| EEE Synposi um on Applications and the Internet (SAINT 2003),
Ol ando, Florida, January 2003. LA-UR 01-6506

Enabling Compatibility Between TCP Reno and TCP Vegas*

W. Feng S. Vanichpun
Computer & Computational Sciences Division Dept. of Electrical & Computer Engineering
Los Alamos National Laboratory University of Maryland, College Park
feng@lanl.gov sarut@glue.umd.edu
Abstract In contrast, TCP Vegas generally performs better with

respect to overall network utilization [1, 3], stability, [B3],

Despite research showing the superiority of TCP Vegas fairness [9,13], throughput and packet loss [1,3], andtburs
over TCP Reno, Reno is still the most widely deployed vari- ness [4] when the entire network consists of Vegas-only
ant of TCP. This predicament is due primarily to the alleged connections. However, research to date has shown that
incompatibility of Vegas with Reno. While Vegasinisolatio when Reno and Vegas perform head-to-head, Reno gen-
performs better with respect to overall network utilizatio erally steals bandwidth from Vegas [1, 13]. Consequently,
stability, fairness, throughput and packet loss, and burst while Vegas has been around for over five years, its adoption
ness; its performance is generally mediocre in any environ- has been non-existent due to perceived incompatibilites b
ment where Reno connections exist. Hence, there exists néween Reno and Vegas.
incentive for any operating system to adopt TCP Vegas. With a careful analysis of how Reno and Vegas use buffer

In this paper, we show that the accepted (default) con- space in routers, we will show that Reno and Vegas can be
figuration of Vegas is indeed incompatible with TCP Reno. compatible with one another if Vegas is configured prop-
However, with a careful analysis of how Reno and Vegaserly. Further, overall network performance actually im-
use buffer space in routers, Reno and Vegas can be compatproves with the addition of properly configured Vegas flows
ible with one another if Vegas is configured properly. Fur- competing head-to-head with Reno flows, thus encouraging
thermore, we show that overall network performance actu- the incremental adoption of Vegas.
ally improves with the addition of properly configured Vegas

flows competing head-to-head with Reno flows. 2 Congestion-Control Mechanisms

Keywords. TCP Reno, TCP Vegas, congestion control,

congestion avoidance, compatibility, fairness, convecge To ensure efficient use of network bandwidth, TCP con-
trols its sending rate based on feedback from the network.

1 Introduction In order to control the sending rate, TCP estimates the-avall

able bandwidth in the network vialsandwidth-estimation

To address a series of congestion collapses JacobsoSChemqlgl' In Tahoe and Reno, the bgnd_width-estimation
proposed a congestion-control mechanism in TCI'D that later cheme uses p_acket Iosses (as an |nd'|cat|on'of network con-
became known as TCP Tahoe [10]. Since then, many mod_gestlpn) to estimate available bandwidth Whlle Vegas uses
o X S the difference in the expected and actual sending rates.
ifications have been made to TCP, resulting in two more

notable variants — TCP Reno [11] and TCP Vegas [3].

TCP Reno, like TCP Tahoe, allows congestion to occur
(i.e., induces packet loss) in order to estimate the availab , ,)
bandwidth in the network. Once packet loss is detected, While there are no packet losses, Reno continues to in-
Reno recovers by cutting its window size in half. This be- créase its window size, and hence sending rate, by one
havior causes a periodic oscillation in the window size; an Packet each round-trip time (RTT), thus allowing conges-
oscillation that many next-generation Internet applimasi tion to eventually occur. Reno fthen detepts congestion via
do not tolerate well. Further, recent work shows that this Packet loss and recovers from it by halving the size of the
oscillatory behavior induces chaotic behavior into the net Sénder window (i.e., halving the sending rate).

work [4, 15], thus adversely affecting overall network per-
formance. 2.2 TCP Vegas

