High-Fidelity Monitoring in
Virtual Computing Environments

W. Feng~ V. Vishwanatht

*Department of Computer Science
Virginia Tech
Blacksburg, VA 24060
feng@cs.vt.edu, mkg@vt.edu

ABSTRACT

We present a high-fidelity monitoring infrastructure that en-
ables real-time analysis and self-adaptation at both the sys-
tems and applications level in virtual computing environ-
ments. We believe that such an infrastructure is needed as
each paradigm shift (in this case to virtual computing envi-
ronments) brings new challenges along with new capabilities.

Monitoring the performance and health of large-scale com-
puting environments can be a daunting challenge. Without
appropriate tools, tracking down problems, whether caused
by hardware or software, is akin to finding a “needle in a
haystack.”

In a clustered computing environment, monitoring tools
such as Ganglia and Supermon have emerged and rapidly
matured to address this problem in a scalable manner. How-
ever, these tools sacrifice information to achieve scalability,
e.g., they use the /proc filesystem as their data source. Con-
sequently, such tools are sample-based and can only provide
measurements at the granularity of an OS time slice. Fur-
thermore, these tools are designed to operate in the con-
text of a physical environment rather than a virtual one.
Therefore, as an alternative, we present a dynamic, high-
fidelity, event-based infrastructure for both physical and vir-
tual computing environments called MAGNET.

Keywords

Virtual computing, monitoring, probes, filters, event-based,
framework

1. INTRODUCTION

With the current trend in virtualization of resources,
computing is returning to the seeds initially sown by the
IBM System/370 architecture and VM /370 operating sys-
tem (OS) in the 1970s. Virtual computing offers a unique
opportunity to dramatically improve resource utilization, to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

International Conference on the Virtual Computing Initiative, May 7-8,
2007, Research Triangle Park, North Carolina, USA.

Copyright 2007 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

J. Leight M. Gardner-

t Department of Computer Science

Univ. of lllinois at Chicago
Chicago, IL 60607

venkat@evl.uic.edu, spiff@uic.edu

consolidate resources in order to simplify system adminis-
tration or reduce cost, and to dynamically re-purpose phys-
ical resources for the task at hand. However, efficiently ac-
complishing the above requires a run-time understanding of
the dynamic behavior of the environment within which the
virtual environments execute. Fine-grained monitoring of
the physical system facilitates the identification and elimi-
nation of scalability roadblocks for virtual computing envi-
ronments. In addition, the monitoring information enables
the virtual environment to automatically adapt its behavior
to make efficient use of the physical resources allocated to it.
Thus, we propose a monitoring framework called MAGNET
that is

e dynamic (i.e., monitoring points can be inserted and
deleted with very low overhead),

e high fidelity (i.e., events can be logged at CPU cycle-
counter granularity, typically nanoseconds),

e cvent-based (i.e., versus sample-based or count-
based),!

e transformable (e.g., “tcpdump on steroids”), and

e controllable (i.e., event stream can be filtered and sam-
pled).

The principles that have guided the design of our MAG-
NET prototypes (both probe-based and SystemTap-based)
will ultimately be incorporated as part of our larger Scal-
able, Extensible, and Reliable Virtual Computing Environ-
ment (SERVICE). Of particular interest is the opportunity
to investigate scalable and high-fidelity monitoring in vir-
tual environments to better support automated hybrid phys-
ical/virtual resource management, power awareness, and vir-
tual application development and deployment in a scalable
manner.

Ensuring scalability in SERViICE requires a global under-
standing of the dynamic behavior of the environment within
which the virtual services execute. This implies that MAG-
NET must have efficient introspective capabilities for both
the physical and virtual worlds. Though there exists a sub-
stantial body of work that addresses the monitoring of soft-
ware directly running on a physical system, it remains to be

!Event-based monitoring subsumes sample- or count-based
approaches albeit care must be taken to limit overhead.

seen how much of the work translates directly to monitoring
resources supporting a virtual environment.

It is the dual nature of the physical/virtual computing en-
vironment that provides additional challenges, such as how
to map the physical results from monitoring to the virtual
environments such that applications can reason about their
behavior without needing to know about applications run-
ning in other unrelated environments. We envision that the
physical run-time system and the applications in the virtual
environments may wish to adapt their behavior simultane-
ously. Clearly, the behaviors of the two are coupled, and
hence, a theory that allows the two adaptations to proceed
stably and predictably is needed.

Ubiquitous, low-overhead monitoring also provides the in-
formation needed to make better resource management de-
cisions in order to reduce power consumption. For example,
reading/writing a block of data from/to storage takes a sig-
nificant amount of time; many CPU cycles can be wasted
waiting for the I/O to complete. Because operating sys-
tem power-management daemons operate in user space, they
cannot predict when a block will be read or written, and
hence, must use heuristics to decide when the power (or en-
ergy) consumption of the processor or other resources can
be reduced. Clearly there is a potential for increased power
efficiency if more precise information can be obtained. With
fine-grained monitoring, the power management system can
be directly informed when such events occur leading to bet-
ter optimization of the system behavior.

