
“Innovative Supercomputer Architecture” Award at the 2004 International Supercomputer Conference, Heidelberg, Germany, June 2004.

Figure 1. Moore’s Law for Power Consumption

Impact of Green Destiny
This supercomputer resulted in an
avalanche of news coverage in over a
hundred media outlets, including BBC
News, CNN, Communications of the
ACM, GRIDtoday, HPCwire, PCWorld,
The New York Times, and The Register.

Green Destiny and its Evolving Parts
Wu-chun Feng and Chung-hsing Hsu

P.O. Box 1663, M.S. D451; Los Alamos National Laboratory; Los Alamos, NM 87545
E-mail: feng@lanl.gov, Phone: +1-505-665-2730, Fax: +1-505-665-4934

Keywords: dynamic voltage-scaling, power-aware supercomputing, NAS, SPEC.

Abstract
Although the performance of supercomputers on our n-body cosmology code has improved by a factor of nearly

2000 since 1991, the performance per watt has only improved 300-fold and the performance per square foot only 65-
fold. Clearly, we are building less and less efficient supercomputers, thus resulting in the construction of new machines
rooms1 and even entirely new buildings. Furthermore, as these supercomputers continue to follow “Moore’s Law for
Power Consumption,” the reliability of these supercomputers continues to plummet, relative to Arrenhius’ equation for
microelectronics.

To address these problems, we built a super-efficient supercomputer
dubbed Green Destiny, a 240-processor supercomputer that fits in a
telephone booth (i.e., a footprint of five square feet) and sips less than 5.2
kW of power at full load [FWW02, WWF02, Feng03]. This
“Supercomputer for the Rest of Us” – a 2003 R&D 100 award-winning
machine – provided affordable, general-purpose supercomputing to our
application scientists while sitting in an 85-90˚ F (29-32˚ C) dusty
warehouse at 7,400 feet (2256 meters) above sea level. Furthermore, it
delivered reliable computing cycles without any special facilities, i.e., no
air conditioning, no humidification control, no air filtration, and no
ventilation, and without any unscheduled downtime.

However, although Green Destiny demonstrated a total price-performance ratio (ToPPeR) that was 50% better than
a traditional Beowulf cluster or supercomputer, power efficiency (i.e., performance-power ratio) that was up to eight
times better, and space efficiency (i.e., performance-space ratio) that was up to thirty times better, both the raw
performance and price/performance lagged a traditional Beowulf cluster or supercomputer by a factor of two. Thus,
many would argue that Green Destiny sacrificed too much performance in achieving power and space efficiency (and
thus, better reliability and total cost of ownership).

Therefore, we propose to evolve Green Destiny with a hybrid software-hardware solution, one that uses commodity
processors from AMD (i.e., Athlon XP-M, Athlon 64, and Opteron) to achieve better performance, coupled with
AMD’s “Cool-N-Quiet” technology (formerly PowerNow!) and our novel dynamic voltage-scaling (DVS) technique to
reduce power consumption by as much as 40% while impacting performance by less than 7%.

Motivation

In 1991, a Cray C90 vector supercomputer occupied about
600 square feet (sf) and required 500 kilowatts (kW) of power.
The ASCI Q supercomputer at Los Alamos National
Laboratory will ultimately occupy over 21,000 sf and require
3000 kW of power. Though the performance between these
two systems has increased by nearly a factor of 2000, the
performance per watt has only increased by 300-fold, and the
performance per square foot has only increased by a paltry
factor of 65. This latter number implies that supercomputers
are making less efficient use of the space that they occupy,
which oftentimes results in the design and construction of new
machine rooms, and in some cases, requires the construction of
entirely new buildings. The main reason for this less efficient use of space is the exponentially increasing power
requirements of compute nodes, i.e., “Moore’s Law for Power Consumption” (Figure 1). When nodes consume and
dissipate more power, they must be spaced out and aggressively cooled.

1 For example, Celera Genomics paid as much for their DEC Alpha-based supercomputer as they did for their machine room – $6M
for 6000 square feet. (See the GenomeWeb article – “Craig Venter Goes Shopping for Bioinformatics to Fill His New Sequencing
Center” – which discusses his intent to look into our “green machine”: http://cmbi.bjmu.edu.cn/news/0210/97.htm.)

