
Parallel Genomic Sequence-Searching on an Ad-Hoc Grid:
Experiences, Lessons Learned, and Implications

Mark K. Gardner∗

Virginia Tech
Wu-chun Feng†

Virginia Tech
Jeremy Archuleta‡

University of Utah

Heshan Lin§

North Carolina State University
Xiaosong Ma¶

North Carolina State University and
Oak Ridge National Laboratory

Abstract

The Basic Local Alignment Search Tool (BLAST) al-
lows bioinformaticists to characterize an unknown se-
quence by comparing it against a database of known
sequences. The similarity between sequences enables
biologists to detect evolutionary relationships and infer
biological properties of the unknown sequence.

mpiBLAST, our parallel BLAST, decreases the search
time of a 300KB query on the current NT database
from over two full days to under 10 minutes on a 128-
processor cluster and allows larger query files to be
compared. Consequently, we propose to compare the
largest query available, the entire NT database, against
the largest database available, the entire NT database.
The result of this comparison will provide critical in-
formation to the biology community, including insight-
ful evolutionary, structural, and functional relationships
between every sequence and family in the NT database.

Preliminary projections indicated that to complete the
above task in a reasonable length of time required more
processors than were available to us at a single site.
Hence, we assembled GreenGene, an ad-hoc grid that
was constructed “on the fly” from donated computa-
tional, network, and storage resources during last year’s
SC|05. GreenGene consisted of 3048 processors from
machines that were distributed across the United States.
This paper presents a case study of mpiBLAST on
GreenGene — specifically, a pre-run characterization
of the computation, the hardware and software archi-
tectural design, experimental results, and future direc-
tions.

Keywords: bioinformatics, BLAST, sequence search,
grid computing, cluster computing, optical networking,
scheduling, fault tolerance, scalability, agile develop-
ment, scripting

∗e-mail: mkg@vt.edu
†e-mail: feng@cs.vt.edu
‡e-mail: jsarch@cs.utah.edu
§e-mail: hlin2@ncsu.edu
¶e-mail: ma@csc.ncsu.edu

1 Motivation

The vast majority of compute cycles consumed in
bioinformatics are spent on the BLAST family of se-
quence database-search algorithms. These algorithms
search for similarities between a query sequence and
a large database of nucleotide (DNA) or amino acid
sequences [Altschul et al. 1990; Altschul et al. 1997].
Newly discovered sequences are commonly searched
against a database of known nucleotide or amino acid
sequences. Similarities between the new sequence and a
sequence of known function can help identify the func-
tion of the new sequence. Other uses of BLAST searches
include phylogenetic profiling and bacterial genome an-
notation.

Traditional approaches to sequence homology searches
using BLAST have proven to be too slow to keep up with
the current rate of sequence acquisition [Kent 2002].
From 1982 to 2004, the number of sequences in the
NCBI GenBank has grown by a factor of 67,000 [Gen-
bank]. Because BLAST is both computationally inten-
sive and parallelizes well, many approaches to paralleliz-
ing its algorithms have been investigated [Braun et al.
2001; Camp et al. 1998; Chi et al. 1997; Pedretti et al.
1999; Singh et al. 1996]. Our open-source paralleliza-
tion of BLAST, mpiBLAST,1 fragments and distributes
a BLAST database among cluster nodes such that each
node searches a unique portion of the database. Figure 1
and Table 1 show that the latest version of mpiBLAST
exhibits super-linear speedup and scales to hundreds of
nodes, greatly improving on the performance of a earlier
version [Darling et al. 2003]. The super-linear speedup
is due to the fact that the large sequence database can

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or
a fee.

SC2006 November 2006, Tampa, Florida, USA
0-7695-2700-0/06 $20.00 c©2006 IEEE

1See http://www.mpiblast.org/.

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140

S
p
e
e
d
u
p

Nodes

mpiBLAST

Linear

Figure 1: Speedup of mpiBLAST (Version 1.4)

be segmented and fit into the aggregate memory of the
nodes, therefore eliminating I/O which is orders of mag-
nitude slower than memory accesses.

Currently, the largest database against which a sequence
may be compared is the nucleotide (NT) database con-
taining GenBank, EMB L, D, and PDB sequences. The
database is an unordered ASCII flat file that is updated
daily and has grown to more than 14GB as of November
2005. When biologists need to catalog an unknown se-
quence, they use BLAST to search against the database.
If the sequence is not found, the new sequence is added
to the end of the database file, making the unordered
file larger.

Because of the importance of the NT database, we
propose searching each sequence in the NT database
against the complete NT database itself as a service to
the bioinformatics community and to stress-test mpi-
BLAST. By sequencing the NT database against itself,
we hope to make the biological information contained in
the NT database more useful to researchers by enabling
a Google-like indexing structure. Such a structure could
increase search-speed times by a factor of 100 while at
the same time providing up to a 20-fold compression
in the size of the database [Gans 2005]. Furthermore,
it would also allow searches to be conducted in a non-
linear manner.

Preliminary projections indicate that to complete the
above task within a reasonable amount of time requires
more processors than are available to us at a single site.
That is, assuming a dedicated cluster supercomputer
with 128 processors that computes a result every 10
minutes on average (based upon a linear extrapolation
of the execution time as a function of the number of
nodes from Figure 1), matching all 3.5 million sequences
in the NT database against the NT database would
take over 408 days. Therefore, to make this problem

Execution
Nodes Time (sec) Speedup

1 176,880 1.00
2 68,640 2.58
4 39,109 4.52
8 7,730 22.88

16 3,683 48.03
32 2,321 76.21
64 1,021 173.24

128 579 305.49

Table 1: Speedup of mpiBLAST 1.4 vs. BLAST

more computationally tractable, we leveraged the fact
that mpiBLAST is highly parallel and proposed running
mpiBLAST over a grid with sufficient computational,
network, and storage resources. But what kind of grid
should we use?

One way of obtaining large quantities of resources for a
highly parallel computation is to take the desktop grid
approach. Projects, such as SETI@home [SETI@home]
and Folding@home [Folding@home], have shown that
desktop grids are a viable way to obtain high paral-
lelism at low cost. Because people are willing to donate
the spare cycles on their machines for good causes, the
costs associated with desktop grids are often very low.
However, we discounted this approach for several rea-
sons.

First, it takes time and publicity to foster enough par-
ticipation that significant resources become available.
Second, the resource requirements to successfully com-
pute some sequence matches are much greater than
what can be expected of machines in a desktop grid.
SETI@home clients (or workers) operate on fixed-size
work units that are roughly 350KB in size while mpi-
BLAST clients (or workers) search with variable-size
work units (i.e., queries) that can range in size from
a handful of bytes to as much as 80MB and generate
megabytes to gigabytes of output. In addition, a sizable
chunk of the NT database must also be distributed to
each mpiBLAST client before sequence search can even
commence, resulting in a substantial data-movement
problem that SETI@home does not have. Third,
SETI@home is embarrassingly parallel; mpiBLAST is
not. mpiBLAST achieves super-linear speedup by seg-
menting the database to fit in the aggregate memory
of the nodes, thereby eliminating costly I/O accesses.
However, database segmentation also increases the de-
pendencies between parallel tasks in a query because
the final results for each query must be obtained by
consolidating intermediate results from many tasks. Fi-
nally, the highly skewed and unpredictable distribution
in sequence-search times for queries, combined with the
heterogeneity of distributed personal computers, would

require high capacity in caching and processing interme-
diate result data, which is not easy to achieve efficiently
in the @home model.