Virtual monitoring tools for SERVICE will also benefit
the development and deployment of applications in virtual
environments. Traditional tools developed for the physical
world and used in a virtual environment may provide mis-
leading results. For example, CPU performance counters
or cycle registers are often used to diagnose performance
problems in the physical world. Using those counters in the
virtual world may mislead developers who think they are
measuring their application’s performance but instead see
the interposed effects of unrelated computations running in
other virtual environments. These and other issues can be
addressed by tools that provide an appropriate virtualiza-
tion of the performance of the physical machine obtained by
fine-grained monitoring. The key will be a flexible system
for developing monitoring tools.

The rest of this paper is organized as follows: Section 2
provides background information on the probe mechanisms
that serve as the basis for MAGNET’s functionality. Sec-
tion 3 describes our design and implementation of the MAG-
NET framework. Section 4 quantifies the effect that MAG-
NET has on the system being monitored. Section 5 presents
related work, followed by the conclusion in Section 6.

2. BACKGROUND

MAGNET relies on kernel probes, a dynamic instrumen-
tation mechanism that is available in the Linux 2.6 kernel
(see Figure 1) . They are based on the work done on dprobes
by IBM. Kernel probes can be dynamically inserted and
deleted with minimal overhead, thus eliminating the need
to recompile the kernel and reboot the system each time in-
strumentation is added or removed, a characteristic of the
earlier statically configured versions of MAGNET (3, 4].

Kernel probes provide a lightweight mechanism to dynam-
ically “break into” any kernel routine and collect debugging
or performance information. More specifically, a dynamic

VM || VM jeee VM
)y
E
] —
.] MAGNET
Physical Machine [7,:o0e/8ysiemTap

Figure 1: Architecture of MAGNET in a Virtual

Environment

probe is an automated breakpoint that is dynamically in-
serted into executing kernel-space code without the need to
modify its underlying source. Associated with each probe is
a corresponding event-handler that runs as an extension to
the system breakpoint’s interrupt handler with little to no
dependence on system facilities. Consequently, probes may
be seamlessly implanted into many “hostile” environments
including the context-switch path, the interrupt-time path,
and SMP-enabled code paths.

There are three types of probes available in the Linux 2.6
kernel: kprobes, jprobes, and kretprobes. An additional,
experimental probe type called djprobes is also being con-
sidered for inclusion in the kernel.

2.1 kprobe

A kprobe can be inserted on vitually any instruction in
the kernel and provides access to the register arguments.
When a kprobe is registered, it makes a copy of the probed
instruction and replaces the first byte(s) of the probed in-
struction with a breakpoint instruction (e.g., 'int3’ on i386
and x86_64). When the a processor encounters the break-
point instruction, a trap occurs, the processor’s registers are
saved, and control passes to the kprobe code. The kprobe
executes the associated pre-handler and single steps through
its copy of the probed instruction. Upon completion, the
kprobe executes any post-handler that is associated with
the kprobe.

2.2 jprobe

A jprobe provides convenient access to the arguments of
a kernel function. It is implemented by placing a kprobe at
a function’s entry point and uses a mirroring technique to
allow seamless access to the function’s arguments. A jprobe
can only be inserted at the function’s entry.

2.3 kretprobe

A kretprobe, also known as a return probe, is inserted at
the return address of a kernel function, thus providing access
to the return value of a function call. It is implemented via
a trampoline instruction.

2.4 djprobe

In contrast to the three aforementioned probes, the
djprobe — also known as the direct jump probe — uses a
jump instruction instead of a breakpoint to hook into the
instruction stream. This approach reduces the overhead as-
sociated with probe invocation. On the x86 platform, the
djprobe is implemented using the relative ’jmp’ opcode in-
stead of ’int3’ break opcode that is used by the other probes,
thus providing the ability to dynamically hook into any ker-
nel function entry point with dramatically lower overhead.

3. THE MAGNET FRAMEWORK

The MAGNET framework consists of a global control sub-
system that interacts with and manages four other subsys-
tems: monitoring, event filtering and synthesis, performance
logging, and event-streaming. It is also responsible for the
dynamic run-time configuration and management of the four
subsystems within the MAGNET framework. The moni-
toring subsystem produces an event stream that is passed
through an event filter and synthesis engine before being
logged to magnetfs, a high-performance logging subsystem
exporting data as regular files. This allows user-space event-
stream clients to read the data using regular file operations.

