
Packet Spacing: An Enabling Mechanism for Delivering
Multimedia Content in Computational Grids

�

Annette C. Feng
���

, Wu-chun Feng
�
, Geneva Belford

�
�
afeng, feng � @lanl.gov, belford@cs.uiuc.edu�

Department of Computer Science
University of Illinois at Urbana-Champaign

1304 W. Springfield Ave.
Urbana, IL 61801�

Computing, Communications, and Networking Division�
Computer & Computational Sciences Division

Los Alamos National Laboratory
P.O. Box 1663

Los Alamos, NM 87545

Abstract

Streaming multimedia with UDP has become increas-
ingly popular over distributed systems like the Internet. Sci-
entific applications that stream multimedia include remote
computational steering of visualization data and video-
on-demand teleconferencing over the Access Grid. How-
ever, UDP does not possess a self-regulating, congestion-
control mechanism; and most best-effort traffic is served
by congestion-controlled TCP. Consequently, UDP steals
bandwidth from TCP such that TCP flows starve for net-
work resources. With the volume of Internet traffic contin-
uing to increase, the perpetuation of UDP-based streaming
will cause the Internet to collapse as it did in the mid-1980’s
due to the use of non-congestion-controlled TCP.

To address this problem, we introduce the counter-
intuitive notion of inter-packet spacing with control feed-
back to enable UDP-based applications to perform well
in the next-generation Internet and computational grids.
When compared with traditional UDP-based streaming, we
illustrate that our approach can reduce packet loss over
50% without adversely affecting delivered throughput.

Keywords: network protocol, multimedia, packet spacing,
streaming, TCP, UDP, rate-adjusting congestion control,
computational grid, Access Grid.

�
This work was supported by the U.S. Dept. of Energy through Los

Alamos National Laboratory contract W-7405-ENG-36. This paper is LA-
UR 01-0904.

1 Introduction

TCP and UDP are the most widely-used transport pro-
tocols today, the TCP/IP protocol suite being the de facto
standard in the Internet-computing environment. TCP en-
ables reliable, bulk-data transfer; however, it is inappro-
priate for such tasks as live video-on-demand and remote
computational steering of visualization data in computa-
tional grids. Bulk-data transfer requires 100% reliable com-
munication, and hence, TCP. Video-on-demand and remote
computational steering generally do not require 100% reli-
ability, therefore, TCP is overkill. For instance, if a video
frame is missing a small block of pixels due to a lost packet,
the video application is better off displaying the virtually
complete frame and moving on to the next frame instead
of waiting for the re-transmission of the lost packet (which
over the Internet could easily take 100 ms).1 TCP, in this
case, provides too much functionality because its loss de-
tection and re-transmission mechanisms, being tightly in-
tegrated with TCP’s congestion-control mechanism, are in-
herent functions of the protocol.

UDP, on the other hand, provides no reliability guar-
antees. Specifically, it provides best-effort, end-to-end
service without performing loss detection and packet re-
transmission and without performing congestion control.
Because of this, UDP obtains more bandwidth than TCP,

1If the required frame rate is 30 frames per second, then the interframe
delay is only 33 ms. Therfore, a re-transmission delay of 100 ms over the
wide-area network is clearly unacceptable.

Proceedings of the 2nd Annual Los Alamos Computer Science Institute Symposium (LACSI 2001).

albeit at the risk of suffering packet loss and packet re-
ordering, problems that can ultimately be addressed by the
applications themselves. Therefore, multimedia applica-
tions such as RealPlayer [17, 18] and scientific applica-
tions such as remote data visualization use UDP in order
to improve perceived performance. Because UDP does
not self-regulate in response to network congestion, these
UDP-based applications gobble up available network re-
sources, stealing bandwidth away from well-behaved appli-
cations that use congestion-controlled TCP. An application
that blasts UDP packets into the network can readily fill the
buffers of an intermediate router, causing severe congestion
and packet loss. Since TCP-based applications slow down
their sending rates in response to congestion, these appli-
cations become starved for network resources as the UDP-
based applications continue to blast their packets unchecked
into the network and claim the bandwidth being made avail-
able to them. Even though sending hosts can inject UDP
packets as quickly as they are able, the throughput can suf-
fer dramatically due to heavy packet loss and increased de-
lays as packets spend more time waiting in queues within
the network.