“Innovative Supercomputer Architecture” Award at the 2004 International Supercomputer Conference, Heidelberg, Germany, June 2004.

Figure 2. Green Destiny

Without exotic cooling facilities, traditional (inefficient) supercomputers would be so unreliable (due to
overheating) that they would always be unavailable for use by the application scientist. In fact, our own empirical data
as well as unpublished empirical data from a leading vendor corroborates that the failure rate of a compute node doubles
with every 10˚C (18˚ F) increase in temperature, as per Arrenhius’ equation when applied to microelectronics, and
temperature is proportional to power consumption. Unfortunately, building exotic cooling facilities can cost as much as
the supercomputer itself, e.g., the building for the ASCI Q computer cost nearly $100M. Operating and maintaining
such facilities costs even more and is still no guarantee that the supercomputer will not suffer failures. In sum, all this
adds up to an astronomical total cost of ownership (TCO).

The Origin of Green Destiny

To address the above problems, we constructed our super-efficient Green
Destiny (see Figure 2), a 240-processor supercomputer that fits in a telephone booth
(five square feet) and sips less than 5.2 kW of power at full load [FWW02, WWF02,
Feng03]. This 2003 R&D 100 award-winning machine provides affordable, general-
purpose computing to our application scientists while sitting in an 85-90˚ F (29-32˚
C) dusty warehouse at 7,400 feet (2256 meters) above sea level. More importantly,
it provides reliable computing cycles without any special facilities, i.e., no air
conditioning, no humidification control, no air filtration, and no ventilation, and
without any downtime.2

Green Destiny takes a novel approach to supercomputing, one that ultimately re-
defines performance to encompass metrics that are of more relevance to end users –
efficiency, reliability, and availability – by designing an architecture around which
to appropriately stitch together the modified building blocks of Green Destiny. The
modified building blocks include a 1-GHz Transmeta-based RLX ServerBlade as the
compute node and World Wide Packets’ Lightning Edge network switches
configured in a one-level tree topology for efficient communication. By selecting a
Transmeta processor, Green Destiny takes a predominantly hardware-based
approach to power-aware supercomputing. A Transmeta processor eliminates about
75% of the transistors used in a traditional RISC architecture and implements the
lost (but inefficient) hardware functionality in its code morphing software (CMS), a
software layer that sits directly on the Transmeta hardware. However, while the
Transmeta processor may be significantly more reliable because it runs so much
cooler than a conventional mobile processor, its Achilles’ heel is its floating-point
performance. Consequently, we modified the CMS to create a “high-performance
CMS” that improved floating-point performance by 42% and ultimately matched the
performance of a conventional mobile processor on a clock cycle-by-clock cycle
basis (e.g., 1.2-GHz Intel Pentium III-M), but it still lagged the performance of the
fastest processor at the time by a factor of two.

(In March 2003, an upgraded 480-processor version of Green Destiny achieved
200 Gflops on Linpack – a feat that would have placed the machine at #372 of the
Top500 Supercomputer List in November 2002 and just outside the Top500 List in
June 2003.)

The Evolution of Green Destiny

Though we demonstrated in [FWW02] that the total price-performance ratio (ToPPeR) of Green Destiny was
approximately 1.5 times better than a traditional Beowulf cluster or supercomputer, the power efficiency (i.e.,
performance-power ratio) was 7 to 8 times better, and the space efficiency (i.e., performance-space ratio) was 20 to 30
times better, both the raw performance and price/performance lagged a traditional Beowulf cluster by a factor of two.
Thus, with Green Destiny, many could argue that we went to an opposite extreme of supercomputing, i.e., sacrificed too
much performance to achieve power efficiency and space efficiency (and thus better reliability and reduced total cost of
ownership). Another criticism of Green Destiny was that it was only based on “pseudo-commodity” parts, specifically

2 In contrast, a more traditional, high-end 240-processor supercomputer such as a Beowulf cluster generally requires a specially-
cooled machine room to operate reliably as such a supercomputer easily consumes as much as 36.0 kW at load, roughly seven times
more than Green Destiny. (Remember that in this scenario, one not only needs electricity to power the supercomputer, but it also
needs electricity to power the cooling and ventilation systems.)

