
The Adverse Impact of the TCP Congestion-Control Mechanism in
Heterogenous Computing Systems

�

Wu-chun Feng
���

and Peerapol Tinnakornsrisuphap
�

feng@lanl.gov, tinnakor@cae.wisc.edu
�

Research & Development in Advanced Network Technology (RADIANT)
Computing, Information, and Communications Division

Los Alamos National Laboratory
Los Alamos, NM 87545

�

Department of Electrical & Computer Engineering
University of Wisconsin-Madison

Madison, WI 53706

Abstract

Via experimental study, we illustrate how TCP modu-
lates application traffic in such a way as to adversely af-
fect network performance in a heterogeneous computing
system. Even when aggregate application traffic smooths
out as more applications’ traffic are multiplexed, TCP in-
duces burstiness into the aggregate traffic load, and thus
hurts network performance. This burstiness is particularly
bad in TCP Reno, and even worse when RED gateways are
employed. Based on the results of this experimental study,
we then develop a stochastic model for TCP Reno to demon-
strate how the burstiness in TCP Reno can be modeled.

Keywords: TCP, heterogeneous computing, high-
performance networking, network traffic characterization.

1 Introduction

The ability to characterize the behavior of the resulting
aggregate network traffic can provide insight into how traf-
fic should be scheduled to make efficient use of the net-
work, and yet still deliver expected quality-of-service (QoS)
to end users. These issues are of fundamental importance in
widely-distributed, heterogeneous computational grids such
as the Earth System Grid [2].

Recent studies in network traffic characterization have
concluded that network traffic is self-similar in nature [9,
14]. That is, when traffic is aggregated over varying time

�
This work was supported by the U.S. Dept. of Energy through Los

Alamos National Laboratory contract W-7405-ENG-36. This paper is LA-
UR 00-2554.

scales, the aggregate traffic pattern remains bursty, regard-
less of the time granularity. Additional studies have con-
cluded that the heavy-tailed distributions of file size, packet
interarrival, and transfer duration fundamentally contribute
to the self-similar nature of aggregate network traffic [16].

The problems with the above research are three-fold.
First, the knowledge that self-similar traffic is bursty at
coarse-grained time scales provides little insight into the
network’s ability to achieve an expected QoS through the
Internet’s use of traditional statistical-multiplexing tech-
niques because the effectiveness of such techniques man-
ifests itself at the granularity of milliseconds, not tens or
hundreds of seconds [5]. Second, although current models
of network traffic may apply to existing file-size distribu-
tions and traffic-arrival patterns, these models will not gen-
eralize as new applications and services are introduced to
the Next-Generation Internet [15]. Third, and most impor-
tantly, the proofs of the relationship between heavy-tailed
distributions and self-similar traffic in [16, 7] ignore the in-
volvement of the TCP congestion-control mechanism.

A recent study [3] by Feng et al. addresses the above
problems by focusing on TCP in a homogeneous parallel-
computing environment (or cluster computer), where ev-
ery computing node runs the same implementation of TCP.
Feng et al. show that all flavors of TCP induce burstiness,
and hence may contribute to the self-similar nature of ag-
gregate traffic. However, the study does not examine the ef-
fects that different TCP implementations have on each other
in a heterogeneous parallel-computing system.

Mo et al. [10] argue that in a heterogeneous network-
ing environment that TCP Reno steals bandwidth from TCP
Vegas while keeping its packet loss low as well; hence pro-
viding a disincentive for researchers in high-performance

Proceedings of the 2000 International Conference on Parallel Processing (ICPP 2000).

computing to switch from Reno to Vegas. In fact, while the
Linux 2.1 kernel had TCP Vegas as its reliable communi-
cation protocol, the Linux 2.2 kernel has reverted back to
TCP Reno based on studies such as [10]. Contrary to [10],
we demonstrate that TCP Reno performs worse than TCP
Vegas in a heterogeneous computing environment.

2 Background

TCP is a connection-oriented service that guarantees re-
liable, in-order delivery of data. Its flow-control mechanism
ensures that a sender does not overrun the buffer at the re-
ceiver, and its congestion-control mechanism tries to pre-
vent too much data from being injected into the network.
While the size of the flow-control window is static, the size
of the congestion window evolves over time, according to
the status of the network.