3.1 Control Subsystem

Th control subsystem provides dynamic run-time configu-
ration and management of the subystems within the MAG-
NET framework. It consists of magnetk — a kernel thread
that is responsible for communication with user-space appli-
cations and other kernel modules. In addition, the control
subsystem contains an instrumentation database which con-
tains a list of probes registered with the control subsystem,
their associated filters, and the files in use by the logging
subsystem.

MAGNET uses netlink sockets [6] for communication be-
tween magnetk and user-space processes or kernel modules.
Typical magnetk messages include (1) enabling, disabling,
adding, or removing instrumentation points on-the-fly, (2)
creating or deleting log files in magnetfs, and (3) adding or
deleting event filters and synthesizers to winnow and format
the data.

The types of events being monitored can be extended on
the fly by inserting user-defined modules into the running
kernel. The instrumentation points dynamically join the
monitoring framework by registering their probes with the
control subsystem. Upon a registration request, magnetk re-
turns a unique event identifier to the kernel module. This
identifier is used to annotate related event records before
logging them to magnetfs. Once registered, instrumenta-
tion points begin communicating with magnetk over netlink
sockets.

3.2 Monitoring Subsystem

As mentioned in Section 2, the MAGNET monitoring sub-
system uses kprobes to instrument function in the kernel.
In one MAGNET prototype, we use the kprobes directly;
in our other prototype, we utilize them indirectly through
SystemTap. For the purposes of this paper, we focus on the
former.

A wide variety of probes can easily be made available by
compiling and loading additional kernel modules. We have
predefined probes, filters, and synthesizers to instrument the
network stack, the process scheduler, and the memory man-
agement subsystem. New instrumentation points are regis-
tered with the MAGNET control subsystem when the mod-
ule is loaded. When the instrumentation are enabled, event
records are logged to files in the magnetfs system, as de-
scribed in Section 3.4 below.

Figure 2 shows a typical MAGNET event record. The
actual record format is configurable during the loading of
the MAGNET kernel module. The record format is flexible
enough to support SMP configurations, 32- and 64-bit archi-
tectures, and variable-sized records. Variable-sized records
were added to the latest version of MAGNET to enable more

efficient use of the circular buffers in kernel space and to fur-
ther reduce the amount of data transferred to user space.

struct magnetEvent {

unsigned int _header;

// _header[5:0]: CPU/Core ID

// _header[15:6]: Event ID

// _header[31:16]: Event size in bytes
// Configurable at module loading

PTR_TYPE _abstractID;
// PTR_TYPE is 4 or 8 bytes, architecture-dependent.
// The value depends on the event type.

unsigned long long _timer;
// high precision timing based on the timestamp counter

unsigned int _pid;
// usually the tgid of the process

unsigned char* _eventRecord;

1
Figure 2: MAGNET Instrumentation Record

3.3 Event-Filtering and Synthesis Subsystem

Event filtering and synthesis is a critical service that clas-
sifies, analyzes, and efficiently disseminates events. Filtering
has the benefit of dramatically reducing the “drinking from
the firehose” effect. It is particularly important to do kernel-
space event filtering as it reduces the amount of data that
is transferred between the kernel and user space, thereby
reducing overhead. Synthesis also reduces the amount of
data being transferred while increasing the utility of the in-
formation. (An example of synthesis is converting an event
stream into periodic averages or descriptive statistics. In
this way, sample- and statistics-based monitoring can also
be inexpensively provided.)

Filtering and synthesis functionality is extremely impor-
tant in virtual computing environments because it allows
the event stream to be separated into views tailored for the
virtual machines receiving the data. It is through this mech-
anism that isolation is achieved in spite of the fact that
virtual machines share the physical resources of the host.
Individualized data streams allow virtual environments to
adapt without being distracted by the behavior of the other
environments.

Currently, kernel-space event filtering is implemented with
the help of a hash table. Events may be filtered based on
the processor ID, the event type, or the abstract ID re-
turned from the control subsystem at registration. Three
mechanisms of event filtering in kernel space are currently
supported:

1. Via a probe handler associated with the instrumenta-
tion point.

2. Via an explicit call to the magnet_add() function.

3. Via a kernel thread that traverses the event stream
selecting records to be logged.

Probe handlers can decide at the time an event occurs
whether or not to record the event. Alternatively, mag-
net_add() can be called explicitly to record an event. Fi-
nally, kernel threads traverse the event stream to select

records that satisfy the specified predicates, and optionally,
to synthesize higher-level information from low-level events.
Typically, one of the first two mechanisms is used to pro-
cess streams containing high-frequency events in order to
reduce the volume of data that needs to be transferred from
kernel to user space. The probe handlers generally must be
small, simple, and consume as few CPU cycles as possible
to reduce measurement perturbation. The third mechanism,
filtering using a kernel thread (kthread), is better suited for
low-frequency events. Filtering with the aid of a kthread
facilitates the composition of complex filters that can corre-
late between different events occurring within a given time
window. Additional filtering can also be carried out in user
space with the support of user-space analysis and synthesis
tools such as Autopilot [11], MUSE [4], and Prophesy [13].

