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Abstract—The graphics processing unit (GPU) has evolved from
being a fixed-function processor with programmable stages into a pro-
grammable processor with many fixed-function components that deliver
massive parallelism. By modifying the GPU’s stream processor to support
‘“‘general-purpose computation” on the GPU (GPGPU), applications that
perform massive vector operations can realize many orders-of-magnitude
improvement in performance over a traditional processor, i.e., CPU.

However, the breadth of general-purpose computation that can be
efficiently supported on a GPU has largely been limited to highly data-
parallel or task-parallel applications due to the lack of explicit support for
communication between streaming multiprocessors (SMs) on the GPU.
Such communication can occur via the global memory of a GPU, but it
then requires a barrier synchronization across the SMs of the GPU in
order to complete the communication between SMs.

Although our previous work demonstrated that implementing barrier
synchronization on the GPU itself can significantly improve performance
and deliver correct results in critical bioinformatics applications, guar-
anteeing the correctness of inter-SM communication is only possible if a
memory consistency model is assumed. To address this problem, NVIDIA
recently introduced the __threadfence () function in CUDA 2.2, a
function that can guarantee the correctness of GPU-based inter-SM
communication. However, this function currently introduces so much
overhead that when using it in (direct) GPU synchronization, GPU
synchronization actually performs worse than indirect synchronization
via the CPU, thus raising the question of whether “to GPU synchronize
or not GPU synchronize?”

I. INTRODUCTION

Originally, the massive parallelism offered by the GPU only
supported calculations for 3D computer graphics, such as texture
mapping, polygon rendering, vertex rotation and translation, and
oversampling and interpolation to reduce aliasing. However, because
many of these graphics computations entail matrix and vector op-
erations, the GPU is also increasingly being used for non-graphical
calculations.

Specifically, GPU companies have modified the notion of a stream
processor that only performs graphical operations into one that
allows for “general-purpose computation” on a graphics processing
unit (GPGPU). In addition, programming models such as NVIDIA’s
Compute Unified Device Architecture [10], AMD/ATT’s Brook+ [2],
and the recently available OpenCL [8] allow applications to be more
easily mapped onto the GPU.

GPUs typically map well only to data-parallel or task-parallel
applications whose execution requires relatively minimal communi-
cation between streaming multiprocessors (SMs) on the GPU [6],
[11], [13], [15]. This proclivity is mainly due to the lack of support
for communication between streaming multiprocessors (SMs) on the
GPU. While such communication can occur via the global memory
of a GPU, it requires a barrier synchronization across the SMs in
order to complete the communication between the SMs.

Traditionally, such inter-SM communication on the GPU is
achieved by (inefficiently) implementing the barrier synchronization
via the host CPU, which we refer to hereafter as CPU barrier
synchronization. This synchronization occurs by terminating the

current GPU-offloaded computation and then re-launching a new
GPU-offloaded computation. To reduce this synchronization overhead
of having to move from the GPU to the CPU and back to the GPU,
we proposed to support barrier synchronization on the GPU itself via
our __gpu_sync () function [16], [17], which can be implemented
in two ways: (1) GPU lock-based synchronization and (2) GPU lock-

free synchronization.

Using our approaches to GPU barrier synchronization in imple-
menting two bioinformatics-related algorithms on the GPU (i.e., dy-
namic programming (DP) for genomic sequence alignment [12] and
bitonic sort (BS) [9]), our GPU lock-based synchronization improved
the performance of DP and BS by 11.70% and 16.64%, respectively,
when compared to the same algorithms implemented using CPU
barrier synchronization. Our GPU lock-free synchronization fared
even better and improved performance by 25.47% and 40.39%,
respectively [17].

However, our GPU lock-based and lock-free barriers theoret-
ically run the risk that write operations performed before our
__gpu_sync () barrier are not completed by the time the GPU is
released from the barrier. In practice, it is infinitesimally unlikely
that this will ever happen given the amount of time that is spent
spinning at the barrier, e.g., none of our thousands of experimental
runs ever resulted in an incorrect answer. Furthermore, no existing
literature has been able to show how to trigger this type of error. But
again, it is still theoretically possible.

To resolve this theoretical issue, GPU vendors recently introduced
functionality that can guarantee that the above risk cannot happen and
can thus guarantee the correctness of GPU-based inter-SM communi-
cation. In the case of NVIDIA, for example, the __threadfence ()
function was introduced into CUDA 2.2. When __threadfence ()
is called, the calling thread waits until its prior writes to global mem-
ory and shared memory are visible to other threads. By integrating
this functionality into our __gpu_sync () barrier, the correctness of
inter-SM communication can be guaranteed.