A simple observation reveals that adequate throughput
can be attained by spacing the packets apart instead of blast-
ing them one right after the other into the network. The next
section reveals this insight. The notion of slowing down the
sending rate in order to achieve better throughput is cer-
tainly counter-intuitive; however, our experiments show the
viability and effectiveness of this approach.

1.1 Insight

Based on our recent work in network traffic characteri-
zation [25, 8, 9], we observed significant packet loss even
when the offered load was less than half of the available
network bandwidth. An analysis of our ns [1] simulations
revealed that this behavior was due to simultaneous bursts
of traffic coming from client applications and overflowing
the buffer space in the bottleneck router. Metaphorically,
this could be viewed as what happens at a major highway
interchange during rush hour where everyone wants to go
home simultaneously at 5:00 p.m., thus “overflowing” the
highway interchange. To avoid such a situation, some peo-
ple self-regulate themselves by heading home at a different
time, i.e., spacing themselves out from other people.

If we view vehicles as packets and the highway inter-
change as a router, then to avoid buffer overflow and en-
hance throughput, packets should not be blasted onto the
network one after another. Instead, packets should be
spaced out over time. To test this hypothesis, we ran live
wide-area network (WAN) tests between Los Alamos Na-
tional Laboratory (LANL), University of Illinois at Urbana-
Champaign (UIUC), and Ohio State University (OSU).

These tests consisted of sending UDP packets between
LANL and either UIUC or OSU at different packet-spacing
intervals. Figures 1 and 2 show the throughput and packet
loss, respectively, of a representative test between LANL
and UIUC [6]. When the packet spacing is zero, e.g., to-
day’s UDP-based multimedia-streaming applications, the
throughput is 62 Mb/s but with a packet loss of almost 90%!
With as little as 100 � s of spacing between packets, the
throughput remains the same, but the packet loss drops all
the way down to 35%. And when the packet spacing is 50

� s, the throughput is actually higher than when the packets
are not spaced as in UDP-based multimedia streaming.

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600

th
ro

ug
hp

ut
 (

M
bp

s)

interpkt delay (microsecs)

Figure 1. Delivered Throughput to the Re-
ceiver

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

pa
ck

et
 lo

ss

interpkt delay (microsecs)

Figure 2. Packet-Loss Percentage

All curves from our other live WAN tests have the same
general shape. That is, the throughput initially increases
when the amount of packet spacing increases and then de-
creases exponentially as the amount of spacing increases
further. The packet-loss percentage immediately decreases

in an exponential manner as packet spacing increases.

1.2 Related Work

Many transport protocols for the delivery of multime-
dia content certainly have been proposed, among them
being XTP, RAP, and HPF. The Xpress Transport Proto-
col (XTP) [4] uses explicit rate control to combat con-
gestion, however, the congestion-control mechanism must
be implemented within the network and not simply at the
edges. Fluctuating round-trip times (RTTs) cause poor per-
formance because of a design feature whereby XTP enters a
synchronizing handshake when a timer expires while XTP
awaits a response to a request for information on missing
data [3]. Furthermore, because it is a complex protocol,
XTP is meant to be implemented in VLSI for performance
reasons, so software implementations are too slow for mul-
timedia traffic [23].

The Rate Adaptation Protocol (RAP) [20] is a TCP-
friendly protocol that employs an ”additive increase, mul-
tiplicative decrease” (AIMD) algorithm for rate adjustment.
RAP is intended for the transmission of delay-sensitive,
semi-reliable, rate-based applications which use layered-
encoding of their data streams. RAP is therefore not a gen-
eral solution but specifically targets layered-encoded multi-
media content which it uses to adjust its transmission rate
by adjusting the number of layers it sends.

