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Abstract

The proliferation of heterogeneous computing systems has led to increased interest in parallel architectures and their associated program-
ming models. One of the most promising models for heterogeneous computing is the accelerator model, and one of the most cost-e↵ective,
high-performance accelerators currently available is the general-purpose, graphics processing unit (GPU).

Two similar programming environments have been proposed for GPUs: CUDA and OpenCL. While there are more lines of code already
written in CUDA, OpenCL is an open standard that supports on a broader range of devices. Hence, there is significant interest in automatic
translation from CUDA to OpenCL.

The contributions of this work are three-fold: (1) an extensive characterization of the subtle challenges of translation, (2) CU2CL (CUDA
to OpenCL) — an implementation of a translator, and (3) an evaluation of CU2CL with respect to coverage of CUDA, translation performance,
and performance of the translated applications.
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1. Introduction

Recent trends in processor architectures utilize available
transistors to provide large numbers of execution cores, and
hence threads, rather than attempting to speed-up the execu-
tion of a single thread or a small number of threads. This
has led to general interest in parallel architectures and pro-
gramming models even outside of the high-performance com-
puting (HPC) realm. The accelerator model, where general-
purpose computations are performed on the central processing
unit (CPU) and data- or task-parallel computations are per-
formed on specialized accelerators, is one of the models being
proposed as a way to program heterogeneous computing archi-
tectures. By leveraging the economics of graphics cards, par-
ticularly gaming cards, graphics processing units or GPUs in
graphics cards have been particularly successful in supporting
the accelerator model.

GPUs were originally designed to perform a set of compu-
tations on a large number of picture elements or pixels simul-
taneously. Besides producing highly realistic, real-time graph-
ics for gaming, this characteristic could also be harnessed to
execute parts of scientific computations in parallel with high
performance. Examples of these computations include simu-
lating the physical movements of atoms and molecules as part
of an n-body molecular dynamics problem and searching for
alignments in nucleotide or protein sequences, as done in [1]
and [2], respectively. When used for more than graphics com-
putations, GPUs are called general-purpose GPUs or GPGPUs.
(For brevity and convenience, we refer to GPGPUs simply as
GPUs for the remainder of this paper.)
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In the accelerator model, the overall logic of an application
runs on the CPU, possibly utilizing multiple cores to execute
several threads simultaneously. Threads delegate computations
to accelerators by spawning o↵ parallel computations, called
kernels, to the GPUs. At appropriate points during execution
on the CPU, the CPU sends data to the GPUs, and the ker-
nels are invoked. The CPU may continue to perform other
computations in parallel with the kernels until such time as
the results are needed, whereupon the results are transferred
from the GPU back to the CPU. Because GPUs have hundreds
or even thousands of threads (compared with tens of threads
in CPUs), e↵ective utilization of GPUs for computations can
accelerate parallel computations tremendously. Because the
accelerator model is a straightforward extension to the pro-
gramming models commonly used, it is readily understood by
programmers of widely di↵ering skill levels. As a result, GPU
programming has taken o↵.

Initially, general-purpose computations were programmed
using the shader languages developed for graphics operations
— a tedious task. However, as the use of GPUs has increased,
languages and tools for more conveniently specifying general-
purpose computations have been developed. One of the earli-
est and most successful programming environments to date is
NVIDIA’s CUDA.

In CUDA [3], kernels are written in a variant of C++, which
has additional data types and operations suited to computa-
tions on larger chunks of data, according to the accelerator
model. It also provides synchronization primitives that ensure
correctness. On the CPU side, CUDA extends C++ by includ-
ing special syntax for invoking kernels. Because of these exten-
sions, however, the CUDA programming environment cannot
use standard C++ compilers, and instead, must use a compiler
for the extended language. Although CUDA is widely used,
it is largely tied to NVIDIA’s freely available but proprietary
hardware and software development kit (SDK).
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(a) Translation from PTX. (b) Source-to-source translation.

Figure 1: Two of the approaches for translating CUDA source.

OpenCL, short for Open Computing Language, is another
programming environment that implements an accelerator pro-
gramming model that is similar to CUDA. It is an open stan-
dard that is maintained by the Khronos group. The OpenCL
API consists of a C library supporting device programming in
the C99 language (rather than as extensions to C++ as in the
CUDA API). As a result, OpenCL can take advantage of ex-
isting tools and compilers for a wide variety of host and GPU
platforms. Porting OpenCL to a di↵erent host platform is a
matter of providing an implementation of the runtime library
that conforms to the standard. In contrast, CUDA requires a
compiler that understands the extended syntax as well as an
appropriate runtime library.1 Thus, the APIs of the two pro-
gramming environments di↵er quite a bit. However, learning to
program in one yields the same mental model of GPGPU com-
putations as learning in the other, allowing the other program-
ming environment to be understood readily once the di↵erences
in syntax and library are taken into account.

With a choice in programming environments comes the
need to choose. CUDA has the largest installed base and many
time-saving libraries for important functions such as FFT. How-
ever, it is only supported on NVIDIA hardware. OpenCL, on
the other hand, is an open standard that is supported on a
variety of mainstream devices: NVIDIA GPUs, AMD GPUs,
and x86 / x86-64 CPUs from Intel and AMD. Support is also
available for some system-on-chip (SoC) devices [5], including
the ARM Cortex-A9 CPU [6] and the PowerVR SGX GPU [7].
Additionally, Intel intends to support OpenCL on their Many
Integrated Cores (MIC) architecture [8], and Altera already
has a program to develop an OpenCL environment for their
FPGAs [9], as represented as a dashed line in Fig. 1b. Due
to the greater functional portability provided by OpenCL (and
in spite of the weaker OpenCL library support for important
functions), many are choosing OpenCL as their programming
environment of choice.

With the great interest in OpenCL comes a challenge: or-
ganizations have a large investment in CUDA codes and yet
would like to take advantage of wider deployment opportuni-
ties a↵orded by OpenCL. Thus, there needs to be a translator

1Although NVIDIA recently contributed an open-source compiler
based upon LLVM to aid researchers [4], there is only a single (pro-
prietary) implementation of the runtime library.

from CUDA to OpenCL that not only allows compilation in
the new environment but also yields maintainable source code
such that development can continue directly in OpenCL. To
this end, we created CU2CL, an automatic CUDA-to-OpenCL
source-to-source translator that also preserves the comments
and formatting in the original source code.
The contributions of this work are three-fold:

1. A characterization of the mapping between CUDA and
OpenCL with particular emphasis on areas where the
semantics are not trivially equivalent,

2. A discussion of a prototype implementation of an auto-
matic translator from CUDA to OpenCL called CU2CL.

3. An evaluation of the CU2CL translator in three areas:
(a) coverage of CUDA constructs translated automati-
cally, (b) translation time, and (c) a comparison of the
execution time for automatically translated applications.

The remainder of the paper is as follows: Section 2 discusses
related work, followed by relevant background on CUDA and
OpenCL in Section 3.. Section 4 gives an extensive charac-
terization of many of the challenges in translating CUDA to
OpenCL. Section 5 introduces the CU2CL translator, and Sec-
tion 6 evaluates its performance. Section 7 outlines future work
and Section 8 summarizes the contribution of the work.

2. Related Work

Several projects exist that enable the running of CUDA
source code on hardware platforms other than NVIDIA GPU
hardware. There are three main approaches: (1) translating the
Parallel Thread Execution (PTX) intermediate representation
(IR) from the nvcc compiler, (2) translating from one source to
another, and (3) modifying the original source code to utilize
an abstract interface for which di↵erent implementations are
provided.