Consequently, our approach aggregates sufficient super-
computing resources (a la the TeraGrid) to solve the
problem. Grid frameworks, most notably Globus [Fos-
ter and Kesselman 1997], have been developed to ag-
gregate such resources into a computational grid. In-
deed, a version of mpiBLAST for Globus, mpiBLAST-
g2 [mpiBLAST-G2], already exists. However, we were
unable to take advantage of mpiBLAST-g2 and exist-
ing grid frameworks at the time for a multitude of rea-
sons: OS incompatibility, hierarchical scheduling, lack
of a “grid”ified version of mpiBLAST-PIO (an extended
version of mpiBLAST with parallel I/O capabilities),
heterogeneous security across administrative domains,
and time pressures. Each of these is elaborated upon
below.

First, the aforementioned grid frameworks were nei-
ther available nor well-tested on Mac OS X and 64-
bit Linux OS, respectively. And unfortunately, both
of these operating systems made up a sizable majority
of the supercomputing resources that we had available
to us during the week of SC|05 in Seattle. Second, com-
puting the NT-versus-NT alignments required a hier-
archical scheduler. The bottom level of the scheduler,
functionality that is available in grid toolkits, executed
queries against the NT database. The top level sched-
uled queries across the bottom-level toolkits, collected
the results, and re-scheduled queries to accommodate
resource failures. None of the available grid toolkits
provided this aspect of hierarchical scheduling. (How-
ever, this required capability appears to be under de-
velopment at the Edinburgh Parallel Computing Cen-
tre (EPCC) [EPCC a; EPCC b] but does not appear to
be released.) Third, mpiBLAST-PIO [Lin et al. 2005],
our extended version of mpiBLAST with parallel I/O
capabilities that dramatically improves scalability, has
not yet been ported to the grid frameworks. Fourth,
security and administrative concerns prevented the in-
stallation of the frameworks and the opening-up of holes
in institutional firewalls. Finally, given the time pres-
sures of building and running on an ad-hoc grid during
the week of SC|05, coupled with the above issues, we
decided to create our own “ad-hoc grid software” as all
we required was a simple system for distributing queries,
executing mpiBLAST (or more specifically, mpiBLAST-
PIO), and gathering results.

Consequently, we assembled “GreenGene” — an ad-hoc
grid that was effectively constructed on-the-fly from do-
nated computational, network, and storage resources
during last year’s SC|05.2 In the remainder of the pa-

2GreenGene is a tongue-in-cheek reference to Green Des-
tiny [Feng 2003], our previous energy-efficient supercomputer used

Sequence
Group Length (KB) Count Percentage

G1 0–5 3,305,170 95.66
G2 5–50 87,506 2.53
G3 50–150 25,960 0.75
G4 150–200 26,524 0.77
G5 200–500 9,592 0.28
G6 > 500 248 0.00007

Total 3,455,000 100.00

Table 2: Composition of the NT Database

per, we will discuss the problem of sequence searching
NT-against-NT in greater detail, the hardware and soft-
ware architecture of GreenGene, and finally the results
obtained from running the experiment during SC|05.

2 Computing “NT-Complete”

Performing a sequence alignment search is a computa-
tionally intensive undertaking with resource usage in
time and space that depend on both the input query and
the database. Table 2 shows the composition of the NT
database at the time we began the project in October
2005. There were approximately 3.5 million sequences
in the database. Of those, 95.66% were 5KB in size or
less. Nearly all the remaining sequences were between
5KB and 500KB. Only a few sequences exceed 500KB
in size. Because the execution time, memory require-
ments, and output size are some function of the input
sequence length and the database size, the project looks
to be a straightforward problem. That is, given enough
processors, it should be easy to divide the sequences
and the database segments across the nodes and com-
pute the results. Naturally, real life is somewhat more
complicated.

The BLAST algorithm employs heuristics to decrease
the computation time, as compared to the pre-
cise Smith-Waterman algorithm [Smith and Waterman
1981], but at the cost of decreased sensitivity. Yet
even with the performance improvement obtained via
the heuristics, along with our parallelization of BLAST,
a comparison of a 300KB query with 441 sequences
(none of which are found in the NT database) to the
NT database takes over an hour to complete on 16
desktop-equivalent nodes. The NT database is 50,000
times larger with 8,000 times as many sequences, and
the comparison against itself will take even longer to
execute because each sequence is found in the database
and is guaranteed to have close matches which are ex-
pensive to compute. Furthermore, the heuristic nature

to run mpiBLAST, and the system’s capability for performing ge-
nomic searches.

Sample Input Sample Output Complete NT-to-NT Output
Seq Query Time Size Time per CPU Output CPUs to finish

Group Count (KB) CPUs (secs) (MB) (sec) (GB) during SC|05
G1 909 1,107 32 4,496 342 133,144 1,139 1,110
G2 91 1,060 32 5,127 558 48,410 593 403
G3 2 254 64 28,154 2,163 5,450,612 23,555 45,422
G4 7 1,260 32 7,941 1,117 252,450 3,995 2,104
G5 4 1,012 64 >36,000 † † † †
G6 § § § § §

Total >5,884,615 >29,282 >49,038
† Did not complete. § Unknown. Test cluster too small to run.

Table 3: Estimating the CPU Count Needed to Finish During SC|05 and Resulting Output Size

of the BLAST algorithm also leads to a weaker corre-
lation between the sequence length and the resources
needed (e.g., CPU cycles, memory, and disk space),
which makes resource prediction more difficult.

In order to estimate the resource requirements for the
project, we randomly selected sequences from each
group in Table 2 to form a query and perform the search.
The results are shown in Table 3. The query in group
G3 is limited to only two sequences that happen to be
particularly difficult to complete given the amount of
memory that they require to run to completion. Fur-
thermore, both sequences are very similar to many se-
quences in the database, and hence, require a lot of
computation to find all the matches. As a result, the
query requires 64 processors rather than 32 and takes
nearly 8 hours to complete. The sample selected for
group G5 was also found to contain particularly hard
sequences and did not complete within 10 hours (the
maximum time of the PBS scheduler on a testbed clus-
ter). Likewise, sufficient processors were not available
until SC|05 to execute the sample runs from group G6.

The preliminary results suggest that some of the se-
quences in the NT database are particularly hard and
will take a long time to complete. The troublesome
sequences have two characteristics in common: they
are larger than 5KB, and they closely match many se-
quences in the database. This causes the nodes to buffer
large quantities of intermediate results, much larger
than the average output per node would suggest, caus-
ing a shortage of memory on the node.3 One particu-
larly hard sequence has a memory footprint that exceeds
1.7GB on at least one node.