The Heterogeneous Packet Flows (HPF) [13] protocol
supports the delivery of packets having differing QoS re-
quirements within a single stream. Addressing a design
flaw of TCP, HPF decouples congestion control from re-
liability and uses a rate-based, AIMD approach to combat
congestion. The problem with the AIMD approach (also
used by RAP) is that such an approach will not scale to
high-performance (or more precisely, high bandwidth-delay
product) networks. For example, when the window size is
one, a linear increase is a 100% increase. When the window
size is 1000, a linear increase is a mere 0.1%. An absolute
linear increase in window size from 500 to 1000 (as during
TCP’s congestion-avoidance phase) will take 500 round-trip
times to converge! More realistically, the situation is actu-
ally much worse. If we assume a typical WAN with a high
bandwidth-delay product, i.e., 1 Gb/s WAN � 100 ms RTT
= 100 Mb, then for an uncongested network, the ubiqui-
tously deployed TCP reno continually increases its window
size until it induces packet loss (i.e., just after 100 Mb) and
then chops its window size in half (i.e., 50 Mb). The re-
convergence back to the ”optimal window size” of 100 Mb
using TCP’s absolute linear increase takes much too long
and results in lowered network utilization. In this particular
case, convergence can take as long as (100 Mb - 50 Mb) /
(1500 B/RTT * 8 b/B) = 4,168 RTTs or (4,168 RTTs * 100
ms/RTT) = 416.8 seconds = 6.947 minutes!

In 1997, Mahdavi and Floyd [14] informally proposed
the notion of equation-based congestion control for unicast
applications. While the AIMD algorithm found in TCP
backs off by cutting its sending rate in half in response
to a single congestion indication, equation-based conges-
tion control uses a control equation that more gradually and
smoothly adapts its maximum rate because some real-time
applications find that halving the sending rate is unneces-
sarily severe and can noticeably reduce the user-perceived
quality [24]. Although the above work has given rise to a
significant amount of research on equation-based and other
types of congestion-control mechanisms [22, 20, 24, 16, 21,
10], we still do not have any deployable congestion-control
mechanisms for best-effort streaming multimedia.

Previous work in packet spacing includes [12, 2]. In [12],
Jain argues that rate-control protocols for congestion con-
trol may not work without the cooperation of intermediate
routers because packets may get clumped together at the
intermediate routers anyway. This would result in larger
bursts at the intermediate routers even though the goal may
have been to reduce the burstiness of the traffic. While this
may have been true a decade ago, we believe that the boom
of the world-wide web and other multimedia applications
creates enough interleaving traffic to maintain packet spac-
ing between end hosts. We will substantiate this belief in
Section 3.2.4.

Aggarwal et al. [2] study the effect of uniform packet
spacing (or “pacing”) over a round-trip time in TCP. While
pacing results in better fairness, throughput, and lower drop
rates in some cases, the throughput is worse than regular
TCP most of the time because a paced-TCP is susceptible
to synchronized losses and delays congestion notification.
In contrast, we focus on the effects of packet spacing over
UDP with control feedback rather than on TCP itself.

In general, our packet-spacing protocol differs from the
above work in several ways. First, rather than focus-
ing primarily on being compatible or fair with TCP, our
rate-adjusting protocol addresses fairness while simulta-
neously delivering UDP-like bandwidth. Second, we ac-
complish the above feat by introducing the counterintuitive
notion of packet spacing. Third, rather than relying on
equation-based congestion control to more smoothly adapt
the sending rate, we allow the sending rate to adapt as
needed (based on available network resources). We then
rely on transcoding, e.g., mapping a multimedia stream onto
rapidly-varying available bandwidth [19], to smooth out any
potentially rapid change in available bandwidth.

2 Approach

Packet spacing refers to the delay introduced between
two consecutive packets, as shown in Figure 3. Here,

���
is

the amount of spacing between packets, and
���

is the trans-

mission time for each packet. By introducing such a de-
lay, bursts of packets can be spaced out, resulting in fewer
packet drops at intermediate routers and potentially higher
throughput at the end host, as shown back in Figure 1. Thus,
packet spacing can potentially be used as a mechanism to
assist in congestion avoidance and control.

Based on Figure 1, the ideal operating region of our
packet-spacing mechanism ranges from 50 ��� to 500 ��� .
No packet spacing or packet spacing of less than 50 ��� re-
sults in very high packet loss with less delivered bandwidth
than when the packet spacing is 50 ��� .