3.4 High-Performance Logging System

The MAGNET filesystem, magnetfs, efficiently logs event
streams and transfers data at high rates from kernel to user
space. Magnetfs is built upon debugfs, an in-kernel filesys-
tem that was added to Linux 2.6 and enabled by default in
most Linux distributions. Debugfs was designed to transfer
debugging messages from kernel modules to user space in or-
der to facilitate driver debugging. It provides an interface for
export the values of variables and counters to user-space ap-
plications and was designed to replace the ubiquitous printk
often used for debugging.

However, debugfs has an extensible design allowing the
default filesystem operations to be overloaded on a per file
basis. We refer to the debug filesystem overloaded with
filesystem operations to support high-performance trans-
fers of MAGNET event streams between kernel and user
space as magnetfs. Magnetfs supports a rich set of high-
performance interfaces that include blocking I/0, polling-
based 1/0, asynchronous I/0O, and signal-driven I/O. This
mechanism enables the user-space data-collection applica-
tion to efficiently process data. Experience with earlier ver-
sions of MAGNET that only supported polling I/O showed
that the other modes are important for reducing the CPU
usage of user-space applications that consume the event
stream.

In magnetfs, circular buffers are created in the kernel for
logging data. Probe handlers record the event records into
one or more of the circular buffers. Double buffering al-
lows events to be transferred to user-space without hinder-
ing data collection. Multiple buffers are also useful to re-
duce mutual exclusion effects of SMP or multicore systems.
Multiple buffers can also be used during filtering to sepa-
rate the event streams in preparation for delivery to specific
virtual environments. Alternatively, a single buffer for all
events can be used to maintain the global ordering of events
without the need for an on-the-fly merge. Buffers are ex-
ported to user space as files under debugfs mount points.
The files can be read by user-space applications via regular
file operations. Circular buffers can also be read directly by
kernel-space clients, such as magnetk threads.

Buffering delivers high-bandwidth for bulk delivery of
data to user space. However, it also increases the aver-
age delay from when an event occurs until it is available
in user space. Therefore, magnetfs can also be configured
to be event-triggered. User-space applications use an ioctl
to set a buffer’s read-size watermark (the minimum amount
of data that must be available before a read operation can

succeed), the read timeout (the maximum delay before re-
turning data), and the minimum read count (the minimum
number of events before a read can succeed). Using these
parameters, the performance of individual magnetfs files can
be tuned as appropriate.

4. PERFORMANCE EVALUATION

We evaluate the performance of the MAGNET implemen-
tation by measuring the impact of monitoring with MAG-
NET on user-space performance. We then analyze the per-
formance benefits of MAGNET’s kernel-event filtering and
sampling capabilities. We use the above to demonstrate the
scalability of MAGNET to monitor at extremely high event
rates and log data at extremely high rates with negligible
event-loss rates and low CPU utilization as a substrate upon
which to build a monitoring, management, and adaptation
infrastructure for virtual environments.

4.1 Monitoring the Network Subsystem

The network performance of virtual environments is of
great concern for several up-and-coming application areas,
e.g., high-performance or grid computing, where virtualiza-
tion is starting to be used as a packaging and delivery mech-
anism for scientific computations [5], or application service
providers that are using virtualization for server consolida-
tion to reduce cost. In this section, we evaluate the impact of
MAGNET on the performance of 10-Gigabit Ethernet as it
monitors the journey of packets through the network stack.

4.1.1 Testbed

The testbed consists of two identical dual 2.4-GHz
Opteron single-core systems with 1 MB of L2-cache and
4 GB of 200-MHz DDR SDRAM running a Linux 2.6.12.6-
SMP patched with the Chelsio TCP offload engine (TOE)
support (driver version 2.1.4). The Tyan K8W Thunder
motherboards feature an AMD-8131 chipset. Each node has
a Chelsio T210 TOE-based 10-Gigabit Ethernet (10GigE)
network adapter plugged into a 133 MHz/64-bit PCI-X slot.
The systems are connected back-to-back.

The offload capabilities of the network adapters are delib-
erately disabled at boot time to ensure that all the protocol
processing is done on the end hosts and not offloaded to
the network adapters. The Chelsio network adapters are
also configured with a MTU of 9000 bytes, as is common in
data centers. The two nodes also have an Intel E1000 LX
1-Gigabit Ethernet network adapter, each on a 100-MHz /
64-bit PCI-X slot, also connected back-to-back, with a MTU
of 1500 bytes.