Fig. 1a shows the approach taken by the Ocelot project [10]
and by Caracal [11]. In this approach, the CUDA source code
is first translated to the PTX IR using the nvcc compiler from
the CUDA SDK. Instead of immediately sending the PTX rep-
resentation to the device driver, which finishes the compilation
and executes the code (as shown by the work flow in the mid-
dle of the diagram), Ocelot parses the PTX and utilizes the
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Low-Level Virtual Machine (LLVM) toolkit to perform trans-
formations and optimizations before generating code for the
target architecture. Target architectures currently include x86
CPUs from Intel and AMD and the IBM Cell Broadband En-
gine. Ocelot can also generate PTX as output from the trans-
formed representation for NVIDIA hardware. Caracal builds
upon Ocelot by adding a just-in-time compilation step that
translates PTX to AMD’s Compute Abstraction Layer (CAL)
in order to run CUDA applications on AMD GPU hardware for
which there is no CUDA runtime. In both cases, starting with
the PTX IR makes it possible to translate code to run on other
hardware platforms even if the source code is not available.

Fig. 1b shows an alternative translation approach taken by
MCUDA [12] and our CU2CL [13]. In contrast with Ocelot
and Caracal, which both start with the PTX IR, CU2CL and
MCUDA perform a source-to-source translation on the original
CUDA source code to generate a semantically equivalent pro-
gram targeted to another hardware platform. The native com-
pilers, linkers, and other development tools for that platform
are then used to prepare the computation for execution. The
target programming platform for MCUDA is OpenMP, which
runs on a variety of CPU platforms, including non-x86 CPUs.
The target programming platform for CU2CL is OpenCL, which
runs on a variety of CPUs and GPUs. (Support for other de-
vices, such as FPGAs, are still under development, as repre-
sented by a dashed line in the figure.)

The source-to-source approach possesses many advantages.
First, it leverages the considerable e↵ort that has been spent
over the years creating robust and high-performance tools for
the various hardware platforms. Second, automatic translation
into another source language gives the option of continued code
development in the new environment. This is particularly an
advantage if migration is desired. Third, it preserves more of
the high-level semantics, and hence, more easily enables trans-
forming the code to achieve additional goals, such as improved
performance. As shown in [1] and many other publications the
optimizations necessary for better performance di↵er depend-
ing on whether the GPUs are from AMD or NVIDIA. Opti-
mizations necessary for better performance on CPUs are also
di↵erent from those required for GPUs.

The original source code is a representation of the intent
of the programmer and hence contains information that can
get lost in the translation to an intermediate form or becomes
more di�cult to reconstruct from that form. With additional
information, better optimization choices can be made by the
tool chain without human intervention.

Note that these two approaches, starting with PTX or start-
ing with the source code are beneficial in di↵erent circum-
stances. Translation from PTX is viable whether or not the
original source code is available. Source-to-source translation is
beneficial for organizations that value platform diversity, desire
to migrate their code base, or are invested in existing vendor-
specific tool chains.

CU2CL targets OpenCL in order to support the wide va-
riety of multi- and many-core processors and accelerators in
the market. The breadth of hardware platforms supported by
OpenCL is very compelling, particularly since it gives the flex-
ibility to purchase the platform with the best performance.

It should be noted that there are two CUDA APIs. The
high-level runtime API, which provides reasonable defaults for
many runtime parameters, and the lower-level device API, which
gives the programmer much more control but at the expense

Table 1: CUDA and OpenCL terminology.

CUDA OpenCL

GPU device

multiprocessor compute unit

scalar core processing element

kernel program

block work-group

thread work-item

global memory global memory

shared memory local memory

local memory or registers private memory

constant memory constant memory

texture memory image memory

of programmability. Most CUDA applications use the runtime
API because it requires less attention to detail. CU2CL ini-
tially assumes that the CUDA source uses the more common
runtime API as that makes the tool more immediately useful.
Translating the CUDA runtime API is also the greater intel-
lectual challenge as the CUDA device API is very similar to
the OpenCL API. CU2CL will be extended to also support the
CUDA driver API in the future.

As mentioned earlier, there is a third approach to the prob-
lem, represented by Swan [14]. Instead of translating the in-
termediate or source languages, the programmer rewrites all
CUDA API calls with Swan equivalents. The code is then com-
piled and linked with one of two currently supported Swan li-
braries, libswan ocl or libswan cuda, which permits execution
on either of the main GPU platforms. The main disadvantages
are the labor involved (which is currently only partially auto-
mated) and the fact that the source code is no longer CUDA or
OpenCL and hence does not have widespread industry support.

3. Background

This section presents an overview of CUDA and OpenCL
before delving into the details of automatic translation. As
mentioned earlier, both CUDA and OpenCL are designed to
support the accelerator model of computing. Both have pro-
visions for specifying and launching kernels on compute de-
vices, for managing memory, for synchronizing, etc. However,
CUDA is more tightly focused on GPUs and provides many
GPU-centric features, whereas OpenCL takes a more platform-
agnostic approach.

One of the challenges in translating between the two is un-
derstanding the terminology. Table 1 lists various CUDA terms
and their OpenCL counterparts. The CUDA terms will be used
in the discussions as they are likely more familiar to the reader.
The di↵erences in terminology are mentioned as applicable be-
low.

3.1. Work Allocation Model
Work is allocated to the streaming multiprocessors on a

GPU according to a multidimensional grid of blocks, as shown
in Fig. 2a. Each block specifies numerous threads, also pos-
sibly in a multidimensional configuration. The configurations
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Figure 2: Overview of the CUDA and OpenCL models.

are specified in the host code during a kernel function invoca-
tion. For good performance, the number of threads need to be
chosen so that there are su�cient threads to hide the latency
of memory accesses or other operations and yet su�cient work
per thread to amortize the cost of invoking the kernel.

3.2. Memory Model
Both CUDA and OpenCL have three separate memory spaces.

CUDA refers to these memory spaces as global memory — o↵-
device and accessible by all threads in all blocks; shared memory
— on-device and available to all threads in a block; and local
memory — owned by one thread. In addition to these mem-
ories, two special-use memory spaces provide faster memory
operations: constant memory and texture memory. Constant
memory is cached for fast reads, but is limited in size and does
not support writes. Texture memory allows for fast reads as
well as writes but is limited in size. Furthermore, kernels must
use special built-in functions to access data residing in these re-
gions. In general, device memory must be explicitly allocated
through CUDA API calls and is usually initialized by copying
data from host memory. Fig. 2b shows how the memory spaces
are laid out hierarchically.

3.3. Host API
Two CUDA APIs exist for programming host-side code: a

low-level driver API and a high-level runtime API. The driver
API gives the programmer great flexibility and control but also
requires more setup and configuration to be done explicitly. In
addition, CUDA includes an extension of C providing special
features like concise kernel launch syntax, known as CUDA
C. As an example, consider the host code needed to invoke a
matrixMul kernel [15]. Fig. 3a shows the code for a CUDA
C launch while Figs. 3b and 3c show the code for the CUDA
runtime and driver APIs, respectively. The runtime and driver
API versions set the arguments for the kernel invocation ex-
plicitly while the CUDA C variant accomplishes the same task
with a more succinct syntax. The attention to detail needed
for the driver API is generally much greater, so programmers
tend to use CUDA C in combination with the runtime API
whenever possible.

By way of comparison, Fig. 3d shows the equivalent host
code for invoking the kernel in OpenCL.2 The number of lines
of code in the OpenCL example is the same as with the CUDA
driver API example. Further, there is a close correspondence
between the two. Consequently, translating between the CUDA
driver API and OpenCL API is straightforward and a much
easier task to automate. However, most CUDA codes use the
runtime API whenever possible due to its ease of programma-
bility [16, 17]. This is why CU2CL supports the CUDA runtime
API now and why supporting the driver API is left for future
work.