Another difficult sequence, which took 5.2 hours to com-
plete when re-run on 90 nodes, generates 1.8GB of out-
put even though the input is only 122KB in size. The
RAM usage on at least one node exceeded 1.3GB even
though the average output per node is only 20.5MB

3BLAST already discards matches with scores below a thresh-
old, otherwise all matches would need to be buffered.

(1.8GB / 90). Increasing the number of nodes from
64 to 90 increased the amount of buffering available for
intermediate results and allowed the sample query to
complete.

Why does BLAST buffer so many intermediate results,
especially since it greatly increases memory require-
ments and prevents job completion? The buffering is
necessary to sort the results according to their scores
and select the N (typically 500) best matches in order
to present the most useful results first. Besides con-
suming large amounts of memory, it is this final pass
through the intermediate results that prevents BLAST
from being embarrassingly parallel.

An alternative approach to estimating the execution
time and output size is to exploit the fact that BLAST
performs searches in two phases [Altschul et al. 1990].
In the first phase, BLAST compares the query sequence
with database sequences at the word level to identify
high scoring pairs (hits), which are word pairs of fixed
length (normally 11 for DNA sequence search) with sim-
ilar score beyond a certain threshold T . In the second
phase, these hits are then extended to find the result
matches (maximal segment pairs). Therefore, execut-
ing only the first phase can provide an estimate of the
maximum number of hits without having to execute the
more expensive second phase, thus making it an attrac-
tive potential predictor as it inherits some internal in-
formation from BLAST algorithm.

To test the hypothesis that the number of hits com-
puted in the first phase generates better execution time
and output size estimates, we collect sequence length
and number of database hits as the X (or “input”) vari-
ables and execution time and output file size as the Y
(or “output”) variables for 500 randomly selected se-
quences. We model these sample data with linear re-
gression and present the resulting statistics in Table 4.
The minor differences in mean square error (less than
5% for both output size and execution time prediction)
suggests that using the number of database hits from

Coefficients
Correlation X Variable Intercept P-value Mean Square Error

X=Length, Y=Output Size 0.628 0.713 -2.611 2.98E-56 34376702.468
X=Hits, Y=Output Size 0.643 5.72E-05 216.167 1.34E-59 33332554.787
X=Length, Y=Execution Time 0.671 0.004 2.020 8.74E-67 893.667
X=Hits, Y=Execution Time 0.691 3.29E-07 3.235 3.88E-72 850.609

Table 4: Sequence Length vs. Estimated Matches as Predictor

the first phase of the BLAST calculation does not pro-
duce a better predictor than does the sequence length.4
Therefore, we choose to use the sequence length as the
predictor rather than partially executing BLAST to ob-
tain hit counts, especially since hits are not a signif-
icantly better predictor of execution time and output
size.

Returning to the question of estimating the resources
needed to complete the project, if all of the sequences in
the database require as much effort as those in the sam-
ple from group G3, the complete NT-against-NT align-
ment would take around 1,561 years (3.9 hours per G3
query multiplied by 3.5 million queries), an intractable
task even if the database were static. Fortunately, pre-
liminary results indicated that many queries execute
quickly and produce small amounts of output. This pat-
tern was particularly true of queries in G1. Since the
queries in G1 constituted the bulk of the NT database,
there was hope that the project would complete by the
end of SC|05.

3 Hardware Architecture

Because each query could be run independently of the
others, low-latency communication was not required to
achieve good performance. This was fortunate because
the supercomputing hardware that was made available
to us for this project was located, for the most part, on
the west and east coasts of the United States, as shown
in Figure 2.

The GreenGene ad-hoc grid has a hierarchical organiza-
tion resembling a constellation architecture. Clusters at
each of the four physical sites were connected to high-
speed wide-area network (WAN) connections via Na-
tional LambdaRail (NLR) or Internet2 via Abilene. The
clusters and their sponsoring organizations are listed in
Table 5. Below we provide more detail about each of the
clusters and their wide-area connections to the rest of

4Alternatively, we note that while the correlation between
the X variables, i.e., sequence length and estimated number of
matches is high (0.9942), and the correlation between the Y vari-
ables, i.e., execution time and output size, is also high (0.9583),
the correlation between the X and Y variables ranges between
0.628 and 0.691.

Cluster Organization Location
System X Virginia Tech Blacksburg, VA
TunnelArch Univ. of Utah SLC, UT
LandscapeArch Univ. of Utah SLC, UT
DuPont Intel DuPont, WA
Jarrell Intel Seattle, WA†
BladeCenter Intel Seattle, WA†
Panta Panta Systems Seattle, WA†
† On exhibit at SC|05

Table 5: Clusters Making Up GreenGene

the GreenGene infrastructure. All these resources were
temporarily integrated during the week of SC|05 into a
functioning ad-hoc grid.

To facilitate the computation, Virginia Tech generously
provided exclusive access to their System X supercom-
puter for the week of SC|05. System X is composed of
1,100 Apple Xserve G5 nodes, each with dual 2.3-GHz
PowerPC 970FX CPUs, 4-GB ECC DDR400 RAM, one
80-GB SATA local hard disk, one Mellanox Cougar In-
finiBand 4x host channel adapter, and Gigabit Ethernet
(GigE) network interface card. Shared storage was via
the traditional network file system (NFS). The ten head
nodes of System X were directly connected to NLR, and
hence, the bottleneck network capacity to SCinet was
ten gigabits per second (10 Gb/s). The MPI implemen-
tation that we used to run mpiBLAST was MPICH-
1.2.5 [Gropp et al. 1996] with modifications for Infini-
Band [InfiniBand Trade Association 2000].

The University of Utah also provided dedicated ac-
cess to their clusters: TunnelArch and LandscapeArch,
which are both part of the Arches metacluster. The
TunnelArch cluster consisted of 63 nodes containing
dual AMD Opteron 240 CPUs, 4-GB ECC DDR266
RAM, and a 40-GB IDE hard disk connected with
GigE. The LandscapeArch cluster consisted of 64 nodes
containing dual AMD Opteron 244 CPUs, 2-GB ECC
DDR333 RAM, and a 200-GB hard disk connected with
GigE. In both cases, shared storage was via the Paral-
lel Virtual File System (PVFS) [Carns et al. 2000]. The
bottleneck network capacity to SCinet is one gigabit per
second (1 Gb/s) . The MPI implementation on both
clusters was MPICH2 [MPICH2].