4.1.2 Methodology

The impact of the monitoring mechanism is estimated by
measuring the performance degradation caused by running
MAGNET while maximizing the transfer rate between the
two test hosts and compare the results to the same test
without MAGNET enabled. As a further point of compar-
ison, the impact of running a kernel-based tcpdump,? the
traditional tool for capturing network packet traces, is also
measured.

2Tepdump was configured with PCAP_FRAMES=max and
PCAP_TO_MS=0. The kernel was compiled with the
PF_PACKET and PACKET_MMAP options to improve the
packet capture performance.

The source of network traffic is IPerf 2.0.2, an application-
level, end-to-end bandwidth measurement tool that both
sends/receives packets and computes the transfer rate. Any
overhead caused by monitoring should show up as a reduc-
tion in the observed “goodput™ and as an increase in CPU
utilization over the baseline in which no monitoring is per-
formed. To minimize interference, we restrict the processes
running on the end hosts to IPerf, MAGNET (or tcpdump),
and a few essential services.

MAGNET’s dynamic instrumentation points are used to
monitor the journey of UDP packets through four different
layers of the networking stack on both sender and receiver.

e Socket layer: inet_sendmsg and inet_recvmsg kernel
functions,

e Transport layer: udp_sendmsg and udp_recvmsg kernel
functions,

e Internetwork layer: ip_push_pending_ frames and
ip_rcv_finish kernel functions,

e Access layer: dev_queue_xmit and net_rx_action
kernel functions.

For each event, MAGNET logs the packet header, the time
the event occurs using the CPU timestamp counter register
(TSC), and the IDs of the CPU and thread that did the
processing. Events are logged to an 8-MB magnetfs buffer.
We point out that tcpdump only generates a single record
for each packet while MAGNET was configured to record
four events per packet. In addition, the MAGNET event
records also contain CPU and thread IDs while tcpdump
records do not.

4.1.3 Results

As seen in Figure 3, the goodput of the IPerf-generated
UDP stream running on an unmonitored system is 7.22 Gbps
between the two test nodes over the 10GigE Chelsio network
adapters. There were no packets dropped. With the MAG-
NET kernel module loaded and instrumentation probes dis-
abled, there is still no impact on the data rate of the IPerf
UDP stream, as is expected since no instrumentation points
have been inserted.

The decrease in goodput at the socket layer (one event
per packet) when MAGNET is enabled is 0.1%, while the
decrease is 0.4% for both the socket and UDP layers (two
events per packet). As the number of events per packet in-
creases, the goodput decreases. This is due the execution of
a kernel probe interrupt (x86 int3 instruction) resulting in
a context switch for each instrumentation point, along with
the overhead of saving the event record and packet head-
ers.* In contrast, monitoring a single event per packet with
tecpdump results in a goodput decrease of nearly 40%. In
addition, there are no events lost by MAGNET while 0.01%
events are lost by tcpdump. At 10 Gbps speeds, tcpdump
struggles to keep up while MAGNET can monitor multiple
layers in the network stack with far lower impact.

3Goodput is the effective rate at which valid data is sent. It
is typically lower than the throughput since the latter also
includes any retransmitted packets.

41f djprobes are accepted into the Linux kernel, the overhead
of the probe mechanism is projected to drop by a factor of
5-6 as djprobe uses a “jmp” mechanism instead of an int3
software interrupt. This would definitely make the overhead
of multiple probes in MAGNET negligible.

Also shown in Figure 3, the CPU utilization for MAG-
NET is between 0.4% to 1.3% while the utilization of tcp-
dump is 32.1%. Thus, the CPU overhead of MAGNET is
approximately 25 times lower than tcpdump. The low CPU
utilization achieved by MAGNET is extremely important as
it has minimal impact on the application running on the end
host

4.1.4 Scalability Analysis

As applications and environments become more dis-
tributed and concurrent, particularly with the rapid adop-
tion of multi-core processors for commodity computing, un-
derstanding performance issues requires understanding the
interaction of the application with the underlying kernel
hardware and software to identify performance bottlenecks.
The challenge is exacerbated by the push for server consol-
idation fueled by rapid adoption of virtualization technolo-
gies. Applications that were once hosted separately must
now share hardware causing subtle performance anomalies.
Understanding the issues is often an iterative process and
necessitates the logging of a large amount of data for both
online and offline analysis. This requires monitoring and
logging mechanisms capable of handling large volumes of
data Additionally, the monitoring and logging mechanism
must have low impact. We have shown that the overhead
of MAGNET is very low. In this section, we investigate the
ability of MAGNET to handle large amounts of data.

We start by evaluating the ability of magnetfs to trans-
fer data efficiently from kernel space to user space using
asynchronous I/0 for reading the logged data. As before,
MAGNET is configured to monitor an IPerf UDP stream
between the two test nodes. The magnetfs buffer is con-
figured for bulk data delivery with a maximum capacity of
8 MB and with a read watermark of 256 KB.