4. Characterization

Two primary concerns drive our source-to-source approach.
First, the translated source should not deviate from the seman-
tics of the original source. This is a requirement for functional
portability or functional correctness. Second, the translated
code should perform as well as the original source code on sim-
ilar hardware platforms and on new hardware platforms. This
requirement is called performance portability.

Functional portability is the most important of the two con-
cerns as it does not matter how fast the code runs if it gets the
wrong answer. Once functional portability has been obtained,
the performance di↵erences between the two computing plat-
forms can be addressed in order to achieve performance porta-
bility.

This paper focuses exclusively on functional portability,
leaving the issue of performance portability for future work.
The remainder of this section will discuss issues that make
CUDA-to-OpenCL source-to-source translation challenging. It
will also outline how the problems are solved in the CU2CL
translator.

4.1. Translation Challenges
At first glance, translating CUDA to OpenCL appears to

be a straightforward mapping process. While most CUDA con-
structs map one-to-one to OpenCL, not all do, as shown in Ta-
bles 2, 3, and 4. As a result, translating certain parts of CUDA

2Note: The closest equivalent to the CUDA runtime API is to
use the OpenCL C++ wrapper API to create succinct abstractions.
There are as yet no standard abstractions.
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dim3 threads(BLOCK_SIZE , BLOCK_SIZE );
dim3 grid(WC / threads.x, HC / threads.y);
matrixMul <<<grid ,threads >>>(C, A, B, WA , WB);

(a) CUDA C

dim3 threads(BLOCK_SIZE , BLOCK_SIZE );
dim3 grid(WC / threads.x, HC / threads.y);
cudaConfigureCall(grid , threads , 0, 0);
cudaSetupArgument(C, 0);
cudaSetupArgument(A, 4);
cudaSetupArgument(B, 8);
cudaSetupArgument(WA , 12);
cudaSetupArgument(WB , 16);
cudaLaunch("matrixMul");

(b) CUDA runtime API

cuFuncSetBlockShape(matrixMul , BLOCK_SIZE , BLOCK_SIZE , 1);
cuFuncSetSharedSize(matrixMul , 2 * BLOCK_SIZE

* BLOCK_SIZE * sizeof(float ));
cuParamSeti(matrixMul , 0, C);
cuParamSeti(matrixMul , 4, A);
cuParamSeti(matrixMul , 8, B);
cuParamSeti(matrixMul , 12, WA);
cuParamSeti(matrixMul , 16, WB);
cuParamSetSize(matrixMul , 20);
cuLaunchGrid(matrixMul , WC/BLOCK_SIZE , HC/BLOCK_SIZE );

(c) CUDA driver API

size_t localWorkSize [] = {BLOCK_SIZE , BLOCK_SIZE };
size_t globalWorkSize [] = {shrRoundUp(BLOCK_SIZE , WC), shrRoundUp(BLOCK_SIZE , workSize )};
clSetKernelArg(matrixMul , 0, sizeof(cl_mem), (void *) &C);
clSetKernelArg(matrixMul , 1, sizeof(cl_mem), (void *) &A);
clSetKernelArg(matrixMul , 2, sizeof(cl_mem), (void *) &B);
clSetKernelArg(matrixMul , 3, sizeof(float) * BLOCK_SIZE *BLOCK_SIZE , 0);
clSetKernelArg(matrixMul , 4, sizeof(float) * BLOCK_SIZE *BLOCK_SIZE , 0);
clEnqueueNDRangeKernel(commandQueue , matrixMul , 2, 0,

globalWorkSize , localWorkSize , 0, NULL , &GPUExecution );
clFinish(commandQueue );

(d) OpenCL API

Figure 3: Comparison of the CUDA and OpenCL APIs.

requires a deeper understanding of both APIs to identify suit-
able corresponding constructs. Furthermore, these tables pro-
vide only a high-level view of the translation process; in prac-
tice, more sophisticated techniques are required to perform the
translations. For example, in some cases, data must be tracked
throughout the lifetime of the translation before certain trans-
lations can be finalized. Such is the case when rewriting device
pointers to cl mem data types, as the rewrite must propagate
through types found in parameters and sizeof expressions.

As Table 2 shows, each of the CUDA modules possesses a
corresponding OpenCL equivalent. However, the bigger chal-
lenges in CUDA-to-OpenCL translation only become appar-
ent upon deeper inspection. For example, Table 3 shows some
CUDA data structures and their OpenCL equivalents. Some
have direct equivalents: dim3 vs. size t[3]. Others have no
direct equivalent, e.g., cudaDeviceProp, and have to be syn-
thesized from OpenCL data structures and function calls. The
most challenging translations are ones like the CUDA device
pointers and their semantically similar, but functionally di↵er-
ent, OpenCL cl mem structures. (This particular challenge is
discussed in greater depth in Section 4.1.1.)

Built-in structures and functions are another area where
there are similarities and di↵erences, as shown in Table 4.
CUDA indices and dimensions (both grid and block) are vari-

Table 2: CUDA modules and the OpenCL equivalents.

CUDA Sample Call OpenCL

Thread cudaThread-
Synchronize

Contexts & Com-
mand Queues

Device cudaSetDevice Platforms & De-
vices

Stream cudaStream-
Synchronize

Command Queues

Event cudaEventRecord Events

Memory cudaMalloc Memory Objects

Table 3: CUDA and OpenCL data structures.

CUDA OpenCL

Device pointers cl mem created through cl-
CreateBuffer

dim3 size t[3]

cudaDeviceProp No direct equivalent

cudaStream t cl command queue

cudaEvent t cl event

textureReference cl mem created through cl-
CreateImage

cudaChannelFormatDesc cl image format
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Table 4: CUDA built-ins and their OpenCL equivalents.

CUDA OpenCL

gridDim.{x,y,z} get num groups({0,1,2})
blockIdx.{x,y,z} get group id({0,1,2})
blockDim.{x,y,z} get local size({0,1,2})
threadIdx.{x,y,z} get local id({0,1,2})
warpSize No direct equivalent

threadfence block() mem fence(CLK LOCAL MEM FENCE
| CLK GLOBAL MEM FENCE)

threadfence() No direct equivalent

syncthreads() barrier(CLK LOCAL MEM FENCE |
CLK GLOBAL MEM FENCE)

ables that have OpenCL counterparts accessible via built-in
functions. However, there are some built-in functions, such as
threadfence() that have no equivalent functionality in the

current version of OpenCL. As a consequence, workarounds
must be synthesized.

Below are some specific examples of the challenges in trans-
lating CUDA to OpenCL.

4.1.1. Pointers
CUDA refers to device data bu↵ers through pointers to the

type of data stored, similar to standard C dynamically allo-
cated bu↵ers. However, rather than initializing a pointer to
the dynamically allocated region with a standard malloc call,
in general these bu↵ers must be initialized by a call to one
of the cudaMalloc* variants specified in the CUDA runtime.
The device bu↵er pointers are passed to a CUDA kernel launch
in nearly identical fashion as the passing of their standard C
counterparts to a host-side function call. Both host and device
share the same pointer type for the bu↵er.

However, OpenCL device bu↵ers use the cl mem type to rep-
resent all bu↵ers on the host side, and standard pointer types
on the device. When a pointer type is specified as a parameter
to an OpenCL kernel, any cl mem bu↵er which resides in the
correct memory access space can be specified for the parame-
ter, regardless of the bu↵er’s intended type. These bu↵ers are
then interpreted as an array of the appropriate type by the de-
vice code, similar to CUDA. However, this draws attention to
an important di↵erence between how the two APIs reference
bu↵ers on the host side.