Depending on the application, the ideal packet-spacing
range may be as small as 100 ��� to 200 ��� in order to get
UDP-like bandwidth but with significantly less packet loss,
e.g., at 200 ��� , bandwidth is 50 Mb/s while packet loss is
only 10%, or as large as 400 ��� to 500 ��� to obtain TCP-like
reliability but with higher throughput than TCP. To exploit
this counterintuitive finding, we develop an ad-hoc packet-
spacing protocol (PSP) to adjust the amount of packet spac-
ing based on feedback from the network.2

time

t t t
tt

x xx
s s

packet 1packet 2packet 3

Figure 3. Packet Spacing

2.1 Ad-Hoc Packet-Spacing Protocol (PSP)

In our ad-hoc packet-spacing protocol (PSP),3 the sender
initially transmits packets at the highest possible rate, i.e.,
no inter-packet spacing, and the receiver sends acknowl-
edgments every round-trip time (RTT) for the packets it re-
ceives. (This RTT is the base propagation-delay time, not
the dynamic RTT. To keep the protocol simple, we did not
experiment with dynamic RTTs.)

We calculate the base RTT by performing ping during
connection set-up.4 After the connection is established, the
sender conveys the calculated RTT to the receiver by includ-
ing it within the header of each packet. Note that this is not
required after the first acknowledgment is received, but we
have left this provision so that dynamic RTTs can be used

2We note that at the present time, the feedback is only used for adjusting
the packet spacing and that no retransmissions are done at this time.

3We refer to our protocol as being “ad-hoc” because it is an ad-hoc,
point-specific solution meant to illustrate the benefits of packet spacing. It
is not a general solution (although we are currently in the midsts of testing
a general solution).

4A more sophisticated mechanism could be developed to get a better es-
timate of the RTT. However, for the purposes of our experiments, we only
needed a value that was reasonable enough to provide timely feedback.

in the future. Each acknowledgment contains the number of
packets that were received in the previous RTT.

When the sender receives such acknowledgments, it
compares the number of packets sent, � ������� , in the previous
RTT to the number of packets received, �
	���
�� . Based on
the values of � ������� and ��	���
�� , the sender adapts its packet
spacing �
� as shown in Figure 4.

if � ��������� � 	���
�� (i.e., packets were lost) then
/* sender must reduce its transmission rate */
if �
����� then

�
��� 50 ���
else

�
�������� "!#�
� �%$'&�(*)+)�,
else /* sender tries to increase its sending rate */

�
���-�
�/. $

Figure 4. Ad-Hoc Packet-Spacing Protocol

Because our WAN experiments and simulations showed
that the ideal packet spacing occurred between 0 ���
and 2000 ��� , we chose an initial packet spacing of 50 ���
because (1) anything smaller generated significantly higher
packet loss with no benefit with respect to throughput
and (2) finding the ideal packet spacing within this range
quickly would take no more than seven RTTs. Larger spac-
ings can be reached in only a few more RTTs because the
packet spacing increases exponentially.

The ���0�1���� "!#��� �2$'&�(*)+)�, clause ensures that the
maximum packet spacing is one RTT. This ensures that at
least one packet is sent every RTT.

2.2 Damped Packet-Spacing Protocol

Due to the opposing packet-spacing decisions in PSP, our
initial tests of PSP resulted in large oscillations around the
ideal sending rate. To address this problem, we added the
following heuristic to damp the oscillations: If a loss oc-
curs due to a deliberate decrease in the packet spacing (and
consequently, increase in rate), then the sender reverts to
the previous packet-spacing value. Using this heuristic, the
sender makes significantly smaller oscillations around the
ideal operating point. Figure 5 shows a comparison between
the PSP and damped PSP. In this figure, each experiment ran
for 100 � , and the sending rate for each was plotted. With
damping, the overall throughput increased by 10%.

3 Experiments

For our WAN simulations, we used ns-2, which is a net-
work simulator developed by the VINT group [1]. We will
refer to senders and receivers as agents, which follows nat-
urally from the terminology employed by ns-2. Our simple

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

800
Damping

time, secs

pa
ck

et
s

pe
r

R
T

T

with damping
without damping

Figure 5. Oscillation Damping

packet-spacing agents (PSAs) implement packet spacing
without feedback while our adaptive packet-spacing agents
implement the damped PSP rather than the simple PSP.