The total amount of data logged per packet to the tmpfs
file system is given by the X-axis in Figure 4 while the trans-
fer rate from kernel to user space is shown on the Y-axis.
The data transfer rate is up to 306.11 MBps (2.448 Gbps)
with no lost events. Also shown in Figure 4 is the CPU uti-
lization of the user-space application that reads the data. As
the amount of data to be transferred increases, the CPU uti-
lization of the transfer application increases as is expected.

4.2 Performance of Statistical Sampling

Statistical sampling is beneficial for applications that need
to adapt based on a statistical average over a period of
time rather than due to a specific event. This is partic-
ularly useful for self-adaptive, reflective applications, e.g.,
application-level, rate-based network transport protocols
such as RAPID [1]. Statistical sampling in support of vir-
tual environments can provide needed information to make
better resource allocation decisions for the various virtual
machines running on a host. For example, the prior execu-
tion behavior of a payroll application obtained through sta-
tistical sampling is likely to indicate that resources demands
increase dramatically two business days before payday, but
are low the remainder of the week. Armed with this in-
formation, fewer virtual computations should be scheduled
on the physical server during that time. While it may be
feasible to manually accommodate such behavior when then
degree of virtual machine co-scheduling is low, it quickly
becomes intractable as the number of cores increase, as is
envisioned now that the exponential increase in transistors

Effective Goodputofan IPERF UDP stream with MAGNET and
a TCPDUMP monitoring
5]
E == IPERF UDP Stream data rate == =% CPU Utilization
)
S 8 1 722 7.22 7.21 7.19 T3
3 — — 6.58 \ 32.1 X
9 "7 — 6.03 T30 9
q : o
= 6 4 125 ©
@ 5 1 44 =
g . / T2 =
3 / prs 5
u 3 ¥ o]
E > | 7 110 =
> 4
3 14 t =5
0.4 0.7 1.3

S .
8 0 - e — PR VA - il el VA e 1 0
w IPERF IPERF+ MAGNET + MAGNET+ MAGNET+ MAGNET+ TCPDUMP
2 magnet+ SOCKET SOCKET, SOCKET, SOCKET, Monitoring
o probes Monitoring uDP UDP, IP UDP, IP,
Y disabled Monitoring Monitoring Handoffto
'y
] Ethernet

Monitoring

Figure 3: Impact of MAGNET and tcpdump on the Goodput and CPU Utilization

m===== MAGNET Kernel-to-user space Data Transfer in MBps = & =MAGNET %CPU Utilization
g w0 o 35
_‘:: 306.11
g 300 29; b L 30 -
> I
£ o
g 250 25 o
S T o
. 234 ’c §]
< . 194 44 g
5 200 » L2
2 .’ g
9] =
S 150 B e . RGN
£ _ # 11093 5
T 100 - Lo R
QE - %
2 X
§ 50 44 75 | 5
o
: 1.3 1 T 87 _
g o 0
100 1000 2000
Data captured Bytes per packet

Figure 4: Performance of the Logging Mechanism in MAGNET

afforded by Moore’s Law has turned to replication instead
of higher clock speeds.

MAGNET supports event sampling wherein sampling is
triggered by a timer or is based on the number of events
logged. Figure 5 shows the effect of statistical sampling of
the event stream on the goodput of the [Perf UDP Stream.
In this experiment, we capture the arrival of a packet at the
socket layer, UDP layer, IP layer, and the Ethernet layer for
each packet (i.e., four events per packet) and record 4,000
bytes per event, i.e., 16,000 bytes per packet. The filters for
each event are configured to sample based on the occurrence
of the events.® We observe that as the sampling frequency
decreases, the goodput achieved by the IPerf UDP streams
increases and results in a reduction in the CPU utilization.
A relatively modest one-in-40 sampling ratio allows nearly
94% of the peak bandwidth to be delivered while using less
than 5% of the CPU in spite of the high event rate (211,250

5Tt is reasonable to ask why so many bytes are logged when
a statistical sample is required. The size of the record must
be large enough to satisfy the most demanding of the simul-
taneous clients. Although one client may desire a statistical
sample, another may require substantial data.

events per second) being handled internally by the MAG-
NET implementation.

Even though the probe notes each packet, the probe han-
dler first checks if the event should be filtered before logging
the event. Thus, the average overhead of computation in
the probe handler is lower as the sampling frequency de-
creases. The CPU utilization of user space applications also
decreases as the sampling frequency decreases. This is pri-
marily due to the lower amount of data logged. There exists
a tradeoff between capturing every event and statistically
sampling the events. Capturing every event results in com-
plete information, though at the expense of increased CPU
utilization and a greater impact on the system. Because it
lowers overhead further, statistical sampling is highly useful
in productions systems and for self-reflective applications.

