
Enabling Compatibility Between TCP Reno and TCP Vegas�
W. Feng

Computer & Computational Sciences Division
Los Alamos National Laboratory

feng@lanl.gov

S. Vanichpun
Dept. of Electrical & Computer Engineering

University of Maryland, College Park
sarut@glue.umd.edu

Abstract

Despite research showing the superiority of TCP Vegas
over TCP Reno, Reno is still the most widely deployed vari-
ant of TCP. This predicament is due primarily to the alleged
incompatibility of Vegas with Reno. While Vegas in isolation
performs better with respect to overall network utilization,
stability, fairness, throughput and packet loss, and bursti-
ness; its performance is generally mediocre in any environ-
ment where Reno connections exist. Hence, there exists no
incentive for any operating system to adopt TCP Vegas.

In this paper, we show that the accepted (default) con-
figuration of Vegas is indeed incompatible with TCP Reno.
However, with a careful analysis of how Reno and Vegas
use buffer space in routers, Reno and Vegas can be compat-
ible with one another if Vegas is configured properly. Fur-
thermore, we show that overall network performance actu-
ally improves with the addition of properly configured Vegas
flows competing head-to-head with Reno flows.

Keywords: TCP Reno, TCP Vegas, congestion control,
congestion avoidance, compatibility, fairness, convergence.

1 Introduction

To address a series of congestion collapses, Jacobson
proposed a congestion-control mechanism in TCP that later
became known as TCP Tahoe [10]. Since then, many mod-
ifications have been made to TCP, resulting in two more
notable variants — TCP Reno [11] and TCP Vegas [3].

TCP Reno, like TCP Tahoe, allows congestion to occur
(i.e., induces packet loss) in order to estimate the available
bandwidth in the network. Once packet loss is detected,
Reno recovers by cutting its window size in half. This be-
havior causes a periodic oscillation in the window size; an
oscillation that many next-generation Internet applications
do not tolerate well. Further, recent work shows that this
oscillatory behavior induces chaotic behavior into the net-
work [4, 15], thus adversely affecting overall network per-
formance.�This work was supported by the U.S. Dept. of Energy’s LDRD-ER
Program and the U.S. Dept. of Energy’s Office of Science SciDAC Pro-
gram through Los Alamos National Laboratory contract W-7405-ENG-36.

In contrast, TCP Vegas generally performs better with
respect to overall network utilization [1,3], stability [9,13],
fairness [9,13], throughput and packet loss [1,3], and bursti-
ness [4] when the entire network consists of Vegas-only
connections. However, research to date has shown that
when Reno and Vegas perform head-to-head, Reno gen-
erally steals bandwidth from Vegas [1, 13]. Consequently,
while Vegas has been around for over five years, its adoption
has been non-existent due to perceived incompatibilities be-
tween Reno and Vegas.

With a careful analysis of how Reno and Vegas use buffer
space in routers, we will show that Reno and Vegas can be
compatible with one another if Vegas is configured prop-
erly. Further, overall network performance actually im-
proves with the addition of properly configured Vegas flows
competing head-to-head with Reno flows, thus encouraging
the incremental adoption of Vegas.

2 Congestion-Control Mechanisms

To ensure efficient use of network bandwidth, TCP con-
trols its sending rate based on feedback from the network.
In order to control the sending rate, TCP estimates the avail-
able bandwidth in the network via abandwidth-estimation
scheme[13]. In Tahoe and Reno, the bandwidth-estimation
scheme uses packet losses (as an indication of network con-
gestion) to estimate available bandwidth while Vegas uses
the difference in the expected and actual sending rates.

2.1 TCP Reno

While there are no packet losses, Reno continues to in-
crease its window size, and hence sending rate, by one
packet each round-trip time (RTT), thus allowing conges-
tion to eventually occur. Reno then detects congestion via
packet loss and recovers from it by halving the size of the
sender window (i.e., halving the sending rate).