3.1 Network Topology

Figure 6 shows the network topology that we used in
our experiments. The � nodes on the left (�� & �� &�������& 	�)
simulate senders on a local-area Ethernet, transmitting via
a common gateway router (e.g., LAN/WAN gateway or
 �
�� � ��
 �) to a WAN backbone running at 155 Mb/s or OC-
3; this topology models the LAN and WAN at Los Alamos
National Laboratory. All the receivers are aggregated into
the node � � � � . The gateway router has a buffer size of 10
packets, 100-Mb/s Ethernet links with 2-ms delays to the
senders, and a 155-Mb/s link with 40-ms delay to the re-
ceivers. This delay is typical of the delay found in a
transcontinental WAN connection.

3.2 PSA Simulations

Here we study the behavior of (1) a single PSA with no
other traffic, (2) competing PSAs, and (3) PSAs competing
with TCP agents. Like Mo et al. [15] who compare TCP
Reno and TCP Vegas using infinite file transfers, we use in-
finite file transfers for the TCP connections as well. (For
the figures in this section, each data point in the simulation
graphs represents the result of a 500- � simulation for a par-
ticular packet-spacing interval.)

3.2.1 Single PSA

Figure 7 shows the throughput for a single PSA for packet
spacings between 0 ��� and 5000 ��� . (Note that there is no
other traffic on the network besides that of the single PSA.)

n

n

n

n

3

2

1

k

nmiddle nsink

2 ms delay
100 Mb/s buffersize = 10 packets

40 ms delay
155 Mb/s

Figure 6. Topology for WAN Simulations

As expected, the sender and receiver throughputs are the
same. This is because the gateway can keep up with the
aggregate sending rate and because there is no competing
traffic on the channel, and therefore, no packet loss.

3.2.2 Competing PSAs

In this set of experiments, we ran simulations with 2, 4,
8, and 16 PSAs competing against each other, respectively.
Figures 8 and 9 show the results for the last case. The re-
sulting behavior is similar to what we observed in the actual
WAN experiments (i.e., Figures 1 and 2). (Note that all the
16 competing PSAs showed similar behavior.)

In Figures 8 and 9, the region of interest occurs be-
tween 0 ��� and 1000 ��� . With a packet spacing of 0 ��� , the
sender throughput is 100 Mb/s while the receiver-realized
throughput is only a measly 10 Mb/s with a packet loss of
90%! As packet spacing increases, the packet-loss percent-
age drops sharply, and the throughput at the receiver actu-
ally increases to its maximum point at 1000 ��� of inter-
packet spacing. This phenomenon is similar to what we
found with our live WAN tests in Figures 1 and 2.

3.2.3 PSAs Competing with TCP Agents

In these experiments, we ran simulations with 1, 2, 4, 8, and
16 sender/receiver TCP pairs and an equal number of PSA
pairs, respectively. Figures 10 and 11 show the behavior of
one particular PSA competing with 15 other PSAs and 16
TCP connections. All other simulations resulted in simi-
lar behavior. Again, we see that the behavior is strikingly
similar to that seen in the actual WAN experiments. The op-
timal performance of the PSAs with respect to throughput

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100
Sender and receiver throughput

packet−spacing, micro seconds

th
ro

ug
hp

ut
, M

b/
s

sender
receiver

Figure 7. Throughput for One PSA

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100
Sender and receiver throughput

packet−spacing, micro seconds

th
ro

ug
hp

ut
, M

b/
s

sender
receiver

Figure 8. Throughput for One of the 16 PSAs

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100
packet−loss

packet−spacing, micro seconds

pa
ck

et
−

lo
ss

, %

Figure 9. Packet Loss for One of 16 PSAs

and packet loss occurs at 1000 ��� to 1050 ��� , i.e., through-
put is 11 Mb/s while packet loss is 0%.

Figures 12 and 13 show the throughput and packet-
loss behavior of one particular TCP connection competing
with 15 other TCPs and 16 PSAs, respectively. In these
figures, we cannot help but notice that the TCP through-
put does not increase beyond 2.7 Mb/s (even when the PSA
throughput is low)! The reason for this behavior has noth-
ing to do with the TCP-friendliness of our damped PSP and
has everything to do with TCP’s default advertised receiver
window of 20 packets. This receiver’s window size is the
default in many operating systems and artificially limits the
amount of outstanding data that a sender can have in the
network. Further, the figures also show that with very small
packet spacings, the PSAs operate like UDP connections (as
expected), thus starving TCP connections of any bandwidth.

