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Abstract. The current trend in constructing high-performance computing systems
is to connect a large number of machines via a fast interconnect or a large-scale
network such as the Internet. This approach relies on the performance of the inter-
connect (or Internet) to enable fast, large-scale distributed computing. A detailed
understanding of the communication traffic is required in order to optimize the
operation of entire system.

Network researchers traditionally monitor traffic in the network to gain the
insight necessary to optimize network operations. Recent work suggests additional
insight can be obtained by also monitoring traffic at the application level.

The Monitor for Application-Generated Network Traffic toolkit (MAGNeT) we
describe here monitors application traffic patterns in production systems, thus en-
abling more highly optimized networks and interconnects for the next generation of
high performance computing systems.
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1. Background

Modern high-performance computing environments, such as Beo-
wulf-type clusters [6] and the Department of Energy’s Accelerated
Strategic Computing Initiative (ASCI) [1], seek to achieve supercom-
puter performance by connecting many commodity computing nodes
via a high-speed network interconnect. Additionally, recent supercom-
puting research focuses on building computational grids [2, 3] which
form a virtual supercomputer from computing facilities at diverse sites,
operating as a single system image by communicating on the Internet.
In both types of systems, the network is a critical system component
and a potential bottleneck.

Network performance is determined by a combination of the physical
speed of the networking media, the protocols used to communicate
information over that media, and the traffic patterns generated by the
applications which use the network. The physical speed of the network
is the upper limit on network performance, as traffic is unable to travel
faster than media limits. However, the operation of network protocols
such as TCP has been shown to place artificial limits on achievable
network bandwidth. [14,19] These limits are caused by the interplay
between the operation of the protocol and the network traffic required
by the application. Thus, in order to improve network performance,
network researchers must have a detailed understanding not only of
the operation of current protocols, but of the network requirements of
the applications themselves.

Traffic monitors such as tcpdump [5], Remote MONitoring (RMON)
systems, and the CoralReef Software Suite [9] are valuable tools for
obtaining information about active networks. Information gathered by
traffic monitors can be used to verify the operation of network pro-
tocols, or can be combined into archives, such as the Internet Traffic
Archive [7] and the Internet Traffic Data Repository [16], and used to
generate models of global network traffic patterns.

Recent work suggests, however, that traditional traffic monitors miss
a valuable part of the available information. [12, 13, 18] Specifically,
the tools capture traffic on the wire (or in the network) rather than
at the application level. Thus, the traffic an application sends to the
network is captured only after having passed through a protocol stack
(e.g., TCP/IP) and into the network. Consequently, these tools can-
not provide protocol-independent insight into the traffic patterns of an
application.

To determine application traffic patterns before being modulated
by a protocol stack, as well as to determine the modulation caused by
each layer of a protocol stack, we present the Monitor for Application-
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Figure 1. Monitoring Points of Various Tools

Generated Network Traffic (MAGNeT). The MAGNeT toolkit differs
from existing tools in that traffic is monitored not only upon enter-
ing and leaving the network, but also throughout the entire network
protocol stack, including at the application layer. Hence, MAGNeT
provides developers with information necessary to improve the network
performance of future virtual supercomputers and computational grids.

In this paper, we present the overall design of MAGNeT and discuss
implementation details of our MAGNeT toolkit. We also present an
evaluation of the performance of the MAGNeT toolkit, and conclude
with some example uses for such a tool.

1.1. RELATED WORK

MAGNEeT is a software-only solution to the problem of monitor-
ing application-level network traffic. It requires no modifications to
monitored applications, has low overhead and captures information
throughout the protocol stack (Figure 1). Although there are a wealth
of tools for monitoring network operations, We are aware of just three
tools that are similar in nature to the MAGNeT toolkit.

One alternative is Pittsburgh Supercomputing Center’s TCP kernel
monitor [17]. MAGNeT differs from the TCP kernel monitor in least
three ways. First, MAGNeT can be used anywhere in the protocol stack,
not just for monitoring TCP. Second, MAGNeT monitors a superset of
the data that the TCP kernel monitor does. And third, MAGNeT runs
on Linux whereas PSC’s TCP kernel monitor works on NetBSD.