2.2 TCP Vegas

Vegas enhances Reno by adopting a bandwidth-
estimation scheme that tries to avoid rather than react to
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congestion. Specifically, Vegas uses the difference in the
expected and actual flow rates to estimate the available
bandwidth in the network. When the network is uncon-
gested, the actual flow rate is close to the expected flow
rate; otherwise, the actual rate is smaller than the expected
rate, indicating that buffer space in the network is filling
up and that the network is approaching a congested state.
The difference in flow rates can be translated into the differ-
ence between the window size and the number of acknowl-
edged packets during the RTT, respectively, i.e.,Diff =(Expeted�Atual)�BaseRTT whereExpeted is the
expected rate,Atual is the actual rate, andBaseRTT is
the minimum-observed RTT.

To adjust the size of the congestion window (wnd)
appropriately, Vegas uses two threshold values,� and �
(whose default values are 1 and 3, respectively), to control
the adjustment ofwnd at the source host as follows:wnd 8<: wnd+ 1 if Diff < �wnd� 1 if Diff > �wnd otherwise (� � Diff � �)

Conceptually, Vegas tries to keep at least� packets but
no more than� packets queued in the network. Thus,
with only one Vegas connection, the window size of Ve-
gas converges to a point that lies betweenwindow + � andwindow + � wherewindow is the maximum window size
that does not cause any queueing.

Selecting� and� holds an implicit tradeoff between net-
work utilization, goodput, and fairness. By using the default
settings for these parameters, i.e.,� = 1; � = 3, prior re-
search inadvertently favored Reno over Vegas [8,13].

3 Compatibility of TCP Reno and TCP Vegas

Prior research demonstrates that Vegas (in isolation)
generally performs better than other implementations of
TCP [1, 3, 4, 9, 13]. Ahn et al. [1] and Mo et al. [13] also
show that when a Vegas connection competes with a Reno
connection, Vegas does not receive a fair share of bandwidth
due to its conservative congestion-avoidance mechanism.

Here, we show that the “conservative” congestion-
avoidance mechanism isnot to blame for Vegas’s inability
to grab a fair share of bandwidth. Rather, the alleged in-
compatibility between Reno and Vegas is due to using the
default (mis)configuration of Vegas parameters, i.e.,� = 1
and� = 3.

Consider one TCP Vegas connection and one TCP Reno
connection over a bottleneck link. At steady state, the Vegas
connection keeps (on average) approximately�qv � � pack-
ets in the queue while the Reno connection tries to gain as
much bandwidth (and queue space) as it can until a packet is
lost. Hence, the number of TCP Reno packets in the queue
is qr 2 [0; B � �qv ℄ whereB is the buffer capacity at the
bottleneck link. Assuming that the average value ofqr is�qr = B��qv2 (e.g., uniform distribution), the ratio of Vegas

throughput (�v) to Reno throughput (�r) is given by�v�r = �qv�qr = 2�qvB � �qv : (1)

Thus, whenB = 3�qv, the ratio of the throughputs is one.
AsB increases further, Reno is favored. Hasegawa et al. [8]
provide a more complete analysis of the throughputs when
there areNv Vegas connections andNr Reno connections
competing for the queue space at the same bottleneck link.

3.1 Analysis of Two Connections

Consider the case when one Vegas connection and one
Reno connection share a bottleneck link using a droptail
queue. Let the bottleneck link have a transmission rate of�
packets/s and a round-trip propagation delay of� seconds
with queue sizeB packets. Letqv andqr denote the num-
ber of Vegas packets and Reno packets in the queue, respec-
tively. Then, in order to allow Vegas to compete with Reno,
Vegas must set its� and� parameters so that Equation (1)
is such that�v=�r � 1.

Let W , d, andD denote the window size (i.e.,wnd),
BaseRTT delay, and actual RTT delay of Vegas, respec-
tively. At steady state, Vegas tries to keep the differ-
ence (Diff ) between its actual throughput (Atual) and
expected throughput (Expeted) between� and� whereAtual = W=D andExpeted = W=d. Then, as noted in
Section 2, we calculateDiff as follows:Diff = (Expeted�Atual) � d = W (D � d)D ; (2)

and interpretDiff as the number of packets in the queue,
i.e.,Diff � �qv .