21 TCPReno

*This work was supported by the U.S. Dept. of Energy’s LDRD-ER . .
Program and the U.S. Dept. of Energy’s Office of Science S€ll#%o- _/egas enhances Ren_o by ad_ODtmg a bandwidth-
gram through Los Alamos National Laboratory contract W54NG-36. estimation scheme that tries to avoid rather than react to

congestion. Specifically, Vegas uses the difference in thethroughput 4,) to Reno throughputX;.) is given by
expected and actual flow rates to estimate the available A\ _ 9

bandwidth in the network. When the network is uncon- ALI U (1)
gested, the actual flow rate is close to the expected flow Ae @r B—ay

rate; otherwise, the actual rate is smaller than the expecte Thus, whenB = 34,, the ratio of the throughputs is one.
rate, indicating that buffer space in the network is filling As B increases further, Reno is favored. Hasegawa et al. [8]
up and that the network is approaching a congested stateprovide a more complete analysis of the throughputs when
The difference in flow rates can be translated into the differ there areN, Vegas connections andl, Reno connections
ence between the window size and the number of acknowl-competing for the queue space at the same bottleneck link.
edged packets during the RTT, respectively, ileiff =

(Expected — Actual) x BaseRTT whereExpected is the 3.1 Analysisof Two Connections

expected ratedActual is the actual rate, anBaseRTT is

the minimum-observed RTT. S Consider the case when one Vegas connection and one
To adjust the size of the congestion windowwf.d) Reno connection share a bottleneck link using a droptail
appropriately, Vegas uses two threshold valuesand 3 queue. Let the bottleneck link have a transmission raje of
(whose default values are 1 and 3, respectively), to controlpackets/s and a round-trip propagation delay- afeconds
the adjustment ofwnd at the source host as follows: with gueue sizeB packets_ Lety, andqr denote the num-
o ber of Vegas packets and Reno packets in the queue, respec-
cwnd + 1 !f D?ff <a tively. Then, in order to allow Vegas to compete with Reno,
cwnd < ¢ cwnd —1 it Diff>f Vegas must set its and3 parameters so that Equation (1)
cwnd otherwise & < Dif f < f9) is such that\, /A, ~ 1.

) Let W, d, andD denote the window size (i.ecuwnd),
Conceptually, Vegas tries to keep at leaspackets but gageRTT delay, and actual RTT delay of Vegas, respec-
no more than3 packets queued in the network. Thus, gyely. At steady state, Vegas tries to keep the differ-
with only one Vegas connection, the w!ndow size of Ve- gnce Oiff) between its actual throughputi¢tual) and
gas converges to a point that lies betwegndow + « and expected throughputzpected) betweena and 8 where
window + # wherewindow is the maximum window size 4 .ty,al — W/D and Ezpected = W/d. Then, as noted in

that does not cause any queueing. Section 2, we calculat®i f f as follows:
Selectingy ands holds an implicit tradeoff between net-

work utilization, goodput, and fairess. By using the défau e 3 (D —d)

settings for these parameters, i®.= 1,3 = 3, prior re- Diff = (Expected = Actual) - d = W - (@)

search inadvertently favored Reno over Vegas [8, 13]. and interpreti f f as the number of packets in the queue,
i.e.,Diff ~ q,.

3 Compatibility of TCP Renoand TCP Vegas LetW,, andW, denotethe window sizes of Vegas

and Reno when the queue is full, respectively. Since Vegas

Prior research demonstrates that Vegas (in isolation) keepsy, = g, atall time andDi f f ~ g,, we have
generally performs better than other implementations of D—d
TCP [1,3,4,9,13]. Ahn et al. [1] and Mo et al. [13] also Wormae " Qo
show that when a Vegas connection competes with a Reno)
connection, Vegas does not receive a fair share of bandwidtHr €auivalently,

due to its conservative congestion-avoidance mechanism. D T+ B/u

Here, we show that the “conservative” congestion- Wenao = Wwp— = g7

: L e O D-d (B—1)/u
avoidance mechanism i®t to blame for Vegas'’s inability
to grab a fair share of bandwidth. Rather, the alleged in- ~ QUT + B//‘. if d~r, (3)
compatibility between Reno and Vegas is due to using the Blu
default (mis)configuration of Vegas parameters, he= 1

whered = 7 + 1/pandD = 7 + B/u are the values of
the BaseRTT delay and actual RTT delay of Vegas when
he queue is full, respectively. Therefore, the window size
of Reno when the queue is full is given by

andg = 3.

