
ComputeCOVID19+: Accelerating COVID-19 Diagnosis and
Monitoring via High-Performance Deep Learning on CT Images

Garvit Goel
garvit217@vt.edu
Virginia Tech

Blacksburg, Virginia, USA

Atharva Gondhalekar
atharva1@vt.edu
Virginia Tech

Blacksburg, Virginia, USA

Jingyuan Qi
jingyq1@vt.edu
Virginia Tech

Blacksburg, Virginia, USA

Zhicheng Zhang
zzc623@stanford.edu
Stanford University

Palo Alto, California, USA

Guohua Cao
ghcao@vt.edu
Virginia Tech

Blacksburg, Virginia, USA

Wu-chun Feng
feng@cs.vt.edu
Virginia Tech

Blacksburg, Virginia, USA

ABSTRACT
The COVID-19 pandemic has highlighted the importance of diag-
nosis and monitoring as early and accurately as possible. However,
the reverse-transcription polymerase chain reaction (RT-PCR) test
results in two issues: (1) protracted turnaround time from sample
collection to testing result and (2) compromised test accuracy, as
low as 67%, due to when and how the samples are collected, pack-
aged, and delivered to the lab to conduct the RT-PCR test. Thus,
we present ComputeCOVID19+, our computed tomography-based
framework to improve the testing speed and accuracy of COVID-19
(plus its variants) via a deep learning-based network for CT image
enhancement called DDnet, short for DenseNet and Deconvolution
network. To demonstrate its speed and accuracy, we evaluate Com-
puteCOVID19+ across several sources of computed tomography
(CT) images and onmany heterogeneous platforms, includingmulti-
core CPU, many-core GPU, and even FPGA. Our results show that
ComputeCOVID19+ can significantly shorten the turnaround time
from days to minutes and improve the testing accuracy to 91%.

CCS CONCEPTS
• Computing methodologies→ Parallel computing method-
ologies; Artificial intelligence; Machine learning.

KEYWORDS
AI, biomedical imaging, COVID-19, computed tomography, coron-
avirus, deep learning, FPGA, GPU, neural network

1 INTRODUCTION
Since the discovery of COVID-19 in December 2019, it has resulted
in 184,015,446 confirmed cases and 3,980,350 deaths worldwide, as
of 4 July 2021 [7, 21]. Even more worrisome is that the total number
of actual cases is unknown. As much as 50% of the population is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00
https://doi.org/10.1145/3472456.3473523

asymptomatic [34], and, in turn, unwittingly serve as contagious
transmitters. Furthermore, Johns Hopkins University reports that
59% of COVID-19 spread comes from asymptomatic transmission
(i.e., 35% from presymptomatic individuals and 24% from individuals
who never develop symptoms) [20]. To compound matters further,
the accuracy of the standard COVID-19 RT-PCR test is mediocre
with one in three producing a false negative, i.e., 67% sensitivity [24].

Thus, we present ComputeCOVID19+, a deep-learning (DL)
framework that delivers much higher sensitivity (91%) than the RT-
PCR test (67%) and much faster turnaround time (≈ 5 minutes) than
RT-PCR (≈ 4 hours per test with multi-day turnaround time). The
improved sensitivity is due to our enhanced imaging and analysis
of lung CT images while the faster turnaround time is due to better
accessibility and less dependency on materials and labor.

Patients with COVID-19 possess lung CT scans that exhibit a
spectrum of distinguishing hallmark features (a.k.a. radiological or
CT abnormalities), such as ground-glass opacities (GGOs), linear
opacities, vascular consolidation, reversed halo signs, and crazy-
paving patterns. Figure 1 provides visual examples of some of these
hallmark features found in COVID-19 patients.

Figure 1: Abnormalities in chest CT scans of COVID-19 patients

Continued Importance of COVID-19 Testing. Despite the rollout
of COVID-19 vaccines resulting in 47% of the U.S. population being
fully vaccinated (but only 11% globally), as of 4 July 2021, there
still exists the need for a rapid, accurate, and accessible test for
diagnosing COVID-19 plus its variants (e.g., B.1.1.7 – Alpha, B.1.351
– Beta, B.1.617.2 – Delta). In the United Kingdom (UK), for example,
the number of confirmed cases per million, as shown in Figure 2,
is exponentially increasing again, due to the partial easing of re-
strictions and the enormous growth of the Delta variant (B.1.617.2)
to 98% of the confirmed cases in the UK (as of 14 June 2021), thus
marking the start of the 4th wave for the UK [21, 36].

ICPP 2021 Chicago, IL

https://doi.org/10.1145/3472456.3473523

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Garvit Goel, Atharva Gondhalekar, Jingyuan Qi, Zhicheng Zhang, Guohua Cao, and Wu-chun Feng

Daily new confirmed COVID-19 cases per million people
Shown is the rolling 7-day average. The number of confirmed cases is lower than the number of actual cases; the
main reason for that is limited tes�ng.

Jan 28, 2020 Apr 30, 2020 Aug 8, 2020 Nov 16, 2020 Feb 24, 2021 Jul 4, 2021
0

200

400

600

800

United Kingdom

Brazil

World
United States

Source: Johns Hopkins University CSSE COVID-19 Data CC BY

Figure 2: Confirmed Cases of COVID-19 Per Million People [21, 36]

In summary, our ComputeCOVID19+ framework improves the
testing speed and accuracy of COVID-19 (plus its variants) by mak-
ing the following contributions:
• Novel algorithms and software for high-fidelity CT image con-
struction and high-precision interpretation of COVID-19.

• Performance evaluation of our ComputeCOVID19+ framework
on CT images with respect to speed and accuracy.

• Validation of ComputeCOVID19+ with clinical COVID-19 data.
The rest of the paper is organized as follows. In §2, we present
the ComputeCOVID19+ framework and its underlying software
architecture, followed by details of our network training for Com-
puteCOVID19+ in §3. In §4, we describe the optimizations applied
for accelerating the parallelized training and inference of AI on a
given heterogeneous platform. Then, we present an evaluation of
the performance and accuracy of our framework in §5. In §6, we
compare our ComputeCOVID19+ framework with the current state
of the art for diagnosing COVID-19 and, in turn, further articulate
and delineate the contributions of this paper. Finally, we provide
future directions for this work in §7 and conclude with §8.

2 COMPUTECOVID19+ FRAMEWORK
ComputeCOVID19+ is our computationally-based deep-learning
(DL) diagnosis and monitoring framework for COVID-19. It adapts
and extends theDenseNet &Deconvolution neural network (DDnet),
initially developed for sparse-viewCT reconstruction [45], to realize
high-quality CT imaging and high-accuracy diagnosis of COVID-19.
By deploying ComputeCOVID19+ to the widely available CT scan-
ners nationwide,1 we seek to enable more rapid, more accessible,
and more accurate detection of COVID-19 with higher sensitivity
and accuracy. Furthermore, ComputeCOVID19+ can deliver better
and more timely diagnostic monitoring for progressing COVID-19
patients. Figure 3 provides an overview of the ComputeCOVID19+
framework. Our results show that it can improve the accuracy of
CT-based diagnosis of COVID-19 from 86% to 91%.

Due to complexity of our DL algorithms for CT image enhance-
ment and analysis, we leverage high-performance computing (HPC)

1ComputeCOVID19+ is available at https://github.com/vtsynergy/DL-FACT

Figure 3: ComputeCOVID19+ framework. The green arrows represent
the ComputeCOVID19+ workflow, where our image enhancement measur-
ably improves the accuracy of COVID-19 diagnosis. (Analysis AI consists
of Segmentation AI and Classification AI.)

Figure 4: Workflow for testing the ComputeCOVID19+ framework

via multi-core CPUs, many-core GPUs, and FPGAs to reduce the
turnaround time for COVID-19 diagnosis from days via the RT-PCR
test to onlyminutes using CT scanning and ourComputeCOVID19+
framework, where inference completes in less than one second.