LetWvmax andWrmax denote the window sizes of Vegas
and Reno when the queue is full, respectively. Since Vegas
keepsqv � �qv at all time andDiff � �qv , we haveWvmaxD � dD = �qv;
or equivalently,Wvmax = �qv DD � d = �qv � +B=�(B � 1)=�' �qv � +B=�B=� ; if d ' � ; (3)

whered = � + 1=� andD = � + B=� are the values of
the BaseRTT delay and actual RTT delay of Vegas when
the queue is full, respectively. Therefore, the window size
of Reno when the queue is full is given byWrmax = B + �� �Wvmax if d ' � : (4)

After the queue is full, the probability that a Reno packet
will be dropped ispr = qrmaxqrmax + qvmax = B � �qvB (5)



and the probability that a Vegas packet will be dropped ispv = qvmaxqrmax + qvmax = �qvB : (6)

We now consider two approximations for setting� and�.
Approach 1: We assume that the packets dropped are only
from the Reno connection and consider only the fast retrans-
mit of Reno while ignoring its timeout mechanism. There-
fore, if a Reno packet is dropped, then the Reno window
sizeWrmax drops toWrmax2 . Approach 2: We also consider
the case of a Vegas packet being dropped. Hence, if a Reno
packet is dropped, its window size evolves the same way as
in Approach 1, else if a Vegas packet is dropped, then the
Reno window size increases by 1.

3.1.1 Approach 1

Figure 1 shows a simulation of one Reno connection and
one Vegas connection at steady state. From this figure, the
average window size of the Reno connection (�Wr) is�Wr = Wrmax + Wrmax22 = 34Wrmax : (7)

By definition, the average queue size of the Reno connec-
tion is the fraction of�Wr that is buffered in the queue, i.e.,�qr = �Wr BB + �� : (8)

Substituting (7) into (8) gives�qr = Wrmax 3B4(B + ��) : (9)

Substituting (9) into (1), the ratio of the throughputs is�v�r = 4�qv(B + ��)Wrmax3B= 4�qv3(B � �qv) ; (10)

where (10) follows from (4) and (3). Now, by setting�v�r =1 and solving for�qv , we get�qv = 37B:
Thus, we set� and� to the following values:� = b37B � 1 and � = b37B:

The motivation for setting� to be one less than� is two-
fold. First, setting� = � introduces stability problems [2],
i.e., the congestion window oscillates around the equilib-
rium value. Second, setting� and� too far apart creates a
larger stability region than needed, resulting in connections
that can converge to opposite ends of the stability region,
thus affecting fairness [2,9].
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Figure 1. Evolution of the Congestion Window

3.1.2 Approach 2

If a Reno or Vegas packet is dropped, the window size of
RenoŴr becomesŴr = Wrmax2 pr + (Wrmax + 1)pv' Wrmax2 pr +Wrmaxpv; (11)

where we assume thatWrmax � 1 and thatpr andpv are
given by (5) and (6). From (11), we then approximate the
average window size of Reno (�Wr) by�Wr = Wrmax + Ŵr2 = Wrmax 3B + �qv4B : (12)

As in Section 3.1.1 but with (8) and (12),�qr = �Wr BB + �� = Wrmax B(3B + �qv)4B(B + ��) : (13)

Hence, substituting (13) into (1) gives�v�r = 4�qvB(B + ��)WrmaxB(3B + �qv) = 4�qvB3B2 � 2�qvB � �q2v ; (14)

where (14) follows from (4) and (3). To ensure compatibil-
ity between Reno and Vegas, we again set�v=�r = 1 and
solve for�qv , which yields�qv ' 0:4641B. Therefore,� = b0:4641B � 1 and � = b0:4641B:
3.2 Analysis of Multiple Connections

In this section, we generalize our two-connection anal-
ysis to deal withNv Vegas connections andNr Reno con-
nections sharing a bottleneck link of� packet/s. Let every
connection have a round-trip propagation delay of� sec-
onds while sharing a bottleneck buffer size ofB packets. To



ensure compatibility between each connection, each con-
nection must equally share the bottleneck buffer, or equiva-
lently, the average queue size of each connection must be
identical. We also assume that the connections are syn-
chronous, i.e., at any given instant in time, each Vegas con-
nectioni has queue sizeqvi � �qv � � 8 i = 1; 2; : : : ; Nv
and each Reno connectionj has the same average queue
size �qr 8 j = 1; 2; : : : ; Nr. Thus, Vegas should set its�
and� parameters so that�qv=�qr � 1.