SCinet

SC|05 Showroom

Virginia Tech
(System X)

Intel (Dupont, Wa)

Foundry

Panta

Intel (Jarrell) Intel (BladeServer)

Utah (TunnelArch) Utah (LandscapeArch)

10GbE (National Lambda Rail)

OC!192
10GbE

10GbE

1GbE1GbE

1GbE

StorCloud 1GbE

1GbE1GbE

Figure 2: High-Level Architecture of the GreenGene Ad-Hoc Grid

Intel provided three clusters: the DuPont cluster, the
Jarrell cluster, and the BladeCenter cluster. The
DuPont cluster was a 128-node quad-core system con-
nected with InfiniBand and Gigabit Ethernet (GigE).
Only half of the system was available during the day.5
During the night, the entire cluster was available. The
Jarrell cluster contained 10 nodes each with dual Intel
3.4-GHz Pentium 4 CPUs, 2-GB RAM, 70-GB hard disk
and dual GigE running RedHat Enterprise Linux 4U2
and Intel MPI v1.0. The BladeCenter cluster contained
14 BladeCenter nodes, nine with dual 3.06-GHz and five
with dual 2.66-GHz single-core Intel Xeon CPUs. Each
blade contained 2GB of RAM, two 80-GB hard drives,
and GigE.

The cluster provided by Panta Systems contained eight
nodes, each with four AMD Opteron 246HE CPUs
with 2-GB RAM interconnected with Infiniband and
GigE running 64-bit SuSE Linux v9.3 with MVAPICH-
0.9.6 [Liu et al. 2003a].

Global storage for the expected multi-terabyte output
was provided as part of SC|05 StorCloud and consisted
of 32 dual-3.2GHz Intel Xeons nodes driving the Lustre
parallel file system [Luster] connected via GigE to each
other and to the 10-Gb/s Ethernet SCinet backbone,
and from there, to NLR. In addition, Intel provided
18.3TB of raw RAID-5 storage in four disk arrays (two

5The entire cluster was unavailable during Bill Gate’s keynote
speech at SC|05.

units with 16 400-GB drives and two with 12 250-GB
drives), and we brought a single custom-built 1.75TB
of raw RAID-5 storage in a single disk array. The Intel
storage was aggregated using Intel’s storage manager
product. Both storages systems were formatted with
the Linux XFS file system. (As we will discuss later, this
storage redundancy proved to be vitally important.)

Finally, Foundry Networks provided a SuperX 10GigE
switch to connect to SCinet. They also provided two
GigE switches for use where needed.

With the wide variation in hardware, operating systems,
shared storage, and message-passing layer implementa-
tion, interoperability was a huge concern. The Virginia
Tech machine, in particular, stands out for three rea-
sons. First, its PowerPC 970FX CPU was big endian
whereas the more common AMD and Intel CPUs were
little endian. Second, System X was running Mac OS X
10.2.9 Server which is not a Linux variant like the other
systems. Third, System X, along with the Panta clus-
ter, used NFS as the shared file system. Since System X
comprised more than 72% of the 3,048 processor cores
in GreenGene, its homogeneity had a proportionately
high impact on the architectural design. For GreenGene
to complete the NT-complete computation, the infras-
tructure had to be independent of byte order, operating
system (OS), and shared file system. In addition to
hardware heterogeneity, software heterogeneity played
a large role, particularly the OS, MPI implementation,
and mpiBLAST version.

4 “Gluecode” for the GreenGene
Ad-Hoc Grid

In this section, we discuss the architecture of the soft-
ware and the challenges that needed to be overcome to
build a working computational grid.

4.1 Software Architecture

As discussed in Section 2, the key factor in ensuring
that mpiBLAST runs efficiently and completes a query
was the amount of RAM on the compute nodes. There
must be sufficient memory for each database segment
to fit into the RAM of each compute node or perfor-
mance suffers due to data being fetched from disk. This
implies that clusters with large amounts of RAM per
node will require fewer nodes to keep the database in
memory. There also must be sufficient RAM to store
intermediate results. Because of the lack of a good cor-
relation between a predictor, such as query size, and
output size, it is also extremely difficult to estimate a
priori how much memory a query requires for intermedi-
ate results. Therefore, we took the pragmatic approach
of classifying queries at run time as “hard” or “easy”
depending on whether or not they ran to completion
within a reasonable amount of time using the amount
of memory available. If the query did not complete, we
re-ran the query on a larger group of nodes.

All of the clusters in GreenGene had multiple processors
or cores per node. As is common in running parallel
processes on SMP machines, we treated each core as a
“virtual node” in order to make maximum use of the
available compute power. Thus, a physical node on the
DuPont cluster was considered to be four virtual nodes
and the amount of memory per virtual node was one
fourth of the total. We called the set of virtual nodes
that ran a mpiBLAST job a group. The minimum size
of a group, which was dependent upon the amount of
memory per virtual node, ranged from 8 to 16 physical
nodes depending on the cluster. As a result, each of the
clusters contained several to many groups, depending
on the number of nodes. The smallest cluster contained
four groups and the largest contained nearly 300 for a
total of over 375 groups.

Each group in GreenGene was an independent worker
capable of running queries. In order to accomplish the
tasks of distributing queries and accumulating results,
we used a hierarchical software architecture as shown in
Figure 3. The GroupMaster was responsible for running
mpiBLAST to execute a query. It was also responsible
for fetching queries from the SuperMaster and returning
the results as the queries complete. The SuperMaster’s
sole function was to assign queries to GroupMasters, as

SuperMaster

GroupMasterGroupMaster GroupMaster

mpiBLASTmpiBLAST mpiBLAST

Figure 3: Software Architecture of the GreenGene Ad-
Hoc Grid

appropriate, in order to balance load across the hard-
ware running at varying speeds.

Searching hard queries against the NT database re-
quired substantial computational resources and gener-
ated a very large amount of output. mpiBLAST 1.4
(the most recent and widely used mpiBLAST version),
despite its high efficiency in searching easy queries that
produce a small volume of output, had limitations in
dealing with hard queries. In mpiBLAST 1.4, a worker
generated intermediate results after it searched a query
sequence against a local database fragment. The inter-
mediate results only contained the alignment metadata
and needed to be converted to final output by combin-
ing with the corresponding sequence data. During the
search, all intermediate results and their corresponding
sequence data were sent to and buffered by the mas-
ter. Once a query sequence was finished, the master
sorted the intermediate results according to their sim-
ilarity scores and converted them to produce the final
output.

The above architecture resulted in two major issues.
First, the result processing (converting intermediate re-
sults to final outputs) was serialized by the master.
Second, the master needed to buffer all intermediate
results and their corresponding sequence data, which
can dramatically impact performance when the master’s
memory size is not large enough for buffering. These
limitations made the master a potential performance
and space bottleneck. As a result, mpiBLAST 1.4 per-
formed slowly or hung when hard queries were sequence-
searched.

To address the above problems, we created mpiBLAST-
1.4-PIO, an enhanced version of mpiBLAST that com-
bines mpiBLAST-1.4 with the parallel I/O capabili-
ties of pioBLAST [Lin et al. 2005] to dramatically im-
prove scalability and throughput when searching hard

queries. In mpiBLAST-1.4-PIO (hereafter referred to as
mpiBLAST-PIO), after searching a fragment, workers
convert their intermediate results into the final output
format and send final output metadata to the master.
The master figures out the output offsets for each record
in the global output file and sends the information to
the workers. With output offsets, workers are then able
to write local output records in parallel to the file sys-
tem through the MPI-IO interface. By having workers
processing results in parallel and locally buffering query
output, mpiBLAST-PIO removes the performance and
space bottlenecks that were present in the mpiBLAST
1.4 master.