“Innovative Supercomputer Architecture” Award at the 2004 International Supercomputer Conference, Heidelberg, Germany, June 2004.

Figure 3. Cycle Energy vs. Cycle Time

the Transmeta processor on an RLX ServerBlade. Nowhere else could one find a Transmeta processor in a server other
than RLX, and Transmeta’s target market is the laptop and embedded systems market, not the server market.

To address the above criticisms of our architecturally-based, power-aware Green Destiny, we propose a hybrid
hardware-software solution, one that uses commodity CPUs from AMD (i.e., XP-M, Athlon 64, and Opteron) to achieve
better performance and its associated “Cool-n-Quiet” technology to reduce power consumption by nearly 40% while
impacting performance by less than 7%. We achieve this feat through the judicious use of a well-known mechanism
called dynamic voltage (and frequency) scaling or DVS. In general, a DVS algorithm needs to determine when to adjust
the current frequency-voltage setting (i.e., scaling point) and what to set the new frequency-voltage setting to (i.e.,
scaling value).3

Today’s DVS algorithms solve the following minimization problem: Given a task of workload W and deadline D,
find a schedule {tf} such that when the task is executed for tf seconds at frequency f, the total energy usage E is
minimized, the deadline D is met, and the required work W is performed. This minimization problem assumes that W is
known a priori [LS01] and that all applications are CPU-bound applications. Unfortunately, as shown in [XMM03,
SAM03], W is not always constant across frequencies; thus, knowing W a priori is virtually impossible. Furthermore,
not all applications are CPU-bound. Therefore, we propose a new formulation that eliminates the hard-to-predict W and
includes performance modeling for all types of applications by replacing the aforementioned W constraint (i.e., Σf f · tf
= W) with the following constraint Σf tf / T(f) = 1. The optimal solution for this new formulation, i.e., {tf

*}, can then be
characterized by the following theorem:

Theorem: Deadline-Constrained Scheduling for Energy Minimization.
For D < maxf T(f), if the ratios γi = [Efi - Efi+1] / [T(fi) - T(fi+1)] are negative and non-increasing, the optimal
solution { tf

*} is
 [D - T(fj+1)] / [T(fj) - T(fj+1)] · T(fj) f = fj

tf
*= D – tf j

* f = fj+1

 0 otherwise
where T(fj+1) < D ≤ T(fj).

This theorem says that if Ef is convex and non-increasing on T(f), then running at the ideal single frequency f*,
where T(f*) = D, will minimize the total energy usage. If the frequency f* is not directly supported by the system,
the two neighboring frequencies fj and fj+1, T(fj+1) < D ≤ T(fj), can emulate it and results in minimum energy
consumption.

To qualitatively understand the above theorem,

let us consider a 600-1600 MHz Intel Pentium-M
processor with the performance levels as specified
by its Intel datasheet. Figure 3 depicts the convexity
of E(T(f)) in terms of a CPU cycle. All the
performance levels except 1.4 GHz satisfy the
condition of the theorem, thus 1.4 GHz should never
be used in any DVS algorithm because its speed can
be emulated by other levels with lower energy
consumption, e.g., 1.4-GHz performance can be
emulated by running half of the time at 1.2 GHz and
half of the time at 1.6 GHz, resulting in 13.9
nJ/cycle (versus the 14.3 nJ/cycle that running at 1.4
GHz would produce).

Based on the above theorem, we propose a new
interval-based DVS algorithm that abstracts the
performance model T(f) as a single parameter β and
then uses β to direct the DVS algorithm on-the-fly.

3 In the meantime, researchers at the University of Tsukuba in Japan continue to pursue the low-power architectural approach with a
“Green Destiny II” cluster, which is twice as dense and uses Gigabit Ethernet rather than fast Ethernet as its network interconnect.

“Innovative Supercomputer Architecture” Award at the 2004 International Supercomputer Conference, Heidelberg, Germany, June 2004.