Consider one TCP Vegas connection and one TCP Ren
connection over a bottleneck link. At steady state, the ¥ega
connection keeps (on average) approximadglx 5 pack-
ets in the queue while the Reno connection tries to gain as Wrwo =B4+pr—Ww, . ifd~r. 4)
much bandwidth (and queue space) as it can until a packetis . .
lost. Hence, the r(lumbqer of TCpP Rgno packets in th% queue . After the queuels full, the probability that a Reno packet
is g, € [0, B — g,] whereB is the buffer capacity at the Will be droppedis
bottleneck link. Assuming that the average value;,0is

Gr = B*Tq (e.g., uniform distribution), the ratio of Vegas Pr

[/ B - fjv
= (5)

B Grmae T Qmas B

and the probability that a Vegas packet will be dropped is * ' ' ' ' T

Qomas G

Y B’ ©) d

p?)
We now consider two approximations for settingand 5.
Approach 1: We assume that the packets dropped are only
fromthe Reno connection and consider only the fast retrans-
mit of Reno while ignoring its timeout mechanism. There-

T

congestion window

N
5

fore, if a Reno packet is dropped, then the Reno window]

sizeW,., .. drops to%. Approach 2: We also consider

the case of a egas packet being dropped. Hence, if a Reno w0 ‘ ‘ ‘ ‘ ‘
packet is dropped, its window size evolves the same way as “ ¢ ® e ® * ”
in Approach 1, else if a Vegas packet is dropped, then the

Reno window size increases by 1. Figure 1. Evolution of the Congestion Window

311 Approachl

Figure 1 shows a simulation of one Reno connection and3-1.2 Approach 2
one Vegas connection at steady state. From this figure, th

average window size of the Reno connectioin| is Gf a Reno or Vegas packet is dropped, the window size of

RenoW, becomes
W,

- Wipas + —52= 3
_ Prmae _° > Whrnas
W, B 4W’f’mn‘m . (7) W, = > pr + (WTmam + l)p,U
By definition, the average queue size of the Reno connec- o Wi W 11
tion is the fraction ofi¥, that is buffered in the queue, i.e., = 5 Prt Wrna. Do, (11)
=TV B 8 where we assume th&’,. .. > 1 and thatp, andp, are
g =Wy . (8) : .
B + pr given by (5) and (6). From (11), we then approximate the

Substituting (7) into (8) gives average window size of Rendl{,.) by

B - W, Wr 3B 71)
3 + — W +q _

g, = - W, = —fwee T f 12
q’r‘ W’I‘mn‘m 4(B + HT) (9) 2 mamx 4B ()
Substituting (9) into (1), the ratio of the throughputs is As in Section 3.1.1 but with (8) and (12),
Ao _ Aa(B A pr) oW By BBBta) g
A W,...3B =g e T e BB +)
4Gy
- 3(B—q)’ (10) Hence, substituting (13) into (1) gives
where (10) follows from (4) and (3). Now, by settiRg = A 4q,BB+pr) 4q,B (14)
1 and solving foig,, we get A W, .. BBB+gq,) 3B?-23,B-a’
G = §B. where (14) follows from (4) and (3). To ensure compatibil-
7 ity between Reno and Vegas, we againsgt\, = 1 and

o L%B* 1] and §= L%BJ- a=104641B — 1| and (= [0.4641B].

The motivation for setting: to be one less thafiis two- ~ 3-2 Analysisof Multiple Connections
fold. First, settingx = g introduces stability problems [2],
i.e., the congestion window oscillates around the equilib- In this section, we generalize our two-connection anal-
rium value. Second, setting and g too far apart creates a ysis to deal withV, Vegas connections andl. Reno con-
larger stability region than needed, resulting in conmexi nections sharing a bottleneck link pfpacket/s. Let every
that can converge to opposite ends of the stability region,connection have a round-trip propagation delayrodec-
thus affecting fairness [2, 9]. onds while sharing a bottleneck buffer sizef®packets. To

ensure compatibility between each connection, each con-3.2.2 Approach 2

nection must equally share the bottleneck buffer, or equiva

lently, the average queue size of each connection must bé'S in Section 3.1.1, the window size of each Reno connec-
identical. We also assume that the connections are syniOn after a dropped packet is given by (11), and each aver-