With the aforementioned parallel-write solution,
mpiBLAST-PIO delivers dramatic performance im-
provement on parallel file systems. However, it does not
perform well over NFS. This posed a new challenge for
us because more than 72% of our processor resources
were located on machines using NFS as the shared
file system. We tackled this challenge by designing a
customized version of mpiBLAST-PIO with specific
optimizations for better performance on NFS. The
idea is to provide pseudo-parallel-write functions for
output in substitution of parallel-write APIs from the
MPI-IO library. When called by workers, the pseudo-
parallel-write functions split output data into small
messages and send them to a writer process through
an asynchronous MPI communication interface. The
writer process collects the output data and writes them
out through the Posix I/O interface. With careful
design of the asynchronous communication protocols
for output data, the pseudo-parallel-write version
of mpiBLAST-PIO is able to search hard queries
efficiently on machines that do not have parallel file
systems.

4.2 Addressing the Challenges

In addition to the inherent complexity of computing the
complete NT-against-NT alignment, we must address
an array of practical concerns in our GreenGene ad-
hoc grid. First is the matter of heterogeneity. Hetero-
geneity naturally arises from the fact that GreenGene
spans many different systems, each with their own hard-
ware characteristics, system software, and administra-
tive policies. Second is the issue of the resources residing
in different administrative domains with different cyber-
security policies. Third is scalability. Scalability prob-
lems arise from overheads in inter-node communications
and from inefficiencies in hardware and software imple-
mentations. Because of the large amount of resources
and number of software groups, the ability to scale well
is a serious concern. Fourth is the issue of fault toler-
ance. This is a serious problem because the probability

of failure increases with the number of components in
the system. The final issue is data integrity. In the end,
the data must be valid for it to be useful.

4.2.1 Heterogeneity and Accessibility

To solve the issue of heterogeneity and to eliminate most
of the problems associated with different administra-
tive domains, GreenGene only uses four existing, cross-
platform tools – perl, ssh, rsync, and bash – to stand-up
the ad-hoc grid that mpiBLAST runs on. Perl is used to
write the “gluecode” scripts because it is already avail-
able on all of the clusters. As a scripting language, perl
allows gluecode to be written quickly and efficiently.
Standing up our GreenGene ad-hoc grid required only
five scripts, which totaled only 458 lines of commented
Perl code.

To handle communication between sites in order to co-
ordinate efforts and to transfer data, a combination of
ssh and rsync was employed for several reasons. First
and foremost, they are readily available on all the clus-
ters, and holes through the institutional firewalls for ssh
already exist, thus greatly simplifying the deployment
problem. By using ssh directly and as the underlying
remote shell for rsync, we could start testing on the var-
ious clusters as quickly as accounts became available.
Second, the use of ssh, a widely used secure login proto-
col, gives system administrators greater confidence that
their systems will not be compromised. This too greatly
eases the task of deployment.

Because mpiBLAST was run multiple times across each
cluster, each invocation of mpiBLAST needed to be
configured to not interfere with the others. The con-
figuration was too tedious to be done by hand, espe-
cially with the very large number of mpiBLAST invo-
cations that ran simultaneously on System X. For the
purposes of configuration, GreenGene used custom bash
login scripts to automatically configure the environment
variables for each invocation. The perl scripts queried
the shell environment variables to obtain the values
needed to parameterize their execution. Using a bash
login script eliminated the thankless task of configuring
a separate perl script for every invocation individually
and ensured that each machine had the same parameter-
ized configuration. Furthermore, script installation was
a simple matter of using scp to distribute the scripts.

4.2.2 Design for Scalability

In some ways, running mpiBLAST on GreenGene is a
parallel-computing dream come true. At the query level,
it is nearly embarrassingly parallel and allows large
numbers of queries to be run at the same time. The limit

is primarily the cost of distributing the queries in order
to load balance and the cost of retrieving the results.
As Figure 3 shows, we take a hierarchical approach to
address the overhead issue. Not necessarily as apparent
in the figure, is the need to invert the usual relationship
that a master-slave organization, such as ours, implies.
Usually, the SuperMaster would be the master and the
GroupMasters would be the slaves. However, because
groups reside behind firewalls, the SuperMaster is un-
able to initiate contact to GroupMasters. Instead the
GroupMasters must assume the role of masters (commu-
nication originators) in order to allow communication
through the firewall. The SuperMaster takes a more
passive role.

The SuperMaster is a perl script that performs four
functions: checks for new groups, assigns queries to
groups, verifies the results returned, and retires the
query. To hide the latency of wide-area network (WAN)
connections to the clusters, the SuperMaster maintains
a queue of outstanding queries for each group such that
the group always has a new query available when com-
pleting the old one. (The desired length of the queue
is related to the latency of the connection to the group.
The higher the latency, the longer the queue required
to prevent “bubbles in the pipeline.”) Periodically, the
GroupMasters fetch all the queries that the SuperMas-
ter has assigned to them.

There is a single GroupMaster for each group of com-
pute nodes. The GroupMaster is composed of three
daemons: one to fetch and verify assigned queries from
the SuperMaster, one to transfer the results back to the
SuperMaster, and one to spawn a process that executes
a mpiBLAST job. The mpiBLAST jobs execute on the
compute nodes within a group. In order to determine
at run time if a query is hard or not, a watchdog pro-
cess that times out after 30 minutes is spawned prior to
executing the query. (We chose the timeout value to be
about 2–3 times the average execution time of queries
from preliminary runs.) If the watchdog expires before
the query completes, mpiBLAST is killed, and the query
is reclassified as hard. Otherwise, the watchdog is killed
when the query completes.

Another concern is data integrity. Based upon work
done by Paxson [Paxson 1999] and the large amount of
data expected to be transferred by the network, it is
expected that a significant number of packets may be
silently corrupted, i.e., a silent error every 500GB . (By
silent, we mean that TCP/IP checksums will not catch
the error, thus compromising the integrity of the data.)
To ensure that files are transferred successfully, both the
GroupMasters and the SuperMaster check MD5 sums
for the files. If any of the sums fail, the offending file is
transferred again a finite number of times before setting
the query aside for manual intervention and debugging.

We also save the mis-transferred files in order to classify
the types of errors that are seen.

One of the main advantages of the loosely-coupled,
partially-inverted, hierarchical architecture is the flex-
ibility of adding GroupMasters as new groups be-
come available. There can be as many GroupMas-
ters as needed; the number is not static, but fluctu-
ates, as needed. The flexibility also allows the system
to be started incrementally and for failed nodes to be
restarted from where they left off. It also allows the
queries from permanently failed groups to be reassigned
easily. Furthermore, the flexibility makes it possible to
consolidate two or more idle groups on a cluster to form
a larger group in order to tackle the hard queries. Fi-
nally, the resulting topology also reduces the load on the
SuperMaster as most of the work occurs at the Group-
Master level where it can scale as the number of groups
grows.