Bolliger and Gross describe a method of extracting network band-
width information per TCP connection under BSD. [8] While their
research tool appears to have a similar architecture to MAGNeT, their
application is limited in scope, as it only records the specific information
needed to compute estimated bandwidth for TCP connections. It also
has significant per-packet processing overhead and hence does not scale
well.
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The final tool is NetLogger [10]. Its purpose is to collect, correlate
and present information about the state of a distributed system. It in-
cludes tools for instrumenting applications, host systems, and networks.
It also presents tools for visualizing the collected data. Because of its
focus on overall system dynamics, NetLogger is better than MAGNeT
at presenting an overall view of complex distributed system behaviors
that are the result of the interaction of multiple components such as
network, disk and CPU activity.

On the other hand, MAGNeT monitors all applications without
modification. It does not require applications to be recompiled or re-
linked. MAGNEeT also provides greater detail about the state of the net-
work protocol stack than NetLogger. Furthermore, MAGNeT’s times-
tamps are several decimal orders of magnitude more accurate. Thus,
we view MAGNeT as complimentary to NetLogger and are consid-
ering making MAGNeT’s output compatible to leverage NetLogger’s
visualization tools.

2. MAGNeT Design

The primary motivation of the MAGNeT toolkit is to capture net-
work traffic patterns of real-world applications at the application-level.
As such, no application modification or special user actions should be
required. Furthermore, the performance of the system and network
must not be significantly reduced in order for the traces collected by
MAGNEeT to be valid. In other words, the operation of the MAGNeT
toolkit must be transparent to applications and users.

To obtain this level of transparency, the MAGNeT toolkit must
either perform its work within the communication library linked against
the application or within the operating system (OS) kernel. Working
in the communication library requires each monitored application to
be re-compiled or re-linked, either statically or dynamically, against a
MAGNeT-ized library. On the other hand, working in the OS kernel
allows any existing application to be monitored. Placing MAGNeT in
the OS kernel also allows it to record protocol-level transitions (e.g.,
when a data packet is passed from TCP to IP), as well as network
protocol-state variables. Due to these factors, the MAGNeT toolkit
is designed as a series of modifications to the OS kernel’s networking
stack.

Also desirable is the ability to export collected data to user space
in real time. Having run-time data available to applications allows for
the development of network-aware applications. Recent work, including
that performed by Bolliger and Gross [8], suggest that if applications
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Figure 2. Overview of MAGNeT Operation

know the run-time state of the network, they may better tune their
network use to achieve maximum performance. MAGNeT records the
type of information that is of interest to network-aware applications,
and hence facilitates the development of these applications.

The flow of data in MAGNeT is shown in Figure 2. Applications,
running without modification, make send() and recv() system calls
that eventually make use of TCP, IP, or other protocols to transfer
data to and from the network. For systems running MAGNeT, each
time a network protocol event occurs, the kernel makes a call to the
MAGNeT recording procedure (which in our implementation is called
magnet_add()). This procedure saves data to a circular buffer in kernel
space, which is then saved to disk by a MAGNeT user-level application
program (in our implementation this program is called magnet-read).

2.1. MAGNET TIMESTAMPS

To accurately gauge the amount of time spent in protocol stack
layers, MAGNeT requires high-fidelity timing. To this end, events are
timestamped by MAGNeT using the highest-resolution time source
available. On most systems, the source with the highest resolution is
the CPU cycle counter, which increments on each CPU clock tick. If
the speed of the CPU clock is known, then the difference between two
cycle counts can be converted to elapsed time.

2.2. KERNEL-USER INTERFACE AND SYNCHRONIZATION

The MAGNeT kernel modifications export a circular buffer to user-
space via kernel-user shared memory. Because the kernel and user
processes access the same area of physical memory, MAGNeT pro-
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vides a means of synchronization between the two processes. This is
accomplished by using a field of the instrumentation record as a syn-
chronization flag between the MAGNeT user and kernel processes.

Before writing to a slot in the circular buffer, the MAGNeT kernel
code checks the synchronization field for that slot. If the field indicates
that the slot has not yet been copied to user space, the kernel buffer is
full. In this case, the kernel code increments a count of the number of
instrumentation records that could not be saved due to the buffer being
full. Otherwise, the kernel code writes a new instrumentation record,
indicates that the slot is now occupied and advances to the next slot
in the circular buffer.