Unfortunately, this first incarnation of __threadfence () incurs
so much overhead in our GPU-based barrier synchronizations that it
eliminates much of the aforementioned performance improvements
in the two algorithms, i.e., DP and BS. That is, CPU barrier
synchronization performs as well as or better than the GPU barrier
synchronizations in many cases, thus leaving us with the question of
whether “to GPU synchronize or not GPU synchronize?”

The rest of the paper is organized as follows. Section II briefly
describes the GPU programming model, i.e., CUDA, that we use
to study barrier synchronization on the GPU. Section III presents
work related to synchronization protocols in the context of multi- and
many-core environments. Section IV provides an brief overview of
our proposed implementations of GPU barrier synchronization [17].
In Section V, we outline a potential problem with GPU-based barrier
synchronization and discuss its current solution as well as its asso-



ciated costs. Section VI then analyzes these costs in synchronization
overhead via a micro-kernel benchmark. Finally, Section VII presents
our conclusions.

II. CUDA PROGRAMMING MODEL

CUDA, short for Compute Unified Device Architecture, provides
a parallel computing architecture that is programmable via industry-
standard programming langauges like C. Provided by NVIDIA,
CUDA enables users to write multi-threaded programs to run on
CUDA-enabled graphics processing units (GPUs). When a program
is mapped to the GPU, only the computation-intensive and/or data-
parallel parts are parallelized to take advantage of the massive
parallelism available in a GPU.! These computation-intensive and/or
data-parallel parts are implemented as kernels and compiled to the
device instruction set. In a kernel, threads are grouped as a grid of
thread blocks, and each thread block contains a number of threads.
Multiple blocks can be executed on the same SM, but one block cannot
be executed across different SMss.

CUDA provides a data communication mechanism for threads
within a single block via the barrier function __syncthreads (),
i.e., intra-SM communication. However, there is no explicit software
or hardware support for data communication of threads across
different blocks, i.e. inter-SM communication. Currently, such com-
munication occurs via the global memory of the GPU, and the needed
barriers are implemented via the CPU by terminating the current
kernel’s execution and re-launching a new kernel.

III. RELATED WORK

Due to the volume of research conducted on synchronization
protocols, we necessarily limit our focus to such protocols in the
context of multi- and many-core processor environments.

In a multi-core environment, many types of synchronization ap-
proaches [1], [3], [5] have been proposed. However, none of them
can be directly used on GPUs. This is because multiple GPU
thread blocks can be scheduled to execute on a single streaming
multiprocessor (SM) simultaneously, and CUDA blocks do not yield
their execution. This means that once a thread block is spawned by
the CUDA thread scheduler, other blocks cannot start their execution
until execution of the spawned block is completed. Thus, deadlocks
could occur, and they cannot be resolved in the same way as in a
multi-core environment, where a process can yield its execution to
other processes. One way to address this problem is to assign only
one block per SM, which can be implemented by allocating all the
shared memory of an SM for a single thread block [17].

With respect to a GPU many-core environment, CUDA provides
a synchronization function __syncthreads () to synchronize the
execution of different threads within a block. However, when a
barrier synchronization is needed across different blocks, program-
mers traditionally use a kernel launch as a way to implicitly barrier
synchronize [4], [7].

Besides kernel launches, Stuart et al. [14] propose a protocol for
data communication across multiple GPUs, i.e., inter-GPU communi-
cation. Though this approach can be used for inter-SM communica-
tion, its performance will be quite poor because, in this approach, data
needs to be transferred to the host memory first and then copied back
to the device memory, which is unnecessary for data communication
across different SMs on a single GPU card.

'0n the NVIDIA GTX 280, up to 1024 threads can be active per streaming
multiprocessor (SM). With 30 SMs on the GTX 280, this means that 30,720
threads can be simultaneously active on a GPU.

IV. GPU-BASED BARRIER SYNCHRONIZATION

In [16], [17], we propose two methodologies for GPU-based
barrier synchronization: (1) GPU lock-based synchronization and (2)
GPU lock-free synchronization. For the former, a mutually exclusive
(mutex) variable controls the execution of different blocks on SMs.
Once a block finishes its computation on an SM, it atomically
increments the mutex variable. Only after all thread blocks finish
their computation will the mutex variable be equal to the target value
and the barrier complete. In contrast, GPU lock-free synchronization
uses one distinct variable to control each block, thus eliminating the
need for different blocks to contend for the single mutex variable. By
eliminating the single mutex variable, the need for atomic addition
is removed.