2.1 TCP Congestion Control

Currently, the most widely-used TCP implementation is
TCP Reno [6]. Its congestion control mechanism has two
phases: slow start and congestion avoidance. In slow start,
the congestion window grows exponentially until a timeout
occurs, which implies that a packet has been lost. At this
point, a ���������
	�������������
�
	����
��� (���) value is set to the
halved window size; TCP Reno resets the congestion win-
dow size to one and re-enters the slow-start phase, increas-
ing the congestion window exponentially up to ��� . When
��� is reached, TCP Reno enters its congestion-avoidance
phase in which the congestion window is increased by “one
packet” every time the sender successfully transmits a win-
dow’s worth of packets across the network. When a packet
is lost during congestion avoidance, TCP Reno takes the
same actions as when a packet is lost during slow start.

To enhance performance, Reno also implements fast-
retransmit and fast-recovery mechanisms for both the slow-
start and congestion-avoidance phases. Rather than timing
out while waiting for the acknowledgment (ACK) of a lost
packet, if the sender receives three duplicate ACKs (indi-
cating that some packet was lost but later packets were re-
ceived), the sender immediately retransmits the lost packet
(fast retransmit). Since later packets were received, the net-
work congestion is assumed to be less severe than if all
packets were lost, and the sender only halves its conges-
tion window and re-enters the congestion-avoidance phase
(fast recovery) without going through the slow start again.

TCP Vegas [1] introduces a new congestion-control
mechanism that tries to prevent congestion rather than react
to the it after it has occurred. The basic idea is as follows:
When the congestion window increases in size, the expected
sending rate (���) increases as well. However, if the actual
sending rate (���) stays roughly the same, this implies that

there is not enough bandwidth available to send at ��� , and
therefore, any increase in the size of the congestion win-
dow will result in packets filling up the buffer space at the
bottleneck gateway. TCP Vegas attempts to detect this phe-
nomenon and avoid congestion at the bottleneck gateway
by adjusting the congestion-window size, and hence, reduce
��� as necessary to adapt to the available bandwidth.

To adjust the window size appropriately, Vegas defines
two threshold values, and ! , for the congestion-avoidance
phase, and a third threshold value, " , for the transition be-
tween the slow-start phase and congestion-avoidance phase.
Conceptually, $#&% implies that Vegas tries to keep at
least one packet from each stream queued in gateway while
!'#)(keeps at most three packets from each stream.

If ��*+�,��-.,/�/0#1���324��� , then when ��*5�,��-.,/�/467 ,
Vegas increases the congestion window linearly during the
next RTT. When ��*+�,��-.,/�/98&! , Vegas decreases the
window linearly during the next RTT. And when ;:
��*5�,��-.,/�/<:=! , the window remains unchanged. The "
parameter can be viewed as the “initial” ! when Vegas en-
ters its congestion-avoidance phase.

To enhance the performance of TCP, Floyd and Jacobson
proposed the use of random early detection (RED) gate-
ways [4] to detect incipient congestion. To accomplish
this detection, RED gateways maintain an exponentially-
weighted, moving average of the queue length. As long as
the average queue length stays below the minimum thresh-
old (>?@��A�B), all packets are queued, and thus, no packets are
dropped. When the average queue length exceeds >?@�CA�B ,
packets are dropped with some calculated probability D .
And when the average queue length exceeds a maximum
threshold (>E*+F A�B), all arriving packets are dropped.

2.2 TCP Probability & Statistics

Rather than use the Hurst parameter from self-similar
modeling as is done in many studies of network traf-
fic [9, 12, 13, 14, 16], we use the coefficient of variation
(GIH �JH K�H) because it better reflects the predictability of incom-
ing traffic at finer time granularities, and consequently, the
effectiveness of statistical multiplexing over the Internet.
The G
H �JH KLH is the ratio of the standard deviation to the mean
of the observed number of packets arriving at a gateway in
each round-trip propagation delay. The G
H �JH KLH gives a nor-
malized value for the “spread” of a distribution and allows
for the comparison of “spreads” over a varying number of
communication streams. If the G
H �JH KLH is small, the amount
of traffic coming into the gateway in each RTT will concen-
trate mostly around the mean, and therefore will yield better
performance via statistical multiplexing.