When the queue is full, the window size of VegasWvmax ,
derived from (2), isWvmax = �qv DD � d' �qv � +B=�B=� ; if d ' � ; (15)

which is the same as (3). And similar to (4), we haveNrWrmax = B + �� �NvWvmax ; if d ' � ; (16)

whereWrmax is the window size of Reno when the queue
is full. The dropped probabilities for Reno and Vegas are
respectivelypr = B �Nv�qvB and pv = Nv �qvB : (17)

3.2.1 Approach 1

Using the same approach as in Section 3.1.1, the average
window size (�Wr) and the average queue size (�qr) of each
Reno connection is given by�W = Wrmax + Wrmax22 = 34Wrmax ;
and �qr = �W BB + �� =Wrmax 3B4(B + ��) ; (18)

respectively. Substituting (16) into (18), we get�qr = 3(B �Nv �qv)4Nr : (19)

Hence, the ratio of throughputs is given by�v�r = 4Nr�qv3(B �Nv �qv) : (20)

And again, to ensure compatibility between Reno and Ve-
gas,�v=�r = 1. Solving for�qv gives�qv = 3B4Nr + 3Nv :
Thus, we set� and� as� = b 3B4Nr + 3Nv � 1 and � = b 3B4Nr + 3Nv :

3.2.2 Approach 2

As in Section 3.1.1, the window size of each Reno connec-
tion after a dropped packet is given by (11), and each aver-
age window size is given by (12). Combining (8), (12), (15),
and (16) results in�qr = (B �Nv �qv)(3B + �qv)4NrB :
Substituting the above equation back into (1) gives�v�r = 4NrB �qv(B �Nv�qv)(3B + �qv)
Setting�v�r = 1 helps ensure that the Reno and Vegas con-
nection are compatible. Now, solving for�qv, we have�qv = [p(4Nr + 3Nv � 1)2 + 12Nr � (4Nr + 3Nv � 1)2Nr ℄B;
and set the Vegas parameters as follows:� = b[p(4Nr + 3Nv � 1)2 + 12Nr � (4Nr + 3Nv � 1)2Nr ℄B�1
and� = b[p(4Nr + 3Nv � 1)2 + 12Nr � (4Nr + 3Nv � 1)2Nr ℄B:
4 Experiments

To verify our observations made through a heuristic anal-
ysis of the behavior of Reno and Vegas, we run two sets of
simulations using the discrete-event simulationns, version
2.1b8a [14].

4.1 Network Topologies & Parameters

We consider two networks based on the generic topol-
ogy shown in Figure 2 and parametric details in Table 1.
The first network comes from [13] to use as a point of refer-
ence. The second network models the grid [7] between Los
Alamos and Sandia National Laboratories.
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Figure 2. Generic Topology



Network Reference Grid

Node Pairs (N ) 2 50
Links Bandwidth 10 Mb/s 100 Mb/s
L Delay 4 ms 1 ms
Link Bandwidth 1.55 Mb/s 155 Mb/s
BL Delay 4 ms 1.5 ms

Table 1. Parameters of Simulated Networks

For all our simulations, each connection starts an FTP
session at time 0 and ends at 200 seconds with the packet
size fixed at the standard 1500-byte Ethernet size. As
in [13], we measure the number of ACKs that each con-
nection receives whereACKR andACKV represent the
number of ACKs from Reno and Vegas, respectively. In the
general case ofNr Reno connections andNv Vegas con-
nections,ACKR (resp.ACKV ) show the average number
of ACKs over allNr Reno (resp.Nv Vegas) connections.

4.2 Reference Network

We use the same network that [13] did in order to (i)
confirm their results and (ii) confirm our analytic observa-
tions made in Section 3. In confirming our analytic results,
we show that Reno and Vegas are indeed compatible and
that overall network performance improves by distributing
bandwidth more evenly acrossall connections while still
maintaining high overall throughput.

The remainder of this section examines the performance
of our analytic heuristics in the case of two connections
competing head-to-head and in the case of multiple con-
nections competing. Within each case, we test our analytic
heuristics of Approach 1 and 2.

4.2.1 One Reno vs. One Vegas (Head-to-Head)

The experimental set-up here is similar to [13]. In gen-
eral, our results confirm the conclusions drawn by [13].
That is, as the buffer size increases, Reno uses more of the
buffer to steal bandwidth from Vegas as Vegas is throttled
by the “misconfigured”� and� parameters. In fact, Table 2
shows that in no case does Vegas get better throughput than
Reno and that as the buffer size increases up to 100, Reno
achieves 21 times higher throughput than Vegas.