chronous, i.e., at any given instant in time, each Vegas con-29€ window size.is given by (12). Combining (8), (12), (15),
nectioni has queue size,, ~ g, < Vi =1,2,...,N, and (16) results in
and each Reno connectignhas the same average queue

sizeg, V j = 1,2,...,N,. Thus, Vegas should set its Gr =

(B - Nv‘jv)(?’B + gv)

andg parameters so that, /g, ~ 1. AN, B
When the queuels full, the window size of Vedas,.... Substituting the above equation back into (1) gives

derived from (2), is

D)\1) _ 4Nquz;
Wopar = W —g A (B=N,a,)(3B +)
D —d T vv v
~ q*vﬂ, ifd~r, (15) Settingi—: = 1 helps ensure that the Reno and Vegas con-

B/ nection are compatible. Now, solving fgr, we have

which is the same as (3). And similar to (4), we have
(4N, + 3N, — 1)2 + 12N, — (4N, + 3N, — 1)

fd~r, (16) T =1 2N, 1B,

N,W, =B+ ur— N,W,

mamx mawz?

WhereW,mm is the window size of Reno when the queue gnd set the Vegas parameters as follows:
is full. The dropped probabilities for Reno and Vegas are

respectively V(@N, + 3N, —1)2 + 12N, — (4N, + 3N, — 1)
]) o=l = |B-1]
B — Nyq, Ny 2N,
Pr=—p— and p, = 3 a7)
and
321 Approachl _.V/(@N, +3N, —1)2 + 12N, — (4N, + 3N, — 1)]BJ
Using the same approach as in Section 3.1.1, the average B 2N, '
window size {¥,.) and the average queue sizg)(of each
Reno connection is given by 4 Experiments
W, 4 Weme g . . -
W=—Tmee 2 _ Ty, To verify our observations made through a heuristic anal-
2 4 ysis of the behavior of Reno and Vegas, we run two sets of
and simulations using the discrete-event simulatimversion
B 3B 2.1b8a[14].
=W =Wypoo e, 18
e B+ pur e 4(B + pr) (18)
respectively. Substituting (16) into (18), we get 4.1 Network Topologies& Parameters
G = 3(B - quv)_ (19) We consider two networks based on the generic topol-
4N, ogy shown in Figure 2 and parametric details in Table 1.

The first network comes from [13] to use as a point of refer-
ence. The second network models the grid [7] between Los
Ay 4N, G, Alamos and Sandia National Laboratories.

R R .

Hence, the ratio of throughputs is given by

And again, to ensure compatibility between Reno and Ve-
gas,\,/\, = 1. Solving forg, gives

_ 3B
= 4N, 3N,
Thus, we setv andf as))
B B Figure 2. Generic Topology
3 3
= |— —1 =|—].
Ry el B Bl by vaney

| Network || Reference] Grid |

Node Pairs V) 2 50 Tables 3 and 4 illustrate that with the proper configura-
Links | Bandwidth 10 Mb/s | 100 Mb/s tion of « and g, Vegas competes well with Reno. For the
L Delay 4ms 1ms smaller buffer sizes, Vegas performs almost twice as well;
Link | Bandwidth || 1.55 Mb/s| 155 Mb/s this behavior occurs due to the aggressive nature of Reno’s
BL Delay 4 ms 15ms congestion control, i.e., always increasing its windowreve

though the buffer space is small. As the buffer sizes get
larger and Vegas's: and 5 parameters adapt accordingly,
we see that Reno and Vegas each get their fair share of
bandwidth, i.e., the “fairness ratidACKr/ACKy = 1.