By the Central Limit Theorem, the sum of independent
variables results in a random variable with less burstiness,
or equivalently, a smaller G
H �JH KLH. However, even if traffic

sources are independent, TCP introduces dependency be-
tween the sources, and the traffic does not smooth out as
more sources are aggregated, i.e., G
H �JH KLH is large [3].

3 Experimental Study

The goal of this study is to understand the dynamics of
how TCP modulates application-generated traffic in a het-
erogenous computing system. While this issue has been
largely ignored in the self-similar literature [9, 14, 16, 12,
13], we strive to isolate and understand the TCP modu-
lation so that we may be better able to schedule network
resources. Understanding how TCP modulates traffic can
have a profound impact on the GIH �JH K�H, and hence, throughput
and packet loss percentage of network traffic. This, in turn,
directly affects the performance of distributed computing
systems such as the Earth System Grid [2].

3.1 Network Model

To characterize the TCP modulation of traffic, we first
generate application traffic according to a known distribu-
tion. We then compare the GIH �JH K�H of this distribution to the
G
H �JH KLH of the traffic transmitted by TCP. We can then deter-
mine whether TCP modulates the traffic, and if it does, how
it affects the shape (burstiness) of the traffic, and hence, the
performance of the network.

Consider a heterogenous cluster consisting of ��� %
compute nodes, where % :�� : %���� . Since one of the
worst-case network-congestion scenarios involves perform-
ing an intensive all-to-one communication, hence generat-
ing “hot spots” near the receiving node, we examine this
case where the receiving node is a single server with �
clients sending to it, as shown in Figure 1. Each client is
linked to a common gateway with a full-duplex link with
bandwidth �	� and delay
�� . A bottleneck full-duplex link
of bandwidth ��� and delay
�� connects the gateway to the
server. Each client generates Poisson traffic, i.e., single
packets are submitted to the TCP stack with exponentially
distributed interpacket arrival times with mean %��� . All the
clients attempt to send the generated packets to the server
through the gateway and bottleneck link.

We use ns [11], an event-driven simulator, as our sim-
ulation environment. In our simulations, we vary the total
traffic load offered by varying the number of clients � . We
use UDP, TCP Reno (with delay acknowledgements both
on and off), and TCP Vegas as the transport-layer proto-
cols. We also test the effects of two queueing disciplines
in the gateway, FIFO (First-In, First-Out) and RED, to see
whether the queueing discipline has any effect on the bursti-
ness generated by the TCP protocol stack. We calculate the
G
H �JH KLH of the aggregate traffic generated by the clients, based
on the known distribution each client uses to generate its

traffic, and compare it to the measured G
H �JH KLH of the aggre-
gate TCP modulated traffic as it arrives at the gateway. The
parameters used in the simulation are shown in Table 1.

..

Gateway/Router Server

Clients

1

M

3

2

τ

µ
τ

µs s

c

c

Buffer size = B

Figure 1. Network Model

Parameters Value

client link bandwidth (���) 10 Mbps
client link delay (���) 25 ms
bottleneck link bandwidth (���) 50 Mbps
bottleneck link delay (���) 25 ms
TCP max advertised window 20 packets
gateway buffer size (�) 50 packets
packet size 1500 bytes
average client packet intergeneration time (�����) 0.01 s
total test time 200 s

TCP Vegas/ � 1
TCP Vegas/ � 3
TCP Vegas/ 1

RED !#"%$'&)(10 packets
RED !#*�+,&)(40 packets

Table 1. Simulation Parameters for the Net-
work Model.