1. Compute the ideal single frequency f*.
f min if β ≤ δ

f* =
f max / (1 + δ / β) otherwise

2. Figure out f j and fj+1 such that f j ≤ f* < fj+1 .
3. Compute the ratios, rfj and rfj+1 .

rfj = [(1 + δ / β) / f max – 1 / fj+1] / (1 / f j – 1 / fj+1)
rfj+1 = 1 – rfj

4. For every second, perform the following:
a. Run rfj seconds at frequency f j .
b. Run rfj+1 seconds at frequency fj+1 .

Figure 4. β-driven DVS Algorithm.

Our performance model consists of a single parameter β called the performance-scalability factor such that
β ∈ [0,1] and is defined as follows: T(f) / T(fmax) = β · fmax / f + (1 - β). The parameter β represents the sensitivity of
the application performance to the change in CPU speed. Conceptually, it is similar to the scalability of performance in
the field of parallel processing, but the number of processors is replaced here by the various CPU frequencies. If β = 1,
it means that the execution time will be cut in half when the CPU speed is twice as fast. If β = 0, the execution time
will remain constant even when running at the slowest frequency. That is, CPU-bound applications will have β ≈ 1
whereas memory- and I/O-bound applications will have β ≈ 0.

The above theorem describes an optimal schedule for DVS in terms of a deadline D and performance model T(f).
However, there is no consensus on how to assign a deadline to a general-purpose application, and the parameter β only
captures T(f) relative to the different performance levels. Because we need absolute values for T(fj) in order to apply the
theorem, we propose the following as part of our β-driven DVS algorithm: (1) The algorithm provides an additional
parameter δ defined in terms of the relative execution time,
i.e., D = (1 + δ) ·T(fmax). (2) The algorithm uses the optimal
schedule in every fixed-length time interval instead of the
entire execution period. The resulting β-driven DVS
algorithm is shown in Figure 4.

While β can be provided with the application program,
its value may depend on the input data and even the
underlying computer architecture. As a result, we need a
way to estimate β reasonably accurately “on the fly.” At a
high level, we calculate β on-the-fly by keeping track of the
average MIPS rate for each frequency and compute a new
β value using a least-squares fit.

Benchmarking a Commodity Compute Node with a β-
driven DVS Algorithm

To test ourβ-driven DVS algorithm, we ran SPEC benchmarks on an AMD XP-M processor, one of three potential
successors to our Transmeta processor in Green Destiny4 and one of the processors of choice in Sun’s Sun Fire B1600
Blade System. For each SPEC benchmark, we derived a β value by profiling T(f) for all the performance levels on the
AMD XP-M processor and using a least-squares fit; these values are shown in Table 1. Given that application
developers would rather not profile their codes a priori, we have also developed an algorithm to calculate β on the fly,
one which estimates the β values in Table 1 with a surprising degree of accuracy; the derivation of the algorithm for the
“on-the-fly” β estimator is currently outside the scope of this paper. Future work will apply this β-driven DVS
algorithm when running parallel codes such as the entire NAS Parallel Benchmark suite and a sanitized ASCI parallel
benchmark that was used to benchmark a prototype of ASCI Purple. Our initial results with NAS are quite promising –
on average, we see a 25% reduction on power consumption with only a 2% impact on peak performance.

Table 2 presents the performance of our β-driven and β-on-the-fly DVS algorithm versus three well-known DVS
algorithms: (1) a frequency-based algorithm (freq) that is more suited for CPU-intensive applications only, (2) a
“retired instructions” algorithm (mips), and (3) Intel’s SpeedStep, noted to be the best interval-based DVS algorithm by
Grunwald et al. [GLF00] back in 2000.