ComputeCOVID19+, which is based on a chest CT and image
enhancement algorithm [45], consists of three AI-based tools: (1)
Enhancement AI, (2) Segmentation AI, and (3) Classification AI. We
evaluate them across many computing devices, using the workflow
shown in Figure 4. The first step prepares the data for the training
and testing of each AI tool. Next comes Enhancement AI, which
enhances CT images using a DenseNet and Deconvolution-based
deep neural network (DDnet). The enhanced images are then fed to
Segmentation AI for further pre-processing and finally categorized
by Classification AI as either a positive or negative COVID-19 scan.

2.1 Data Preparation
In order to train our AI tools, we collected CT scans from four data
sources: (1) Mayo Clinic, (2) BIMCV: Medical Imaging Databank
of the Valencia Region, (3) MIDRC: Medical Imaging and Data Re-
source Center, hosted by RSNA, and (4) LIDC: Lung Image Database

ICPP 2021 Chicago, IL

ComputeCOVID19+: Accelerating COVID-19 Diagnosis and Monitoring via High-Performance Deep Learning on CT Images ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Consortium Image Collection. These radiological data sources con-
tain 3D chest CT scans composed of 2D image slices, each of size
512×512 pixels. Table 1 provides a description of each data source.

Table 1: Description of data sources

Data Source Contents

Mayo Clinic
Eight (8) healthy chest CT scans & assoc.
projection data at full & quarter dosage

Medical Imaging Databank
of the Valencia Region (BIMCV)

X-ray scans & CT scans of 34 COVID-19
patients

Medical Imaging and Data
Resource Center (MIDRC)

229 CT scans of COVID-19 patients

Lung Image Database Consortium
Image Collection (LIDC)

1301 healthy chest CT scans

To maintain consistency across the CT scans from multiple data
sources, we performed the following data preparation:
• Retaining only the chest CT scans from the BIMCV dataset, which
contains a mixture of CT scans and X-ray images.

• Removal of circular segmentation at the boundary of CT scans
from the BIMCV and MIDRC datasets, as shown in Figure 5.

• Keeping CT scans with at least 128 two-dimensional (2D) im-
ages slices, in order to maintain isotropy in CT scans for better
segmentation and classification with 3D networks.

Additional details on the CT data sources are in §3.1.2 and §3.3.2.

(a) Original CT image with
circular segmentation

(b) Simulated CT image

Figure 5: Removal of circular segmentation in CT images

2.2 Image Enhancement
Our Enhancement AI tool from ComputeCOVID-19+ uses DDnet
for CT image enhancement [45]. DDnet consists of a convolution
network with 37 convolution layers and a deconvolution network
with eight deconvolution layers, as shown in Figure 6. The convo-
lution network, deconvolution network, and shortcut connections
distinguish DDnet from existing state of the art.

2.2.1 Convolution Network. This consists of four dense blocks for
feature extraction from the input image [16], as shown in Figure 7.
Each dense block contains four densely connected layers (i.e., the in-
put to each layer is concatenated with the inputs of all the previous
layers), which facilitate feature reuse and mitigate the exploding
and vanishing gradient problems. The dense connections are known
as local shortcut connections. Each dense block is followed by a
pooling and convolution layer. The pooling layer reduces the size of
the feature maps by a factor of two in both the x and y dimensions,

Figure 6: The architecture of DDnet

Figure 7: The architecture of dense block

resulting in better memory efficiency and less sensitivity to input
variations.

2.2.2 Deconvolution Network. This reconstructs images from the
extracted features. It has eight deconvolution layers and four un-
pooling layers. The un-pooling operation scales the feature maps
by a factor of two in both the x and y dimensions using bi-linear
interpolation. Table 2 shows the size of the input and output feature
maps and the filters for each convolution and deconvolution layer.

2.2.3 Shortcut Connections. These concatenate the outputs from
different layers in the network. Shortcut connections facilitate fea-
ture reuse and better information flow through the network [28],
resulting in a better-trained network. In addition to the local short-
cut connections, DDnet uses shortcut connections from the output
of each dense block in the convolution network to the correspond-
ing output of the un-pooling layer in the deconvolution network.
These shortcuts are called global connections.

2.3 Image Classification
ComputeCOVID19+ leverages the workflow in [13] — specifically,
our Segmentation AI and Classification AI tools — to classify CT
images into positive and negative COVID-19 test cases.

2.3.1 Segmentation AI. This classifies each pixel in the image as
foreground or background. In contrast to direct classification meth-
ods, segmentation-based classification categorizes an image based
on the image and its segmentation mask with the goal of chang-
ing the characteristics of the image to be more meaningful, thus
facilitating better interpretation and classification. For chest CT
images, isolating the lungs via segmentation provides better feature

ICPP 2021 Chicago, IL

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Garvit Goel, Atharva Gondhalekar, Jingyuan Qi, Zhicheng Zhang, Guohua Cao, and Wu-chun Feng

Table 2: Input and output sizes and filter size of feature maps for
the convolution and deconvolution layers in DDnet

Layers Output Size Details
Convolution 1 512×512×16 filter size=7×7, stride=1
Pooling 1 256×256×16 filter size=3×3, stride=2

Dense Block 1 256×256×80 filter size=
[
1 × 1
5 × 5

]
× 4, stride=1

Convolution 2 256×256×16 filter size=1×1, stride=1
Pooling 2 128×128×16 filter size=3×3, stride=2

Dense Block 2 128×128×80 filter size=
[
1 × 1
5 × 5

]
× 4, stride=1

Convolution 3 128×128×16 filter size=1×1, stride=1
Pooling 3 64×64×16 filter size=3×3, stride=2

Dense Block 3 64×64×80 filter size=
[
1 × 1
5 × 5

]
× 4, stride=1

Convolution 4 64×64×16 filter size=1×1, stride=1
Pooling 5 32×32×16 filter size=3×3, stride=2

Dense Block 4 32×32×80 filter size=
[
1 × 1
5 × 5

]
× 4, stride=1

Convolution 5 32×32×16 filter size=1×1, stride=1
Un-pooling 1 64×64×16 scale factor=2

Deconvolution 1 64×64×32 filter size=5×5, stride=1
Deconvolution 2 64×64×16 filter size=1×1, stride=1
Un-pooling 2 128×128×16 scale factor=2

Deconvolution 3 128×128×32 filter size=5×5, stride=1
Deconvolution 4 128×128×16 filter size=1×1, stride=1
Un-pooling 3 256×256×16 scale factor=2

Deconvolution 3 256×256×32 filter size=5×5, stride=1
Deconvolution 5 256×256×16 filter size=1×1, stride=1
Un-pooling 4 512×512×16 scale factor=2

Deconvolution 6 512×512×32 filter size=5×5, stride=1
Deconvolution 7 512×512×1 filter size=1×1, stride=1

extraction and, in turn, higher accuracy for COVID-19 detection.
Specifically, ComputeCOVID19+ uses an anisotropic hybrid net-
work (AH-Net) [27], adapted for 3D CT image segmentation, and
maintains consistency between slices in 3D volumes.

2.3.2 Classification AI. To distinguish CT scans with COVID-19
symptoms, Classification AI from our ComputeCOVID19+ frame-
work uses the DenseNet-121 network [16] but adapted for 3D vol-
ume classification. The network uses four densely connected blocks
for feature extraction. Each dense block is followed by maximum
pooling and a transition convolution layer. Finally, fully connected
layers classify the CT scan on the basis of the extracted features.

Compared to state-of-the-art classification CNNs (e.g., VGG and
ResNet), DenseNet uses fewer parameters and needs less training
time because the densely-connected convolution layers facilitate
feature reuse and better information flow through the network.

