPU synchronization shows a significant
overhead and performance degradation. This is due to the fact
of the non-blocking kernel launches that are queued along
with memory writes that keep filling up the buffer and need
to be flushed at a certain limit. We defined this limit, in our
study, by both the number of kernel launches and the data
size. Our results determined the cut-offs of the number of
kernels launches and the data size, at which the performance
degradation occurs. The number of kernel launches cut-off
is ∼5000 and ∼1100 for the light-weight and medium-to-
heavy-weight kernels respectively. But, this cut-offs are valid
when the data size is relatively large (i.e. ≥ 128 KB). In
addition, our results show that the DP is the most appropriate
way of global synchronization among the three mechanisms
with small data sizes (i.e. ≤ 128 KB). The DP performance
advantage is observed regardless of the number of kernel
launches. On the other hand, the DP significantly reduced
the power consumption by ∼8-10% compared to the implicit
CPU-based global synchronization mechanism. However, it
yield to a slight loss in the performance by ∼2-5%.

In the future, we would like to extend our benchmark to be
more representative by including more computation patterns
such as Berkley’s 13 dwarfs. We also need to build our own
generic model that predicts the appropriate synchronization
mechanism for the target application over the many-core ar-
chitectures (i.e. GPU). One thought is to use an approximation
to the BSP model [23] in which communication cost will be
simplified into just global synchronization (i.e. Data Transfer
will be omitted). Processors, in the BSP context, will be
equivalent to the Streaming Multiprocessors in the GPU. As
mentioned earlier, since the computation kernel is the same
across all mechanisms, therefore, the computation parameters
and rate can be either neglected or set to a constant value.
Finally, automatic translation from/to any of the different
global synchronization mechanisms will be of a great benefit
to improve the programmability.
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