Commonly, we have observed that CUDA device memory
allocation and kernel calls reside in separate functions within
an application. In these cases, the bu↵er pointer is frequently
passed as a parameter to the kernel call’s wrapping function.
From a syntax perspective, this pointer parameter has no in-
dication whether the parameter represents a host- or device-
side bu↵er. However, once the device bu↵er is translated to
OpenCL, the wrapped kernel call will require a cl mem type
for all device bu↵ers, necessitating a rewrite of the parameter,
as well as any functions lower on the call stack which passed
the parameter through. As CUDA device bu↵er pointers have
no readily-observable syntax declaring them as such, accurate
propagation of type rewrites across these functions is made sig-
nificantly more complex.

The current translator prototype does not yet perform this
full call stack propagation of cl mem types. It only performs a
type translation within the scope containing the declaration of
the CUDA device bu↵er pointer. For example, CU2CL trans-
lates the CUDA bu↵er allocation shown in Fig. 4a to a form

float *newDevPtr;
...
cudaMalloc ((void **) &newDevPtr , size);

(a) Original CUDA source.

cl_mem newDevPtr;
...
newDevPtr = clCreateBuffer(clContext ,

CL_MEM_READ_WRITE , size , NULL , NULL);

(b) Rewriten OpenCL source.

Figure 4: Example of rewriting the cudaMalloc API call.

similar to Figure 4b. Proper translation is assured if the pointer
declaration shares the same scope as the kernel call. Com-
plete type propagation is the subject of future work. (One
potentially-viable approach we are currently considering is the
simple method of reducing the scope of the cl mem translation,
by allowing the bu↵er to retain the original pointer type and
simply providing explicit casts at bu↵er allocation and kernel
invocation, the only two points at which it is required to be a
cl mem or should ever be accessed by the host.)

4.1.2. Pre-processing
Source-to-source translation of preprocessed languages, such

as C/C++, as well as domain-specific variants such as CUDA
and OpenCL, is known to be di�cult [18]. The code that the
compiler sees can be dramatically di↵erent than the code in the
source file.

One solution is to run the source code through the pre-
processor prior to translation. While this approach can achieve
functional correctness, it has the tendency to make the trans-
lated source code much less maintainable as features like con-
stants are expanded into opaque values.

An alternative approach, taken by CU2CL, is to trans-
late the un-preprocessed tokens based on guidance from the
preprocessed code in the hope that the preprocessing done
later will not lead to syntactically or semantically invalid code.
While this heuristic cannot guarantee a clean translation, it
works well in practice as tricky macro preprocessing is a soft-
ware maintenance nightmare and is generally avoided.

4.1.3. Separate Compilation
Separate compilation is an important tool in the develop-

ment of software. However, it poses a significant challenge in
source-to-source translation for languages like C/C++, where
global state is often implicit until the linking stage. This is an
important issue as nearly all but the most trivial applications
are composed of multiple, separately compiled source files.

As the result of separate compilation, the declaration of
a feature and its use may occur in separate files making it
challenging to ensure that compatible translations happen in
each file. This issue is especially prevalent in code that performs
device initialization, memory management, or kernel definition.

As an example, consider the translation of pointers to CUDA
memory bu↵ers allocated with cudaMalloc, shown in Fig. 4a, to
OpenCL’s cl mem which is a pointer to an opaque type, shown
in Fig. 4b. Using a pointer to an opaque type may make it
easier to implement OpenCL on widely divergent devices, but
it makes translation significantly more di�cult as it requires
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propagation of a type rewrite across all functions which utilize
the bu↵er pointer as a function parameter or return value. If
declaration and uses are split across multiple source files —
particularly when used as a kernel parameter — care must be
taken to ensure the same type change propagates throughout
all the sources files.

4.1.4. Precompiled Binary Code
Another challenge to automatic translation is the use of

precompiled or hand-tuned binary code in CUDA applications.
A fair number of CUDA applications from the CUDA SDK uti-
lize precompiled libraries and thus thwart the source-to-source
translator. Translations of the libraries’ header files can be per-
formed but the precompiled code remains inaccessible. This is
an important problem as there are a growing number of high-
quality high-performance CUDA libraries becoming available
and being used.

Not all is lost however. By their very nature, such li-
braries, e.g., cuFFT, implement common functionality that is
widely used. Libraries implementing similar functionality are
becoming available for OpenCL, e.g., AMD Accelerated Paral-
lel Processing Math Libraries (APPML) FFT, enabling transla-
tors to map from one library to another. As equivalent libraries
become available, the translator can be extended to perform the
translation. Currently, however, the CUDA library calls pass
through the translator unchanged and hence require manual
intervention.

A complimentary approach is to extend Ocelot to translate
precompiled binaries to OpenCL code and use the translated
kernel code in the place of the binary.

4.1.5. C++ Syntax
CUDA supports both C and C++ syntax for host and ker-

nel code while OpenCL supports C and C++ bindings for host
code but only C99 with select extensions for kernel code. This
makes translating CUDA kernel code containing C++ prob-
lematic.

Function templates are a concrete example of a C++ fea-
ture in CUDA kernels. Other than stipulating that global -

functions with private scope cannot be instantiated, CUDA
provides full support for function templates. Fully-automated
translation would require the parsing of function templates and
the creation of individual kernel functions specialized for each
unique instantiation of a kernel function template.

The current approach is to wait for the OpenCL standard to
be extended to support C++ in kernels. Thus, this is another
area that temporarily requires human intervention.

4.1.6. Literal Arguments
There is a subtle di↵erence in the kernel launch semantics

of CUDA and OpenCL, particularly in the way that kernel
function parameters are specified.

While CUDA provides several methods of launching device
kernels, by far the most popular uses the CUDA C kernel in-
vocation syntax (see Fig. 3a), with the semantics that kernel
arguments are passed by value. OpenCL, on the other hand,
specifies kernel arguments through calls to clSetKernelArgs

(see Fig. 3d), which implements pass-by-reference semantics.
For many kernel arguments, it is su�cient to transform

the value represented by a variable to a pointer to the vari-
able using the address-of operator &. This approach does not

work for literal constants or macro expressions. In this case,
the translator must infer the type of the argument, create a
temporary variable of the correct type, assign the argument to
the variable, and supply a pointer to the variable’s address to
clSetKernelArgs. This is the approach taken by the current
CU2CL prototype.

4.1.7. Kernel Function Pointers
Another subtle di↵erence between CUDA and OpenCL are

the ways in which device kernels are invoked. The OpenCL
cl kernel data type is actually a pointer to an opaque type.
Hence all kernel invocations are upon kernel function pointers
via clEnqueueNDRangeKernel. CUDA kernel functions, on the
other hand can be invoked using CUDA C either directly by
referencing the kernel function name or indirectly by a kernel
function pointer either implicitly or explicitly. These alterna-
tives are shown in Fig. 5.

kernelName <<<grid ,block >>>(kernelArgs ...);

(a) Invoking a CUDA function

kernelPtr = &kernelName;
...
(* kernelPtr)<<<grid ,block >>>(kernelArgs ...);

(b) Invoking a dereferenced CUDA function pointer

kernelPtr = &kernelName;
...
kernelPtr <<<grid ,block >>>(kernelArgs ...);

(c) Invoking a CUDA function pointer directly

clKernel = clCreateKernel(program ,
kernelName , &errror );

...
status = clEnqueueNDRangeKernel(commandQueue ,

<clFuncPtr >, workDim , globalWorkOffset ,
globalWorkSize , localWorkSize ,
numEventsInWaitList , eventWaitList , &event );

(d) Equivalent OpenCL invocation

Figure 5: Ways of invoking kernel functions in host code.