4.2.1 Filtering in Kernel Space

We compare the performance of filtering in kernel space
using MAGNET with filtering in kernel space using tcp-
dump. In this experiment, we first run an IPEF UDP stream
between the two machines’ Gigabit Ethernet (GigE) network
adapters. The goodput achieved by this [Perf UDP stream

Analysis of Event Sampling on Throughput and CPU utilization.
(Capturing 4 events per packet and logging 4000 bytes per event)

== Throughput in Gbps e % CPU utilization

70

8
7T 6.39
6 |
w0
=
o 5
£ 34.6
s 4+ 3.59
o
=
35 3+ 2.58
e
=
- 2 1
o 4 ,

% CPU utilization of magnet-read

1in 1 1in 2 1in4

1in 10 1in 20

Sampling Frequency (1 event out of N events)

Figure 5: Impact of Statistical Sampling on the Goodput and CPU utilization

was 956 Mbps with 0% packet loss. A second IPerf ap-
plication stream was started between the 10GigE network
adapters of the machines. The goodput achieved by the sec-
ond IPerf UDP stream is 5.97 Gbps. The aim of the exper-
iment was to capture the event streams of the second IPerf
UDP stream, i.e., the 10GigE streams. MAGNET was con-
figured to instrument the socket layer. An event filter with
the related abstract ID was added to the three instrumenta-
tion points to MAGNET via the control channel. tcpdump
was run with the IP address and port of the second UDP
stream specified as a filter. The goodput of the first [Perf
stream did not drop while monitoring the second stream
with either tcpdump or MAGNET.

From Figure 6, it can be seen that the percentage re-
duction in the throughput of the second UDP stream with
tecpdump filtering is at least 150% to 225% more than the
percentage drop with MAGNET event filtering. The CPU
overhead of the application reading from MAGNET files was
far lower than the CPU utilization of tcpdump. tcpdump
was also unable to capture 1% of the packets in the “96 bytes
of data” case and around 24% of the “500 bytes of data”
case. MAGNET captured and filtered the event streams
without any event loss. This is attributed mainly to the
high-performance interfaces available in MAGNET.

S. RELATED WORK

Substantial related work exists for monitoring computing
systems. Tools such as the Linux Trace Toolkit (LTT) [14]
use static kernel instrumentation by way of patching and
re-compiling the kernel. Clearly, this requirement makes
it difficult to use in production systems. However, having
to patch and recompile has also proved to be a significant
barrier to adoption even in experimental systems, as we have
found with previous versions of MAGNET.

A more flexible approach, taken by such tools as
Dtrace [2], Kernlnst [12], and SystemTap [10] uses dynamic
kernel instrumentation. Dtrace and SystemTap provide a
powerful scripting language to probe and monitor the kernel
and covers a large set of probe points. Dtrace predominantly
runs on Solaris, but it was recently ported to the Mac OS X
operating system. SystemTap leverages the kprobes mech-

anism, which has been ported to multiple architectures. In
contrast, Kernlnst implements its own probing mechanism
and supports only a few limited architectures; it also sup-
ports limited sampling and event-filtering capabilities. By
building upon kprobes or SystemTap, MAGNET supports
customize probe handlers and filters at run time via ker-
nel modules, high-performance kernel-to-user space transfer
of data, and kernel-space event filtering and sampling which
are useful for production system monitoring and adaptation.

Statistical sampling-based tools such as OPROFILE [8],
PAPI [7], and PERFMON [9] take advantage of the hard-
ware performance counters of contemporary processors to
sample certain events at periodic intervals. Hardware-
related events, such as CPU cache misses that software-
based tools such as MAGNET cannot observe, are easily
captured. The opposite is also true. Software-based tools,
such as MAGNET, are able to return information even when
hardware performance counters are not available. As the
tools compliment each other, both may be utilized to gain a
complete perspective.

Other work related to MAGNET includes the ability to
move large volumes of data between kernel space and user
space. Linux Trace Toolkit — The Next Generation (LT-
Tng) and SystemTap utilize the Linux kernel’s relayfs [15]
to transfer data to user space. Magnetfs provides features
similar to relayfs such as multiple buffers for logging events
and bulk delivery of data. In addition, however, magnetfs
provides a richer set of interfaces such as asynchronous I/O
and signal-based I/O for high performance transfer and low
CPU utilization.

In summary, the MAGNET framework leverages work
done in kernel instrumentation, event-based statistical sam-
pling, event-based filters, and efficient kernel-to-user-space
transfer of data to provide a high-performance, scalable,
event-monitoring sensor mechanism.

