
A High-Fidelity Software Oscilloscope for Globus∗

Mark K. Gardner†, Wei Deng•, T. Stephen Markham†‡,
Celso L. Mendes•, Wu Feng† and Daniel A. Reed•

†Los Alamos National Laboratory
Los Alamos, NM 87545

{mkg,feng,stephen}@lanl.gov

‡Brigham Young University
Provo, UT 84602

tsm9@email.byu.edu

•University of Illinois
Urbana, IL 61801

{weideng,cmendes,reed}@cs.uiuc.edu

In the same way that large-scale integration made the de-
velopment of complex electronic hardware possible, toolk-
its, such as Globus [3], have improved our ability to develop
grid applications. However, the task of debugging and tun-
ing grid applications is still difficult. Not surprisingly, the
causes of problems in grid applications are also distributed
and hence extremely difficult to identify.

When a hardware engineer needs to diagnose a problem
with a circuit, the tool of choice is often an oscilloscope. By
adjusting the settings of the oscilloscope, the proper level of
detail for the task at hand is easily obtained. The utility of
the oscilloscope lies in its ability to provide high-fidelity in-
formation and the ease with which the level of detail can be
adjusted. An analogous tool, the “software oscilloscope,” is
needed to make grid application development easier.

A software oscilloscope for grid applications requires a
high-fidelity, low-overhead source of data on each node. It
also requires a means of aggregating and collating events
from multiple nodes into a global perspective of grid oper-
ation. Furthermore, it should provide tools to the developer
for analyzing the data.

We use the MAGNET toolkit [2] as the source of high-
fidelity events on each node of the grid. It provides a very
efficient mechanism for obtaining information about an ex-
ecuting grid application without requiring the application to
be modified or relinked.

Just as an oscilloscope can produce information with
too much detail, the information MAGNET exports can be
too low level. We use MUSE [1], to filter out unneces-
sary events and to synthesize application-level information
from sequences of operating system events. (For example,
MUSE synthesizes bandwidth from socket send and receive
events or process utilization from context switch events.)
Filtering and synthesizing are the “knobs” of the software
oscilloscope that allows the level of detail to be tailored to
the needs of the developer.

The final required mechanism is a means for aggregating
and collating information. We use Autopilot [4] to aggre-
gate events from each node, to analyze application behavior
and to produce data that can be conveniently displayed by
other tools.

Figure 1 shows a block diagram of the interaction of
MAGNET, MUSE and Autopilot in the context of a Globus
application. A Globus application consists of processes
executing on multiple nodes. Each node is instrumented
with MAGNET to collect various events from the operat-
ing system kernel, such as network I/O, disk I/O, mem-
ory management, inter-process communication and context
switch events. The events are synthesized into appropriate

∗Los Alamos Unclassified Report (LA-UR) 03-7681.

application-level information, such as bandwidth or proces-
sor utilization, by MUSE. The synthesized events are col-
lected, analyzed and prepared for display by Autopilot.

Figure 2 shows an example of the data that is made avail-
able by this approach, using sensors with a sampling pe-
riod of one second. The graph displays how the observed
network traffic in one node changed when the Scalapack
application was run across grid nodes at Illinois and San
Diego. The Scalapack execution started at T=70 and fin-
ished at T=240. In Scalapack, messages exchanged between
the processors become progressively smaller as the matrix
is reduced along the diagonal, an effect that can be clearly
noticed from the displayed data.

We have motivated the need for a software oscilloscope
by noting that developing, debugging and tuning grid ap-
plications is a difficult task, leaving a software oscilloscope
deployed in a production system also makes sense. If high-
fidelity information about the grid is continuously available,
that information can be used to improve the performance of
the application. For example, if the processor of one node
is highly utilized while the processor of another is not, the
computation may complete more quickly if part of the load
is migrated away from the high-utilization processor. Au-
topilot has the capability to adjust the behavior of a grid
application. In future work, we plan to show how the data
provided by our software oscilloscope for Globus can be
used in performance contracts [5] to dynamically monitor
and adjust the operation of grid applications for better per-
formance.

References

[1] M. K. Gardner, M. Broxton, A. Engelhart, and W. Feng.
Muse: A software oscilloscope for clusters and grids. In
Procedings of the 17th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS 2003), Apr 2003.
(Gives the details of the current implementation of MUSE).

[2] M. K. Gardner, W. Feng, M. Broxton, A. Engelhart, and
G. Hurwitz. MAGNET: A tool for debugging, analysis and
reflection in computing systems. In Proceedings of the 3rd
IEEE/ACM International International Symposium on Clus-
ter Computing and the Grid (CCGrid’2003), May 2003.
(Gives details about the current implementation of MAG-
NET).

[3] The Globus Project. http://www.globus.org/.
[4] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed. Au-

topilot: Adaptive control of distributed applications. In Pro-
ceedings of the 7th IEEE Symposium on High-Performance
Distributed Computing (HPDC-7), Jul 1998.

[5] F. Vraalsen, R. A. Aydt, C. L. Mendes, and D. A. Reed. Per-
formance contracts: Predicting and monitoring grid applica-
tion behavior. Lecture Notes in Computer Science, 2242:154–
165, Nov 2001.

1

globusWorld 2004, San Francisco CA, January 2004.



Process

Network

*
*
*

Kernel

Application
Process

magnetd

Autopilot Sensor

M
U

SE

Node 1

Process

Network

*
*
*

Kernel

Application
Process

magnetd

Autopilot Sensor

M
U

SE

Node N

Autopilot Client

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

Time (seconds)

Ut
iliz

ed
 B

an
dw

idt
h 

(B
ps

)

Globus Application

* * *

MAGNET MAGNET

Figure 1. Architecture of a Software Oscilloscope for Globus

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

Time (seconds)

U
til

iz
ed

 B
an

dw
id

th
 (

B
ps

)

Figure 2. Network Traffic Data for Scalapack, Exported by MUSE via Autopilot Sensors

2