The main di�culty with translating CUDA kernel function
pointers is that the required rewrites often have non-local scope.
If the location which CUDA kernel function pointer is initial-
ized and the location where the pointer is invoked (e.g., Fig. 5b
and 5c) are in the same function, only the equivalent OpenCL
code of Fig. 5d need be generated3. However, if the kernel func-
tion pointer is passed through a set of host functions (signified
by the ellipsis), all the host functions from pointer creation to
invocation will need to be rewritten to propagate the cl kernel

type. in the place of the CUDA kernel pointer. In short, prop-
agating types across function boundaries requires substantially
more e↵ort, whether the types are cl kernel or cl mem from
4.1.1.

3For semantically-identical translation, <clFuncPtr> in Fig. 5d
must be replaced by clKernel for Fig.5a and by kernelPtr for
Figs. 5b and 5c.
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4.1.8. Device Initialization
The CUDA runtime API abstracts away many of the de-

tails needed to initialize the GPU and establish an execution
context. There is no need for explicit initialization (as there
is for the driver API or OpenCL). With the runtime API, an
execution context is created for each device in the system and
a default device assigned. The cudaSetDevice function can be
used to change the context if needed, although this isn’t nec-
essary for many applications. In contrast, OpenCL requires
the programmer to not only explicitly select both a compute
platform and device, but also manually initialize a compute
context and at least one command queue for synchronization.
Therefore, a translator from CUDA to OpenCL needs to emu-
late the implicit initialization behavior of the CUDA runtime
API. It also needs to translate explicit context setup as some
applications make use of that functionality.

The translator can readily emulate initialization of a de-
fault device. However, additional work needs to occur when
an application makes use of the cudaSetDevice function. First,
as cudaSetDevice takes an integer argument specifying which
device context to use, the translator must provide a mecha-
nism for using an integer index to select among all compute
devices in a system. Second, the translator must either sup-
plant its own automatic initialization code, or it must intelli-
gently preserve a portion of the OpenCL environment it has
automatically initialized - replacing the command queue and
context associated with the default device. Finally, it must
(re)initialize an OpenCL context based on the device selected
by the integer index. However, this method is not necessarily
guaranteed to result in use of the same CUDA-capable GPU as
intended by the original CUDA source. Particularly in systems
in which multiple OpenCL platforms are present, depending on
the structure of the device iteration code, it is quite possible
that the default device might not even be a NVIDIA GPU.

4.1.9. Textures and Surfaces
GPU devices are commonly equipped with special-purpose

functional units designed to provide optimized access to data
having particular characteristics. One such commonly used
hardware unit provides fast reading of textures. Making use
of these special-purpose memory regions can provide distinct
performance benefits to some applications. CUDA provides
explicit support for accessing these regions via the texture and
surface types. Similarly, OpenCL provides the notion of an im-
age type for providing access to these regions. However, despite
their similar intentions, the APIs have a number of pronounced
di↵erences. Therefore, translation of CUDA textures and sur-
faces to OpenCL images requires careful consideration.

4.1.10. Graphics Interoperability
Due to their heavily GPU-oriented backgrounds, both CUDA

and OpenCL support mechanisms for allowing compute code
to directly interact with graphics rendering code. Primarily,
this is of use to applications which would like to provide in
situ visualization of data computed on a device without the ex-
tra overhead of transferring data back to the host-side before
rendering. A number of applications in the sample population
make use of CUDA’s OpenGL interoperability functions. While
their translation appears achievable, CU2CL does not handle
graphic rendering code at this time.

4.1.11. CUDA Driver API
As mentioned earlier, CUDA has both a high-level run-

time API and a lower-level driver API which provides explicit
control over device usage with a corresponding increase in re-
quired detail (Fig. 3). The driver API is particularly close to
OpenCL’s API and hence it should be straightforward to sup-
port in CU2CL. As its use is rather low, this is not a high
priority yet.

4.1.12. Structure Alignment
Both CUDA and OpenCL provide a mechanism for ex-

plicitly aligning memory structures for passing between host
and device. Without alignment directives, there is a poten-
tial conflict between host and device behavior. CUDA uses
the align (N) attribute while OpenCL uses attribute -

((aligned(N))).
The CUDA attribute is defined as a preprocessor macro

which — for GNU C compilers — maps to an attribute spec-
ifier identical to that of OpenCL. This can create a potential
confusion for source-to-source translators which operate on the
source after preprocessing as there is e↵ectively no di↵erence in
the specification. However, there are two readily-available ap-
proaches. First, the translator might simply copy the macro
from the CUDA headers and perform no translation of the
CUDA alignment specifier. However, this could be viewed as
a slight departure from providing a canonical OpenCL version.
Otherwise, the translator would need to preserve either the raw
byte alignment of the attribute, or the entire ’N’ expression of
the attribute, and perform a simple substitution of the wrap-
ping attribute syntax.

4.1.13. Warp-Level Synchronization
Within NVIDIA GPUs, threads are dispatched in groups

of 32 sequentially-indexed threads, known as warps, which op-
erate in lock step. Therefore, one can often take advantage of
this implicitly synchronized execution to obviate the need for
more costly synchronization methods such as fences, barriers,
and atomics. However, as OpenCL supports a myriad of un-
derlying compute devices, many of which do not exibit similar
dispatch behavior, the preservation of warp-level synchroniza-
tion is not guaranteed. On contemporary AMD GPUs and
CPUs, threads are dispatched in groups of 64 and either 1 or
the SIMD width, respectively. Thus, implicit synchronization
may be somewhat preserved on AMD GPUs but will not on
CPUs.

There is no CUDA syntax or function which provides ex-
plicit warp synchronization. Rather the programmer must man-
ually orchestrate thread behavior based on individual indicies.
This makes it very di�cult for the translator to automatically
recognize implicit synchronization and to provide a function-
ally equivalent translation. Fortunately there have been e↵orts
to address this concern via dependency analysis in the context
of CUDA to OpenMP translation [19] that can be leveraged for
CU2CL.

5. Implementation

With an understanding of the challenges involved in trans-
lating CUDA to OpenCL, it is now time to discuss the trans-
lator implementation. While a full discussion of the implemen-
tation of our translator prototype, known as CU2CL (CUDA
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to OpenCL) is outside the scope of this work, a brief overview
of core facets of its construction is in order. A more thorough
exposition is provided in [13].

A number of production-quality and widely-used open-source
compilers, along with various research frameworks [20, 21, 22,
23], were investigated in order to quickly develop a production-
ready tool. Clang [24] was chosen as the basis for CU2CL
for three reasons. First, though relatively young, Clang has
a large and active community with many new features and
rapidly improving quality. Second, Clang is a driver built upon
the LLVM compiler libraries, which provide lexing, parsing, se-
mantic analysis, and more. These libraries may be used inde-
pendently to create other source-level tools. And third, Clang
has support for parsing CUDA C extensions. Of all the tools
investigated, only Clang and Cetus had that necessary capabil-
ity. Of those two, Clang appeared to be the most production
ready.

5.1. Architecture
As implicitly noted in the Fig. 6, CU2CL is a Clang plu-

gin that ties into the main driver, allowing Clang to handle
parsing and abstract syntax tree (AST) generation, as dur-
ing normal compilation, after which CU2CL walks the gener-
ated AST to perform the rewrites. Of particular interest in
this context are the AST, Basic, Frontend, Lex, Parse, and
Rewrite libraries from Clang. These libraries facilitate file
management (Basic), AST traversal and retrieval of informa-
tion from AST nodes (AST), plugin interface and access to the
compiler instance (Frontend), preprocessor access and token
utilities (Lex), and the actual rewriting mechanism (Rewrite).
By uniquely composing the libraries and classes included within
each, a robust CUDA-to-OpenCL translator was created in less
than 3400 source lines of code (SLOC).