3 NETWORK TRAINING
The loss function, hyperparameters, and CT data used for training
each AI model are explained in this section. For optimal training,
the hyperparameters are tuned by perturbing one parameter while
keeping others fixed and analyzing the quantitative results.

3.1 Enhancement AI
3.1.1 Network Parameters. To find the optimal mapping function
that enhances the quality of CT images, our Enhancement AI tool

is trained with CT images of size 512×512 pixels. To avoid integer
overflow, CT image data, which is usually expressed in hounsfield
units (HU), is converted to floating-point data within the data range
[0, 1], inclusive, before feeding it into the network.

For back propagation, the network uses a composite loss func-
tion 𝐿 that combines the mean square error (MSE) and multi-scale
structural similarity index metric (MS-SSIM). The MS-SSIM [42]
compares the luminance, contrast, and structure similarity between
two images. The loss function, 𝐿, is given by Equation (1) below.

ℒ = | |𝑦 − 𝑓 (𝑥) | |22 + 0.1 × (1 − 𝐿𝑀𝑆−𝑆𝑆𝐼𝑀 (𝑌, 𝑓 (𝑋))) (1)

where ||𝑦 - 𝑓 (𝑥) | |22 is the MSE and 𝐿𝑀𝑆−𝑆𝑆𝐼𝑀 is the MS-SSIM.
Network weights are updated via the Adam optimizer [23]. The

learning rate is set to 10-4 and exponentially reduced by a factor of
0.8 each epoch. The network is trained with one CT image per batch
for 50 epochs. All filters are initialized with a random Gaussian
distribution with a mean of zero and standard deviation of 0.01.

3.1.2 Data Collection. To train our DDnet in Enhancement AI, we
used 5120 chest CT images from two sources, as described below.
Mayo Clinic Data. This data includes chest CT scans, acquired at
full and quarter X-ray dosages, of eight patients. The number of
projections acquired per CT image is 2304. We used 2286, 300, and
300 images for training, validation, and testing, respectively.
Low X-ray Dose CT Images (Simulated Data). While there is plenty
of CT data available, low X-ray dose CT images are not readily
available. Thus, we simulated such scans for the training and testing
of DDnet based on CT scans from the Medical Imaging Databank of
the Valencia Region (BIMCV). The dataset contains chest CT scans
and X-ray scans of 34 patients who tested positive for COVID-19.

To create low X-ray dose CT images, we generated projection
data from the original CT images using Beer’s law and Siddon’s
ray-driven forward-projection method [39]. The X-ray source was
monochromatic at 60 keV.We added Poisson noise, according to pro-
jection data using the formula 𝑃𝑖 ∼ Poisson{𝑏𝑖×𝑒𝑙

𝑖 }, 𝑖 = 1, 2, . . . , 𝑁 ,
where 𝑃𝑖 is the detector measurement along the 𝑖𝑡ℎ ray path, 𝑏𝑖
is the blank scan factor, and 𝑙𝑖 is the line integral of attenuation
coefficients along the 𝑖𝑡ℎ ray path. No electronic readout noise was
assumed. The Poisson noise (and hence dose) level can be adjusted
by setting the number of photons per ray for the blank scan factor
𝑏𝑖 . In this study, we uniformly set 𝑏𝑖 to 106 photons for each ray.

The other CT geometry parameters are summarized below:
• The distance between source and detector and source and center
of object were set at 1500 mm and 1000 mm, respectively.

• 720 projections were evenly acquired across a 360-degree scan.
• 1024 pixels were used for X-ray detection.
Low X-ray dose CT images were then reconstructed using filter
back projection (FBP) from the simulated projection data. Figure 8
shows a sample simulated sinogram and associated CT image recon-
structed using FBP. From the simulated dataset, we used 2816, 484,
and 484 CT images for training, validation, and testing, respectively.

3.2 Segmentation AI
CT data for training Segmentation AI requires labeled CT scans,
where each pixel in the scan is classified as either background
or foreground. Such labelling is tedious and time-consuming and

ICPP 2021 Chicago, IL

ComputeCOVID19+: Accelerating COVID-19 Diagnosis and Monitoring via High-Performance Deep Learning on CT Images ICPP ’21, August 9–12, 2021, Lemont, IL, USA

(a) Original CT image (b) Simulated low-dose CT image

(c) Sinogram from projection data

Figure 8: Low X-Ray dose CT image simulation

requires radiological expertise. To address this, ComputeCOVID19+
leverages the pre-trained Segmentation AI model from Nvidia [33].

The trained Segmentation AImodel ingests our 3D CT scans and
generates a binary map of pixel-wise classification. The lung region
in a CT scan is predicted as foreground while the rest of the regions
in the scan, including heart, torso, and everything outside the body,
are classified as background. The binary map is then multiplied
with the input CT scan to generate the segmented CT scan.

3.3 Classification AI
3.3.1 Network Parameters. UsingNvidia’s Clara Train pipeline [33],
we train our own Classification AI model with 3D CT images of
size 512×512×𝑛, where 𝑛 is the number of 2D image slices in one
3D CT scan. Unlike Enhancement AI, Classification AI uses CT im-
age data represented in hounsfield units (HU) as inputs. The back
propagation uses binary cross-entropy as loss. The loss function is
given by Equation (2):

𝐻𝑝 (𝑞) = − 1
𝑁

𝑁∑
𝑖=1

𝑦𝑖 · log[𝑝 (𝑦𝑖)] + (1 − 𝑦𝑖) · log[1 − 𝑝 (𝑦𝑖)] (2)

where 𝑦 is the target label (1 for the positive case and 0 for the neg-
ative case in this framework) and 𝑝 (𝑦) is the predicted probability
of the 3D scan being classified as positive for all 𝑁 scans in a batch.

Weights are updated using the Adam optimizer [23]. The learning
rate is initialized to 10-6. Gaussian noise is added with probability
0.75 and variance of 0.1. Image contrast is adjusted with 0.5 proba-
bility. The scale of image intensity oscillates with 0.1 magnitude.

3.3.2 Data Collection. We used 305 3D chest CT scans for the
training and validation of our Classification AI model. These CT
scans were obtained from three radiological data sources.
• Medical Imaging Databank of the Valencia Region (BIMCV) [31]

• Medical Imaging and Data Resource Center (MIDRC) [30]
• Lung Image Database Consortium Image Collection (LIDC) [29]

The BIMCV and MIDRC datasets provide 3D chest CT scans of
COVID-19 patients. These CT scans are labeled as positive ground
truth. CT scans showing symptoms of COVID-19 are manually
filtered for selection.

4 OPTIMIZING PARALLEL TRAINING AND
INFERENCE OF AI

Training a CNN and doing inference on the trained network are
computationally expensive and require large computational and
memory bandwidth. The acceleration of these processes on parallel
computing devices requires knowledge of the underlying hardware
and processing demands for adequate utilization of the available
computing and memory resources. In §4.1 and §4.2, we describe
the optimization of AI training on a multi-GPU system using Py-
Torch and the implementation and optimization of AI inference on
heterogeneous platforms using OpenCL, respectively.

4.1 Training of Enhancement AI
We implemented Enhancement AI using PyTorch and parallelized
it for a multi-GPU system using the DistributedDataParallel pack-
age [35], which exploits batch-level parallelism and parallelizes
AI training by spawning one process per GPU. During training,
forward propagation is executed independently, while the gradients
are synchronized during back propagation to maintain consistency
in themodel present on each GPU.We used the gloo communication
backend [8] to synchronize processes.

4.2 Inference of Enhancement AI
Inference with our Enhancement AI tool is not as computationally
expensive as the training and can thus be performed on a single
node containing multi-core CPU(s), many-core GPU(s), and/or FP-
GAs. Inference involves all the steps used in training except for
the back propagation and weight updates. Thus, we performed
inference by removing the back propagation and weight update
steps from our PyTorch implementation. Along with our PyTorch
implementation, we created and evaluated the performance of an
equivalent inference implementation in OpenCL [32].