For a” our Simu'ationS, each Connection starts an FTP ThUS, these Simulations Confirm that our analytiC heuris-
session at time 0 and ends at 200 seconds with the packeicS from Sections 3.1.1 and 3.1.2 enable Reno and Vegas
size fixed at the standard 1500-byte Ethernet size. Ast0 be compatible with each other. In addition, the heursstic
in [13], we measure the number of ACKs that each con- enhance overall network performance by distributing band-
nection receives wherd CK and ACKy represent the ~ Width more evenly across Reno and Vegas while keeping
number of ACKs from Reno and Vegas, respectively. In the overall network throughput high.
general case ofV, Reno connections and, Vegas con-
nections, ACK g (resp.AC K y) show the average number

Table 1. Parameters of Simulated Networks

ACKR

of ACKs over allN,. Reno (respN, Vegas) connections. Bu7ffer /;%Igg ‘igg‘é g ?)?5}2, v
10 12,241 | 13,444 | 4 0.910

4.2 Reference Network 15 | 12,471 | 13,330 | 6 | 0036
25 12,868 | 12,937 | 10 | 0.995

We use the same network that [13] did in order to (i) 50 12,688 | 13,091 | 21 | 0.969
confirm their results and (ii) confirm our analytic observa- 100 | 13,143 | 12,585 | 42| 1.044

tions made in Section 3. In confirming our analytic results,
we show that Reno and Vegas are indeed compatible and Table 3. Reno vs. Vegas with o = [2B — 1],
that overall network performance improves by distributing 3 = L%BJ (Approach 1)
bandwidth more evenly acrosdl connections while still

maintaining high overall throughput. Buffer | ACKr | ACKy | ﬁégﬁ
The remainder of this section examines the performance 7 9,006 | 16,678 | 3 | 0.540

of our analytic heuristics in the case of two connections 10 12,241 | 13,444 | 4 | 0.910
competing head-to-head and in the case of multiple con- 15 12,471] 13330 | 6 | 0.936
nections competing. Within each case, we test our analytic 25 12,868 | 12,937 | 10 | 0.995
heuristics of Approach 1 and 2. 50 11,747 | 14,032 | 23| 0.837
100 12,233 | 13,495 | 46 | 0.906

4.21 OneRenovs. One Vegas (Head-to-Head) Table 4. Reno vs. Vegas with « = [0.4641B —

The experimental set-up here is similar to [13]. In gen- 1], = [0.4641B] (Approach 2)
eral, our results confirm the conclusions drawn by [13].

That is, as the buffer size increases, Reno uses more of the

buffer to steal bandwidth from Vegas as Vegas is throttled

by the “misconfigured& andg parameters. In fact, Table 2

shows that in no case does Vegas get better throughput than

Reno and that as the buffer size increases up to 100, Reng 5 > Multiple Reno vs. Multiple Vegas (Fixed Buffer)
achieves 21 times higher throughput than Vegas.

v The set of tests performed here are identical to those in Sec-
Buffer | ACKr | ACKv | 5oy tion 4.2.1 with two exceptions: (i) There are 10 different
170 ;g'ggg ?Llsla% i'%é TCP cqnngcti_ons vying for network bandwidth. (ii) The
i 18581 | 7200 | 2577 buffer size is fixed at 250 packets.
25 20,980 | 4,823 | 4.350 Using the formulas fore and 5 from Sections 3.2.1
50 23,678 | 2,096 | 11.297 and 3.2.2, we again demonstrate that Vegas can be properly
100 | 24,544 | 1,179 | 20.818 configured to be compatible with Reno. Tables 5 and 6 show
that the fairness ratio (i.,eACK g/ ACKYy) is close to one
Table 2. Reno vs. Default (Mis)configured Ve- in all cases. This is in stark contrast to Table 2 where the
gas (a=1,8=23) fairness ratio is 20.818, meaning that Reno gets that many

times more bandwidth than Vegas.

N. | N, | ACKr | ACKv | B | Zc5-
2 | 8 | 3153 | 2,407 | 23| 1.309
4 | 6 | 2500 | 2,600 | 22| 0.962
6 | 4 | 2,645 | 2,427 | 20| 1.090
8 | 2 | 2542 | 2,622 | 19| 0.969

Table 5. N, Reno vs. N, Vegas with a and
via Approach 1 and B = 250

N. | N, | ACKr | ACKv | B | Fci™
2 | 8 | 2952 | 2,457 | 24| 1201
4 | 6 | 2500 | 2,600 | 22| 0.962
6 | 4 | 2584 | 2,517 | 21| 1.027
8 | 2 | 2542 | 2,622 | 19| 0.969

Table 6. N, Reno vs. N, Vegas with a and 3
via Approach 2 and B = 250

4.2.3 Multiple Renovs. Multiple Vegas

In this set of tests, we fix the different types and number of
connections while varying the size of the buffer. And as ev-

idenced by Tables 7 and 8, we again demonstrate that with a

properly configured Vegas, Vegas is compatible with Reno.
Except for the first row of each table where Vegas beats

Reno, Reno and Vegas each get their fair share of band-

width as indicated by the fairness ratio of approximately
one in each row of Tables 7 and 8.