The high rate of query execution on GreenGene presents
another problem. Preliminary work indicates a rule of
thumb of about 1MB/s of mpiBLAST results are gen-
erated per CPU core. On the clusters with a GigE con-
nection to the SuperMaster, this data rate will easily
saturate the bottleneck link with as few as 125 cores
(or about 15 groups). Even for System X with a 10-
Gb/s connection to the SuperMaster, only about 1250 of
the 2200 CPUs could be kept busy. Fortunately, rsync,
which is used to transfer query files and results, has the
capability to do on-the-fly compression. Because the
query results are highly redundant, the compression ra-
tio is between 5:1 and 7:1. This is more than enough to
remove the network bandwidth from being the bottle-
neck. Furthermore, results are cached until several can
be sent at once in order to amortize the cost of initiat-
ing a TCP/IP connection and to allow the connection
to reach streaming state.

4.2.3 Fault Tolerance

Fault-tolerance has been identified as one of the most se-
rious issues inhibiting the availability and usage of large-
scale computing resources. Clusters with thousands of
processors generally exhibit a mean time between fail-
ure of less than 10 hours [Reed 2004]. Because there
are more than 3,000 processors in GreenGene, the ma-
jority of which are not in the control of the authors, we
assume that the number of faults will be high. To com-
plicate matters further, GreenGene is connected over
wide-area networks (WANs) spanning the continental
United States.

Traditional high-performance computing (HPC) appli-
cations, e.g., iterative numerical simulations, execute for
long periods of time and build up a complex state in

Transistion Triggers
1 Fetch Query
2 Pass MD5
3 Fail MD5
4 Fail MD5 N times

5 Begin Running
6 Complete Running
7 Timer Expired
8 Timer Expired N times

9 Transfer to SM
10 Pass MD5
11 Fail MD5
12 Fail MD5 N times

Fetched Queued Executing Executed DebugTransfer Completed

21

11

12

3

4

5 9 106

7
8

Figure 4: Query FSM on the GroupMaster

memory. Because the ratio of computation to mem-
ory state is very high, an efficient method for achieving
fault tolerance is to periodically save the state of the
computation to disk. Recovering from a fault consists
of reloading the last checkpoint rather than re-executing
the computation.

In contrast, Table 3 indicates that more than 95% of the
sequences in the NT database, namely those in group
G1, are likely to execute in less than 5 sec. Therefore,
a checkpoint and restart approach is much less efficient
than re-executing the query for most queries. Follow-
ing the Google model [Barroso et al. 2003; Ghemawat
et al. 2003], we have designed the system to have as
many interchangeable parts (groups) as possible. Be-
cause of the potentially large cost of migrating a query
to a new group, a failed computation is first re-executed
on the same group. The primary issue with re-execution
is the management of query status. Has the query been
successfully fetched from the SuperMaster, but failed
during execution? Or did the query complete success-
fully, but fail while transferring the results back to the
SuperMaster?

The GreenGene grid software accomplishes this task by
maintaining all query status on disk through a standard
file system. The state for a GroupMaster is contained
within a directory whose path is specified in a shell vari-
able. Subdirectories represent the status of queries exe-
cuting on the group. The file containing a query in the
“queued” state would be in the queued directory, while
a completed query (along with its output) would be in
the completed directory. By being careful about when
a query is advanced to the next state, e.g., not moving
a query and its output from the the directory denoting
the transfer state to the directory denoting the com-
pleted state until after the SuperMaster has indicated
that the results have been received and validated via
the MD5 sum, we can guarantee that no queries will be
lost and that the group can resume execution after soft-
ware failure. Figure 4 provides the finite state machine

Transition Triggers
1 Assign Query
2 Pass MD5
3 Fail MD5 N times
4 Receive Results

5 Timer Expired
6 Pass MD5
7 Fail MD5
8 Fail MD5 N Times

DebugCompletedAssignedFree Queued Transfer

1

5

4 62

3
7 8

Figure 5: Query FSM on the SuperMaster

for queries on the GroupMaster, realized as directories
within the group directory. Likewise, the finite state
machine for queries on the SuperMaster is given in Fig-
ure 5.

A detailed description of the state machines is beyond
the scope of this paper. However, a few observations are
warranted. First, the validity of files transferred over
the network is always verified via a MD5 sum. Failed
checks are re-tried a finite number of times in case the
failure is due to a transient error in the network. Per-
sistent network errors cause queries to transition to the
“debug” state indicating the need for manual interven-
tion. Second is the ease with which hard queries can
be identified and handled. Since it is not possible to
know the resource requirements of the queries a priori
in order to schedule the queries on nodes of sufficient re-
sources, it is not possible to schedule queries statically.
When a query is too complex for a group, it cannot
complete in time and is re-scheduled. On the positive
side, because groups are not the same, a query that is
too complex for one group may not be too complex for
another. For example, a query that fails to complete
before the timer on Group A due to a lack of mem-
ory ends up in the debug state and the SuperMaster
re-schedules it for another group, say Group B. Because
group B has twice as much memory, the query is now
able to complete in the allotted time. In this manner,
hard queries are identified and eventually re-assigned to
higher-performing groups. If a query does not complete
when re-executed on the highest-performing group, it
fails and is moved to the debug directory on the Super-
Master. After groups become idle, they are manually
combined to form a new group and the hard queries are
moved from the debug directory on the SuperMaster
to the “free” (unassigned) directory where they will be
re-assigned to the more powerful groups.

There are several advantages that come from using the
file system to hold the state. First, the state is auto-
matically persistent across software (and many types
of hardware) failures or hiccups. Second, we are guar-
anteed that the tools are already installed because file
system commands are necessary for any use of the ma-
chine. Third, using file system commands makes it eas-

>gb|AE008723.1| Salmonella typhimurium LT2, section 31
of 220 of the complete genome
Length = 22294

Score = 46.1 bits (23), Expect = 0.054
Identities = 32/35 (91%)
Strand = Plus / Plus

Query: 157 ctgctgcatggcggcgcatcggtagcgctggcgga 191
||||| || ||||||||||||| ||||||||||||

Sbjct: 21920 ctgctacacggcggcgcatcggcagcgctggcgga 21954

Figure 6: Representative Query Match

ier to develop the software because the functionality
of yet-to-be-created scripts can be emulated by simple
file system commands on the command line. Finally,
the very loosely coupled approach implied by this im-
plementation technique makes it very easy to pre-fetch
sufficient queries and cache sufficient results to accom-
modate transient network failures.

Clearly, there are two major concerns with using the
file system to save the system state. First is the cost of
performing file system operations, such as mv. As long
as directories do not get too large, the cost of using
the mv command is minimal. The only directories that
have the potential to get too large are the directory
containing the queries initially and the final directories
containing the results. For the initial directory, we use
a set of hierarchical directories to get the number of
files per directory below 1,000. We do nothing special
for the final directories. Second, there is a potential
for the state to be lost if the disk fails. In the case of
disk failure, we are no worse off than if we had chosen
a different approach. Either way the state is lost. If
instead we use an in-memory database to hold the state,
the state is not necessarily persistent. If we use an on-
disk database, the state will still be destroyed by disk
failure.