Buffer ACKR ACKV ACKRACKV
7 16,555 9,131 1.813
10 20,763 4,972 4.176
15 18,581 7,209 2.577
25 20,980 4,823 4.350
50 23,678 2,096 11.297
100 24,544 1,179 20.818

Table 2. Reno vs. Default (Mis)configured Ve-
gas (� = 1, � = 3)

Tables 3 and 4 illustrate that with the proper configura-
tion of � and�, Vegas competes well with Reno. For the
smaller buffer sizes, Vegas performs almost twice as well;
this behavior occurs due to the aggressive nature of Reno’s
congestion control, i.e., always increasing its window even
though the buffer space is small. As the buffer sizes get
larger and Vegas’s� and� parameters adapt accordingly,
we see that Reno and Vegas each get their fair share of
bandwidth, i.e., the “fairness ratio”ACKR=ACKV � 1.
Thus, these simulations confirm that our analytic heuris-
tics from Sections 3.1.1 and 3.1.2 enable Reno and Vegas
to be compatible with each other. In addition, the heuristics
enhance overall network performance by distributing band-
width more evenly across Reno and Vegas while keeping
overall network throughput high.

Buffer ACKR ACKV � ACKRACKV
7 9,006 16,678 3 0.540
10 12,241 13,444 4 0.910
15 12,471 13,330 6 0.936
25 12,868 12,937 10 0.995
50 12,688 13,091 21 0.969
100 13,143 12,585 42 1.044

Table 3. Reno vs. Vegas with � = b 37B � 1,� = b 37B (Approach 1)

Buffer ACKR ACKV � ACKRACKV
7 9,006 16,678 3 0.540
10 12,241 13,444 4 0.910
15 12,471 13,330 6 0.936
25 12,868 12,937 10 0.995
50 11,747 14,032 23 0.837
100 12,233 13,495 46 0.906

Table 4. Reno vs. Vegas with � = b0:4641B �1, � = b0:4641B (Approach 2)

4.2.2 Multiple Reno vs. Multiple Vegas (Fixed Buffer)

The set of tests performed here are identical to those in Sec-
tion 4.2.1 with two exceptions: (i) There are 10 different
TCP connections vying for network bandwidth. (ii) The
buffer size is fixed at 250 packets.

Using the formulas for� and � from Sections 3.2.1
and 3.2.2, we again demonstrate that Vegas can be properly
configured to be compatible with Reno. Tables 5 and 6 show
that the fairness ratio (i.e.,ACKR=ACKV ) is close to one
in all cases. This is in stark contrast to Table 2 where the
fairness ratio is 20.818, meaning that Reno gets that many
times more bandwidth than Vegas.



Nr Nv ACKR ACKV � ACKRACKV
2 8 3,153 2,407 23 1.309
4 6 2,500 2,600 22 0.962
6 4 2,645 2,427 20 1.090
8 2 2,542 2,622 19 0.969

Table 5. Nr Reno vs. Nv Vegas with � and �
via Approach 1 and B = 250Nr Nv ACKR ACKV � ACKRACKV

2 8 2,952 2,457 24 1.201
4 6 2,500 2,600 22 0.962
6 4 2,584 2,517 21 1.027
8 2 2,542 2,622 19 0.969

Table 6. Nr Reno vs. Nv Vegas with � and �
via Approach 2 and B = 250

4.2.3 Multiple Reno vs. Multiple Vegas

In this set of tests, we fix the different types and number of
connections while varying the size of the buffer. And as ev-
idenced by Tables 7 and 8, we again demonstrate that with a
properly configured Vegas, Vegas is compatible with Reno.
Except for the first row of each table where Vegas beats
Reno, Reno and Vegas each get their fair share of band-
width as indicated by the fairness ratio of approximately
one in each row of Tables 7 and 8.