3.2 TCP Reno vs. TCP Vegas

From the simulation parameters, the amount of traffic
each client generates on average is 100 packets per second,
or 1.2 Mbps. Since each client generates traffic indepen-
dently of the others, the average amount of traffic generated
by all clients will reach network capacity when we aggre-
gate 41 clients together. Because the traffic generated by
the application layers is Poisson, the GIH �JH K�H of the unmodu-
lated aggregate traffic is 1/ - ./�0
�1,� where � is the number
of clients aggregated and
'# ��� �<#320.4
��5�6
7�81 . There-
fore, the traffic generated from application layer becomes
smoother as the number of sources increases.

The study performed in [3] showed that when all clients
ran UDP, UDP did not noticeably modulate the traffic be-

0 10 20 30 40 50 60 70 80 90 100
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

number of clients

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

Poisson
UDP
Reno
Reno/RED
Vegas
Vegas/RED
Reno/DelayAck

Figure 2. Coefficient of Variation of the Aggre-
gated TCP Traffic.

30 40 50 60 70 80 90 100
5.5

6

6.5

7

7.5

8

8.5
x 10

5

number of clients

to
ta

l n
um

be
r

of
 p

ac
ke

ts
 s

uc
ce

ss
fu

lly
 tr

an
sm

itt
ed

Reno
Reno/RED
Vegas
Vegas/RED
Reno/DelayAck

Figure 3. Throughput of the Aggregated TCP
Traffic.

30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

number of clients

pa
ck

et
 lo

st
 p

er
ce

nt
ag

e
(%

)

Reno
Reno/RED
Vegas
Vegas/RED
Reno/DelayAck

Figure 4. Packet Loss Percentage of the Ag-
gregated TCP Traffic.

cause the G
H �JH KLH of aggregated UDP traffic is very close to
that of the aggregated Poisson process. This is not surpris-
ing since UDP transmits packets received from the applica-
tion layer to the network without any flow/congestion con-
trol. For TCP, we consider three cases: (1) uncongested —
amount of traffic generated is much lower than the available
bandwidth, i.e., # clients 6 10, (2) moderately congested
— amount of traffic generated causes some congestion, i.e.,
%7�4: # clients : (�� , and (3) heavily congested — amount
of traffic generated is higher than what the network can han-
dle, i.e., # clients 8 (�� .

In the uncongested case, traffic entering the gateway is
similar to the traffic that the clients generate, irrespective
of the TCP implementation, because congestion control has
not kicked-in to control or modulate the traffic.

Under moderate congestion, the congestion-control
mechanism begins to modulate the application-generated
traffic which is transmitted into the network via TCP. We
see this effect in Figure 2 — the TCP G
H �JH KLH numbers are
up to 50% higher than the aggregated Poisson and UDP
G
H �JH KLH numbers. This indicates that the congestion-control
mechanism of TCP, regardless of implementation, notice-
ably modulates traffic when the network is moderately con-
gested, i.e., TCP induces burstiness into the aggregate traf-
fic stream. Fortunately, because the network only expe-
riences intermittent congestion, this induced burstiness is
not strong enough to adversely impact the throughput and
packet loss [3], as shown in Figures 3 and 4.

Under heavy congestion, the G
H �JH KLH sharply increases for
all TCP implementations except Vegas. The Reno and
Reno/RED G
H �JH K�H numbers are over 140% and 200% larger
than the aggregated Poisson and UDP GIH �JH K�H numbers, re-
spectively. This result indicates that Reno and Reno/RED
significantly modulate application-generated traffic (Pois-
son traffic) to be much more bursty. And unfortunately,
this modulation is adverse enough to impact the throughput
and packet loss percentage of Reno and Reno/RED [3], as
shown in Figures 3 and 4. The above results imply that TCP
Reno introduces a high level of dependency between the
congestion-control mechanisms of each of the TCP streams.

While the above work illustrates the superiority of Vegas
over Reno in a homogeneous parallel-computing environ-
ment, it is unlikely that everyone in a distributed parallel-
computing environment will switch to Vegas all at once. In
reality, the parallel-computing environment will be hetero-
geneous. So, we next examine how Vegas connections per-
form in the presence of Reno connections.