Inference requires six operations for image enhancement: convo-
lution, non-linear activation, batch normalization, pooling, deconvo-
lution, and un-pooling. The data exchange between the host (CPU)
and device (GPU) is minimized by using the memory available on
the device platform. We also applied a set of application-specific
and architecture-aware optimizations as well as FPGA-specific op-
timizations for each OpenCL kernel.

4.2.1 Application-Specific Optimizations. Recurring load and store
operations in the deconvolution kernel require high memory band-
width and result in multiple cache misses, thus degrading perfor-
mance. To overcome this, we used inverse coefficient mapping [4,
44] to refactor the kernel for deconvolution. Instead of directly de-
convolving the input, we first determined the input blocks needed
for calculating each output element, and then, each element in

ICPP 2021 Chicago, IL

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Garvit Goel, Atharva Gondhalekar, Jingyuan Qi, Zhicheng Zhang, Guohua Cao, and Wu-chun Feng

the input block and corresponding weight coefficient was multi-
plied and added at once before the result was written to the global
memory. Figure 9 illustrates this optimization.

Figure 9: Deconvolution optimization. (a) Deconvolution operation:
Partial sums are calculated by multiplying an element in input and each
element in filter. These partial sums are then added to get the final output.
(b) Refactored deconvolution operation: Each output is calculated by deter-
mining which input elements affect that output and applying multiply and
add operations before being written.

4.2.2 Architecture-Aware Optimizations. The architecture-aware
optimizations that are then applied to the aforementioned refac-
tored kernels include memory prefetching and loop unrolling.
• Memory Prefetching: This standard optimization caches a load in
local memory or registers prior to its usage. We prefetch the loop
bounds (size of input, size of output, size of filters) by storing
these values in local integer variables.

• Loop Unrolling: This optimization improves the performance of
kernels by reducing the number of branch instructions, whether
on the CPU, GPU, or FPGA. For the FPGA, unrolled loops improve
performance by generating extra hardware to support multiple
iterations of a loop and resolving data dependencies between
iterations [17]. In our implementation, we unrolled the multiply-
and-adder loop in DDnet by a factor of five in the convolution
and deconvolution kernels, respectively. Because the size of the
filters used in convolution and deconvolution is less than or equal
to 5, this unrolling factor fully unrolls the loop and achieves the
best performance.

4.2.3 FPGA-Specific Optimizations. Unlike the CPU and GPU, the
underlying computing hardware in an FPGA is not fixed. The ability
to reconfigure compute logic allows additional optimizations to be
implemented on FPGA. These optimizations are explained below.
• Compute-Unit Replication: Replication of compute units improves
the performance of kernels by increasing the computational band-
width of the hardware (at the expense of using more silicon
hardware). In our implementation, we identified two compute
units each for the convolution and deconvolution kernels, respec-
tively [17, 18], as ideal.

• Vectorization: Vectorization executes SIMD instructions on arrays
of data. Vector data types can improve the efficiency of the kernels
by mitigating the bandwidth bottlenecks in the hardware [17].
The FPGA OpenCL compiler generates the hardware to support
SIMD instructions. In our convolution and deconvolution kernels,
we used vector load and vector multiply operations.

• Dedicated Kernels: Multiple dedicated kernels that operate with
fixed inputs and parameters can sometimes lead to higher through-
put at the expense of extra hardware. Having fixed parameters
in the kernels results in better pipelines with low initialization
intervals. In our application, we used dedicated kernels for the
convolution and deconvolution operations with a 5×5 filter size.

• Runtime Reconfiguration: Optimizations such as vectorization,
loop unrolling, compute-unit replication, and dedicated kernels
create extra hardware to achieve higher compute bandwidth.
However, simultaneous application of these optimizations leads
to excessive resource utilization on the target FPGA, resulting
in compilation failures. To address this problem of excessive re-
source utilization, we used runtime reconfiguration if the overhead
of FPGA reconfiguration was less than the gain in performance
with optimized kernels. The ability to configure FPGA hardware
at runtime provides room for extra hardware configuration, yield-
ing higher throughput and, in turn, better performance.

To make use of FPGA runtime reconfiguration (and combine it with
the other aforementioned optimizations), we split the execution of
DDnet into two kernels: convolution and deconvolution. As shown
in Figure 6, the convolution kernel consists of convolution, batch
normalization, non-linear activation, and pooling operations; the
deconvolution kernel consists of deconvolution, batch normaliza-
tion, non-linear activation, and un-pooling operations. Figure 10
shows the runtime reconfiguration of DDnet for the FPGA.

Figure 10: Runtime reconfiguration of DDnet

5 EVALUATION
We evaluate our ComputeCOVID19+ framework with respect to
both computing performance and accuracy. For computing perfor-
mance, we first evaluate the performance of training and then the
performance of inference in the ComputeCOVID19+ framework.
The training is conducted in a distributed computing setup with
multiple GPUs. We analyze the impact of parallelizing the training
on execution time and accuracy.

Then, the inference of the trained network, which is compu-
tationally less expensive than the training, is evaluated on many
heterogeneous platforms, including multi-core CPU, many-core
GPU, and FPGA.

The accuracy of ComputeCOVID19+ framework is evaluated
by analyzing the enhancement and analysis modules, individu-
ally and together. To further understand the impact of Compute-
COVID19+’s image enhancement via Enhancement AI, we compare
the results from using the original CT scans (i.e., Segmentation AI +
Classification AI) to the results from using the enhanced CT scans
(i.e., Enhancement AI + Segmentation AI + Classification AI).

ICPP 2021 Chicago, IL

ComputeCOVID19+: Accelerating COVID-19 Diagnosis and Monitoring via High-Performance Deep Learning on CT Images ICPP ’21, August 9–12, 2021, Lemont, IL, USA

5.1 Performance of ComputeCOVID19+
For the training and inference of Classification AI and Segmenta-
tion AI, we used a high-performance workstation equipped with
an Intel Core i9-10900K CPU and Nvidia GeForce RTX 3090 GPU,
coupled with 32 GB of system memory.

For the compute-intensive training of Enhancement AI, we used
Virginia Tech’s Advanced Research Computing (ARC) Infer cluster,
consisting of 18 compute nodes. Each node contains two Intel Xeon
Gold 6130 CPUs and one Nvidia Tesla T4 GPU, coupled with 192
GB of system memory. For the inference of Enhancement AI, we
evaluated it on each of the heterogeneous platforms below:
• Many-core GPUs, including Nvidia V100, Nvidia P100, Nvidia T4,
and AMD Radeon Vega Frontier

• Multi-core CPU, i.e., Intel Xeon Gold 6128
• FPGA, i.e., Intel Arria 10 GX 1150

5.1.1 Training & Inference of Segmentation and Classification. Both
the Segmentation AI and Classification AI tools run in the Nvidia
Clara environment. For the former, we use the pre-trained model
from NVIDIA “as is”; for the latter, we train the NVIDIA classi-
fication model with our CT scans. In all, the performance of the
tools is in line with the performance reported in [13]. On an Nvidia
GeForce RTX 3090 GPU, the training of Classification AI for 100
epochs and 305 CT scans took 4 hours and 28 minutes. On the same
GPU platform, the runtime for inference of Segmentation AI and
Classification AI took 45.88 seconds and 5.90 seconds, respectively.

5.1.2 Training of Enhancement AI on a Multi-GPU System. Table 3
shows how our PyTorch implementation of Enhancement AI scales
as the number of nodes increases. On a single node with a sin-
gle Nvidia T4 GPU, the training for the Enhancement AI tool of
ComputeCOVID19+ took approximately 15 hours.