In the Clang driver, once the AST has been created, an
AST consumer is responsible for producing something from the
AST. As a Clang plugin, CU2CL provides an AST consumer
that traverses the AST, searching for nodes of interest. While
Clang’s AST library provides several simple methods of travers-
ing the tree, a CU2CL-specific method is used to traverse the
AST in a recursive descent fashion, using AST node iterators
to recurse into each node’s children.

5.2. AST-Driven String-Based Rewriting
The actual rewriting is done primarily through the use of

Clang’s Rewrite library. This library provides methods to in-
sert, remove, and replace text in the original source files. It
also has methods to retrieve the rewritten file by combining
the original with the rewritten portions. While many tradi-
tional source-to-source translators build an AST, modify it, and
then walk the new AST to produce the rewritten file, CU2CL
uses the AST of the original source only to walk the program.
Rewrites are done through strings locally; therefore, this ap-
proach is called AST-Driven String-Based Rewriting.

This approach is quite useful in translating CUDA to OpenCL
as only the CUDA-related constructs need be modified. The
remainder of the source code passes through untouched. Unlike
the traditional approach of generating the output directly from
the AST, AST-driven string-based rewriting preserves almost
all of the comments and formatting that is so important for
maintainability [25]. In general, the scope of the translations
are very small. As a document’s structure and comments are

of vital importance to developers [26], leaving them intact is an
important benefit to CU2CL as the translated source can now
serve as the basis for further development.

5.3. Translating Common Patterns
In translating CUDA constructs to OpenCL, some pat-

terns occur multiple times. CU2CL’s design takes into account
two primary patterns: rewriting CUDA types and processing
CUDA API calls and their arguments. CUDA types may be
found in many declarations and expressions, but the rules to
identify and rewrite them are uniform with a few exceptions.
CUDA functions share similar patterns in their arguments —
what types are expected and how they are laid out — and also
in their return types, as they all return an enumerated CUDA
error value.

CUDA-specific type declarations may occur in several places.
These include variable declarations, parameter declarations,
type casts, and calls to sizeof, all of which may occur in both
host and device code. Rewriting such types can be generalized
for both CUDA host code and device code. In the Clang frame-
work, variable declarations carry with them information about
what their full type is (including type qualifiers) as well as the
source location of each part. The base type can be derived
from the full type, which may then be inspected and rewrit-
ten accordingly. Types may be rewritten di↵erently depending
on where the type declaration occurred (e.g. host code, de-
vice code, kernel parameters, etc.). The generalizations to type
rewriting can be applied in locations where there is overlap.

For example, CUDA vector types may be found in host
or device code and as kernel arguments. OpenCL vector types
have slightly di↵erent names depending on where they are found
— i.e., float4 in host code vs. cl float4 in device code — but,
for the most part, rewriting vector types can be combined. This
pattern also extends to other CUDA types, like dim3s, which
may be declared anywhere in a CUDA C application.

CUDA function calls to be rewritten can be processed sep-
arately. However, for the purposes of source-to-source transla-
tion, it is preferable to generalize as much of the rewriting as
possible. An important pattern is a pointer to a data structure
that is passed in to be filled. The equivalent OpenCL functions
instead return a pointer to an opaque structure, as shown in
Fig. 4. To translate from CUDA to OpenCL, a pointer must
be retrieved from the argument expression. This can be done
by traversing the expression and checking the types until the
proper one is found. The subexpression with this evaluated
type is used in the replacement OpenCL call.

For the time being, CU2CL simply dereferences the pointer
argument expression. The uniform enumerated CUDA error
return type used by all the CUDA API calls can be used in
rewriting the call’s parent expressions. While CU2CL does not
currently support rewriting the CUDA error type, comparison
to the equivalent OpenCL procedure and pertinent error codes
will help in properly rewriting parents that use the returned
error.

5.4. Rewriting Includes
As part of translation, #include preprocessor directives for

CUDA header files must be removed or rewritten. Because
#includes are not resident in the AST, the rewriting has been
implemented using the Clang driver preprocessor, as shown in
the block diagram of Fig. 7. CU2CL registers a callback with
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Figure 6: High-level overview of the CU2CL translation process.

the preprocessor that is invoked whenever a new #include is
being processed. As the preprocessor expands the include di-
rective, it has all the information necessary to decide whether
CU2CL should rewrite the directive. In particular, CU2CL
needs the current file that is being parsed, the name of the file
that is to be included, and whether or not it is a system header.
By tying into Clang’s preprocessor, CU2CL can avoid the task
of locating these directives manually. This adds robustness and
e�ciency to CU2CL’s #include rewriting.

...

#include \

    "CudaFile.cuh"

...

Clang

Preprocessor

CU2CL

#include \

    "CudaFile.cuh-cl.h" 

...

#include \

    "CudaFile.cuh-cl.cl"

...

Includer.cu-cl.cpp

Includer.cu

Includer.cu-cl.cl

Figure 7: Example of rewriting an #include directive.

The #include rewrites fall into two categories: (1) remov-
ing #includes pointing to CUDA and system header files that
are no longer needed and (2) rewriting #includes to CUDA
files that CU2CL has rewritten. In the first case, CU2CL re-
moves includes to cuda.h and cuda runtime api.h found in any
rewritten files, both host and kernel files. It also removes sys-
tem header files (e.g., stdio.h) from the OpenCL kernel files,
as they cannot be used in device code. These header files are
identified as those included using the angle bracket notation as
opposed to double quotes.4 In the second case, CU2CL rewrites
#includes to files that have been rewritten. The original in-
cluded CUDA source files will be split into two new files, one
for the host and one for device code (e.g. cudaFile.cuh will
become cudaFile.cuh-cl.h and cudaFile.cuh-cl.cl). Therefore,
CU2CL rewrites the original #includes so that they point to
the new OpenCL files. Fig. 7 shows an example of how an
#include pointing to a CUDA file may be rewritten in a new
host code file. The kernel file will be used during runtime com-
pilation of device code, so it is not #included by the host.

5.5. Error Reporting
Compilers and translators have another di�cult task be-

sides generating correct output. They also need to provide

4A comparison with system header files could be done instead in
order to be more forgiving of programmer carelessness in using angle
brackets instead of double quotes but has not been done yet.

good error reports when the inputs are incorrect or ambigu-
ous to guide programmers in fixing the errors. In this regard,
starting with Clang is definitely a benefit as many consider it
to have some of the most accurate and useful error reporting
of any compiler. Source-to-source translation needs to not only
report errors, but to also clearly mark where the translator was
unable to successfully translate a construct so that they can be
handled manually.

CU2CL provides a unified mechanism for reporting issues
that arise during the translation in two ways. First, similar to
a standard compiler, all notifications are emitted with available
source file, line, and column information to the terminal error
output stream, with a severity level and brief textual descrip-
tion of the issue. However, to aid manual intervention in corner
cases which are not automatically translated, notifications are
also emitted into the translated application source as comments
adjacent to the code of interest. These comments include both
an easily searchable severity level as well as a textual descrip-
tion which can be either identical to the message emitted to
the terminal error stream, or specified separately.

Primarily we provide four levels of notifications: transla-
tion errors, untranslatable syntax, currently untranslated syn-
tax, and “advisories.” Translation errors are emitted to notify
that CU2CL has encountered a source construct which it has
no mechanism for actively handling. In general emission of this
level of notification is only used as a catchall default in branch-
ing logic when the translator cannot make a concrete decision
on how to proceed. These indicate an area where the translator
is incomplete.

More frequently, the translator encounters syntax which it
can recognize, but due to di↵erences in CUDA and OpenCL,
cannot automatically translate. In these cases, a “CU2CL Un-
translated” notification is emitted. Similarly, the translator
will also emit a notification when it reaches an actively recog-
nized syntax element which has an OpenCL equivalent but it
does not yet support translating.