5 Results and Experience

At the beginning of SC|05, the NT database contained
3,563,759 sequences. We accumulated several sequences
into each query in order to amortize the setup overhead
of mpiBLAST. While accumulating as many queries as
possible makes the overhead of setting up a mpiBLAST
computation negligible, large queries also increase the
amount of work that has to be re-done if the compu-
tation failed while searching a sequence in the query.
Large queries containing many sequences also reduce
opportunities for load balancing across groups. There-
fore, just as we did in our pre-run characterization of the
computation in Table 3, sequences here are coalesced
into queries targeting an average execution time of 30
minutes. As a result, each query file averages 56.8KB

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100

P
r
o
b
a
b
i
l
i
t
y

(
%
)

Output File Size (MB = 220 Bytes)

Figure 7: PDF of Output File Sizes

in size, containing 52.6 sequences. Executing the query
creates an output file for each sequence in the query
containing the 500 best matches from the NT database.

Figure 6 presents a representative match from a query
against the NT database. This match is the third best
match in the output for this query against the whole
database. Of particular interest is the “Expect” score,
also called the E-value. The last three lines give query
and subject strings with a line detailing the match in
between. The numbers to the left and right of the se-
quences give the offset of the left and right edges within
the complete sequence. The vertical bars between the
query and subject show areas of perfect alignment. The
figure shows that out of the 34 base pairs, only 3 are
mismatched.

The sizes of the output files range from 603.4KB to
over 7GB. The mean output file size is 14.6MB and the
median size is 8.28MB. Figure 7 shows the probability
density function (PDF) of the size of the output files.
The average output size per sequence is 284.2KB.

The probability density function of execution times,
shown in Figure 8, has a similar shape to the output
file-size distribution. The average execution time for a
query is just shy of 9.0 minutes, with a range from 6
seconds to 1.6 hours.

The biggest issue hindering a complete sequence-
searching the entire NT database against itself was
global storage. When we arrived at SC|05, we dis-
covered that setup was not scheduled until after the
show started, thus preventing us from testing the sys-
tem. Furthermore, only 64% of the 100TB we asked
for was available. While the StorCloud volunteers did
all they could to get the file system up and stable as
quickly as possible, StorCloud continued to have prob-
lems throughout the show. Fortunately, the authors and
Intel both brought RAID arrays so we were able to start

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25 30 35 40

P
r
o
b
a
b
i
l
i
t
y

(
%
)

Execution Time (seconds)

Figure 8: PDF of Execution Time

running earlier than we would have otherwise using the
RAID arrays as global storage while we waited for our
portion of StorCloud to come on-line (which it finally
did on the last day of SC|05).

In spite of all the difficulties with StorCloud, we success-
fully sequence-searched approximately 10,000 queries
containing about 526,000 sequences or 1/7 of the NT
database.

6 Lessons Learned and Implications

When we initially envisioned an NT-versus-NT compu-
tation in early 2005, the goal was not to create a soft-
ware infrastructure to support an ad-hoc grid, but to
stress-test mpiBLAST while performing computations
of benefit to the bioinformatics community. Although
we were forced to develop our own infrastructure for the
reasons stated earlier, doing so has helped us to under-
stand some of the problems inherent in standing-up a
large-scale ad-hoc grid “on the fly.”

Many of our design choices proved to be good ones. For
example, the choice to use perl scripts to glue existing
tools together was crucial to having GreenGene opera-
tional during SC|05. If we had attempted to implement
the needed functionality directly in C or C++, devel-
opment time would have exceeded the time available.
In exchange for faster development, however, we had to
tolerate higher utilization on the head nodes.

Another good choice was to use the file system to imple-
ment the state machine that records the status of queries
in the system. Once again, very little code had to be
written to keep track of queries compared with what
would have been required had we used a database. Us-
ing the file system allowed us to gain restart capability
for very little cost.

Additionally, there are several characteristics that we
intend to preserve and enhance in the next version of
the GreenGene grid software. The first is portability
across many platforms. Currently, the software works
on Linux and Mac OS X. It should also work on any
other Unix-based platforms. In order to execute on
Windows, we would need to find semantically equiva-
lent ways of manipulating the file system. The second
is to retain the simplicity and lightweight nature of the
implementation to support agile development and facil-
itate rapid deployment. The third is to further flesh
out the implementation of hierarchical scheduling and
to ensure that all fault-tolerance issues have been han-
dled. Finally, we need to make the scripts more generic
so that computations other than BLAST can be run. It
is likely that making the scripts more generic will also re-
quire modifications to how the scripts operate since not
all computations are as decoupled as sequence search.

7 Conclusion

The goal of this endeavor was to perform an all-to-all
comparison of the sequences in the NT database to pro-
vide critical information to the biology community. Us-
ing resources donated for the week of SC|05, we assem-
bled the GreenGene ad-hoc grid whose software archi-
tecture was based on five scripts totaling 458 lines of
commented perl code. While a series of storage infras-
tructure problems prevented us from completely achiev-
ing our goal, we ran mpiBLAST on the GreenGene ad-
hoc grid and successfully computed alignments for over
half a million sequences.

In assembling the resources for GreenGene, we were un-
able to take advantage of existing grid frameworks, pri-
marily because they were not available on nearly 75%
of our resources. Instead, we developed an “ad-hoc
grid framework” using commonly available Unix com-
mands. Beside contributing a prototype of a frame-
work for a computational grid spanning the continen-
tal United States, our experience serves as a use-case
and provides insight on the issues involved in standing
up large heterogeneous grids spanning many adminis-
trative domains. Finally, this work has resulted in the
identification of particularly hard BLAST queries that
likely have some special significance to biologists since
long execution times and large outputs imply that the
target sequence is highly similar to a large portion of the
database. The hard queries can also be used to further
the development of high-performance sequence-search
software.

While the resources that formed GreenGene have re-
turned to the donating organizations, the goal of se-
quencing the NT database against itself remains. As fu-

ture work, an improved characterization of the resource
requirements of queries is needed in order to increase
predictability of resource usage in parallel BLAST and
improve the successful scheduling of queries on compu-
tational resources. In the longer term, we hope to gen-
eralize the framework so that it can be more automated
and reusable.

8 Acknowledgments

This effort would not have been possible without the
time, effort, and equipment support of many people
and institutions. First, we thank the following people
who facilitated this endeavor: Erv Blythe, Jeff Crowder,
Terry Herdman, Dennis Kafura, Judy Lilly, and Srinidhi
Varadarajan (Virginia Tech); Julio Facelli (University of
Utah); Mike Gustus, Tung Nguyen, and Patti Yamakido
(Panta Systems); Rick Crowell (Foundry Networks);
and the SC|05 StorCloud volunteers and vendors. Sec-
ond, we recognize the invaluable technical contributions
of Clark Gaylord, Peter Haggerty, Kevin Shinpaugh,
Bill Sydor, and Geoff Zelenka (Virginia Tech); Guy
Adams, Wayne Bradford, Martin Cuma, Julia Harrison,
Brian Haymore, and Sam Liston (University of Utah);
Ted Barragy and Dancil Strickland (Intel); Rusty Ben-
son, Jason Chang, and Steve Sporzynski (Panta Sys-
tems); and Nagiza Samatova (ORNL).