The DistributedDataParallel container in Python parallelizes
forward and backward propagation during AI training (since these
processes are independent and load balanced). Updating weights
after forward and backward propagation requires synchronization
at the end of every iteration. The speedup improves as the number of
nodes increases but remains sub-linear due to the synchronization.

Increasing the batch size enables better utilization of the compute
nodes, but it reduces the accuracy of the trained network. To date,
the sensitivity of neural networks to batch size is not fully under-
stood. Some explanations include (1) large batch-size training does
not converge to global minima; (2) large batch-size training tends

Table 3: Runtime for the Enhancement AI training for 50 epochs

Nodes* Batch Size # Epochs
Training
Runtime

(hh:mm:ss)

MS-SSIM
(Avg.)

1 1 50 15:14:46 98.71%
4 8 50 2:27:49 96.35%
4 8 100 4:58:52 96.30%
4 16 50 2:07:58 95.18%
8 8 50 2:21:49 95.46%
8 8 100 4:43:26 95.78%
8 32 50 1:17:25 92.04%
8 64 50 1:12:24 88.02%

Each node has an Nvidia T4 GPU. (hh:mm::ss) = (hours:minutes:seconds).

to minimize the optimizer closer to the initial point; and (3) training
samples in each batch interfere with each other’s gradient [22].

5.1.3 Inference of Enhancement AI on Heterogeneous Platforms.
The portability of OpenCL enables us to measure the inference
runtime across a diverse set of platforms, as shown in Table 4. The
best performance comes from the Nvidia V100 GPU, followed by
the Nvidia P100, AMD Radeon Vega Frontier, and Nvidia T4 GPUs.

To better understand how we achieved the above runtimes for
inference, we profiled the (serial) kernel code for convolution, de-
convolution, and other kernels to be 31.50, 299.86, and 0.46 seconds,
respectively, on an Intel Xeon Gold 6128 CPU. Clearly, the decon-
volution kernel is the most computationally expensive, followed
by the convolution kernel. Thus, for the CPU (and GPUs), paral-
lelizing and optimizing the deconvolution and convolution kernels
delivered the most benefit, as shown in Table 5. Convolution went
from 31.50 seconds down to 0.495 seconds (i.e., speedup ≈ 64×), and
deconvolution dropped from 299.86 seconds to only 1.078 seconds
(i.e., speedup ≈ 278×) on the Intel Xeon Gold 6128 CPU.

Comparing deconvolution operations and convolution opera-
tions in DDnet, the convolution uses approximately 1.87× floating
point operations and global memory accesses (there are 37 con-
volution layers and 8 deconvolution layers in DDnet). However,
due to the irregular memory accesses and expensive integer divi-
sion operations in deconvolution kernel, the deconvolution kernel
has higher execution time than convolution kernel on CPU and
GPU. Vectorization of deconvolution kernel simplifies the memory
accesses and reduces the count of integer division operations in

Table 4: Inference runtime for the Enhancement AI tool

Platform Number
of Cores

Maximum
Bandwidth
(GB/s)

Maximum
Frequency
(MHz)

PyTorch
Runtime
(seconds)

OpenCL
Runtime
(seconds)

Nvidia V100 GPU 5120
(CUDA cores) 900 1380 0.22 0.10

Nvidia P100 GPU 3584
(CUDA cores) 732 1328 0.73 0.25

AMD Radeon Vega
Frontier GPU

4096
(Stream Proc.) 480 1600 – 0.25

Nvidia T4 GPU 2560
(CUDA cores) 320 1590 1.29 0.29

Intel Xeon
Gold 6128 CPU

24
(CPU cores) 119 3400 5.52 1.64

Intel Arria 10
GX 1150 FPGA

2
(CUs)* < 3 184 – 16.74

* Two compute units (CUs) are generated using vendor-specific attribute, __attribute__((num_compute_units(2))
– : The PyTorch implementation is not portable to this platform.

Table 5: Event-based time of the optimized OpenCL kernels for En-
hancement AI inference. Execution time is reported in seconds.

Platform Kernel runtime (seconds)
Convolution Deconvolution Other kernels

Nvidia V100 GPU 0.036 0.059 0.004
Nvidia P100 GPU 0.075 0.169 0.005
AMD Radeon Vega
Frontier GPU 0.082 0.170 0.005

Nvidia® T4 0.123 0.153 0.016
Intel Xeon
Gold 6128 CPU 0.495 1.078 0.057

Intel Arria 10
GX 1150 FPGA 9.819 2.839 3.991

ICPP 2021 Chicago, IL

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Garvit Goel, Atharva Gondhalekar, Jingyuan Qi, Zhicheng Zhang, Guohua Cao, and Wu-chun Feng

deconvolution kernel. This reduces the execution time of decon-
volution kernel on FPGA significantly and makes the convolution
kernel more expensive on FPGA.

Because the Enhancement AI network is dense and the number
of load and store operations is just as significant as the number
of floating-point operations, particularly in the convolution and
deconvolution kernels, as shown in Table 6, the combination of
row-major and column-major accesses in the convolution and de-
convolution kernels provides little opportunity for coalesced mem-
ory accesses. As a consequence, the performance of our optimized
OpenCL kernels across the various platforms from Table 4 tracks
with the memory bandwidth of the platforms. The Nvidia V100
GPU has the highest bandwidth (as well as a significantly large
number of CUDA cores). Thus, the V100 outperforms the other
platforms, as expected, due to the aforementioned memory-bound
nature of the Enhancement AI tool.

Table 7 shows the runtime for inference using DDnet on HPC
platforms with different optimizations, as described in §4.2. Refac-
toring the kernel reduced the number of recurring loads and stores
from/to the global buffer in the deconvolution kernel and delivered
significant performance improvement across all platforms. Loop un-
rolling and prefetching the relatively few filter parameters achieved
only marginal speedup because the problem is memory-bound.
Compared to our PyTorch inference implementation, our OpenCL
implementation is approximately 3.4× faster on the CPU and at
least 2.0× faster on the Nvidia GPUs.

The OpenCL kernels designed for GPUs are functionally portable,
but not performance portable, on FPGAs. Extracting competitive

Table 6: Global memory load/store and floating-point operations
count for individual kernels with an input of size 512×512×32

Kernels
Global memory
loads operations

(106)

Global memory
store operations

(106)

Floating-point
operations

(106)
Convolution 13421.7 8.4 13421.7
Deconvolution 13421.7 8.4 13421.7
Pooling 18.9 2.1 0
Un-pooling 134.3 33.5 469.7
Leaky-ReLU 8.4 8.4 8.4
Batch
Normalization 41.9 8.4 41.9
1 For evaluation, we use a 5×5 filter for the convolution and deconvolution operations. Pooling and
un-pooling operations reduce and scale the size of feature maps by a factor of two, respectively.

2 The number of floating-point operations and memory accesses is obtained by implementing
counters in each kernel.

Table 7: Execution time profile of entire DDnet with different opti-
mizations. Execution time is reported in seconds. REF: Refactoring, PF:
Prefetching, and LU: Loop Unrolling.