Buffer | ACKRr | ACKv | B | 4652
100 1,746 3,399 8 0.514
200 2,571 2,556 | 17 | 1.006
300 2,690 2,416 | 25| 1.113
400 2,648 2,437 | 34| 1.087
500 2,744 2,321 | 42| 1.182
Table 7. Five Reno vs. Five Vegas with « and
B via Approach 1
Buffer | ACKr | ACKv | B | f6i2
100 1,746 3,399 8 0.514
200 2,571 2,556 | 17 | 1.006
300 2,621 2,486 | 26 | 1.054
400 2,648 2,437 | 34| 1.087
500 2,719 2,346 | 43 | 1.159
Table 8. Five Reno vs. Five Vegas with « and

B via Approach 2

4.3 Grid Network

The experimental results for head-to-head competition
on the grid network are shown in Tables 9 and 10. We
observe that all the fairness ratios lie in the interval

[0.703,1.465]. These results are in stark contrast to Ta-
ble 2 where Reno is run against the default Vegas config-
uration, resulting in fairness ratios that lie in the intrv
[1.813,20.818].

For some cases, e.g., buffer size = 300 in Table 9, Reno
achieves better throughput than Vegas. Why does this hap-
pen? Before steady state is reached, a Vegas packet is
dropped, and a subsequent timeout occurs, thus providing
Reno the opportunity to aggressively grab network band-
width than Vegas relinquishes. The same reasoning can be
used to explain Table 10 when the buffer size is 200.

Buffer | ACKr | ACKv | B | G65%
25 1,088,323| 1,279,521| 10 0.851
50 1,132,451 1,377,165| 21 0.822
100 1,237,816 1,337,189 42 0.926
200 1,190,797 1,310,759| 85 0.908
300 | 1,566,684| 1,004,753| 128 | 1.459
400 1,543,070 1,322,325| 171 | 1.167
Table 9. Reno vs. Vegas with o = [2B — 1],
B = |2B] (Approach 1)
Buffer | ACKr | ACKv | B | G032
25 1,077,134| 1,448,115 11 0.744
50 1,051,922| 1,495,565| 23 0.703
100 1,080,863 | 1,489,905| 46 0.725
200 1,506,751 | 1,028,086 92 1.465
300 1,455,002 1,115,923| 139 | 1.303
400 | 1,333,429| 1,083,871| 185 | 1.230

Table 10. Reno vs. Vegas with « = [0.4641B —
1], 8 = |0.4641B] (Approach 2)

Tables 11 through 14 show the experimental results for
multiple TCP connections and different buffer sizes. The
results in these tables closely verify the analytic heiosst
that we developed in Section 3. In fact, with the exception
of one data point, all the fairness ratios lie within 5% of the
ideal fairness ratio of one, i.e., [0.955,1.068].

5 Fairnessof TCP Renovs. TCP Vegas

As shown in [5, 6, 12], Reno favors connections with
shorter delays. In contrast, Mo et al. [13] demonstrate that
Vegas does not suffer from this delay bias via a closed, fluid
model and simulation; however, they do not consider the
fairness between Reno and Vegas because of the demon-
strated incompatibility of Reno and Vegas (in its default
configuration, i.e,o« = 1 andg = 3). By using the closed,
fluid-model approximation in [13], we graphically illustea
the fairness of Reno and Vegas at steady state in the bottle-
neck link.