Buffer ACKR ACKV � ACKRACKV
100 1,746 3,399 8 0.514
200 2,571 2,556 17 1.006
300 2,690 2,416 25 1.113
400 2,648 2,437 34 1.087
500 2,744 2,321 42 1.182

Table 7. Five Reno vs. Five Vegas with � and� via Approach 1

Buffer ACKR ACKV � ACKRACKV
100 1,746 3,399 8 0.514
200 2,571 2,556 17 1.006
300 2,621 2,486 26 1.054
400 2,648 2,437 34 1.087
500 2,719 2,346 43 1.159

Table 8. Five Reno vs. Five Vegas with � and� via Approach 2

4.3 Grid Network

The experimental results for head-to-head competition
on the grid network are shown in Tables 9 and 10. We
observe that all the fairness ratios lie in the interval

[0.703,1.465]. These results are in stark contrast to Ta-
ble 2 where Reno is run against the default Vegas config-
uration, resulting in fairness ratios that lie in the interval
[1.813,20.818].

For some cases, e.g., buffer size = 300 in Table 9, Reno
achieves better throughput than Vegas. Why does this hap-
pen? Before steady state is reached, a Vegas packet is
dropped, and a subsequent timeout occurs, thus providing
Reno the opportunity to aggressively grab network band-
width than Vegas relinquishes. The same reasoning can be
used to explain Table 10 when the buffer size is 200.

Buffer ACKR ACKV � ACKRACKV
25 1,088,323 1,279,521 10 0.851
50 1,132,451 1,377,165 21 0.822
100 1,237,816 1,337,189 42 0.926
200 1,190,797 1,310,759 85 0.908
300 1,566,684 1,004,753 128 1.459
400 1,543,070 1,322,325 171 1.167

Table 9. Reno vs. Vegas with � = b 37B � 1,� = b 37B (Approach 1)

Buffer ACKR ACKV � ACKRACKV
25 1,077,134 1,448,115 11 0.744
50 1,051,922 1,495,565 23 0.703
100 1,080,863 1,489,905 46 0.725
200 1,506,751 1,028,086 92 1.465
300 1,455,002 1,115,923 139 1.303
400 1,333,429 1,083,871 185 1.230

Table 10. Reno vs. Vegas with � = b0:4641B�1, � = b0:4641B (Approach 2)

Tables 11 through 14 show the experimental results for
multiple TCP connections and different buffer sizes. The
results in these tables closely verify the analytic heuristics
that we developed in Section 3. In fact, with the exception
of one data point, all the fairness ratios lie within 5% of the
ideal fairness ratio of one, i.e., [0.955,1.068].

5 Fairness of TCP Reno vs. TCP Vegas

As shown in [5, 6, 12], Reno favors connections with
shorter delays. In contrast, Mo et al. [13] demonstrate that
Vegas does not suffer from this delay bias via a closed, fluid
model and simulation; however, they do not consider the
fairness between Reno and Vegas because of the demon-
strated incompatibility of Reno and Vegas (in its default
configuration, i.e,.� = 1 and� = 3). By using the closed,
fluid-model approximation in [13], we graphically illustrate
the fairness of Reno and Vegas at steady state in the bottle-
neck link.

In the steady state, letWr(t) andWv(t) be the window
sizes of Reno and Vegas at timet, respectively. By assum-



Nr Nv ACKR ACKV � ACKRACKV
2 8 248,824 260,565 93 0.955
4 6 258,381 257,747 88 1.002
6 4 256,206 260,656 83 0.983
8 2 259,968 244,561 78 1.063

Table 11. Nr Reno vs. Nv Vegas with � and �
via Approach 1 and B = 1; 000Nr Nv ACKR ACKV � ACKRACKV

2 8 223,790 266,824 96 0.839
4 6 253,251 261,166 89 0.970
6 4 255,889 261,131 84 0.980
8 2 260,206 243,617 79 1.068

Table 12. Nr Reno vs. Nv Vegas with � and �
via Approach 2 and B = 1; 000

Buffer ACKR ACKV � ACKRACKV
500 259,967 256,245 42 1.015
750 257,939 258,098 64 0.999

1,000 257,946 258,247 85 0.999
1,250 255,283 259,859 107 0.982
1,500 255,258 259,820 128 0.982

Table 13. Five Reno vs. Five Vegas with � and� via Approach 1

Buffer ACKR ACKV � ACKRACKV
500 257,894 258,318 43 0.998
750 255,366 260,672 65 0.979

1,000 253,942 262,251 87 0.968
1,250 253,966 261,168 108 0.972
1,500 252,422 262,657 130 0.961