The user application accesses the same circular buffer via kernel-user
shared memory. When the synchronization field at the current slot in-
dicates that the slot is ready to be copied to user space, the application
reads the entire record and resets the synchronization field to signal to
the kernel that the slot is once again available. The application then
advances to the next slot in the circular buffer.

When the kernel has a non-zero count of unsaved events and buffer
space becomes available, the kernel writes a special instrumentation
record to report the number of instrumentation records that were not
recorded. Thus, during post-processing of the data, the fact that events
were lost is detected at the appropriate place within the event stream.

3. MAGNeT Implementation

We now discuss our implementation of the design principles outlined
in section 2. (For a more detailed discussion, see [15].) Due to our desire
to monitor a large subset of our computing environment, we base our
implementation on the Linux 2.4-series kernel. OQur MAGNeT toolkit
software distribution consists of a patchfile for the Linux kernel, three
user-interface application programs, and a pair of scripts to automate
distributed data collection.

3.1. MAGNET-1ZING THE KERNEL

The changes necessary to implement MAGNeT in the Linux kernel
involve pinning an area of physical memory for the circular buffer,
exporting this buffer to user-space via shared memory, and writing
instrumentation records to the buffer as packets progress through the
kernel’s protocol stack.

The circular buffer can be configured to any desired size. The default
buffer size is 256 KB. Increasing the size of the buffer uses more physical
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memory but reduces the potential for lost events. An analysis of the
effects of buffer size is conducted in Section 4.3.

magnet_add (), which adds a record to the circular buffer, is written
to be lightweight so that it can be called at multiple points in the
protocol stack without inducing a significant amount of overhead. The
current implementation instruments the general socket-handling code,
the TCP layer, and the IP layer. Other protocols and layers may be
instrumented by placing calls to magnet_add () at appropriate locations
in the code for that protocol or layer.

A user-space application, such as magnet-read, creates a shared
memory region containing the circular buffer and maps the region into
the application’s address space. Thereafter, no additional kernel code
is executed; the application program simply reads shared memory and
writes it to disk.

3.1.1. Instrumentation Records

In our implementation, instrumentation records are of fixed-size
to minimize time spent by magnet_add() recording individual events.
Each instrumentation record contains an identifier which is unique
across all open connections. This allows data traces to be separated into
individual streams during post processing, while protecting the privacy
of the application and user. Records also have a timestamp field which
serves not only to provide time measurements for MAGNeT traces,
but also acts as the synchronization flag between the user and kernel
processes, as described in Section 2.2. A timestamp of zero indicates
the record has been copied to user-space; a non-zero value indicates
the record has not yet been read. The remaining two mandatory fields,
event and size, indicates the type of event and the number of bytes
transferred. There is an optional data field, which can be included
at kernel compilation time, that is a union of information specific to
particular protocols. The optional data field provides a mechanism for
recording protocol state information along with event transitions. (For
more details, see [15].)

3.1.2. MAGNeT System Information

Our MAGNeT implementation uses the get_cycles() function of
the Linux kernel to generate CPU cycle-counter timestamps. The first
record stored by our toolkit is of type MAGNET_SYSINFO whose size field
contains the processor clock speed in KHz. The record also contains
data which allows the user-level process to determine if the trace was
saved on a big-, little-, or mixed-endian machine.
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Table I. Test Configurations

Configuration Number Configuration

Linux 2.4.3

Linux 2.4.3 w/MAGNeT

Linux 2.4.3 w/MAGNeT, magnet-read on receiver
Linux 2.4.3 w/MAGNeT, magnet-read on sender
Linux 2.4.3, tcpdump on receiver

S O W N

Linux 2.4.3, tcpdump on sender

4. MAGNeT Performance Analysis

In this section, we quantify the performance impact of our MAGNeT
implementation. We compare attainable bandwidth and CPU utiliza-
tion on a system running MAGNeT to the same system running tcp-
dump,! as well as the same system running no monitoring software. We
use this comparison to show that our implementation of the MAGNeT
toolkit does not cause a significant variation in the traffic pattern of
live applications and does not appreciably affecting system usage.

4.1. EXPERIMENTAL METHOD

To determine the overhead of running MAGNeT, we measure the
maximum data rate between a sender and receiver with and without
MAGNeT. We also measure the overhead of running tcpdump. In total,
the six configurations shown in Table I are compared.