In the steady state, 1&V..(¢) andW, (¢) be the window
sizes of Reno and Vegas at timerespectively. By assum-

ACKRr | ACKv | B | Zci- For simplicity, we letd, = d, = d. By (23),
248,824 | 260,565 93 | 0.955
258,381 | 257,747 | 88 | 1.002 W, + W, — ud
256,206 | 260,656 | 83 | 0.983 p(t) - U ’
259,968 | 244,561 | 78 | 1.063

(24)

| o &N 2
N| & o | 2

Hence, from (21), (22), and (24) and given the window size

Table 11. N, Renovs. N, Vegas with a and 3 of Reno isWW, and the queue size of Vegasgs, we can
via Approach 1 and B = 1,000 compute the window size of Vegald’() at steady state:
N, [N, | ACKr | ACKv | B | Z5xE W _pd+qy(t) =W,
2 [8 | 223,790| 266,824 96 | 0.839 o) = 5
4 | 6 | 253,251 261,166| 89 | 0.970 —
6 | 4 | 255,880| 261,131] 84 | 0.980 LV pd + 0 (t) = W)? + dgy (W,
8 2 260,206 | 243,617 79 | 1.068 2

Table 12. N, Renovs. N, Vegas with o and 8 Similarly, giveni¥’, andg,, we also have

via Approach 2 and B = 1,000 _
Wity = Erel W
Buffer | ACKr | ACKv | B | G55 N V(pd + gr(t) — Wy)? + 4g, ()W,
500 | 259,967 | 256,245| 42 1.015 2
750 | 257,939| 258,098 | 64 | 0.999 In order to show the stability region of Reno and Ve-
1,000 | 257,946 | 258,247| 85 | 0.999 gas, we first note that Vegas keeps jtsbetweena and
1,250 | 255,283 | 259,859 | 107 | 0.982 B; hence, its window size will be stable if it lies between
1,500 | 255,258 259,820| 128 | 0.982 W, (t,a) andW,(t, 3). Furthermore, the window size of
,)) Reno can be varied as a function @f(t) where the two
Table 13. Five Reno vs. Five Vegas with a and extreme cases arg(t) = 0 andq, (t) = B — q,(t). There-
f via Approach 1 fore, by (25) and the fact that, (1) = W, (1) - B,
ACTKE W, (t) € [ud — Wy(t), nd + B — W, (t)] for any given
Buffer | ACKr | ACKv | 8 | acry W, (t). Ho[wever, when Reno incurs a pl\cket loss, its win-

500 | 257,894 | 258,318| 43 | 0.998
750 | 255,366| 260,672 65 | 0.979
1,000 | 253,942 | 262,251| 87 | 0.968

dow size is halved. If multiple losses do not occur, Reno
resumes its linear increase up to the maximum value; there-

1250 | 253.966 | 261.168| 108 | 0.972 fore, we assume that the size of the Reno window at the sta-
1,500 | 252,422 | 262,657 | 130 | 0.961 bility region lies betweemnax(£EE- W8 g — 177, (1))
andud+ B —W,(t). For convenience, we dena@naz =
Table 14. Five Reno and Five Vegas with « and pd + B — W, (t) andRmin = pd — W, (t)
B by Approach 2 As stated above, we plot the graph of the stability re-

gion for one Reno connection versus one Vegas connec-
tion over the “Reference Network” witlB = 10. Fig-
. . ure 3 shows the stability region of two Vegas connec-
ing that thg throughput and the queue size of each CONNECtons where the linaulpha; and beta;, i — 1,2 denote
tion is relatively constant, we have (W, Wz)\Wi—/\id = a) and{(W_] 7 Wz)IWij/\id :.B}’
Wi(t) = qi(t) + \i(t) - di, i =r,v, (21) respectlvgly. Fur'ghermore, the fairness line is the Ilnehsq
that the window sizes of both connections are the same, i.e.,
where;(t),i = r,v, ¢;(t),i = r,v andd;,i = r,v are {(Wy,W2)|A1 = A2}, In this case, the fairness line passes
the throughput, queue size, and BaseRTT, respectively, forright through the stability region (also referred to as the
Reno and Vegas connections. Moreover, we also have vergence region); hence, by using only Vegas in the net-
work, all connections get fair throughput. Figure 4 shows
Wi (t) . . X .
Ni(t) = ——2—, i=ruv, (22) one Reno connection versus one Vegas connection with de-
p(t) +d; fault parameters of = 1 andj = 3. In this case, the con-

wherep(t) denotes the queueing delay of the bottleneck link vergence region of Reno and Vegas lies between the lines

attimet. Let andB denote the capacity and the buffer size 1747 Rmaz/2, alpha andbeta. However, the fai.rness .
of the bottleneck link. With large enoudh, we assume that !lne hardly passes through the convergence regiorn, hence, |
the link is fully utilized, so we have introduces unfairness, and Rena’s throughput is higher tha

Vegas’s. However, when bothandg are set appropriately,
W,.(t) W,(t) Figure 5 shows that the fairness line clearly goes through
p(t) +d pt)+d, H the middle of the convergence region.