When SpeedStep is applied to the SPEC benchmarks, we see that it has little to no effect on performance and
energy usage. This is because SpeedStep is intended for interactive applications such as Microsoft Office, i.e., when the
processor can detect long periods of idle time or when the processor is running on a battery, rather than non-interactive
applications such as the SPEC benchmarks. The benchmarks all run in virtually the same amount of time with the same
amount of energy usage with SpeedStep. Because freq depends upon the number of CPU cycles as the metric for
specifying the CPU work requirement and the number of CPU cycles varies significantly across frequency-voltage
performance settings, the freq DVS algorithm does not perform particularly well either – energy reductions of 3-5% at
the expense of 2-3% performance degradation. The mips algorithm performs better than the previous two DVS
algorithms because the number of retired instructions is a better metric for specifying the CPU work requirement since
the number of instructions tends to remain constant across all performance levels. Our β-driven DVS algorithm clearly
performs the best of all the DVS algorithms with energy savings as high as 39% with performance degradation only
around 5% on average.

4 The other processors being considered are the AMD Athlon 64 and AMD Opteron with Cool-n-Quiet Technology enabled. Our
early results, running SPEC benchmarks, NAS Parallel Benchmarks, and a sanitized ASCI parallel benchmark, on this platform are
quite promising.

“Innovative Supercomputer Architecture” Award at the 2004 International Supercomputer Conference, Heidelberg, Germany, June 2004.

Table 1. β Values for
SPEC Benchmarks

Table 2. Performance of DVS Algorithms.
(Each table entry is in the format of “relative time / relative energy” with

respect to total execution time and system energy usage running the
benchmark at full speed. Thus, 1.00 / 1.00 means that a DVS algorithm took

the same amount of time and consumed the same amount of energy.)

References

[Feng03] W. Feng, “Making a Case for Efficient Supercomputing,” ACM Queue, October 2003.
[FWW02] W. Feng, M. Warren, and E. Weigle, “The Bladed Beowulf: A Cost-Effective Alternative to Traditional

Beowulfs,” Proc. of IEEE Cluster 2002, Sept. 2002.
[GLF00] D. Grunwald, P. Levis, K. Farkas, C. Morrey, and M. Neufeld, “Policies for Dynamic Clock Scheduling,”

Proc. of the 4th Symp. On Operating System Design and Implementation (OSDI), October 2000.
[LS01] J. Lorch and A. Smith, “Improving Dynamic Voltage Algorithms with PACE,” Proc. of ACM

SIGMETRICS, Jun. 2001.
[SAM03] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg, “FAST: Frequency-Aware Static Timing

Analysis,” Proc. of the IEEE Int’l Real-Time Systems Symp. (RTSS), Dec. 2003.
[WWF02] M. Warren, E. Weigle, and W. Feng, “High-Density Computing: A 240-Processor Beowulf in One Cubic

Meter, Proc. of Supercomputing 2002 (SC’02), Nov. 2002.
[XMM03] F. Xie, M. Martonosi, and S. Malik, “Compile-time Dynamic Voltage Scaling Settings: Opportunities and

Limits,” Proc. of ACM SIGPLAN Conf. on Programming Languages Design and Implementation (PLDI),
Jun. 2003.

SPEC Program β

swim 0.02
tomcatv 0.24
su2cor 0.27
compress 0.37
mgrid 0.51
vortex 0.65
turb3d 0.79
go 1.00

SPEC Program freq mips SpeedStep β-derived β on-the-fly

swim 1.00 / 0.96 1.00 / 1.00 1.00 / 1.00 1.07 / 0.61 1.07 / 0.63
tomcatv 1.00 / 0.97 1.03 / 0.83 1.00 / 1.00 1.04 / 0.79 1.02 / 0.86
su2cor 1.00 / 0.95 1.01 / 0.96 0.99 / 0.99 1.04 / 0.81 1.03 / 0.85
compress 1.02 / 0.97 1.05 / 0.92 1.02 / 1.02 1.06 / 0.86 1.04 / 0.89
mgrid 1.01 / 0.97 1.00 / 1.00 1.00 / 1.00 1.03 / 0.88 1.03 / 0.89
vortex 1.01 / 0.97 1.07 / 0.94 1.01 / 1.00 1.04 / 0.92 1.06 / 0.90
turb3d 1.03 / 0.97 1.01 / 1.00 1.00 / 1.00 1.05 / 0.95 1.05 / 0.95
go 1.02 / 0.99 0.99 / 0.99 1.00 / 1.00 1.04 / 0.96 1.06 / 0.96

