
Parallel Programming with Pictures:
Choosing Your Own Adventure

W. Feng and L. Davis-Wallace

Dept. of Computer Science
Virginia Tech

{wfeng, liamdw}@vt.edu

Abstract – Given the ubiquity of parallel computing hard-
ware, we introduced parallel programming with pictures to
the block-based Snap! environment and called it pSnap!,
short for parallel Snap! We then created an accessible
curriculum for students of all ages to learn how to pro-
gram serially and then how to program with explicit par-
allelism. This paper presents a new and innovative exten-
sion to our curriculum on parallel programming with
pSnap!, one that broadens its appeal to the masses by
teaching the application of parallel programming as a
“choose your own learning adventure” activity, inspired
by the Choose Your Own Adventure book series of the
1980s and 1990s. Specifically, after students learn the ba-
sics of parallel programming with pictures, they are
ready to choose their next learning adventure, which ap-
plies their newfound parallel programming skills to cre-
ate a video game of their choice, i.e., Missile Command or
Do You Want to Build a Snowman?
Index Terms – block-based programming, curriculum, com-
puter science education, parallel programming, pictures,
Scratch, Snap!, pSnap!

I. INTRODUCTION

The saying that “a picture is worth a thousand words” im-
plies that showing something with a picture is just as expres-
sive as describing it with words. When we apply this idea to
programming, we get “programming with pictures” (i.e.,
blocks), which delivers visually compelling and, in turn, ac-
cessible programming to the masses – à la Scratch [1]-[3]
and Snap! [4]-[6]). However, Scratch and Snap! are
block-based languages that focus on serial programming for
serial computing. Why is this a problem?

With the performance of serial computing plateauing in
the mid-2000s, parallel multicore computing emerged as a
way to continue improving performance. Parallel multicore
computing is now ubiquitous (e.g., inside of computers, lap-
tops, tablets, TVs, cars, and smartphones), yet undergraduate
curriculums continue to ignore teaching parallel computing
as part of their core computing principles. Thus, there clearly
exists a need to shift (or extend) from teaching serial pro-
gramming to teaching parallel programming.

To address this shortcoming, we created parallel pro-
gramming with pictures (PPP), which leverages the serial
Snap! programming environment and introduces explicitly
parallel programming with pictures (i.e., blocks) [7]-[8].

Furthermore, by programming with pictures, we obviated the
need to learn the tedious syntax associated with text-based
programming, which takes the attention away from logical
problem solving, oftentimes referred to as computational
thinking. Logical problem solving is already challenging
enough as it is; learning how to do that and how to parallel
program is even harder. Thus, eliminating the tedious syntac-
tical elements of text-based programming allows the end user
to focus on the programming task on hand.

As articulated by Lee and Weber [9], visual programming
languages allow users to naturally break free from the restric-
tive serial programming environment of text-based languages
by providing block sequences of scripts within a two-dimen-
sional (2-D) visual editor (à la Snap!), thus enabling the im-
plicit creation of “multiple concurrent flows of control.” This
context provides the basis for developing new explicitly par-
allel programming abstractions, such as the text-based direc-
tives found in OpenMP [10]. That is, by starting with Snap!
as an introductory serial programming language and leverag-
ing its implicitly parallel virtual environment, we can natu-
rally provide new constructs to promote the logical thinking
that is necessary for explicit parallel programming. We refer
to our enhanced parallel programming environment as
pSnap!, short for parallel Snap! and deliver an evolved
programming curriculum for pSnap! in this paper.

Specifically, this paper presents an evolution of our “par-
allel programming with pictures” (PPP) curriculum – from
learning about the fundamentals of serial and parallel pro-
gramming to also learning about how to apply parallel pro-
gramming to create interactive video games. How? We pro-
vide students with a “choose your own learning adventure,”
inspired by the Choose Your Own Adventure book series of
the 1980s and 1990s [11]. Specifically, after completing the
serial programming and parallel programming modules of
our curriculum, the user (or “reader”) is presented with a
choice of learning adventure. Both choices of learning adven-
ture apply serial and parallel programming concepts to create
a video game, either (1) Missile Command or (2) Do You
Want to Build a Snowman? The former is based on a famous
arcade game of the same name from Atari in 1980. It can be
categorized as a destructive “shoot ‘em up” arcade game,
where the player protects cities from attack by moving a
shooting crosshair into the path of incoming missiles. The lat-
ter is a constructive game that is modeled after Missile Com-
mand; however, instead of shooting down missiles, the game
collects snow and moisture via a top hat to build a snowman.