3.2.1 Half-Bandwidth Saturation with TCP Reno

In this set of experiments, we initially start-up 20 Reno
clients to generate enough background traffic to saturate
half of the available bandwidth. Then, additional clients are

introduced to the initial 20 Reno clients. Figures 5 and 6
show the throughput and packet loss, respectively, for the
clients which are added to the initial 20 Reno clients. The
results show that Vegas still outperforms Reno. This coin-
cides with the finding in [10] which states that Vegas con-
nections are favored when the gateway buffer size is small
(e.g., 50 packets).

Next, we test this setup with a larger gateway buffer size
of 1500 packets with and without a RED gateway. We also
use two different sets of RED parameters — RED1 (>E@� A�B
= 300, >E*+F�A�B = 1200) and RED2 (>?@� A�B = 75, >E*+F�A�B =
300). Figures 7 and 8 show the throughput and packet loss
for this follow-up experiment. While the throughput num-
bers are nearly identical, the relative differences in packet
loss are more pronounced (though the absolute differences
are smaller due to the larger buffer). Like [10], our results
show that lower threshold values in RED favor Vegas. In
contrast to [10], Vegas variants produce lower packet loss
than their Reno counterparts, respectively.

While RED was originally introduced as a way to en-
hance TCP performance in Reno as well as Vegas, these
results show that such gateways increase TCP modulation
and can actually hurt TCP performance. The >E �CA�B and
>E*+F A�B parameters in RED make the buffer in the gateway
appear smaller to TCP connections. TCP Reno, whose per-
formance varies significantly with respect ot the gateway
buffer size [8], suffers severely because its buffer require-
ments can very quickly become large as each stream treis
to greedily increase its window size. On the other hand,
TCP Vegas, even in the presence of 20 Reno connections,
requires a minimal amount of buffer space per connnec-
tion and produces smoother traffic than Reno in the pres-
ence of a RED gateway, resulting in a better-performing
TCP. Unfortunately, TCP implementations with RED per-
form worse than their “plain” counterparts with respect to
G
H �JH KLH, throughput, and packet loss (see Figures 2-8).

3.2.2 Full-Bandwidth Saturation with TCP Reno

To further “stack the deck” against TCP Vegas, we ran an-
other set of experiments where we initially start-up 40 Reno
clients to generate enough background traffic to saturate the
network link. We then add new connections to the heavily-
congested network and examine the performance of these
new connections.

With a small gateway buffer of 50 packets, Figures 9
and 10 show the throughput and packet loss, respectively,
for the clients which are added to the initial 40 Reno
clients. Even in a heterogenous computing environment
where Reno clients predominate, Vegas still performs ad-
mirably although not as well as in the previous set of ex-
periments where only half the bandwidth is saturated with
Reno. Thus, based on [3] and the results in this paper, Vegas

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7
x 10

5

number of additional clients

nu
m

be
r

of
 p

ac
ke

ts
 s

uc
ce

ss
fu

lly
 r

ec
ei

ve
d

Reno
Reno/RED
Vegas
Vegas/RED

Figure 5. Throughput of Additional Clients
(Background = 20 Reno clients, Buffer = 50
packets).

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

number of additional clients

pa
ck

et
 lo

st
 p

er
ce

nt
ag

e
of

 th
e

ad
di

tio
na

l c
lie

nt
s

Reno
Reno/RED
Vegas
Vegas/RED

Figure 6. Packet-Loss Percentage of Addi-
tional Clients (Background = 20 Reno clients,
Buffer = 50 packets).

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7
x 10

5

number of additional clients

nu
m

be
r

of
 p

ac
ke

ts
 s

uc
ce

ss
fu

lly
 r

ec
ei

ve
d

Reno
Reno/RED1
Reno/RED2
Vegas
Vegas/RED1
Vegas/RED2

Figure 7. Throughput of Additional Clients
(Background = 20 Reno clients, Buffer = 1500
packets).

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

number of additional clients

pa
ck

et
 lo

st
 p

er
ce

nt
ag

e
of

 th
e

ad
di

tio
na

l c
lie

nt
s

Reno
Reno/RED1
Reno/RED2
Vegas
Vegas/RED1
Vegas/RED2

Figure 8. Packet-Loss Percentage of Addi-
tional Clients (Background = 20 Reno clients,
Buffer = 1500 packets).