We conduct the tests between two identical dual 400MHz Pentium
ITs with NetGear 100 Mbps and Alteon 1000 Mbps Ethernet cards.
MAGNeT is configured to record only the transitions between protocol
stack layers, not the optional information about the packets and the
protocol state. The default 256 KB kernel buffer is also used to store
event records.

For a workload, we use netperf [4] on the sender to saturate the
network. We minimize the amount of interference in our measurements
by eliminating all other network traffic and minimizing the number of
processes running on the test machines to netperf and a few essential
services.

! Although MAGNeT records a different set of information than tcpdump, i.e.,
MAGNeT records application and protocol stack-level traffic while tcpdump only
records network-wire traffic, we compare the performance of MAGNeT with tcpdump
as a commonly-available monitoring tool.
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4.2. NETWORK THROUGHPUT

The kernel-resident portion of MAGNeT executes whether infor-
mation is being saved to disk or not. The first data point in Figure 3,
labeled “MAGNeT,” shows virtually no penalty when data is not being
saved to disk. The next two data points show MAGNeT incurs less than
a 5% reduction in network throughput, for a fully saturated network,
when magnet-read runs on either the receiver or sender. Furthermore,
the penalty is nearly constant regardless of network speed. In con-
trast, while tcpdump incurs roughly the same penalty as MAGNeT
over 100 Mbps networks, the penalty increases to 25%-35% of total
throughput at 1000 Mbps. Thus, MAGNeT scales better than tcpdump
with increasing link speeds.

4.3. EVENT LoOSs

Analysis of the MAGNeT-collected data for our tests reveals that
MAGNEeT occasionally fails to record events at high network utilization.
On a saturated network, MAGNeT did not record approximately 3% of
the total events for the 100 Mbps trials, while for the 1000 Mbps tests
the loss rate approached 15%. These losses are due to the 256 KB buffer
in the kernel filling before magnet-read is able to drain it.

By comparison, loss rates for tcpdump are significantly higher — ap-
proximately 15% on a saturated 100 Mbps network under the conditions
of our tests.

As noted in [IC3N2001], our implementation provides two methods
for reducing the event loss rate: (1) increase the kernel buffer size or (2)
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Figure 4. MAGNeT’s Event-Loss Rate, 100 Mbs Ethernet

reduce the time magnet-read waits before draining the kernel buffer.
Figure 4 shows the effect of these parameters on event loss rate for the
100 Mbps saturated network tests.

Increasing the kernel buffer size dramatically reduces MAGNeT’s
event loss rate, down to virtually no lost events under any network load
with a 1 MB buffer. However, because this buffer is pinned in memory, a
large buffer also reduces the amount of physical memory available to the
kernel and applications. The default 256 KB buffer size is a compromise
between CPU utilization and physical memory consumed.

Another method for reducing event loss entails adjusting the amount
of time magnet-read waits before draining the kernel buffer. Shorter
delays cause the buffer to be drained more frequently, thus reducing
the chance of lost events. However, shorter delays create more work (in
terms of CPU usage and, possibly, disk write activity), and thus may
interfere with the system’s normal use.

Figure 5 shows the increase in average CPU utilization for different
delays and buffer sizes with MAGNeT running on the sending ma-
chine. (The high CPU utilization reported in this graph are due to our
test procedure of flooding the network with netperf, which places an
unusually high load on the system CPU.) As the results show, CPU
utilization is relatively insensitive to the range of kernel buffer sizes
tested but it is sensitive to changes in delay.
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4.4. NETWORK PERTURBATION

From the previous measurements, MAGNeT performs at least as ef-
ficiently as tcpdump on contemporary networks and scales more readily
to higher-speed networks. Another critical metric of application traffic
monitors is the extent to which operation of the monitors disturbs the
traffic patterns being monitored.

By adding CPU cycle-counter code around magnet_add() and rel-
evant areas of magnet-read, we can capture the number of cycles, on
average, that MAGNeT consumes while recording data. This value can
then be compared to the minimum interarrival time for packets on the
physical network.