Figures 14 and 15 show how TCP behaves with a win-
dow large enough to keep a bandwidth-delay product’s
worth of information outstanding in the network. These fig-
ures show that with sufficient spacing by the PSAs, a TCP
connection can consume its share of available bandwidth.
For example, Figures 10 and 14 illustrate that with 5000 ���
of packet spacing, each PSA receiver sees 2.23 Mb/s while
each TCP receiver gets 6.57 Mb/s.

3.2.4 PSA Spacing at the Receiver

To verify our claim that packet-spaced traffic stays spaced
out by the time it reaches the receiver (rather than getting
clumped as claimed by [12]), we recorded the inter-arrival
time of packets at one PSA receiver, using the same exper-
imental set-up as described in Section 3.2.3. The sending
PSAs used a spacing of 1500 ��� ; the resulting inter-packet
spacings at the receiver averaged 1540.6 ��� with a standard
deviation of 64.75 ��� .
3.3 Adaptive PSA Simulations

Our adaptive PSAs implement the damped PSP, which
tries to find the ideal packet spacing under varying net-
work conditions. We first show the behavior of two adap-
tive PSAs competing against each other and then with two
additional TCP connections. As in Section 3.2, the TCP
connections were that of infinite file transfers.

3.3.1 Competing Adaptive PSAs

Figure 16 shows how the sending rate of an adaptive PSA
varies with time. The adaptive PSA makes small oscilla-
tions around the ideal sending rate. Figure 17 demonstrates
that our adaptive PSAs are fair (when both are started simul-
taneously) as both adaptive PSAs have sending rates that lie
on the fairness line.

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100
Sender and receiver throughput

packet−spacing, micro seconds

th
ro

ug
hp

ut
, M

b/
s

sender
receiver

Figure 10. Throughput for One PSA of 16
PSAs and 16 TCP Connections

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100
packet−loss

packet−spacing, micro seconds

pa
ck

et
−

lo
ss

, %

Figure 11. Packet Loss for One PSA of 16
PSAs and 16 TCP Connections

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100
Sender and receiver throughput

packet−spacing, micro seconds

th
ro

ug
hp

ut
, M

b/
s

sender
receiver

Figure 12. Throughput for One TCP of 16 TCP
Connections and 16 PSAs

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100
packet−loss

packet−spacing, micro seconds

pa
ck

et
−

lo
ss

, %

Figure 13. Packet Loss for One TCP of 16 TCP
Connections and 16 PSAs

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100
Sender and receiver throughput

packet−spacing, micro seconds

th
ro

ug
hp

ut
, M

b/
s

sender
receiver

Figure 14. Throughput for One TCP (Window
Size = 800 Packets) of 16 TCP Connections
and 16 PSAs

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100
packet−loss

packet−spacing, micro seconds

pa
ck

et
−

lo
ss

, %

Figure 15. Packet Loss for One TCP (Window
Size = 800 Packets) of 16 TCP Connections
and 16 PSAs

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

800
Adaptive−PSA sending rate

time, secs

pa
ck

et
s/

R
T

T

Figure 16. Sending Rate for One of Two Adap-
tive PSAs

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800
Fairness

packets/RTT − Adaptive−PSA 1

pa
ck

et
s/

R
T

T
 −

 A
da

pt
iv

e−
P

S
A

 2

Figure 17. Fairness - Simultaneous Start

500 550 600 650 700 750

500

550

600

650

700

750

Fairness

packets/RTT − Adaptive−PSA 1

pa
ck

et
s/

R
T

T
 −

 A
da

pt
iv

e−
P

S
A

 2

oscillations
about optimal
point

Figure 18. Fairness - Delayed Start

Figure 18 shows us a portion of the fairness graph where
one adaptive PSA started 10 seconds later than the other.
As we can see, both adaptive PSAs change their rates in
a fair manner and eventually make small oscillations about
the ideal sending rate.

3.3.2 Competing Adaptive PSAs with Background
Traffic

In this simulation, we ran 10 TCP connections with infinite
file transfers in the background and two adaptive PSAs com-
peting in the foreground. Figure 19 shows that the adaptive
PSAs respond readily to congestion. And again, both adap-
tive PSAs have very similar sending rates.

