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Figure 1.  Moore’s Law for Power Consumption 

 
Impact of Green Destiny 
This supercomputer resulted in an 
avalanche of news coverage in over a 
hundred media outlets, including BBC 
News, CNN, Communications of the 
ACM, GRIDtoday, HPCwire, PCWorld, 
The New York Times, and The Register. 
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Abstract 
Although the performance of supercomputers on our n-body cosmology code has improved by a factor of nearly 

2000 since 1991, the performance per watt has only improved 300-fold and the performance per square foot only 65-
fold.  Clearly, we are building less and less efficient supercomputers, thus resulting in the construction of new machines 
rooms1 and even entirely new buildings.  Furthermore, as these supercomputers continue to follow “Moore’s Law for 
Power Consumption,” the reliability of these supercomputers continues to plummet, relative to Arrenhius’ equation for 
microelectronics. 

To address these problems, we built a super-efficient supercomputer 
dubbed Green Destiny, a 240-processor supercomputer that fits in a 
telephone booth (i.e., a footprint of five square feet) and sips less than 5.2 
kW of power at full load [FWW02, WWF02, Feng03].  This 
“Supercomputer for the Rest of Us” – a 2003 R&D 100 award-winning 
machine – provided affordable, general-purpose supercomputing to our 
application scientists while sitting in an 85-90˚ F (29-32˚ C) dusty 
warehouse at 7,400 feet (2256 meters) above sea level.  Furthermore, it 
delivered reliable computing cycles without any special facilities, i.e., no 
air conditioning, no humidification control, no air filtration, and no 
ventilation, and without any unscheduled downtime.   

However, although Green Destiny demonstrated a total price-performance ratio (ToPPeR) that was 50% better than 
a traditional Beowulf cluster or supercomputer, power efficiency (i.e., performance-power ratio) that was up to eight 
times better, and space efficiency (i.e., performance-space ratio) that was up to thirty times better, both the raw 
performance and price/performance lagged a traditional Beowulf cluster or supercomputer by a factor of two.  Thus, 
many would argue that Green Destiny sacrificed too much performance in achieving power and space efficiency (and 
thus, better reliability and total cost of ownership).   

Therefore, we propose to evolve Green Destiny with a hybrid software-hardware solution, one that uses commodity 
processors from AMD (i.e., Athlon XP-M, Athlon 64, and Opteron) to achieve better performance, coupled with 
AMD’s “Cool-N-Quiet” technology (formerly PowerNow!) and our novel dynamic voltage-scaling (DVS) technique to 
reduce power consumption by as much as 40% while impacting performance by less than 7%. 
 
Motivation 

In 1991, a Cray C90 vector supercomputer occupied about 
600 square feet (sf) and required 500 kilowatts (kW) of power.  
The ASCI Q supercomputer at Los Alamos National 
Laboratory will ultimately occupy over 21,000 sf and require 
3000 kW of power.  Though the performance between these 
two systems has increased by nearly a factor of 2000, the 
performance per watt has only increased by 300-fold, and the 
performance per square foot has only increased by a paltry 
factor of 65.  This latter number implies that supercomputers 
are making less efficient use of the space that they occupy, 
which oftentimes results in the design and construction of new 
machine rooms, and in some cases, requires the construction of 
entirely new buildings.  The main reason for this less efficient use of space is the exponentially increasing power 
requirements of compute nodes, i.e., “Moore’s Law for Power Consumption” (Figure 1).  When nodes consume and 
dissipate more power, they must be spaced out and aggressively cooled.  

                                                 
1 For example, Celera Genomics paid as much for their DEC Alpha-based supercomputer as they did for their machine room – $6M 
for 6000 square feet.  (See the GenomeWeb article – “Craig Venter Goes Shopping for Bioinformatics to Fill His New Sequencing 
Center” – which discusses his intent to look into our “green machine”:  http://cmbi.bjmu.edu.cn/news/0210/97.htm.) 
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Figure 2.  Green Destiny

Without exotic cooling facilities, traditional (inefficient) supercomputers would be so unreliable (due to 
overheating) that they would always be unavailable for use by the application scientist.  In fact, our own empirical data 
as well as unpublished empirical data from a leading vendor corroborates that the failure rate of a compute node doubles 
with every 10˚C (18˚ F) increase in temperature, as per Arrenhius’ equation when applied to microelectronics, and 
temperature is proportional to power consumption.  Unfortunately, building exotic cooling facilities can cost as much as 
the supercomputer itself, e.g., the building for the ASCI Q computer cost nearly $100M.  Operating and maintaining 
such facilities costs even more and is still no guarantee that the supercomputer will not suffer failures.  In sum, all this 
adds up to an astronomical total cost of ownership (TCO). 