IPDPS 2023 St. Petersburg, FL

II. RELATED WORK

 Over the past decade, the Curriculum Development and
Educational Resources (CDER) Center has established a cur-
riculum guideline to teach parallel and distributed computing
(PDC) at the undergraduate level. This effort sought to intro-
duce PDC concepts in the first two years of college so stu-
dents could begin learning early enough to incorporate PDC
concepts into their problem solving (or computational think-
ing), as articulated in a 2015 NSF workshop report [12]. Sim-
ilarly, parallel Snap! (pSnap!) and our associated cur-
riculum introduced explicit parallel computing by enabling
parallel programming with pictures, i.e., blocks [7-8].

Block-based programming dates as far back as the late
1980s, courtesy of LEGO Blocks from the MIT Media Lab
[13] and evolving into Logo Blocks, a graphical version of
Cricket Logo-controlled programmable bricks that also came
from the MIT Media Lab [14]. These projects sought to make
(serial) programming accessible to the masses, in particular,
children. Back then and through the mid-2000s, there was no
need to consider parallel programming to improve perfor-
mance as the single-threaded performance continued to dou-
ble every 18 months, as shown in Figure 1 from [15].

FIGURE 1

SINGLE-THREADED PERFORMANCE OVER TIME
(SOURCE: REPRODUCED FROM J. HENNESSY & D. PATTERSON [15])

The significant slowing of single-threaded performance
through the 2010s, as shown in Figure 1, resulted in the rapid
proliferation of parallel computing hardware, such as multi-
core CPUs, but without any associated block-based parallel
programming language. Hence, in 2016, we introduced such
a block-based “parallel programming with pictures” environ-
ment called parallel Snap! (pSnap!) to explicitly exploit
intra-node parallelism, i.e., parallelism within a compute
node [7-8]. By 2018, a team of researchers presented a similar
but distributed blocks-based programming language called
NetsBlox, which also extends Snap! with a few abstractions
but to more easily facilitate the creation of distributed appli-
cations, i.e., explicit inter-node parallelism [16-17].

In the next section, we summarize our approach and ex-
perience in using pSnap! to introduce parallel computing

concepts into introductory problem-solving activities involv-
ing computational thinking at community and outreach
events such as Let’s Code Blacksburg and Women in Compu-
ting Day, hosted by the Association for Women in Compu-
ting. Then, in the subsequent section, Section IV, we present
our evolved “choose your own adventure” curriculum.

III. BACKGROUND

Snap!, inspired by the Scratch programming language
from MIT, is a “drag-and-drop” visual programming environ-
ment that is based on a block-based programming language
implemented in JavaScript. Like Scratch, Snap! visually in-
troduces programming by way of user-friendly block struc-
tures that appeal to novices. Back in 2015, we chose to intro-
duce explicitly parallel constructs to Snap! (rather than
Scratch 2.0) because Snap! could run Javascript in a web
browser, obviating the need for software download and con-
figuration. In contrast, while Scratch 2.0 could also run in a
web browser, the implementation was Flash-based and re-
quired the end user to know what to download, install, and
configure in order to run in the web browser. In addition,
Scratch 2.0 was not a first-class language, whereas Snap!
supported first-class lists, first-class procedures, first-class
sprites with inheritance, and lambdas, enabling programmers
the ability to build custom blocks that were not implemented
in Snap!

Figure 2 captures a snapshot of the Snap! programming
environment; it is an object-oriented language, where sprite
objects are declared and instantiated in the sprite corral lo-
cated at the bottom right of the snapshot (in this case, the
Stage, Frogger, and Pink Car objects). In turn, each sprite
object has code scripts associated with it that specify the be-
havior of the sprite. These code scripts are developed by the
programmer in the script area located in the center of the
snapshot in Figure 2, i.e., where three pairs of blue- and yel-
low-colored oblong blocks appear. The white stage area in
the upper right of the figure is where sprites appear and dis-
play their output – in this case, there is a sprite of a green frog
at the center of the stage. Finally, the oblong blocks (i.e.,
“building blocks”) that are used to create the code scripts can
be found on the far left of the snapshot in the palette area.

FIGURE 2

THE SNAP! PROGRAMMING INTERFACE

IPDPS 2023 St. Petersburg, FL

Snap! groups the blocks in the palette area by category,
with one category of blocks being displayed at a time, based
on the current selection. In addition, the color, style, and
shape of the blocks determine how they can be “snapped” to-
gether to create valid code scripts.