6. CONCLUSION

In this paper, we presented MAGNET, a high-fidelity
monitoring infrastructure that enables real-time analysis
and self-adaptation at both the systems level and applica-
tions level for virtual computing environments. Preliminary

- %CPU tcpdump

MAGNET EventFiltering vs TCPDUMP eventFiltering of lperfStream 2
(Goodputwithoutmonitoring Stream 2 -5.97Gbps.Stream 1 -956Mbps)

———= goodput with TCPDUMP m===s goodput with MAGNET
weaeewaa %o CPU MAGNET

96

£
©
L
&
3
S 5.38
w
3(.. 5 ‘AR1 50 <
[4.12 %
S 4 3.73 40 N
e =
o S
2 >
g 3 30 &
£

()
< =
s 2 20
b3
: S
8 1 10
<
5 0] 0
IS
w

Data Captured (Bytes per packet)

500

Figure 6: Impact of MAGNET and tcpdump Event Filtering on the Goodput and CPU Utilization

results have been favorable and point to further work in
the area. We ultimately expect MAGNET to be incorpo-
rated as part of our larger Scalable, Extensible, and Reliable
Virtual Computing Environment (SERVICE). Of particular
interest is the opportunity to investigate scalable and high-
fidelity monitoring in such virtual environments to better
support automated hybrid physical/virtual resource man-
agement, power awareness, and virtual application develop-
ment and deployment in a scalable manner.

Acknowledgment

This research is supported by IBM through an IBM Fac-
ulty Award VTF-873901, a NSF grant ITP-0804155, and the
Department of Computer Science at Virginia Tech.

7. REFERENCES

[1] A. Banerjee, W. Feng, B. Mukherjee, and D. Ghosal.
RAPID: An End-System Aware Protocol for
Intelligent Data Transfer over Lambda Grids. Proc. of
the 20th International Parallel and distributed
Processing Symposium (IPDPS 2006), Rhodes Island,
Greece, April 2006.

[2] B. Cantrill, M. Shapiro, and A. Leventhal. Dynamic
Instrumentation of Production Systems. Proc. of the
2004 USENIX Annual Technical Conference, Boston,
Massachusetts, June-July 2004.

[3] M. Gardner, W. Feng, M. Broxton, A. Engelhart, and
J. Hurwitz. MAGNET: A Tool for Debugging,
Analysis and Adaptation in Computing Systems.
Proc. of the 3rd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGrid’2003),
Tokyo, Japan, May 2003.

[4] M. Gardner, M. Broxton, A. Engelhart, and W. Feng.
MUSE: A Software Oscilloscope for Clusters and
Grids. Proc. of the 17th IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2003),
Nice, France, April 2003.

[5] W. Huang, J. Liu, B. Abali, and D. Panda. A Case for
High Performance Computing with Virtual Machines.
Proc.
of Supercomputing 2007, Tampa, Florida, November
2007.

[6] IETF RFC 3549. http://rfc.net/rfc3549.html.

[7] P. Mucci and F. Wolf. An Introduction to PAPI and
PAPI-based Tools. Proc. of ACM/IEEE SC, Phoenix,
Arizona, November 2003.

[8] The OProfile Home Page.
http://oprofile.sourceforge.net.

[9] The Perfmon2 Home Page.
http://perfmon2.sourceforge.net/

[10] V. Prasad, W. Cohen, F. Eigler, M. Hunt, J.
Keniston, and B. Chen. Locating System Problems
Using Dynamic Instrumentation. Proc. of the Ottawa
Linuz Symposium, Ottawa, Canada, July 2005.

[11] R. Ribler, J. Vetter, H. Simitci, and D. Reed.
Autopilot: Adaptive Control of Distributed
Applications. Proc. of the IEEE International
Symposium on High-Performance Distributed
Computing, Chicago, Illinois, July 1998.

[12] A. Tamches and B. Miller. Fine-Grained Dynamic
Instrumentation of Commodity Operating System
Kernels. Proc. of the USENIX Symposium on
Operating Systems Design and Implementation, New
Orleans, Louisiana, February 1999.

[13] V. Taylor, X. Wu, J. Geisler, X. Li et al. Prophesy:
An Infrastructure for Analyzing and Modeling the
Performance of Parallel and Distributed Applications,
Proc. of the IEEE International Symposium on
High-Performance Distributed Computing, Pittsburgh,
Pennsylavnia, August 2000.

[14] K. Yaghmour and M. Daenais. Measuring and
Characterizing System Behavior Using Kernel-Level
Event Logging. Proc. of the 2000 USENIX Annual
Technical Conference, San Diego, Califronia, June
2000.

[15] T. Anussi, K. Yaghmour, R. Wisniewski, T. Moore,
and M. Dagenais. Relayfs: An Efficient Unified
Approach for Trasnmitting Data from Kernel to User
Space, Proc. of the Linuz Symposium, July 2003.