Finally, it can emit notes, which serve as advisories that
the translator has had to utilize some special purpose code to
handle a structure, such as adding a variable storing the result
of a temporary expression for use as a kernel argument. These
cases do not require manual intervention but are emitted as a
courtesy to support using the translated code as a basis for new
development.
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6. Evaluation

In this section, CU2CL is evaluated using three metrics:
the speed of translation, the performance of translated appli-
cations, and the amount of the CUDA runtime API covered.
The frequency of the translation challenges discussed in Sec-
tion 4 is also presented.

6.1. Translation Speed
While CU2CL may only be run once on a given CUDA

application, the speed at which CU2CL translates the CUDA
source code to OpenCL source code is a metric of interest,
particularly if the end user wishes to convert multiple CUDA
applications from the well-established CUDA ecosystem. Or
perhaps there is a desire to continue development in CUDA
but to translate to OpenCL in order to gain access to a greater
breadth of accelerator platforms. Thus it is important to eval-
uate the speed of translation on several GPU applications. The
applications chosen are from the CUDA SDK and the Rodinia
benchmark suite. The full list of applications can be found in
the appendix; a subset are shown in Tab. 5.

For each application, the total time to translate the code
from CUDA to OpenCL was averaged over ten runs. This
translation time includes the time for the Clang driver to per-
form parsing and semantic analysis of the program, in addition
to CU2CL’s translation procedure. The overall run time was
measured using the time command while the portion of the run
time attributed to CU2CL was measured with gettimeofday.
In all cases, the width of the 95% confidence interval centered
around the mean is less than ±5%.

Tables 5 summarizes the results. The test applications
vary in length from more than a hundred source lines of code
(SLOC) to several thousand SLOC. However, one can see that
the translation time is not strictly dependent on the length. In
general, programs with more CUDA constructs or more com-
plicated constructs tend to take longer to translate. In most
cases, CU2CL translates the applications in well under a sec-
ond. The longest translation time is for the particles appli-
cation from the CUDA SDK which contains five CUDA files
containing 1,184 SLOC and still only takes a little more than
two seconds. Thus, CU2CL is a feasible choice for porting a
large number of CUDA programs.

6.2. Translated Application Performance: Auto vs. Man-
ual

In this section, the performance of translated applications
is evaluated using the execution time as a metric. The perfor-
mance of thirteen automatically translated CUDA-to-OpenCL
codes is considered: seven from the CUDA SDK, five from the
Rodinia benchmark suite, and the GEM molecular modeling
application [30].

For all of the experiments, the applications are complied
and run on a desktop machine with an AMD Phenom II X6
1090T Processor (six-cores, 3.2 GHz) with 16-GB RAM run-
ning 64-bit Ubuntu 12.04 with Linux kernel 3.2.0-35. The
GPU is a NVIDIA GeForce GTX 480 with 1.5-GB RAM (480
total cores) using the NVIDIA driver version 310.32 and CUDA
Runtime 5.0. Run times were measured using the time com-
mand.

Table 6 summarizes the performance comparisons between
the original CUDA code and CU2CL’s automatically-generated

OpenCL. Each code was executed a total of ten times and their
runtimes were averaged.

Table 6: Run Times of CUDA Applications and OpenCL Ports on
an NVIDIA GTX 480

CUDA OpenCL Percent
Application Runtime (s) Runtime (s) Change

asyncAPI 0.58 0.55 -6.6
bandwidthTest 0.94 0.86 -8.5
BlackScholes 1.98 1.75 -11.5
FastWalshTransform 2.00 2.03 +1.3
matrixMul 0.47 0.47 -1.6
scalarProd 0.51 0.51 -0.2
vectorAdd 0.47 0.46 -0.8

Backprop 0.87 0.87 +0.4
BFS 2.09 2.17 +4.1
Gaussian 0.48 0.46 -2.8
Hotspot 0.81 0.79 -1.9
Needleman-Wunsch 0.57 0.52 -9.2

GEM 0.51 0.49 -2.9

In all but three applications, the automatically-translated
OpenCL performs better than the original CUDA, though not
by much. This contrasts starkly with previous work which
demonstrated that automatically-translated OpenCL often gave
significant slowdown when using the CUDA 3.2 Runtime [13].
As the OpenCL ecosystem has matured and NVIDIA’s OpenCL
implementation has improved, the performance di↵erence has
been largely eradicated. Therefore with modern hardware plat-
forms and software stacks, no significant performance penalty
is incurred when automatically-translated applications are ex-
ecuted on the same NVIDIA device, but with the added gain
of access to other OpenCL-supporting devices.

6.3. Translator Coverage
CU2CL supports a large majority of the subset of the CUDA

runtime API that existed with version 3.2 of the CUDA SDK.
Given that the 4.X and 5.0 versions of the SDK add sev-
eral new features which are largely specific to NVIDIA GPUs,
work is still ongoing to determine for which features equivalent
OpenCL functionality exists, and mechanisms for handling the
remainder. In particular, it can automatically translate API
calls from the major CUDA modules: Thread Management,
Device Management, Stream Management, and Event Man-
agement. The translator also supports the most commonly
used methods of the Memory Management module, including
calls to allocate device and pinned host memory. This is a nat-
ural result of selecting the most frequently used calls from the
CUDA SDK and Rodinia benchmark for implementation first.

As a result of CU2CL’s robust translation methods along-
side its support for many CUDA constructs, it can automati-
cally translate many applications nearly in their entirety. Ta-
ble 5 shows this for applications from the CUDA SDK and the
Rodinia benchmark suite. In each case, only a few lines of
host or kernel code had to be manually ported. Of the man-
ual changes, none are particularly di�cult to handle and auto-
mated support for these will be added as CU2CL continues to
evolve.

6.4. Frequency of Translation Challenges
Section 4 discusses a number of translation challenges. Ta-

ble 7 lists the challenges and their frequency of occurrence in
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Table 5: Translation time and coverage of CU2CL translation.

Manual
Total CU2CL OpenCL Percent

CUDA Translation Time Lines Automatically
Source Application Lines Time (s) (µs) Changed Translated

CUDA SDK

asyncAPI 135 0.14 163 5 96.3
bandwidthTest 891 0.28 289 5 98.9
BlackScholes 347 0.27 200 14 96.0
fastWalshTransform 327 0.15 208 30 90.8
matrixMul 351 0.14 211 9 97.4
scalarProd 251 0.16 226 18 92.8
vectorAdd 147 0.14 97 0 100.0

Rodinia

Back Propagation 313 0.14 174 24 92.3
Breadth-First Search 306 0.14 200 35 88.6
Gaussian 390 0.14 210 26 93.3
Hotspot 328 0.14 204 2 99.4
Needleman-Wunsch 430 0.14 191 3 99.3

[27] Fen Zi 17768 0.35 3491 1786 89.9
[28] GEM 524 0.14 182 15 97.1
[29] IZ PS 8402 0.21 1091 166 98.0

Table 7: CUDA-to-OpenCL Translation Challenges and Frequency
of A↵ected Applications

CUDA SDK Rodinia
Challenge Frequency (%) Frequency (%)

Separate Compilation 54.4 29.4
CUDA Libraries 10.1 0.0
Kernel Templates 21.5 0.0
cudaSetDevice 54.4 29.4
Textures 27.8 23.5
Graphics Interoperability 24.1 11.8
CUDA Driver API 8.9 5.9
Literal Arguments 19.0 17.6
Aligned Types 6.3 5.9
Constant Memory 17.7 29.4
Shared Memory 46.8 70.6

the CUDA SDK and the Rodinia benchmark suite that are used
in the evaluation above. The first lists the challenge, the sec-
ond and third columns give the percentage of the applications
in the respective suites that exhibited the challenge.