On a 100 Mbps Ethernet an “empty” TCP packet will arrive no
faster than 3.2 usec. Our tests on a fully saturated network indicate
that magnet_add() consumes 556 cycles, on average, while recording
a packet, while magnet-read requires 425 cycles. Thus, in the worst
case, MAGNeT takes 2.4 ysec to monitor a single network packet on
our 400-MHz machines. Since this is less time than a minimal TCP
packet takes to arrive or to be sent, the MAGNeT-induced disturbances
into the traffic stream should be small.
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5. Implications and Applications

We have shown that the MAGNeT toolkit provides a transparent
method of gathering application traffic data on individual machines.
Thus MAGNeT meets its goal of generating application traffic pattern
traces and OS protocol stack operation traces while causing minimal
interference of the patterns being monitored. In this section, we provide
examples of how MAGNeT-collected information can be utilized when
designing next-generation high performance computing environments.

5.1. TRAFFIC PATTERN ANALYSIS

One use of the MAGNeT toolkit is to investigate differences between
the traffic generated by an application and that same traffic as it ap-
pears on the network (i.e., after modulation by a protocol stack). As a
simple example of the kind of modulation possible, we consider a trace
of a FTP session from our facility in Los Alamos, NM to a location in
Dallas, TX. A one-second MAGNeT trace, taken one minute into the
transfer, is shown in Figure 6.

As can be seen by examining the graph, the FTP application at-
tempts to send 10 KB segments of data every 20 milliseconds, but
the protocol stack (TCP and IP in this case) modulates the traf-
fic into approximately 1500 byte packets, the maximum payload size
on Ethernet networks, at intervals of varying duration. The variable
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spacing of the traffic intervals is caused by TCP waiting for positive
acknowledgements before sending more traffic.

5.2. RESOURCE MANAGEMENT

With the optional data filed compiled in, MAGNeT can return
snapshots of the complete protocol state, information previously only
available under simulation environments, during execution of real appli-
cations on live networks. This kind of data is invaluable when planning
proper resource allocation on large computing systems.

5.3. NETWORK-AWARE APPLICATION DEVELOPMENT

As discussed in Section 2, MAGNeT captures data which network-
aware applications can use to appropriately tune their performance. In
our implementation, any application is able to open the MAGNeT de-
vice file and map a portion of their memory space to the MAGNeT data
collection buffer. Thus, an daemon may be developed which monitors
the MAGNeT collected data and provides a summary of the data for
specific connections at the request of network-aware applications. This
strategy consolidates all network monitoring activity to amortize the
overhead across all network-aware applications running on the system.

6. Future Work

Our implementation of MAGNeT can be improved in several ways.
We would like to allow the user to set various MAGNeT parameters
(e.g., the kinds of events to be recorded, the size of the kernel buffer,
etc.) at run-time rather than at kernel compile-time. Allowing run-time
user configuration of the MAGNeT toolkit could be accomplished by
making the current /proc file writable. Run-time configuration would
greatly increase the usability and flexibility of the MAGNeT toolkit.

Timing with CPU cycle counters can be problematic on contem-
porary CPUs which may change their clock rate according to power
management policies. If the kernel detects such changes, MAGNeT
could easily hook into the clock-rate detection code and output new
MAGNET SYSINFO events. These events, containing new timing infor-
mation, would allow correct post-processing in spite of CPU clock-
rate changes. However, current Linux production kernels are unable to
detect CPU clock rate changes at run-time.
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7. Conclusion

Current traffic libraries, network traces, and network models are
based on measurements made by tcpdump (or similar tools such as
CoralReef). These tools do not capture an application’s true traffic
demands; instead they capture an application’s demands after hav-
ing been modulated by the protocol stack. Therefore, existing traffic
libraries, network traces, and network models cannot provide protocol-
independent insight into the actual traffic patterns of an application.

Information regarding the networking needs of applications, as well
as the operation of network protocol stacks, is essential to the construc-
tion of modern high-performance computing systems. Current network
trace generation tools and archives are inadequate for this purpose.
Designers and researchers are left with no substantive data regarding
the networking needs of applications.

The MAGNeT toolkit fills the void by providing a flexible and low-
overhead infrastructure to monitor network traffic anywhere in the
protocol stack. The MAGNeT architecture provides a framework for
generating a new kind of network traffic trace, giving high-performance
computer designers and implementers new insight into potential bot-
tlenecks of next-generation machines.
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Availability

The MAGNeT toolkit containing the Linux 2.4 kernel patch, the
user-application programs and supporting material is available from our
website, http://www.lanl.gov/radiant. Other documents relating to
MAGNeT may also be found on our website.
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