When a Snap! object-oriented program executes, it will
appear that sprite objects execute in parallel. This form of
(implicit) parallelism is called concurrency. Because Snap!
is single-threaded, the illusion of parallelism is achieved by
rapidly multitasking across the objects. While Snap! deliv-
ers the illusion of parallelism via concurrency, it does not
teach or promote explicitly parallel programming. As a con-
sequence, Feng et al. [7]-[8] incorporated explicitly parallel
programming constructs, such as the parallelized “for
each” block shown in Figure 3, by leveraging and incorpo-
rating Web Workers [18] into Snap! to create a parallel
Snap! (or pSnap! for short). Running a code block (or
blocks) within the “for each” loop with multiple parallel
workers allows for explicit parallelism to occur by enabling
the spawning of separate background threads that can use the
underlying parallel multicore architecture of the host system.

FIGURE 3

“FOR EACH” BLOCK WITH PARALLEL FUNCTIONALITY

To facilitate the learning of serial programming and par-
allel programming in the pSnap! environment, Feng et al.
created a curriculum consisting of three modules – Module 1:
Serial Programming; Module 2: Parallel Programming; and
Module 3: Video Gaming – an evolution of which is shown
in Figure 4. These modules, hosted at http://psnap.cs.vt.edu/,
and have been deployed to the public via a Facebook com-
munity group called Let’s Code Blacksburg as well as Women
in Computing Day, hosted by the Association for Women in
Computing at Virginia Tech to teach middle-school girls how
to do parallel programming.

Here we update and evolve the curriculum from a linear
sequence of modules to a “choose your own learning adven-
ture.” Specifically, upon the completion of Module 2: Paral-
lel Programming, the student can choose to create either an
updated Missile Command video game (Module 3A) or a Do
You Want to Build a Snowman? video game (Module 3B).

IV. APPROACH: AN EVOLVING CURRICULUM

This paper presents an update and evolution of our “par-
allel programming with pictures” curriculum into a “choose
your own learning adventure” experience (i.e., Modules 1 and
2, followed by either Module 3A or 3B). Currently, in the first
module, students learn how to program serially in the
pSnap! environment. The second module then teaches stu-
dents how to (explicitly) parallel program by drawing the rays

of an eight-spoked snowflake in parallel. At this point, stu-
dents choose their next adventure, i.e., Module 3A: Missile
Command or Module 3B: Do You Want to Build a Snowman?,
each of which re-uses the “snowflake generation” abstraction
from Module 2. In Missile Command, the snowflake abstrac-
tion is re-purposed as an explosion while it is used as an ac-
tual snowflake in Do You Want to Build a Snowman?

NEW
FIGURE 4

PROGRESSION OF LESSON MODULES

The deployment of our original “parallel programming
with pictures” (PPP) curriculum to the Let’s Code Blacksburg
and Women in Computing Day communities confirmed that
our original Missile Command module appealed more to a
male audience due to its destructive “shoot ‘em up” nature.
Thus, we modified the Missile Command module (Module
3A) to be less graphically destructive and also created a com-
plementary module, namely Do You Want to Build a Snow-
man? (Module 3B), which mimics Missile Command but in
a constructive and peaceful way. Specifically, this alternative
module teaches students how to use parallel programming to
create a game in which a player catches snowflakes in a
snowman’s hat in order to build a snowman.

A. Missile Command

Figure 5 shows the original Missile Command game. The
player has six cities (shown as blue skylines at the bottom) to
protect from a barrage of “bombs” (shown as red lines de-
scending from the top) by shooting missiles that explode
(shown in lime green) to intercept and stop the bombs.

FIGURE 5

CLASSICAL MISSILE COMMAND SCREENSHOT FROM ATARI, INC.

UPDATED

IPDPS 2023 St. Petersburg, FL

Some bombs can split in parallel into multiple inde-
pendently targetable reentry vehicles (shown as multiple red
lines emanating from a single point). Such a bomb is an exo-
atmospheric ballistic payload containing several warheads,
each capable of being aimed at a different target. Later in the
game at more advanced levels, more sophisticated weapons
are introduced, including smart bombs that evade less-than-
perfectly targeted missiles and bomber plans and satellites
that fly across the screen launching bombs of their own.

Figure 6 shows how our curriculum leverages what the
students learn in Module 2: Parallel Programming on the
left, i.e., drawing an asterisk (or snowflake) object via paral-
lel programming, and re-purposes it into an exploding missile
object on the right in Module 3: Missile Command as part of
a simplified and “less violent” version of Missile Command.
In addition to the exploding missile in Module 3, Figure 6
shows five city skylines (black images), three bombs (red
squares), and two status objects (gray and orange score-
boards), which we discuss in further detail below.