 
The Origin of Green Destiny 

To address the above problems, we constructed our super-efficient Green 
Destiny (see Figure 2), a 240-processor supercomputer that fits in a telephone booth 
(five square feet) and sips less than 5.2 kW of power at full load [FWW02, WWF02, 
Feng03].  This 2003 R&D 100 award-winning machine provides affordable, general-
purpose computing to our application scientists while sitting in an 85-90˚ F (29-32˚ 
C) dusty warehouse at 7,400 feet (2256 meters) above sea level.  More importantly, 
it provides reliable computing cycles without any special facilities, i.e., no air 
conditioning, no humidification control, no air filtration, and no ventilation, and 
without any downtime.2   

Green Destiny takes a novel approach to supercomputing, one that ultimately re-
defines performance to encompass metrics that are of more relevance to end users – 
efficiency, reliability, and availability – by designing an architecture around which 
to appropriately stitch together the modified building blocks of Green Destiny.  The 
modified building blocks include a 1-GHz Transmeta-based RLX ServerBlade as the 
compute node and World Wide Packets’ Lightning Edge network switches 
configured in a one-level tree topology for efficient communication.  By selecting a 
Transmeta processor, Green Destiny takes a predominantly hardware-based 
approach to power-aware supercomputing.  A Transmeta processor eliminates about 
75% of the transistors used in a traditional RISC architecture and implements the 
lost (but inefficient) hardware functionality in its code morphing software (CMS), a 
software layer that sits directly on the Transmeta hardware.  However, while the 
Transmeta processor may be significantly more reliable because it runs so much 
cooler than a conventional mobile processor, its Achilles’ heel is its floating-point 
performance.  Consequently, we modified the CMS to create a “high-performance 
CMS” that improved floating-point performance by 42% and ultimately matched the 
performance of a conventional mobile processor on a clock cycle-by-clock cycle 
basis (e.g., 1.2-GHz Intel Pentium III-M), but it still lagged the performance of the 
fastest processor at the time by a factor of two. 

(In March 2003, an upgraded 480-processor version of Green Destiny achieved 
200 Gflops on Linpack – a feat that would have placed the machine at #372 of the 
Top500 Supercomputer List in November 2002 and just outside the Top500 List in 
June 2003.) 

 
The Evolution of Green Destiny 

Though we demonstrated in [FWW02] that the total price-performance ratio (ToPPeR) of Green Destiny was 
approximately 1.5 times better than a traditional Beowulf cluster or supercomputer, the power efficiency (i.e., 
performance-power ratio) was 7 to 8 times better, and the space efficiency (i.e., performance-space ratio) was 20 to 30 
times better, both the raw performance and price/performance lagged a traditional Beowulf cluster by a factor of two.  
Thus, with Green Destiny, many could argue that we went to an opposite extreme of supercomputing, i.e., sacrificed too 
much performance to achieve power efficiency and space efficiency (and thus better reliability and reduced total cost of 
ownership).  Another criticism of Green Destiny was that it was only based on “pseudo-commodity” parts, specifically 

                                                 
2 In contrast, a more traditional, high-end 240-processor supercomputer such as a Beowulf cluster generally requires a specially-
cooled machine room to operate reliably as such a supercomputer easily consumes as much as 36.0 kW at load, roughly seven times 
more than Green Destiny.  (Remember that in this scenario, one not only needs electricity to power the supercomputer, but it also 
needs electricity to power the cooling and ventilation systems.) 
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Figure 3.  Cycle Energy vs. Cycle Time 

the Transmeta processor on an RLX ServerBlade.  Nowhere else could one find a Transmeta processor in a server other 
than RLX, and Transmeta’s target market is the laptop and embedded systems market, not the server market. 

To address the above criticisms of our architecturally-based, power-aware Green Destiny, we propose a hybrid 
hardware-software solution, one that uses commodity CPUs from AMD (i.e., XP-M, Athlon 64, and Opteron) to achieve 
better performance and its associated “Cool-n-Quiet” technology to reduce power consumption by nearly 40% while 
impacting performance by less than 7%.  We achieve this feat through the judicious use of a well-known mechanism 
called dynamic voltage (and frequency) scaling or DVS.  In general, a DVS algorithm needs to determine when to adjust 
the current frequency-voltage setting (i.e., scaling point) and what to set the new frequency-voltage setting to (i.e., 
scaling value).3   