Platform Baseline Baseline +
REF

Baseline +
REF + PF

Baseline +
REF + PF + LU

Nvidia GPU V100 63.82 0.10 0.10 0.10
Nvidia GPU P100 152.08 0.29 0.26 0.25
AMD Radeon Vega
Frontier GPU 219.60 0.25 0.25 0.25

Nvidia T4 59.30 0.32 0.31 0.29
Intel Xeon
Gold 6128 CPU 6.51 1.95 1.69 1.64

Intel Arria 10
GX 1150 FPGA 278.53 130.62 127.72 65.831

1 The execution time reported in this table does not use the kernel with FPGA-specific optimizations
described in §4.2.3.

performance from the reconfigurable logic in FPGAs via OpenCL
necessitates the use of vendor-specific attributes. To that end, we im-
plemented the optimizations proposed in §4.2.3, which include loop
unrolling, compute-unit (CU) replication, and manual vectorization.
OpenCL kernels get mapped to the underlying hardware resources
of FPGA, which include RAM blocks, registers, and arithmetic logic
units. Limited availability of these resources impacts the extent to
which the optimizations mentioned above can be applied. Keeping
this limitation in mind, we used appropriate attributes for loop
unrolling (by a factor of five) and compute-unit (CU) replication (by
a factor of two) in the convolution and deconvolution kernels. Even
after loop unrolling and CU replication, deconvolution remained
the most computationally-expensive kernel, so we also applied vec-
torization (by a factor of five) to the deconvolution and used a 5× 5
filter size and constant values for stride and padding.

In summary, we presented a performance evaluation of our Com-
puteCOVID19+ framework, which demonstrated the following:
• The efficacy of our solution in accurately diagnosing COVID-19.
• The adaptability of our inference solution across a wide spectrum
of heterogeneous platforms, including CPU, GPU, and FPGA.

• Inference performance that is competitive across heterogeneous
platforms, even a low-power device such as an FPGA.

5.2 Accuracy of ComputeCOVID19+
To evaluate accuracy of ComputeCOVID19+, we analyze the results
from our Enhancement AI, Segmentation AI, and Classification AI
tools that are shown in Figure 4. For Enhancement AI, we quantify
accuracy using the mean square error (MSE) and multi-scale struc-
tural similarity index metric (MS-SSIM) between the original CT
image and enhanced CT image. For CT classification, we measure
accuracy as follows:
• Accuracy, as defined by Equation (3), is the percentage of CT
scans classified correctly.

• AUC-ROC: Area Under the Curve (AUC) of Receiver Character-
istic Operator (ROC). The ROC curve graph is plotted using the
true-positive rate (TPR), i.e., Equation (4), and the false-positive
rate (FPR), i.e., Equation (5), at different thresholds.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 +𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 +𝑇𝑁) (3)

𝑇𝑃𝑅 =
𝑇𝑃

𝑁
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4)

𝐹𝑃𝑅 =
𝐹𝑃

𝑁
=

𝐹𝑃

𝐹𝑃 +𝑇𝑁
(5)

where𝑇𝑃 is the number of true positives, 𝐹𝑁 is the number of false
negatives, 𝐹𝑃 is the number of false positives, 𝑇𝑁 is the number of
true negatives, and 𝑁 is the total number of negatives.

Figures 11a and 11b capture the training and validation loss
curves for Enhancement AI and Classification AI, respectively.

5.2.1 Enhancement AI. Figure 12a shows the result of enhancing
chest CT images from the Mayo Clinic dataset. The enhancement
removed the noise present in the low X-Ray dose CT images while
retaining finer details. Figure 12b shows the results of enhancing
CT images from a simulated dataset. Enhancement AI removed the
streaking and noise artifacts present in the image. The absolute dif-
ference maps between the low dose X-ray CT image and enhanced
CT image show the efficacy of DDnet.

ICPP 2021 Chicago, IL

ComputeCOVID19+: Accelerating COVID-19 Diagnosis and Monitoring via High-Performance Deep Learning on CT Images ICPP ’21, August 9–12, 2021, Lemont, IL, USA

(a) Training and validation loss
for Enhancement AI

(b) Training and validation loss
for Classification AI

Figure 11: Training loss curves

Quantitatively, Enhancement AI achieved an average of 98.7%
multi-scale structural similarity between the high-quality target
image and enhanced image for CT images in the testing dataset.
Table 8 summarizes the accuracy results of Enhancement AI.

Figure 12: Image enhancement using DDnet for the (a) Mayo Clinic
dataset and (b) simulated dataset.

Table 8: Accuracy results of Enhancement AI in DDnet. Y and X refers
to high-dose and low-dose CT images. f(X) is the image enhanced by DDnet.

MSE MS-SSIM
Y-X 0.00715 96.2 %
Y-f(X) 0.00091 98.7 %

5.2.2 Segmentation AI + Classification AI. The accuracy of seg-
mentation AI and classification AI is evaluated using a dataset
containing 95 CT scans, of which 36 are of COVID-19 patients
and 59 have no abnormalities, i.e., healthy. The grey curves in Fig-
ures 13a and 13b show the accuracy and ROC curve, respectively,
for theClassification AI tool. When applied to the original CT scans,
our Classification AI tool achieves an accuracy of 86.32% and an
AUC-ROC value of 0.890. The accuracy and AUC-ROC jump to
90.53% and 0.942, respectively, when it is applied to the enhanced
images from Enhancement AI, as discussed further below.

5.2.3 Impact of Prepending Enhancement AI. The inclusion of En-
hancement AI distinguishes our ComputeCOVID19+ framework
from the existing state of the art for deep learning-based medical
diagnosis. The use of Enhancement AI enables the framework to
be suitable for low-dose X-ray CT applications.

Classification AI outputs the probability of manifestation of dis-
tinctive COVID-19 features in the CT scan. With enhanced CT
scans, the convolution network in Classification AI extracts high
quality distinctive features, enabling easier interpretation for classi-
fication. This improves the average output probability of COVID-19
scans to be correctly classified by 0.1136.

As noted in §5.2.2, the efficacy of Enhancement AI is also demon-
strated by the improved accuracy and ROC curves for classification
from the original CT scans to the enhanced CT scans in Figure 13.
The improved accuracy and ROC curves of ComputeCOVID19+’s
classification are shown in green. Using the enhanced CT scans
from Enhancement AI, the absolute accuracy of classification im-
proved from 86% to 91% and the AUC-ROC value increased from
0.890 to 0.942, as shown in Figures 13a and 13b respectively. Table 9
shows the result of the classification of the test dataset using a
confusion matrix at an optimal threshold value of 0.061.

(a) Classification accuracy (b) ROC curve for classification

Figure 13: ComputeCOVID19+ evaluation

Table 9: Confusion matrix for classification of test data set

Ground-Truth Class
Positive Negative

Positive
True Positive

31
False Positive

4
Predicted
Class Negative

False Negative
5

True Negative
55

6 RELATEDWORK
Here we present related work from three areas: (1) RT-PCR genetic
testing vs. CT-based image testing (a laComputeCOVID19+), (2) AI-
based computed tomography (CT), and (3) CT image enhancement.

6.1 RT-PCR vs. CT-based COVID-19 Testing
RT-PCR is the standard test for detecting COVID-19 (a.k.a. SARS-
CoV-2 virus). However, a Johns Hopkins University study in 2020
showed that the accuracy of the test varies with the time at which
the test is taken. Specifically, the false-negative rate of an infected
person is 67% on the 4th day (i.e., 33% sensitivity) and only improves
to 38% (i.e., 62% sensitivity) with the onset of symptoms [24].

COVID-19 testing based on CT is a compelling alternative. Re-
search conducted in China with 877 patients [11] shows that 84% of
COVID-19 patients exhibited CT abnormalities. A larger study in
China with 1014 COVID-19 patients [2] shows that 88% of patients
(from a biased pool of those who were already showing symptoms

ICPP 2021 Chicago, IL

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Garvit Goel, Atharva Gondhalekar, Jingyuan Qi, Zhicheng Zhang, Guohua Cao, and Wu-chun Feng

of COVID-19) had evidence of CT abnormalities, such as ground
glass opacity (GGO) and consolidation, in their chest CT scans,
while only 59% of those same patients tested positive with the
initial RT-PCR test. Similar results are reported in [9, 10].

6.2 AI with Computed Tomography (CT)
AI-based medical diagnosis is often used in computed tomography
and radiology. For example, the use of a convolution neural network
(CNN) for the diagnosis of diseases in CT scans has been extensively
studied in the recent past [13, 15, 25, 38, 40, 41, 46].