Table 14. Five Reno and Five Vegas with � and� by Approach 2

ing that the throughput and the queue size of each connec-
tion is relatively constant, we haveWi(t) = qi(t) + �i(t) � di; i = r; v; (21)

where�i(t); i = r; v, qi(t); i = r; v anddi; i = r; v are
the throughput, queue size, and BaseRTT, respectively, for
Reno and Vegas connections. Moreover, we also have�i(t) = Wi(t)p(t) + di ; i = r; v; (22)

wherep(t) denotes the queueing delay of the bottleneck link
at timet. Let� andB denote the capacity and the buffer size
of the bottleneck link. With large enoughB, we assume that
the link is fully utilized, so we haveWr(t)p(t) + dr + Wv(t)p(t) + dv = �: (23)

For simplicity, we letdr = dv = d. By (23),p(t) = Wr +Wv � �d� : (24)

Hence, from (21), (22), and (24) and given the window size
of Reno isWr and the queue size of Vegas isqv ; we can
compute the window size of Vegas (Wv) at steady state:Wv(t; qv(t)) = �d+ qv(t)�Wr2+p(�d+ qv(t)�Wr)2 + 4qv(t)Wr2
Similarly, givenWv andqr, we also haveWr(t; qr(t)) = �d+ qr(t)�Wv2+p(�d+ qr(t)�Wv)2 + 4qr(t)Wv2

In order to show the stability region of Reno and Ve-
gas, we first note that Vegas keeps itsqv between� and�; hence, its window size will be stable if it lies betweenWv(t; �) andWv(t; �). Furthermore, the window size of
Reno can be varied as a function ofqr(t) where the two
extreme cases areqr(t) = 0 andqr(t) = B � qv(t). There-
fore, by (25) and the fact thatqr(t) = Wr(t) � B�d+B ,Wr(t) 2 [�d � Wv(t); �d + B � Wv(t)℄ for any givenWv(t). However, when Reno incurs a packet loss, its win-
dow size is halved. If multiple losses do not occur, Reno
resumes its linear increase up to the maximum value; there-
fore, we assume that the size of the Reno window at the sta-
bility region lies betweenmax(�d+B�Wv(t)2 ; �d �Wv(t))
and�d+B�Wv(t). For convenience, we denoteRmax =�d+B �Wv(t) andRmin = �d�Wv(t)

As stated above, we plot the graph of the stability re-
gion for one Reno connection versus one Vegas connec-
tion over the “Reference Network” withB = 10. Fig-
ure 3 shows the stability region of two Vegas connec-
tions where the linealphai and betai, i = 1; 2 denotef(W1;W2)jWi��id = �g andf(W1;W2)jWi��id = �g,
respectively. Furthermore, the fairness line is the line such
that the window sizes of both connections are the same, i.e.,f(W1;W2)j�1 = �2g. In this case, the fairness line passes
right through the stability region (also referred to as the con-
vergence region); hence, by using only Vegas in the net-
work, all connections get fair throughput. Figure 4 shows
one Reno connection versus one Vegas connection with de-
fault parameters of� = 1 and� = 3. In this case, the con-
vergence region of Reno and Vegas lies between the linesRmax, Rmax=2, alpha andbeta. However, the fairness
line hardly passes through the convergence region; hence, it
introduces unfairness, and Reno’s throughput is higher than
Vegas’s. However, when both� and� are set appropriately,
Figure 5 shows that the fairness line clearly goes through
the middle of the convergence region.
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Figure 3. Two TCP Vegas Windows with � = 1
and � = 3
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Figure 4. TCP Reno ( Wr) and TCP Vegas ( Wv)
Windows with B = 10, � = 1, and � = 3

6 Conclusion

Prior research demonstrated the incompatibility of TCP
Reno and TCP Vegas. In this paper, we showed that the
incompatibility of Reno and Vegas isnot inherent to their
congestion-control algorithms but an artifact of misconfig-
uring Vegas’s congestion-avoidance parameters.

In particular, we showed how inappropriate the default
values of� and� in Vegas are (when in competition with
Reno), explained the relationship of these parameters to
variations in network performance, and demonstrated how
to set the parameters appropriately so that Reno and Vegas
are compatible.
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