Today’s DVS algorithms solve the following minimization problem:  Given a task of workload W and deadline D, 
find a schedule {tf} such that when the task is executed for tf seconds at frequency f, the total energy usage E is 
minimized, the deadline D is met, and the required work W is performed.  This minimization problem assumes that W is 
known a priori [LS01] and that all applications are CPU-bound applications.  Unfortunately, as shown in [XMM03, 
SAM03], W is not always constant across frequencies; thus, knowing W a priori is virtually impossible.  Furthermore, 
not all applications are CPU-bound.  Therefore, we propose a new formulation that eliminates the hard-to-predict W and 
includes performance modeling for all types of applications by replacing the aforementioned W constraint (i.e., Σf  f · tf  
= W) with the following constraint Σf tf / T(f) = 1.  The optimal solution for this new formulation, i.e., {tf

*}, can then be 
characterized by the following theorem: 

 
 
Theorem:  Deadline-Constrained Scheduling for Energy Minimization.   
For D < maxf T(f), if the ratios γi = [Efi - Efi+1] /  [T(fi) - T(fi+1)] are negative and non-increasing, the optimal 
solution { tf

*} is 
  [ D - T(fj+1)] / [T(fj) - T(fj+1)] · T(fj) f = fj 

tf
*=  D – tf j

*    f = fj+1 

  0    otherwise 
where T(fj+1) < D ≤ T(fj). 

This theorem says that if Ef is convex and non-increasing on T(f), then running at the ideal single frequency f*, 
where T(f*) = D, will minimize the total energy usage.  If the frequency f* is not directly supported by the system, 
the two neighboring frequencies fj and fj+1, T(fj+1) < D ≤ T(fj), can emulate it and results in minimum energy 
consumption.   
 
 
To qualitatively understand the above theorem, 

let us consider a 600-1600 MHz Intel Pentium-M 
processor with the performance levels as specified 
by its Intel datasheet.  Figure 3 depicts the convexity 
of E(T(f)) in terms of a CPU cycle.  All the 
performance levels except 1.4 GHz satisfy the 
condition of the theorem, thus 1.4 GHz should never 
be used in any DVS algorithm because its speed can 
be emulated by other levels with lower energy 
consumption, e.g., 1.4-GHz performance can be 
emulated by running half of the time at 1.2 GHz and 
half of the time at 1.6 GHz, resulting in 13.9 
nJ/cycle (versus the 14.3 nJ/cycle that running at 1.4 
GHz would produce). 

Based on the above theorem, we propose a new 
interval-based DVS algorithm that abstracts the 
performance model T(f) as a single parameter β and 
then uses β  to direct the DVS algorithm on-the-fly.  
                                                 
3 In the meantime, researchers at the University of Tsukuba in Japan continue to pursue the low-power architectural approach with a 
“Green Destiny II” cluster, which is twice as dense and uses Gigabit Ethernet rather than fast Ethernet as its network interconnect. 
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1. Compute the ideal single frequency f*. 
f min if β ≤ δ 

f* =  
f max / (1 + δ / β) otherwise 

2. Figure out f j and fj+1 such that f j ≤  f* < fj+1 . 
3. Compute the ratios, rfj and rfj+1 . 

rfj = [ (1 + δ / β) / f max – 1 / fj+1 ] / (1 /  f j – 1 / fj+1 ) 
rfj+1 = 1 – rfj 

4. For every second, perform the following: 
a. Run rfj seconds at frequency f j . 
b. Run rfj+1 seconds at frequency fj+1 . 

 
Figure 4.  β-driven DVS Algorithm. 

Our performance model consists of a single parameter β called the performance-scalability factor such that 
β ∈ [0,1] and is defined as follows:  T(f) / T(fmax) = β  · fmax / f + (1 - β).  The parameter β  represents the sensitivity of 
the application performance to the change in CPU speed.  Conceptually, it is similar to the scalability of performance in 
the field of parallel processing, but the number of processors is replaced here by the various CPU frequencies.  If β = 1, 
it means that the execution time will be cut in half when the CPU speed is twice as fast.  If β = 0, the execution time 
will remain constant even when running at the slowest frequency.  That is, CPU-bound applications will have β ≈ 1 
whereas memory- and I/O-bound applications will have β ≈ 0.   

The above theorem describes an optimal schedule for DVS in terms of a deadline D and performance model T(f).  
However, there is no consensus on how to assign a deadline to a general-purpose application, and the parameter β  only 
captures T(f) relative to the different performance levels.  Because we need absolute values for T(fj) in order to apply the 
theorem, we propose the following as part of our β-driven DVS algorithm:  (1) The algorithm provides an additional 
parameter δ defined in terms of the relative execution time, 
i.e., D = (1 + δ) ·T(fmax).  (2) The algorithm uses the optimal 
schedule in every fixed-length time interval instead of the 
entire execution period.  The resulting β-driven DVS 
algorithm is shown in Figure 4. 

While β  can be provided with the application program, 
its value may depend on the input data and even the 
underlying computer architecture.  As a result, we need a 
way to estimate β  reasonably accurately “on the fly.”  At a 
high level, we calculate β on-the-fly by keeping track of the 
average MIPS rate for each frequency and compute a new 
β  value using a least-squares fit. 
 