The first observation is that the CUDA SDK exhibits in-
stances of all the challenges. This is to be expected since ex-
ample applications in the SDK are intended to instruct pro-
grammers in how to use CUDA. The second observation is
that Rodinia did not exhibit some of the challenges. Some,
like graphics interoperability, are not surprising considering the
Rodinia benchmarks are intended to test compute performance
not graphics. The other omissions are largely due to the more
homogeneous programming style employed.

Perhaps the most useful result from the table is the or-
der in which to tackle the challenges to maximize benefit while
minimizing e↵ort. According to the data, device initialization
is first followed by separate compilation, textures, and literal
arguments. As CU2CL is undergoing continued development,
partial support has already been added for cudaSetDevice, lit-
eral kernel arguments, constant memory, and shared memory.
Additionally, code to actively identify instances of kernel tem-
plates has already been integrated with CU2CL’s error report-
ing mechanism discussed in section 5.5.

7. Future Work

While much has been done in to create a usable CUDA to
OpenCL translator, there are additional items that need to be
completed. The most important is to finish handling all types
of device initialization challenges, implement separate compila-
tion, finish implementing complete type propagation, finish the
remaining cases of structure alignment, and to increase sup-
port for later versions of the CUDA API. Note that support
for CUDA code containing C++ will not be feasible until the
OpenCL standard supports C++.

Longer term, CU2CL needs to be extended to support the
CUDA driver API, as well as extend and leverage Ocelet to per-
form conversion of binary PTX code into OpenCL or specific
IRs. Finally, the most interesting challenge to address will be
performance portability between GPUs from di↵erent manufac-
tures and radically di↵erent devices once functional portability,
the topic of this paper, is completed.

8. Conclusion

The CUDA programming environment for heterogeneous
processors, namely GPUs in this case, debuted approximately
two years before the arrival of the open-standard OpenCL.
In light of the significant time and e↵ort invested in creat-
ing GPU-accelerated codes in CUDA, there exists a treasure
trove of CUDA applications that end users desire to migrate to
an open-standard programming platform in order to preserve
their intellectual investment while gaining greater breadth in
the number and types of parallel computing devices that are
supported. Such parallel computing devices include AMD and
Intel x86 CPUs, ARM CPUs, AMD APUs (i.e., accelerated
processing units, where the CPU and GPU cores are “fused”
onto the same processor die), AMD and NVIDIA GPUs, and
even FPGAs, to name a handful. To address the above, we cre-
ated an automated CUDA-to-OpenCL source-to-source trans-
lator that enables CUDA programs to be automatically trans-
lated and run on any parallel computing device that supports
an OpenCL ecosystem [13].
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The work presented here seeks to characterize the chal-
lenges faced in creating a robust CUDA-to-OpenCL transla-
tor, present our instantiation of a CUDA-to-OpenCL (CU2CL)
source-to-source translator, and evaluate its e�cacy on real
CUDA codes. We have shown that although it is not straight-
forward and (currently) subject to some important limitations,
robust automatic source translation from CUDA to OpenCL is
largely achievable. Further we have shown that once translated,
when executed on the same device, application performance is
retained, suggesting that the improved portability of OpenCL
codes no longer results in reduced performance on CUDA de-
vices. Finally, we presented a robust automatic translator capa-
ble of reducing the man-weeks required for manual translations
to the order of seconds.
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9. Appendix

Tables 8 and 9 provide the performance results of running
CU2CL on the Rodinia benchmark applications and on the ex-
amples from the CUDA SDK, respectively. Each table provides
the name of the application, the number of CUDA source lines
in the application, and the total translation time and the por-
tion taken by CU2CL to perform the translation.

Table 8: CUDA SDK Translation Time

Total CU2CL
CUDA Translation Time

Application Lines Time (s) (µs)

alignedTypes 316 0.16 239
asyncAPI 135 0.14 163
bandwidthTest 891 0.28 289
bicubicTexture 1251 0.78 482
bilateralFilter 864 0.89 415
binomialOptions 443 0.64 328
BlackScholes 347 0.27 200
boxFilter 980 0.74 339
clock 162 0.15 149
concurrentKernels 177 0.27 177
conjugateGradient 196 0.06 170
convolutionFFT2D 1175 0.65 488
convolutionSeparable 363 0.75 288
convolutionTexture 368 0.63 295
cppIntegration 247 0.73 261
dct8x8 1715 0.29 539
deviceQuery 165 0.57 160
deviceQueryDrv 150 0.58 150
dwtHaar1D 598 0.16 281
dxtc 886 0.43 472
eigenvalues 3109 0.48 1116
fastWalshTransform 327 0.15 208
FDTD3d 870 0.99 405
fluidsGL 811 0.28 330
FunctionPointers 1004 0.76 449
histogram 545 0.90 436
imageDenoising 1305 0.75 512
lineOfSight 337 0.17 228
Mandelbrot 2528 0.93 922
marchingCubes 1571 0.80 540
matrixMul 351 0.14 211
matrixMulDrv 525 0.72 378
matrixMulDynlinkJIT 301 0.46 158
mergeSort 954 0.65 412
MersenneTwister 310 0.27 193
MonteCarlo 1014 0.79 726
MonteCarlo Multi GPU 994 0.79 743
nbody 2088 1.54 824
oceanFFT 1037 0.76 452

Table 8: CUDA SDK Translation Time (cont.)

Total CU2CL
CUDA Translation Time

Application Lines Time (s) (µs)

particles 1184 2.41 1001
postProcessGL 1291 0.88 489
ptxjit 132 0.58 120
quasirandomGenerator 510 0.90 504
radixSort 2387 1.37 1103
randomFog 888 1.34 345
recursiveGaussian 883 0.77 417
reduction 1063 0.78 583
scalarProd 251 0.16 226
scan 495 0.75 322
simpleAtomicIntrinsics 197 0.15 155
simpleCUBLAS 244 0.10 149
simpleCUFFT 249 0.15 173
simpleGL 603 0.73 350
simpleMPI 208 0.84 274
simpleMultiCopy 351 0.27 254
simpleMultiGPU 226 0.47 202
simplePitchLinearTexture 274 0.15 180
simplePrintf 1066 0.43 893
simpleStreams 243 0.15 193
simpleSurfaceWrite 207 0.15 201
simpleTemplates 458 0.16 248
simpleTexture 239 0.15 186
simpleTexture3D 506 0.78 305
simpleTextureDrv 392 0.72 379
simpleVoteIntrinsics 341 0.15 218
simpleZeroCopy 149 0.15 147
smokeParticles 2016 1.21 531
SobelFilter 780 0.75 360
SobolQRNG 10698 1.73 5275
sortingNetworks 657 0.90 487
template 187 0.15 158
threadFenceReduction 791 0.17 483
threadMigration 434 0.72 393
transpose 571 0.27 271
vectorAdd 147 0.14 97
vectorAddDrv 351 0.60 281
volumeRender 884 0.78 393

Table 9: Rodinia Translation Time

Total CU2CL
CUDA Translation Time

Application Lines Time (s) (µs)

Back Propagation 313 0.14 174
Breadth-First Search 306 0.14 200
CFD 2371 1.07 1230
Gaussian 390 0.14 210
Heartwall 2018 0.17 532
Hotspot 328 0.14 204
Kmeans 494 0.14 241
LavaMD 240 0.14 192
Leukocyte 624 0.28 386
LU Decomposition 332 0.28 277
MummerGPU 3786 0.18 655
Nearest Neighbor 278 0.17 170
Needleman-Wunsch 430 0.14 191
Particle Filter 1517 0.31 582
Path Finder 235 0.14 186
SRADv1 541 0.15 366
Stream Cluster 443 0.26 211
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