6.2.1 Two-Dimensional (2D) CNNs with 2D Images as Inputs. For
COVID-19 diagnosis, 2D images must be manually selected from
3D CT scans because the associated abnormalities, like GGO, are
present in only some segments of the lungs. He et al. [15] use VGG-
16, ResNet, and DenseNet deep-learning (DL) networks to classify
2D CT images. They use transfer learning, coupled with momentum
contrastive learning [14], to make these models agnostic to the
dataset sizes and achieve 86% accuracy with a training dataset of
425 2D CT images. Similarly, Wang et al. [41] achieve 89% accuracy
using anM-inception network and a dataset of 1065 CT images. Ying
et al. [40] pre-process the 2D images to segment the lung region
using OpenCV and achieve 86% accuracy. Li et al. [25] use U-Net-
based lung segmentation and classify the images using ResNet50.

6.2.2 Three-Dimensional (3D) CNNs with 3D Volumes as Inputs. 3D
CNNs extract 3D features from the input volume do not require any
manual data preparation. Harmon et al. [13] demonstrate this by
using a 3D version of AH-Net and DenseNet-121 to segment and
classify the image, respectively. While they reported 90% accuracy,
their accuracy drops to 86% when using our real-world datasets.
Zheng et al. [46] combine image segmentation using 2D U-Net and
classification using a 3D deep CNN to detect COVID-19 from CT
volumes and achieve 90% accuracy with 540 CT scans.

6.3 CT Image Enhancement
With the increased use of computed tomography (CT) in medical
diagnosis, low-dose X-ray CT has gained popularity due to its fast
data acquisition and reduced radiation exposure. However, image
reconstruction techniques like filtered back projection (FBP) [37]
generate low-quality CT images from low-dose X-ray projections.
Thus, techniques like iterative image reconstruction [3], sinogram
completion [1, 26], and image enhancement based on deep learning
(DL) are used to reconstruct high-quality CT images.

Würfl et al. [43] emulate FBP using a CNN. Cheng et al. [6] com-
bine DL and iterative reconstruction to accelerate the algorithmic
convergence using a leapfrogging strategy. Han et al. [12] use a
deep residual network to estimate streaking artifacts in low-dose
X-ray images. Jin et al. [19] and Chen et al. [5] use FBP for im-
age reconstruction from projection data, followed by applying a
U-Net-like CNN for image enhancement.

6.4 Comparison with Prior Work
Table 10 presents a tabular comparison of our ComputeCOVID19+
framework with other similar existing work. ComputeCOVID19+
differs from prior work as follows:

• The addition of deep learning-based CT image enhancement to
medical diagnosis for improved accuracy.

• The acceleration of neural network training for CT image en-
hancement using GPUs.

• A hardware-agnostic realization of an image enhancement net-
work using OpenCL, thus enabling “write-once, run-anywhere”
capability on CPU, GPU, and FPGA.

7 PERSPECTIVE AND FUTUREWORK
Our Enhancement AI tool only leverages data from the image do-
main, which limits the extent to which the quality of image and
accuracy of CT-based COVID-19 diagnosis can be improved (≈ 5%
improvement in this work). Therefore, as part of future work, we
seek to address this limitation by also using data available from the
projection domain and combining it with knowledge from medical
imaging physics to reconstruct even higher-quality CT images.

While we evaluated the performance of inference in our En-
hancement AI tool across a diverse set of platforms, the availability
of heterogeneous platforms (e.g., FPGA or GPU) in clinical settings
is limited, while the CPU is ubiquitous. As such, clinicians can make
use of our trained AI models for the CPU and still achieve real-time
performance, as shown in Table 4.

As a subject of future study, we plan to evaluate the framework
with low-dose CT image data. Low-dose CT technology comes with
the benefit of reduced risk of cancer, but there is an associated loss
in the quality of CT images. Analyzing the accuracy of diagnosis
with such low quality images would be an ideal stress test for our
framework. Finally, with the help of radiologists and clinicians,
we intend to analyze the applicability of ComputeCOVID19+ for
diagnosing other maladies, such as viral pneumonia and cancer.

8 CONCLUSION
We present our research and development of ComputeCOVID19+,
a CT-based framework for COVID-19 diagnosis and monitoring.
ComputeCOVID19+ contains novel algorithms and software for
high-quality CT image construction and high-precision classifica-
tion of COVID-19 CT scans. Furthermore, we implement and accel-
erate the complex deep-learning algorithms of ComputeCOVID19+
across a multitude of heterogeneous platforms, includingmulti-core
CPU, many-core GPU, and even FPGA. Our ComputeCOVID19+
can speed up the COVID-19 inference time from hours to minutes,
while at the same time improving the diagnostic accuracy from 86%
to 91%.

9 ACKNOWLEDGEMENT
This research was supported in part by NSF CCF-2031215.

We thank Dr. Cynthia McCollough, the Mayo Clinic, and the
American Association of Physicists in Medicine for providing the
Mayo Clinic dataset.

The authors acknowledge Advanced Research Computing at
Virginia Tech for providing computational resources and technical
support that have contributed to the results reported within this
paper. URL: https://arc.vt.edu/. The authors also acknowledge and
thank Intel for access to their Arria 10 FPGA via the Intel DevCloud.

ICPP 2021 Chicago, IL

ComputeCOVID19+: Accelerating COVID-19 Diagnosis and Monitoring via High-Performance Deep Learning on CT Images ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Table 10: Comparison of ComputeCOVID19+ with existing similar work

Framework CT scans pre-processing 2D/3D
classification

Data
labeling

Supported hardware for
inference

Image
enhancement

Image
segmentation CPU GPU FPGA

ComputeCOVID19+ ✓ ✓ 3D Not required ✓ ✓ ✓
He et al. [15] × × 2D Manual2 ✓ ✓ ×
M-inception [41] × ✓ 2D Manual2 * * ×
DRE-Net [40] × ✓ 2D Manual2 * * ×
Li et al. [25] × ✓ 2D Manual2 * ✓ ×
DeCoVNet [46] × ✓ 3D Not required * ✓ ×
Harmon et al. [13] × ✓ 3D Not required × ✓ ×
Serte et al. [38] × × 2D/3D Not required * ✓ ×
[*]No information available.
[2]CT images showing symptoms of COVID-19 must be manually filtered.

REFERENCES
[1] M. Aharon et al. 2006. K-SVD: An Algorithm for Designing Overcomplete

Dictionaries for Sparse Representation. IEEE Transactions on Signal Processing
54, 11 (2006), 4311–4322.

[2] T. Ai et al. 2020. Correlation of Chest CT and RT-PCR Testing for Coronavirus
Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 296, 2
(2020), E32–E40.

[3] M. Beister et al. 2012. Iterative Reconstruction Methods in X-ray CT. Physica
Medica 28, 2 (2012), 94–108.

[4] J. Chang et al. 2018. An Energy-Efficient FPGA-based Deconvolutional Neural
Networks Accelerator for Single Image Super-Resolution. IEEE Transactions on
Circuits and Systems for Video Technology 30, 1 (2018), 281–295.

[5] H. Chen et al. 2017. Low-Dose CT with a Residual Encoder-Decoder Convolu-
tional Neural Network. IEEE Trans. on Medical Imaging 36, 12 (2017), 2524–2535.

[6] L. Cheng et al. 2017. Accelerated Iterative Image Reconstruction Using a Deep
Learning Based Leapfrogging Strategy. In International Conference on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear Medicine. 715–720.

[7] E. Dong et al. 2020. An Interactive Web-based Dashboard to Track COVID-19 in
Real Time. Lancet Infectious Diseases 20, 5 (May 2020), 533–534.