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

number of additional clients

nu
m

be
r

of
 p

ac
ke

ts
 s

uc
ce

ss
fu

lly
 r

ec
ei

ve
d

Reno
Reno/RED
Vegas
Vegas/RED

Figure 9. Throughput of Additional Clients
(Background = 40 Reno clients, Buffer = 50
packets).

0 10 20 30 40 50 60 70
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

number of additional clients

pa
ck

et
 lo

st
 p

er
ce

nt
ag

e
of

 th
e

ad
di

tio
na

l c
lie

nt
s

Reno
Reno/RED
Vegas
Vegas/RED

Figure 10. Packet-Loss Percentage of Addi-
tional Clients (Background = 40 Reno clients,
Buffer = 50 packets).

performs best in a parallel-computing environment where
all the compute nodes are running Vegas; as the number of
Reno nodes increases, the advantage of Vegas over Reno
diminishes.

Running the same tests with a larger gateway buffer of
1500 packets and using two different sets of RED param-
eters — RED1 where the >E � A�B is 300 packets and the
>E*+F A�B is 1200 packets, and RED2 where the >E � A�B is 75
packets and >4*+F A�B is 300 packets — we find that TCP Ve-
gas performs better than TCP Reno, contrary to what was
found in [10]. As in the half-bandwidth saturation tests,
the throughput numbers in all cases are relatively close to
one another (Figure 11), however the relative differences in
packet-loss percentage are more pronounced (Figure 12).
And once again, the TCP Vegas variants produce lower
packet-loss percentages than their TCP Reno counterparts,
respectively.

3.2.3 Discussion

TCP Reno greedily tries to get as much bandwidth as possi-
ble by increasing its window size linearly until a packet loss
occurs. These packet losses generally occur due to buffer
overflows. Consequently, TCP Reno’s bandwidth “estima-
tion” mechanism results in the periodic oscillation of the
size of the congestion window size as well as the queue oc-
cupancy of the gateway buffer. So, while TCP Vegas tries to
keep a smaller queue size via its and ! parameters, TCP
Reno keeps many more packets in the buffer on average.
Mo et al. [10] then use this argument to explain that this is
how TCP Reno “steals” bandwidth away from TCP Vegas.

There are two primary reasons why the results in [10]
differ so much from ours. First, the experimental set-up
used in their study focuses on pitting TCP Reno versus
TCP Vegas one-on-one rather than dealing with a hetero-
geneous parallel-computing environment where some ag-
gregate number of users are using Reno and others are
using Vegas. Second, their study indicates that the in-
put traffic distribution is drawn from an infinite-sized file,
i.e., each connections always has data to transmit. Clearly,
this kind of assumption on the traffic distribution bene-
fits TCP Reno’s “greedy” algorithm. Although a Poisson-
distributed interpacket arrival pattern like ours may not ac-
curately model real application-generated traffic either, we
believe that it can more closely resemble network traffic
than an infinite-sized file which is continually pushing data
into the network.

In any case, the goal of this paper is not to model
application-generated traffic patterns per se but to select a
known distribution (i.e., Poisson) and isolate the effect of
the TCP protocol stack on application-layer traffic via the
G
H �JH KLH metric. In this context, we then investigate the per-
formance of TCP Vegas in the presence of TCP Reno con-

nections. While the study in [10] provides a disincentive
for TCP Reno users to switch to TCP Vegas, our study con-
versely provides an incentive to switch from Reno to Vegas.
Before we make any further claims about the performance
of TCP Vegas in the presence of TCP Reno connections, we
must thoroughly study how applications generate traffic be-
fore the traffic enters the TCP stack and then use these traffic
patterns as our input-traffic distributions into TCP Reno and
TCP Vegas.

4 Stochastic Model of TCP Reno

In this section, we extend our work into the stochastic
modeling of the TCP Reno traffic to predict the burstiness
of traffic entering the bottleneck gateway. With some rea-
sonable simplifications, we show that the behavior of the
c.o.v. of aggregated TCP Reno traffic can be reasonably
predicted by stochastic modeling.