Module 2: Parallel Programming Module 3: Missile Command

FIGURE 6
FROM AN ASTERISK TO AN EXPLODING MISSILE

With respect to “parallel programming with pictures”
code, Figure 7 shows how the asterisk (or exploding missile
in Missile Command) is generated serially and in parallel, re-
spectively, in pSnap!. The only difference between the two
block-based scripts is outlined in red, i.e., “parallel workers”
portion of the for each block. Each asterisk is generated in
parallel using a for each block with “parallel workers.”

To create the barrage of falling ballistic bombs, the stu-
dents leverage what they have learned about serial program-
ming and parallel programming from Module 1: Serial Pro-
gramming and Module 2: Parallel Programming [7]-[8], re-
spectively, to learn how to create a bomb sprite object that
falls from the top of the screen to the bottom while checking
to see if it has been hit by a missile. That is,

Pseudocode for Creating a Bomb Sprite Object:
1. go to a random location above the screen (e.g., x: -200

to 200, y: 200)
2. fall until to the bottom of the screen
3. hide (i.e., remove) the bomb if hit by a missile

 Figure 8 shows the corresponding pSnap! code for cre-
ating and removing a bomb sprite object from the screen.
However, it is only sufficient for creating and removing one
bomb sprite object from the screen at a time. To address this
problem, we make use of the clone block in the pSnap!

environment to be able create more bombs and delete (or
hide) them when hit by a missile, as shown in Figure 9.

FIGURE 7

SERIAL PROGRAMMING (TOP) VS PARALLEL PROGRAMMING (BOTTOM)
FOR DRAWING AN ASTERISK

FIGURE 8

CREATING AND REMOVING A BOMB SPRITE OBJECT

FIGURE 9
CREATING A CASCADE OF BOMB SPRITE OBJECTS AND

DELETING/HIDING THE BOMB SPRITES WHEN HIT BY MISSILE

IPDPS 2023 St. Petersburg, FL

Next, Figure 10 shows to incorporate drawing the asterisk
(or exploding missile for Missile Command) in parallel by
using parallel workers, as discussed earlier.

FIGURE 10
CREATING AN EXPLODING MISSILE USING PARALLEL WORKERS

B. Do You Want to Build a Snowman?

Similar to Figure 7, Figure 11 shows how snowflakes are
generated serially and in parallel, respectively. Again, the
only difference between the two block-based scripts is out-
lined in red. The snowflakes are generated in parallel by the
addition of a for each block with “parallel workers.” We
then generate sunbeams, represented by suns, in parallel as
well, spawning them in groups of two.

FIGURE 11

SERIAL PROGRAMMING (TOP) VS PARALLEL PROGRAMMING
(BOTTOM) FOR DRAWING A SNOWFLAKE

Baseline Game. The basic game includes three types of
precipitation and a catching device (i.e., top hat), as shown in
Figure 12. Snowflakes fall in parallel, appearing in groups of

three at the top of the screen. Raindrops appear individually
and fall from the top of the screen. Sunbeams generate in par-
allel in groups of two, falling from the top of the screen too.
The goal of this game is to catch as many snowflakes as pos-
sible, while catching some raindrops and avoiding sunbeams.

FIGURE 12

BASELINE GAME: CATCH A SNOWFLAKE

Expanding the Game. To add sophistication to the game,
we expand the Catch the Snowflake game into a Do You Want
to Build a Snowman? game with a progress bar, thermostat,
and eventually a visible snowman in the background. As the
player catches snowflakes, the bar in the top right of the
screen progresses. The bar requires 10 snowflakes and one
raindrop to complete a section of the snowman. When the
progress bar is full and has changed from gray to blue for the
raindrop, the bar resets, the hat grows, and a section of the
snowman section appears in the background, as shown in Fig-
ure 13. Catching sunbeams both decrements the progress bar
for the current snowman portion and increases the tempera-
ture. If the temperature becomes too high, the game is over.

The student can expand the game by adding sound effects
for catching snowflakes, water droplets, and sunbeams, thus
adding another layer of complexity for students to tackle.
When the game is complete, the game can play a song and
display the completed snowman, wearing the hat that was
used to catch the snowflakes during the game, as shown in
Figure 14.

V. CONCLUSION

Because of the ubiquity of parallel computing hardware,
knowing how to parallel program this hardware must be
learned to effectively use the parallelized hardware. Early ex-
posure allows students to learn the fundamentals of program-
ming in parallel and introduces what is possible with compu-
ting skills. While parallel programming may seem daunting
to any beginner, our curriculum of modules seeks to make
programming accessible to the masses.