[8] Facebook. [n.d.]. GLOO Communication Backend. https://github.com/
facebookincubator/gloo/

[9] Y. Fang et al. 2020. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR.
Radiology 296, 2 (2020), E115–E117.

[10] H. Gietema et al. 2020. CT in Relation to RT-PCR in Diagnosing COVID-19 in
The Netherlands: A Prospective Study. PLOS One 15, 7 (2020), e0235844.

[11] W. Guan et al. 2020. Clinical Characteristics of Coronavirus Disease 2019 in
China. New England Journal of Medicine 382, 18 (2020), 1708–1720.

[12] Y. Han et al. 2016. Deep Residual Learning for Compressed Sensing CT Recon-
struction via Persistent Homology Analysis. arXiv:1611.06391 preprint (2016).

[13] S. Harmon et al. 2020. Artificial Intelligence for the Detection of COVID-19
Pneumonia on Chest CT using Multinational Datasets. Nature Communications
11, 1 (Dec. 2020), 1–7.

[14] K. He et al. 2020. Momentum Contrast for Unsupervised Visual Representation
Learning. In IEEE Conf. on Computer Vision & Pattern Recognition. 9729–9738.

[15] X. He et al. 2020. Sample-Efficient Deep Learning for COVID-19 Diagnosis Based
on CT Scans. MedRxiv (2020).

[16] G. Huang et al. 2017. Densely Connected Convolutional Networks. In Proc. of
IEEE Conference on Computer Vision and Pattern Recognition. 4700–4708.

[17] Intel [n.d.]. Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide.
Intel. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/hb/opencl-sdk/aocl-best-practices-guide.pdf

[18] Intel [n.d.]. Intel FPGA SDK for OpenCL Pro Edition: Programming Guide. In-
tel. https://www.intel.com/content/www/us/en/programmable/documentation/
mwh1391807965224.html

[19] K. Jin et al. 2017. Deep Convolutional Neural Network for Inverse Problems in
Imaging. IEEE Transactions on Image Processing 26, 9 (2017), 4509–4522.

[20] M. Johansson et al. 2021. SARS-CoV-2 Transmission from PeopleWithout COVID-
19 Symptoms. J. American Medical Assoc. (Jan. 2021).

[21] Johns Hopkins Coronavirus Resource Center. 2020. COVID-19 Map. https:
//coronavirus.jhu.edu/map.html

[22] N. S. Keskar et al. 2016. On Large-Batch Training for Deep Learning: Generaliza-
tion Gap and Sharp Minima. arXiv:1609.04836 preprint (2016).

[23] D. Kingma et al. 2014. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 preprint (2014).

[24] L. Kucirka et al. 2020. Variation in False-Negative Rate of Reverse Transcriptase
Polymerase Chain Reaction-based SARS-CoV-2 Tests by Time Since Exposure.
Annals of Internal Medicine 173, 4 (2020), 262–267.

[25] L. Li et al. 2020. Using Artificial Intelligence to Detect COVID-19 and Community-
Acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic
Accuracy. Radiology 296, 2 (2020), E65–E71.

[26] S. Li et al. 2014. Dictionary Learning Based Sinogram Inpainting for CT Sparse
Reconstruction. Optik 125, 12 (2014), 2862–2867.

[27] S. Liu et al. 2017. 3D Anisotropic Hybrid Network: Transferring Convolutional
Features from 2D Images to 3D Anisotropic Volumes. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 11071 LNCS (Nov. 2017), 851–858.

[28] J. Long et al. 2015. Fully Convolutional Networks for Semantic Segmentation. In
Proc. of IEEE Conference on Computer Vision and Pattern Recognition. 3431–3440.

[29] Lung Image Database Consortium Image Collection. [n.d.]. LIDC-IDRI - The
Cancer Imaging Archive (TCIA) Public Access – Cancer Imaging Archive Wiki.
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI

[30] Medical Imaging & Data Resource Ctr. [n.d.]. MIDRC. https://www.midrc.org/
[31] Medical Imaging Databank of the Valencia Region. [n.d.]. BIMCV-COVID19 –

BIMCV. https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/
[32] A. Munshi. 2009. The OpenCL Specification. In IEEE Hot Chips Symposium.

1–314.
[33] NVIDIA GPU Cloud (NGC). [n.d.]. Clara Train SDK. https://ngc.nvidia.com/

catalog/containers/nvidia:clara-train-sdk
[34] R. Plater. 2020. As Many as 80 Percent of People with COVID-19 Aren’t Aware

They Have the Virus. Healthline (May 2020).
[35] PyTorch 2021. Distributed Data Parallel. https://pytorch.org/docs/stable/

generated/torch.nn.parallel.DistributedDataParallel.html
[36] M. Roser et al. 2020. Coronavirus Pandemic (COVID-19). Our World in Data

(2020). https://ourworldindata.org/coronavirus.
[37] R. Schofield et al. 2020. Image Reconstruction: Part 1 – Understanding Filtered

Back Projection, Noise and Image Acquisition. Journal of Cardiovascular Com-
puted Tomography 14, 3 (2020), 219–225.

[38] S. Serte et al. 2021. Deep Learning for Diagnosis of COVID-19 using 3D CT Scans.
Computers in Biology and Medicine (2021), 104306.

[39] R. Siddon. 1985. Fast Calculation of the Exact Radiological Path for a Three-
Dimensional CT Array. Medical Physics 12, 2 (1985), 252–255.

[40] Y. Song et al. 2020. Deep Learning Enables Accurate Diagnosis of Novel Coron-
avirus (COVID-19) with CT Images. MedRxiv (2020).

[41] S. Wang et al. 2020. A Deep Learning Algorithm Using CT Images to Screen for
Corona Virus Disease (COVID-19). MedRxiv (2020).

[42] Z. Wang et al. 2004. Image Quality Assessment: from Error Visibility to Structural
Similarity. IEEE Transactions on Image Processing 13, 4 (2004), 600–612.

[43] T. Würfl et al. 2016. Deep Learning Computed Tomography. In Int’l Conf. on
Medical Image Computing and Computer-Assisted intervention. Springer, 432–440.

[44] X. Zhang et al. 2017. A Design Methodology for Efficient Implementation of
Deconvolutional Neural Networks on an FPGA. arXiv:1705.02583 preprint (2017).

[45] Z. Zhang et al. 2018. A Sparse-View CT Reconstruction Method Based on Com-
bination of DenseNet and Deconvolution. IEEE Transactions on Medical Imaging
37, 6 (2018), 1407–1417.

[46] C. Zheng et al. 2020. Deep Learning-based Detection for COVID-19 from Chest
CT using Weak Label. MedRxiv (2020).

ICPP 2021 Chicago, IL

https://github.com/facebookincubator/gloo/
https://github.com/facebookincubator/gloo/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html
https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://www.midrc.org/
https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/
https://ngc.nvidia.com/catalog/containers/nvidia:clara-train-sdk
https://ngc.nvidia.com/catalog/containers/nvidia:clara-train-sdk
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html

	Abstract
	1 Introduction
	2 C0.75omputeCOVID19+ Framework
	2.1 Data Preparation
	2.2 Image Enhancement
	2.3 Image Classification

	3 Network Training
	3.1 Enhancement AI
	3.2 Segmentation AI
	3.3 Classification AI

	4 Optimizing Parallel Training and Inference of AI
	4.1 Training of Enhancement AI
	4.2 Inference of Enhancement AI

	5 Evaluation
	5.1 Performance of ComputeCOVID19+
	5.2 Accuracy of ComputeCOVID19+

	6 Related Work
	6.1 RT-PCR vs. CT-based COVID-19 Testing
	6.2 AI with Computed Tomography (CT)
	6.3 CT Image Enhancement
	6.4 Comparison with Prior Work

	7 Perspective and Future Work
	8 Conclusion
	9 Acknowledgement
	References