Using the notation from Table 1, consider the discrete-
time series process whose timestep has length equal to the
round-trip propagation delay of our client-server connection

.# 20.4
7���#
7��1 . We neglect the time a packet spends waiting

in the gateway buffer and all other processing time. Let �
������

be the number of packets generated by the application layer
of client during the � th interval. Then �

������ is a Poisson-
distributed random variable with mean �0
 . Let �

������ be the
size of the TCP congestion window of client at time � .
In each interval, the number of packets transmitted cannot
exceed the congestion window; the excess traffic is carried
over to the next interval. Let �

������ be the number of packets
actually transmitted by client in the interval � and 	

������ be
the excess packets carried over from interval ��2 % . We have
the following relations:

� ������ #�
����� � ������ ��	 �������� � �������� (1)

	
���������� # .�� ������ ��	 ������ 1 2�� ������ (2)

In order to obtain the c.o.v. of the traffic in the steady
state, we assume that all the TCP connections are always in
the congestion avoidance phase and assume congestion will
occur if and only if the total number of packets transmitted
in an interval is more than the available bandwidth in that
round .%���8,. ������*JG! ���� 	�#"+��1 �%$#1
 . We also assume syn-
chronization of all TCP connections, that is, once conges-
tion has occurred, all the TCP congestion windows are cut
in half by the fast-retransmit mechanism introduced in TCP
Reno. If congestion does not occur, the congestion window
will grow linearly according to the number of packets suc-
cessfully transmitted in that interval. Let " be the available
bandwidth, then for %�:7 : � ,

�
���������� #&� ������ � �

������
�
������ '

()
��* � �

������ : " (3)

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

number of addtional clients

nu
m

be
r

of
 p

ac
ke

ts
 s

uc
ce

ss
fu

lly
 r

ec
ei

ve
d

Reno
Reno/RED1
Reno/RED2
Vegas
Vegas/RED1
Vegas/RED2

Figure 11. Throughput of Additional Clients
(Background = 40 Reno clients, Buffer = 1500
packets).

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

number of addtional clients

pa
ck

et
 lo

st
 p

er
ce

nt
ag

e
of

 th
e

ad
di

tio
na

l c
lie

nt
s

Reno
Reno/RED1
Reno/RED2
Vegas
Vegas/RED1
Vegas/RED2

Figure 12. Packet-Loss Percentage of Addi-
tional Clients (Background = 40 Reno clients,
Buffer = 1500 packets).

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

number of clients

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

Reno
Model

Figure 13. Comparison of the Coefficient of
Variation between Simulated TCP Reno and
Our Stochastic Model.

�
���������� # �

������
2 '

()
��* � �

������ 8 " (4)

Consider the traffic transmitted from each client to the
gateway � � #��

(��* � �
������ . We can obtain the observed

c.o.v. numerically. The result in Figure 13 shows that the
trend of the c.o.v. in this model does closely follow that of
TCP Reno. The dependencies between the traffic streams
imposed by equation 4 should exist to some degree in the
actual aggregated TCP streams. The model does overesti-
mate the burstiness of aggregated TCP streams in the heav-
ily loaded case because it assumes very strong dependencies
between TCP streams and does not include the TCP Time-
out.

5 Conclusion

From our experiments, we have shown that the
congestion-control mechanisms of TCP Reno and TCP Ve-
gas modulate the traffic generated by the application layer.
The congestion-control mechanism of TCP Reno adversely
modulates the traffic to be more bursty, which subsequently
affects the performance of statistical multiplexing in the
gateway; this modulation occurs for two primary reasons:
(1) the periodic oscillation of the congestion window size
and buffer occupancy at the gateway caused by the con-
tinual “additive increase / multiplicate decrease (or re-start
slow start)” probing of the network state and (2) the de-
pendency between the congestion-control decisions made
by multiple TCP streams which increases as the number of
streams increase, i.e., TCP streams tend to recognize con-
gestion in the network at the same time and thus halve their
congestion windows at the same time [3]. As a result, TCP
Reno traffic does not significantly smooth out even when a
large number of streams are aggregated. On the other hand,
TCP Vegas, during congestion avoidance, does not modu-
late the traffic to be as bursty as TCP Reno. This trans-
lates to smoother aggregate network traffic, and hence better
overall network performance

In contrast to the work done in [10], we illustrated via ns
simulations that TCP Vegas performs as well as, if not bet-
ter than, TCP Reno in the presence of existing TCP Reno
connections. Thus, while the work of [10] discourages re-
searchers in high-performance computing to switch from
TCP Reno to TCP Vegas; our work reaches the opposite
conclusion, hence providing an incentive to switch from
Reno to Vegas.