Benchmarking a Commodity Compute Node with a β-
driven DVS Algorithm   

To test ourβ-driven DVS algorithm, we ran SPEC benchmarks on an AMD XP-M processor, one of three potential 
successors to our Transmeta processor in Green Destiny4 and one of the processors of choice in Sun’s Sun Fire B1600 
Blade System.  For each SPEC benchmark, we derived a β  value by profiling T(f) for all the performance levels on the 
AMD XP-M processor and using a least-squares fit; these values are shown in Table 1.  Given that application 
developers would rather not profile their codes a priori, we have also developed an algorithm to calculate β  on the fly, 
one which estimates the β  values in Table 1 with a surprising degree of accuracy; the derivation of the algorithm for the 
“on-the-fly” β  estimator is currently outside the scope of this paper.  Future work will apply this β-driven DVS 
algorithm when running parallel codes such as the entire NAS Parallel Benchmark suite and a sanitized ASCI parallel 
benchmark that was used to benchmark a prototype of ASCI Purple.  Our initial results with NAS are quite promising – 
on average, we see a 25% reduction on power consumption with only a 2% impact on peak performance. 

Table 2 presents the performance of our β-driven and β-on-the-fly DVS algorithm versus three well-known DVS 
algorithms:  (1) a frequency-based algorithm (freq) that is more suited for CPU-intensive applications only, (2) a 
“retired instructions” algorithm (mips), and (3) Intel’s SpeedStep, noted to be the best interval-based DVS algorithm by 
Grunwald et al. [GLF00] back in 2000. 

When SpeedStep is applied to the SPEC benchmarks, we see that it has little to no effect on performance and 
energy usage.  This is because SpeedStep is intended for interactive applications such as Microsoft Office, i.e., when the 
processor can detect long periods of idle time or when the processor is running on a battery, rather than non-interactive 
applications such as the SPEC benchmarks.  The benchmarks all run in virtually the same amount of time with the same 
amount of energy usage with SpeedStep.  Because freq depends upon the number of CPU cycles as the metric for 
specifying the CPU work requirement and the number of CPU cycles varies significantly across frequency-voltage 
performance settings, the freq DVS algorithm does not perform particularly well either – energy reductions of 3-5% at 
the expense of 2-3% performance degradation.  The mips algorithm performs better than the previous two DVS 
algorithms because the number of retired instructions is a better metric for specifying the CPU work requirement since 
the number of instructions tends to remain constant across all performance levels.  Our β-driven DVS algorithm clearly 
performs the best of all the DVS algorithms with energy savings as high as 39% with performance degradation only 
around 5% on average. 
                                                 
4 The other processors being considered are the AMD Athlon 64 and AMD Opteron with Cool-n-Quiet Technology enabled.  Our 
early results, running SPEC benchmarks, NAS Parallel Benchmarks, and a sanitized ASCI parallel benchmark, on this platform are 
quite promising. 
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Table 1.  β  Values for 
SPEC Benchmarks 

Table 2.  Performance of DVS Algorithms. 
(Each table entry is in the format of “relative time / relative energy” with 

respect to total execution time and system energy usage running the 
benchmark at full speed.  Thus, 1.00 / 1.00 means that a DVS algorithm took 

the same amount of time and consumed the same amount of energy.) 
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SPEC Program β 

swim 0.02 
tomcatv 0.24 
su2cor 0.27 
compress 0.37 
mgrid 0.51 
vortex 0.65 
turb3d 0.79 
go 1.00 

SPEC Program freq mips SpeedStep β-derived β on-the-fly 

swim 1.00 / 0.96 1.00 / 1.00 1.00 / 1.00 1.07 / 0.61 1.07 / 0.63 
tomcatv 1.00 / 0.97 1.03 / 0.83 1.00 / 1.00 1.04 / 0.79 1.02 / 0.86 
su2cor 1.00 / 0.95 1.01 / 0.96 0.99 / 0.99 1.04 / 0.81 1.03 / 0.85 
compress 1.02 / 0.97 1.05 / 0.92 1.02 / 1.02 1.06 / 0.86 1.04 / 0.89 
mgrid 1.01 / 0.97 1.00 / 1.00 1.00 / 1.00 1.03 / 0.88 1.03 / 0.89 
vortex 1.01 / 0.97 1.07 / 0.94 1.01 / 1.00 1.04 / 0.92 1.06 / 0.90 
turb3d 1.03 / 0.97 1.01 / 1.00 1.00 / 1.00 1.05 / 0.95 1.05 / 0.95 
go 1.02 / 0.99 0.99 / 0.99 1.00 / 1.00 1.04 / 0.96 1.06 / 0.96 