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

800
Adaptive−PSAs responding to congestion

time, secs

pa
ck

et
s/

R
T

T

Adaptive−PSA 1
Adaptive−PSA 2

Figure 19. Two Adaptive PSAs Competing
with 10 TCPs

4 Implications for Next-Generation Internet

The results in Section 3 support our claim that ”packet
spacing” is preferable to ”packet blasting” because of re-
duced packet loss, increased throughput, and increased fair-
ness. The packet-spacing protocol is a solution that works
for today’s Internet and for tomorrow’s next-generation In-
ternet, which will introduce smart routers with active queue
management [11, 7]. These routers will punish packet-
blasting UDP applications by dropping packets from their
non-adaptive flows.

Many applications do not need the full reliability of TCP,
and hence, should not use TCP as their transport mecha-
nism, e.g., video teleconferencing in the Access Grid [5].
UDP is the main alternative. It does not provide any relia-
bility guarantees, but neither does it provide for, much less
enforce, congestion control. As a result, UDP-based appli-
cations, currently stealing bandwidth that results from its

lack of congestion control, will be crippled further as smart
routers with active queue management make their way into
the next-generation Internet infrastructure. The purpose of
incorporating these smart routers into the Internet is two-
fold: (1) to allow routers to enforce the implicit, defacto,
fair-usage policies as they have evolved in the best-effort
Internet and (2) to reduce queue lengths within the network
so that the network is better able to absorb the natural packet
bursts that occur in normal network traffic.

Smart routers employing active queue management
schemes in the next-generation Internet will have some
measure of control over “rogue” applications to ensure that
they do not unfairly steal bandwidth away from competing
applications and fill up all the available buffer space within
the network. In light of this coming reality, streaming appli-
cations must have a viable alternative to TCP and UDP with
respect to flexibility (in terms of reliability) while providing
adequate and fair congestion control to be ”good” network
citizens. Our damped packet-spacing protocol is a first step
in providing such an alternative.

5 Conclusion

Perhaps the most interesting result in this paper is that a
receiver’s realizable throughput actually increases (up to a
point) even when the sender’s transmission rate decreases.
This result has dramatic implications on many of today’s
multimedia applications that blast packets onto the network
as fast as possible, i.e., no packet spacing. By slowing down
the introduction of packets into the network, congestion is
alleviated at the intermediate routers; this, in turn, results in
a net increase in throughput. Thus, this work provides an
incentive for multimedia provides not to blast UDP packets
indiscriminately into the network. In addition, it provides
motivation for the deployment of a packet-spaced protocol
that can deliver UDP-like performance yet still be respon-
sive to competing connections, particularly for applications
with multimedia streaming such as the Access Grid [5].

Our damped packet-spacing protocol (PSP), imple-
mented via an adaptive PSA, sends data near its “optimal”
sending rate by using a simple feedback mechanism that
reports packet loss every RTT. This mechanism in turn con-
trols the amount of packet spacing. Our preliminary results
demonstrate that by introducing packet spacing to a multi-
media stream, packet loss can be reduced dramatically with-
out much loss in throughput.

Future work includes examining the performance of our
damped PSP with different types of application traffic and
over a live WAN. Of particular interest are those applica-
tions that generate data in short bursts with relatively large
intervals between bursts. Based on the experimental results
presented here, we expect that the packet loss that would
normally be induced by these bursts to be greatly reduced.

References

[1] UCB/LBNL/VINT network simulator - ns (version 2).
http://www.isi.edu/nsnam/vint/index.html.

[2] A. Aggarwal, S. Savage, and T. Anderson. Understanding
the Performance of TCP Pacing. In Proceedings of IEEE
INFOCOM, 2000.

[3] J. W. Atwood and G. C. K. Chung. Error Control in the
Xpress Transfer Protocol. In Proceedings of 18th Confer-
ence on Local Computer Networks, pages 423–431, Septem-
ber 1993.

[4] Y. Baguette and A. Danthine. Comparison of TP4, TCP
and XTP - Part 2: Data Transfer Mechanisms. ETT, 3(5),
September-October 1992.