Application Performance Improvement with GPU Synchronization

To evaluate the performance of our GPU synchronization ap-
proaches, we implemented them in two bioinformatics-related algo-
rithms — dynamic programming (DP) for genomic sequence align-
ment (specifically the Smith-Waterman algorithm [12]) and bitonic
sort (BS) [9] — and ran them on a GeForce GTX 280 video card. The
GTX 280 consists of 30 SMs, where each SM contains 8 processing
cores running at 1.3 GHz, for a total of 240 processing cores. The on-
chip memory of each SM comprises 16K registers and 16KB shared
memory, which can only be accessed by threads on the SM. Outside
the SMs on the rest of the GPU card, there is 1GB GDDR3 global
memory with a bandwidth of 141.7 GB/second. Atop this GPU, we
use the NVIDIA CUDA 2.2 SDK toolkit. The host system for the
GPU contains a 2.2-GHz Intel Core 2 Duo CPU with 2MB L2
cache and 2x2GB DDR2 SDRAM. The operating system on the
host machine is 64-bit Ubuntu GNU/Linux 8.10.

Figure 1 shows the kernel execution time with different syn-
chronization approaches and the time variation versus the number
of blocks in the kernel, averaged over three runs. As shown in
Figure 1, the kernel execution time improves by 25.47% and 40.39%
for the dynamic programming of Smith-Waterman and bitonic sort,
respectively, when GPU lock-free synchronization across 30 blocks
is used instead of CPU barrier synchronization. When comparing the
two GPU synchronization methods to each other, the performance
of the GPU lock-free synchronization is consistently better than that
of the GPU lock-based synchronization. The more blocks that are
configured in the kernel, the larger the performance difference is.
This behavior is due to the atomic addition in the GPU lock-based
synchronization, which can only be executed serially. Thus, the more
blocks that are in the kernel, the more time that is needed to execute
the barrier synchronization function. In contrast, all operations in the
GPU lock-free synchronization can be executed in parallel, and the
time needed for the barrier synchronization is independent of the
number of blocks.

V. CoOST OF GUARANTEEING GPU SYNCHRONIZATION
CORRECTNESS

Theoretically, our GPU lock-based and lock-free barriers run the
infinitesimal risk (at least on the GeForce GTX 280) that write
operations performed before our __gpu-sync () barrier are not
completed by the time the GPU is released from the barrier. Why?
The CUDA SDK function __syncthreads () that is used in the
barrier synchronization function can only guarantee writes to shared
memory and global memory visible to threads of the same block, it
cannot do so for threads across different blocks.

To address this problem, NVIDIA introduced __threadfence ()
in CUDA 2.2. When __threadfence () is called, the calling thread
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Fig. 1. Kernel Execution Time versus Number of Blocks in the Kernel

waits until its prior writes to global memory and shared memory are
visible to other threads. By integrating this functionality into our
__gpu_sync () barrier, the correctness of inter-SM communication
can be guaranteed.

However, the overhead incurred by calling __threadfence ()
in our __gpu-sync () barrier significantly impacts the perfor-
mance of the barrier. Figure 2 shows the performance of the same
two algorithms in Section IV with __threadfence () called in
__gpu_sync (). Clearly, the kernel execution time with GPU syn-
chronization increases substantially. Compared to the dynamic pro-
gramming (DP) implementations with CPU implicit synchronization,
the GPU lock-based and lock-free implementations only perform
better when the number of blocks in the kernel is less than 17 and 19,
respectively. For bitonic sort (BS), the number of blocks needs to be
less than 13 in both cases. Furthermore, with __threadfence ()
added into our GPU-based barrier __gpu_sync (), the kernel exe-
cution time for GPU synchronization increases further if there are
more blocks configured in the kernel. This is because the execution
time of __threadfence () increases if threads in more blocks call
it. With 30 blocks configured in the kernel, compared to the CPU
synchronization, the kernel execution times increase by 23.14% and
100.70% for DP and BS, respectively.

VI. FINE-GRAINED ANALYSIS OF GPU BARRIER
SYNCHRONIZATION

In this section, we analyze the barrier synchronization overhead
by partitioning it into the time consumed for each operation within
the synchronization. As an example, we analyze GPU lock-based
synchronization, which contains a superset of all the operations that
are used in the GPU lock-free synchronization. With respect to the
barrier implementation in [17], there are four types of operations
in the GPU lock-based synchronization, and its synchronization
overhead can be expressed as

TS:ta+tc+ts+tf (1)
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where t, is the overhead of atomic add, ¢. is the mutex variable
checking time, ts is the time consumed by __syncthreads (),
and ty is the __threadfence () execution time. Unfortunately, the
execution times for these component operations cannot be measured
directly on the GPU. Thus, we use an indirect approach to infer
the times. Specifically, we measure the kernel execution time across
different scenarios, and then calculate the execution time of each
of the above operations. Based on the kernel execution time model
in [17], a kernel’s execution time can be expressed as

T =to +tcom +ts 2)

where to is the kernel launch time, tcon is the computation time,
and tg is the synchronization time. By combining Equations (1) and
(2), the kernel execution time can be represented as

T:tO+tCom+ta+tc+ts+tf (3)

From Equation (3), we can calculate the overhead of a particular op-
eration, e.g., _threadfence () by measuring the kernel execution
time both with and without __threadfence () and taking the time
difference as the overhead of __threadfence ().