(23)

beta2
faimess line ——--

w2

a=1

Figure 3. Two TCP Vegas Windows with
and =3

_Rmin —-—-]
faimess line -~

wr
@

LY
®

10 12

Figure 4. TCP Reno (;) and TCP Vegas (W,)
Windows with B =10, =1,and =3

6 Conclusion

Prior research demonstrated the incompatibility of TCP

_Rmin —-—-]
faimess line -~

wr
@

Figure 5. TCP Reno (,) and TCP Vegas (W,)
with B =10, a =3, =4, and 3B/7 = 4.285

(2]

(3]

(4]

(5]

(7]

(8]

Reno and TCP Vegas. In this paper, we showed that the [9]

incompatibility of Reno and Vegas isot inherent to their

congestion-control algorithms but an artifact of misconfig

uring Vegas's congestion-avoidance parameters.

In particular, we showed how inappropriate the default
values ofa and 8 in Vegas are (when in competition with

[10]
[11]

Reno), explained the relationship of these parameters to[12]

variations in network performance, and demonstrated how

to set the parameters appropriately so that Reno and Vegag13]

are compatible.

References

[1] J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan. Evaluation of

TCP Vegas:Emulation and Experiment. Pmoc. of ACM
SIGCOMM 1995August 1995.

[14]

[15]

C. Boutremans and J. L. Boudec. A Note on the Fairness
of TCP Vegas. IrProc. of International Zurich Seminar on
Broadband CommunicationEebruary 2000.

L. Brakmo and L. Peterson. TCP Vegas: End to End Con-
gestion Avoidance on a Global InternefEEE Journal on
Selected Areas in Communicatjddctober 1995.

W. Feng and P. Tinnakornsrisuphap. The Failure of TCP
in High-Performance Computational Grids. Pmoc. of SC
2000: High-Performance Networking and Computing Conf.
November 2000.

S. Floyd and V. Jacobson. Connection with Multiple Con-
gested Gateways in Packet-Switched Networks, Part 1: One-
Way Traffic. ACM CCR August 1991.

S. Floyd and V. Jacobson. Random Early Detection Gate-
ways for Congestion AvoidancelEEE/ACM Transactions
on Networking August 1993.

I. Foster and C. Kesselman, editofihe Grid: Blueprint for

a New Computing InfrastructureMorgan Kaufmann Pub-
lishers, 1999.

G. Hasegawa, K. Kurata, and M. Murata. Analysis and Im-
provement of Fairness between TCP Reno and Vegas for De-
ployment of TCP Vegas to the Internet. Rroc. of IEEE
ICNP200Q November 2000.

G. Hasegawa, M. Murata, and H. Miyahara. Fairness and
Stability of Congestion Control Mechanisms of TCP. In
Proc. of IEEE INFOCOM 1999March 1999.

V. Jacobson. Congestion Avoidance and ContréiCM
CCR August 1988.

V. Jacobson. Modified TCP Congestion Avoidance Algo-
rithm. Technical report, Technical report, April 1990.

A. Mankin. Random Drop Congestion Control. Bmoc. of
ACM SIGCOMM 1990September 1990.

J. Mo, R. J. La, V. Anantharam, and J. Walrand. Analysis
and Comparison of TCP Reno and VegasPmc. of IEEE
INFOCOM 1999 March 1999.

ns. Network Simulator, version 2.1b8a. http://wwivaslu/
nsnam/ns.

A. Veres and M. Boda. The Chaotic Nature of TCP Con-
gestion Control. IrProc. of IEEE INFOCOM 2000March
2000.