In the future, we intend to refine our stochastic model
to better fit TCP Reno in the heavily congested case and
to develop a model for TCP Vegas. A major part of this
work will look into the modeling of TCP traffic to include
the interactions between multiple TCP streams. We believe
that this is a significant problem which needs to be solved

before we can predict the behavior of network traffic and
achieve the necessary QoS guarantees over the Internet or
any distributed heterogeneous-computing system.

References

[1] L. Brakmo and L. Peterson. TCP Vegas: End to End
Congestion Avoidance on a Global Internet. IEEE JSAC,
13(8):1465–1480, October 1995.

[2] W. Feng, I. Foster, S. Hammond, B. Hibbard, C. Kessel-
man, A. Shoshani, B. Tierney, and D. Williams. Prototyping
an Earth System Grid. http://www.scd.ucar.edu/css/esg, July
1999.

[3] W. Feng, P. Tinnakornsrisuphap, and I. Philp. On the Bursti-
ness of the TCP Congestion-Control Mechanism in a Dis-
tributed Computing System. In 20th International Confer-
ence on Distributed Computing Systems, April 2000.

[4] S. Floyd and V. Jacobson. Random Early Detection Gate-
ways for Congestion Avoidance. IEEE/ACM Transactions
on Networking, 1(4):397–413, August 1993.

[5] M. Grossglauser and J. Bolot. On the Relevance of Long-
Range Dependence in Network Traffic. Computer Commu-
nication Review, 26(4):15–24, October 1996.

[6] V. Jacobson. Congestion Avoidance and Control. In SIG-
COMM’88, pages 314–332, August 1998.

[7] T. G. Kurtz. Limit Theorems for Workload Input Models.
Stochastic Networks: Theory and Applications, 1996.

[8] T. V. Lakshman and U. Madhow. The Performance of
TCP/IP for Networks with High Bandwidth-Delay Products
and Random Loss. IEEE/ACM Transactions on Networking,
5(3):336–350, June 1997.

[9] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the
Self-Similar Nature of Ethernet Traffic (Extended Version).
IEEE/ACM Transaction on Networking, 2(1):1–15, Febru-
ary 1994.

[10] J. Mo, R. J. La, V. Anantharam, and J. Walrand. Analysis
and Comparison of TCP Reno and Vegas. In INFOCOM’99,
March 1999.

[11] ns. UCB/LBNL/VINT Network Simulator. http://www-
mash.cs.berkeley.edu/ns.

[12] K. Park, G. Kim, and M. Crovella. On the Relationship Be-
tween File Sizes, Transport Protocols, and Self-Similar Net-
work Traffic. In 4th International Conference on Network
Protocols, October 1996.

[13] K. Park, G. Kim, and M. Crovella. On the Effect of Traffic
Self-Similarty on Network Performance. In SPIE Interna-
tional Conference on Performance and Control of Network
Systems, 1997.

[14] V. Paxson and S. Floyd. Wide-Area Traffic: The Failure of
Poisson Modeling. IEEE/ACM Transactions on Networking,
3(3):226–244, June 1995.

[15] W. Willinger and V. Paxson. Where Mathematics Meets
the Internet. Notices of the American Mathematical Soci-
ety, 45(8):961–970, September 1998.

[16] W. Willinger, V. Paxson, and M. Taqqu. Self-Similarity and
Heavy Tails: Structural Modeling of Network Traffic. A
Practical Guide to Heavy Tails: Statistical Techniques and
Applications, pages 27–53, 1998.