[5] L. Childers, T. Disz, R. Olson, M. E. Papka, R. Stevens, and
T. Udeshi. Access Grid: Immersive Group-to-Group Col-
laborative Visualization. In Proceedings of the 4th Interna-
tional Immersive Projection Technology Workshop, 2000.

[6] A. Feng. RAPID: Rate-Adjusting Protocol for Internet De-
livery. Thesis Proposal (in progress), University of Illinois
at Urbana-Champaign, 2001.

[7] W. Feng, D. Kandlur, D. Saha, and K. Shin. Stochastic Fair
Blue: A Queue Management Algorithm for Enforcing Fair-
ness. In Proceedings of IEEE INFOCOM, April 2001.

[8] W. Feng and P. Tinnakornsrisuphap. The Adverse Impact of
the TCP Congestion-Control Mechanism in Heterogeneous
Computing Systems. In Proceedings of ICPP’00, August
2000.

[9] W. Feng and P. Tinnakornsrisuphap. The Failure of TCP in
Distributed Computational Grids. In Proceedings of SC’00,
November 2000.

[10] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-
Based Congestion Control for Unicast Applications. In
Proc. of SIGCOMM 2000, August 2000.

[11] S. Floyd and V. Jacobson. Random Early Detection Gate-
ways for Congestion Avoidance. IEEE/ACM Transactions
on Networking, 1(4):397–413, August 1993.

[12] R. Jain. Myths about Congestion Management in High
Speed Networks. Internetworking: Research and Experi-
ence, 29(2):101–113, February 1992.

[13] J. Li, S. Ha, and V. Bharghavan. HPF: A transport proto-
col for supporting heregeneous packet flows in the internet.
March 1999.

[14] J. Mahdavi and S. Floyd. TCP-Friendly Unicast Rate-Based
Flow Control. Technical report, Note sent to end2end-
interest mailing list, January 1997.

[15] J. Mo, J. Walrand, and V. Anantharam. Analysis and Com-
parison of TCP Reno and Vegas. In Proceedings of IEEE
INFOCOM, 1999.

[16] J. Padhye, J. Kurose, D. Towsley, and R. Koodli. A Model
Based TCP-Friendly Rate Control Protocol. In Proceedings
of NOSSDAV’99, 1999.

[17] RealNetworks Inc. RBNTM (Real Broadcast Network)
White Paper. Available at http://www.real.com/solutions/-
rbn/whitepaper.html, January 1999.

[18] RealNetworks Inc. RealVideo Technical White Paper. Avail-
able at http://www.real.com/devzone/library/whitepapers/-
overview.html, January 1999.

[19] R. Rejaie, D. Estrin, and M. Handley. Quality Adaptation
for Congestion Controlled Video Playback over the Internet.
In Proceedings of ACM SIGCOMM ’99, September 1999.

[20] R. Rejaie, M. Handley, and D. Estrin. An End-to-End
Rate-Based Congestion Control Mechanism for Real-Time
Streams in the Internet. In Proceedings of INFOCOM’99,
March 1999.

[21] I. Rhee, V. Ozdemir, and Y. Yi. TEAR: TCP Emulation at
Receivers — Flow Control for Multimedia Streaming. Tech-
nical report, North Carolina State University, April 2000.

[22] D. Sisalem and H. Schulzrinne. The Loss-Delay Based Ad-
justment Algorithm: A TCP-Friendly Adaptation Scheme.
In Proceedings of NOSSDAV’98, 1998.

[23] W. T. Strayer, S. Gray, and R. E. C. Jr. An Object-
Oriented Implementation of the Xpress Transfer Protocol.
In Multimedia: Advanced Teleservices and High-Speed
Communication Architectures, 2nd International Workshop
(IWACA’94), pages 387–400, September 1994.

[24] D. Tan and A. Zakhor. Real-Time Internet Video Using Error
Resilient Scalable Compression and TCP-Friendly Trans-
port Protocol. IEEE Transactions on Multimedia, May 1999.

[25] P. Tinnakornsrisuphap, W. Feng, and I. Philp. On the Bursti-
ness of the TCP Congestion-Control Mechanism in a Dis-
tributed Computing System. In Proceedings of ICDCS’00,
April 2000.