In particular, this paper presents a new and innovative ex-
tension to our evolving curriculum on parallel programming
with parallel Snap!, one that broadens its appeal to the
masses by teaching the application of parallel programming
as a “choose your own learning adventure” activity, inspired
by the Choose Your Own Adventure book series of the 1980s
and 1990s. Specifically, after students learn the basics of

IPDPS 2023 St. Petersburg, FL

parallel programming with pictures, they are ready to choose
their next learning adventure, which applies their acquired se-
rial and parallel programming skills to create a video game of
their choice, either Missile Command or Do You Want to
Build a Snowman?

FIGURE 13

CATCHING A SNOWFLAKE TO COMPLETE THE SNOWMAN SECTION

FIGURE 14

COMPLETING THE GAME

REFERENCES

[1] Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., and
Resnick, M. January 2004. “Scratch: A Sneak Preview.” Inter-
national Conference on Creating, Connecting, and Collaborat-
ing through Computing, Kyoto, Japan, pp. 104-109.

[2] Resnick, M. June 2007. “All I Really Need to Know (About
Creative Thinking) I Learned (By Studying How Children
Learn.” ACM SIGCHI Conference on Creativity and Cogni-
tion, Washington, D.C., pp. 1-6.

[3] Peppler, K. A. and Kafai, Y. B. 2007. “What Video Game
Making Can Teach Us About Learning and Literacy: Alterna-
tive Pathways into Participatory Cultures.” Digital Interna-
tional Games Research Association, Tokyo, Japan, pp. 1-8.

[4] Harvey, B. and Monig J. 2010. “Bringing ‘No Ceiling’ to
Scratch: Can One Language Serve Kids and Computer Scien-
tists.” Constructionism, pp. 1-10.

[5] Garcia, D., Harvey, B., and Barnes, T. December 2015. “The
Beauty and Joy of Computing.” ACM Inroads, 6(4):71-79.

[6] Romagosa, B. September 2017. “The Snap! Programming Sys-
tem.” Springer Encyclopedia of Education and Information
Technologies,” pp. 1-14.

[7] Feng, A. and Feng, W. May 2016. “Parallel Programming with
Pictures in a Snap!” NSF/TCPP Workshop on Parallel and Dis-
tributed Computing Education (EduPar), Chicago, Illinois, pp.
950-957.

[8] Feng, A., Gardner, M., and Feng, W. January 2017. “Parallel
Programming with Pictures is a Snap!” Journal of Parallel and
Distributed Computing, (105)150-162.

[9] Lee, P.A. and Webber, J.. 2003. “Taxonomy for Visual Parallel
Programming Languages.” Technical Report, Computing Sci-
ence, University of Newcastle upon Tyne, Newcastle upon
Tyne, United Kingdom, pp. 1-19.

[10] The OpenMP API Specification for Parallel Programming,
http://www.openmp.org/, 1997–present.

[11] Packard, E. 1979. “The Cave of Time.” Choose Your Own Ad-
venture Series, Bantam Books, pp. 1-115.

[12] NSF Workshop on Broadening Parallel and Distributed Com-
puting Undergraduate Education, August 17-18, 2015, Arling-
ton, VA.

[13] Resnick, M., Ocko, S., and Papert, S. 1988. “LEGO, Logo, and
Design.” Children's Environments Quarterly, 5(4): 14–18.

[14] Resnick, M. July 1993. “Behavior Construction Kits.” Commu-
nications of the ACM, 36(7): 64-71.

[15] Hennessy. J and Patterson, D. February 2019. “A New Golden
Age for Computer Architecture.” Communications of the ACM,
62(2): 48-60.

[16] Broll,	 B., Ledeczi, Á., Stein, G., Jean, D., Brady, C., and
Grover, S., Catete, V., and Barnes, T. 2021. “Removing the
Walls Around Visual Educational Programming Environ-
ments.” IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), St Louis, MO, USA, pp. 1-9.

[17] Broll, B., Lédeczi, Á., Zare, H., Do, D.N., Sallai, J., Völgyesi,
P., Maróti, M., Brown, L., and Vanags, C. August 2018. “A
Visual Programming Environment for Introducing Distributed
Computing to Secondary Education.” Journal of Parallel and
Distributed Computing, 118(P1): 189-200.

[18] “HTML: Living Standard – Last Updated 23 March 2022.”
https://www.w3.org/TR/workers/

IPDPS 2023 St. Petersburg, FL