With the above indirect approach, we use a micro-benchmark to
measure kernel execution times in different scenarios. The micro-
benchmark calculates the average of two floats over 10,000 iterations.
If CPU synchronization is used, each kernel calculates the average
once, and the kernel is launched 10,000 times; while for GPU
synchronization, the kernel is launched only once, and there is a
10,000-iteration for loop used in the kernel with the GPU barrier
function called in each loop. In addition, the micro-benchmark is
set with each thread calculating one element, no matter how many
threads and blocks are set in the kernel. The more blocks and threads
are set, the more elements are computed, i.e., weak scaling. So, the
computation time should be approximately constant. As before, each
result is the average of three runs.

‘We then measure kernel execution times in the following scenarios:



1) Sum of the kernel launch and computation time, i.e., t; =
to + tcom, Which is the kernel execution time of a GPU im-
plementation but without the barrier function __gpu_sync ().

2) Kernel execution time with one atomicAdd called in each
block, i.e., t2 = tq.

3) Sum of the time for kernel launch, computation, and
__syncthreads (), i.e., t3 = to + tcom + ts.

4) Kernel execution time of the GPU lock-based synchronization
without __threadfence (), s0ts = to+tcom+ts+ta+te.

5) Kernel execution time of the GPU lock-based synchronization
with __threadfence (), thus t5 = to + tcom + ts +ta +
te +1y.

Figure 3 shows the measured execution times of ¢; to t5 noted
above. With these times, the overhead of the four types of operations
in the GPU lock-based synchronization can be calculated as:

1) Time for executing the atomic add is %o, i.e., to = t2;

2) Time of the mutex variable checking is t. = t4 — t3 — t2;

3) Time consumption of __syncthreads () is ts = t3 — t1;

4) Overhead of the function __threadfence () is ty = t5 —t4.
Thus, for 10,000 times of execution, ts = 0.541, t, = 2.300 X n,
t. = 5.564, and ty = 0.333 X n + 7.267, where n is the number of
blocks in the kernel, and the units are in milliseconds.

These results show that the intra-block synchronization function
__syncthreads () consumes very little time compared the other
three operations. With 10,000 times of execution, the execution time
is only 0.541 ms, which is about 70 clock cycles per call on the
GTX 280 and is a constant value that is unrelated to the number
of threads that call it. Similarly, the execution time of the mutex
variable checking is 5.564 ms for 10,000 iterations and is unrelated
to the number of threads. On the other hand, if we analyze the
atomicAdd () and __threadfence () functions, their execution
times are directly related to the number of blocks that call them,
as shown in Figure 3. In addition, they are more expensive than the
other two operations. Hence, to improve the performance of the GPU
lock-based synchronization, efficient atomic add and memory flush
functions are needed.
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VII. CONCLUSION

Using two bioinformatics-related algorithms, we demonstrate the
efficacy of our inter-SM communication via GPU-based barrier
synchronization. While our GPU lock-based and lock-free barriers
theoretically run the risk that write operations performed before the
barrier are not completed by the time the GPU is released from the
barrier, the likelihood of this happening on the GeForce GTX 280
generation of video cards is infinitesimally small in practice.

To address this theoretical issue, NVIDIA recently introduced a
new function called __threadfence (), which guarantees that all
writes to shared memory and global memory are visible to other
threads. But because the overhead that __threadfence () incurs
is so high, the performance advantage of GPU synchronization with
_threadfence () is less clear. For a smaller number of blocks, it
still performs better than CPU synchronization, but for a large number
of blocks, CPU synchronization performs better.

So, to answer the question of whether “to GPU synchronize or not
GPU synchronize?” We grudgingly conclude that one should GPU
synchronize (with or without __threadfence ()) on the current
generation of NVIDIA video cards, i.e., GTX 280. For the next-
generation Fermi GPU and its projected efficient implementations of
atomic operations and memory flushing via __threadfence (), the
answer will be a more definitive ’yes’ to GPU synchronize.
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