This work is supported in part by a DOE ECPI Award
(DEFG02-05ER25685), and Xiaosong Ma’s joint ap-
pointment between NCSU and ORNL.

References

Altschul, S., Gish, W., Miller, W., Myers, E.,
and Lipman, D. 1990. Basic Local Alignment Search
Tool. Journal of Molecular Biology 215 , 403–410.

Altschul, S. F., Madden, T. L., Schaffer, A. A.,
Zhang, J., Zhang, Z., Miller, W., and Lip-
man, D. J. 1997. Gapped BLAST and PSIBLAST:
A New Generation of Protein Database Search Pro-
grams. Nucleic Acids Research 25 , 3389–3402.

Barroso, L., Dean, J., and Hölzle, U. 2003. Web
Search for a Planet: The Google Cluster Architecture.
IEEE Micro 23, 2.

Bjornson, R., Sherman, A., Weston, S.,
Willard, N., and Wing, J. 2002. Tur-
boBLAST(r): A parallel implementation of BLAST
built on the TurboHub. In International Parallel and
Distributed Processing Symposium.

The NCBI Handbook (BLAST Output: 1. The Tra-
ditional Report). http://www.ncbi.nlm.nih.gov/
books/bv.fcgi?rid=handbook.section.615.

Braun, R., Pedretti, K., Casavant, T., Scheetz,
T., Birkett, C., and Roberts, C. 2001. Par-
allelization of Local BLAST Service on Workstation
Clusters. Future Generation Computer Systems 17, 6
(Apr), 745–754.

Camp, N., Cofer, H., and Gomperts, R. 1998.
High-throughput BLAST. Tech. rep., SGI, Sep.

Carns, P., Ligon III, W., Ross, R., and Thakur,
R. 2000. PVFS: A Parallel File System For Linux
Clusters. In Proceedings of the 4th Annual Linux
Showcase and Conference.

Chi, E., Shoop, E., Carlis, J., Retzel, E., and
Riedl, J. 1997. Efficiency of Shared-Memory Mul-
tiprocessors for a Genetic Sequence Similarity Search
Algorithm . Tech. rep., University of Minnesota.

Darling, A., Carey, L., and Feng, W. 2003.
The Design, Implementation, and Evaluation of mpi-
BLAST. In ClusterWorld Conference & Expo and the
4th International Conference on Linux Cluster: The
HPC Revolution 2003.

Dumontier, M., and Hogue, C. W. 2002. NBLAST:
A Cluster Variant of BLAST for NxN Comparisons.
BMC Bioinformatics 3, 13 (May), 271–282.

EPCC Sun Data and Compute Grids Project
Status Update. http://www.sun.com/
products-n-solutions/edu/events/archive/
hpc/2003presentations/heidelberg/GRID05
Ratna Abrol.pdf.

EPCC Using Sun Grid Engine and Globus to Sched-
ule Jobs Across a Combination of Local and Remote
Machines. http://www.epcc.ed.ac.uk/sungrid/
DISSEMINATION/Regensburg-2002-04.ppt.

Feng, W. 2003. Green Destiny + mpiBLAST = Bioin-
fomagic. In 10th International Conference on Parallel
Computing (ParCo).

Folding@home. http://folding.stanford.edu/.

Foster, I., and Kesselman, C. 1997. Globus: A
Metacomputing Infrastructure Toolkit. International
Journal of Supercomputer Applications 11, 2, 115–
128.

Gans, J., 2005. Personal Communication.

Growth of GenBank: 1982–2004. http://www.ncbi.
nim.hih.gov/Genbank/genbankstats.html.

Ghemawat, S., Gobioff, H., and Leung, S. 2003.
The Google File System. In Proceedings of the 19th
Symposium on Operating Systems Principles.

Gropp, W., Lusk, E., Doss, N., and Skjellum, A.
1996. High-performance, portable implementation of
the MPI Message Passing Interface Standard. Parallel
Computing 22, 6, 789–828.

InfiniBand Trade Association, 2000. InfiniBand
Architecture Specification, Release 1.0, Oct.

Kent, W. J. 2002. Blat – The BLAST-Like Alignment
Tool. Genome Research 12 (Apr), 656–664.

Lin, H., Ma, X., Chandramohan, P., Geist, A.,
and Samatova, N. 2005. Efficient Data Access
for Parallel BLAST. In International Parallel and
Distributed Processing Symposium.

Liu, J., Wu, J., Kini, S., Wyckoff, P., and
Panda, D., 2003. High Performance RDMA-Based
MPI Implementation over InfiniBand.

Liu, J., Wu, J., Kini, S. P., Wyckoff, P., and
Panda, D. K. 2003. High Performance RDMA-
Based MPI Implementation over InfiniBand. In 17th
Annual ACM International Conference on Supercom-
puting.

The Lustre File System. http://www.lustre.org/.

mpiBLAST-G2. http://www.twgrid.org/
News Event/News/mpiblast.

MPICH2. http://www-unix.mcs.anl.gov/mpi/
mpich2/.

Paxson, V. 1999. End-to-End Internet Packet Dy-
namics. IEEE/ACM Transactions on Networking 7,
3 (June), 277–292.

Pedretti, K., Casavant, T., Braun, R., Scheetz,
T., Birkett, C., and Roberts, C. 1999. Three
Complementary Approaches to Parallelization of Lo-
cal BLAST Service on Workstation Clusters. Lecture
Notes in Computer Science 1662 , 271–282.

Rapier, C., and Stevens, M. Application Layer
Network Window Management in the SSH Protocol.
Tech. rep., Pittsburgh Supercomputing Center.

Reed, D. A., 2004. High-End Computing: The Chal-
lenge of Scale. Director’s Colloquium, Los Alamos
National Laboratory, May.

Schmuck, F., and Haskin, R. 2002. GPFS: A
Shared-Disk File System for Large Computing Clus-
ters. In Proceedings of the First Conference on File
and Storage Technologies.

SETI@home. http://setiathome.ssl.berkeley.
edu/.

Singh, R. K., Dettloff, W. D., Chi, V. L.,
Hoffman, D. L., Tell, S. G., White, C. T.,
Altschul, S. F., and Erickson, B. W., 1996.
BioSCAN: A Dynamically Reconfigurable Systolic
Array for Biosequence Analysis. http://www.
dlhoffman.com/∼hoffman/papers/nsf96.ps.gz.

Smith, T. F., and Waterman, M. S. 1981. Identifi-
cation of Common Molecular Subsequences. Journal
of Molecular Biology 147 , 195–197.

StorCloud. http://sc05.supercomputing.org/
initiatives/storcloud.php.

