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Abstract

The Green500 turned two years old this past Novem-
ber at the ACM/IEEE SC|09 Conference. As part of
the grassroots movement of the Green500, this paper
takes a look back and reflects on how the Green500 has
evolved in its second year as well as since its inception.
Specifically, it analyzes trends in the Green500 and
reports on the implications of these trends. In addi-
tion, based on significant feedback from the high-end
computing (HEC) community, the Green500 announced
three exploratory sub-lists: the Little Green500, the
Open Green500, and the HPCC Green500, which are
each discussed in this paper.

1. Introduction

The focus of “performance at any cost” in high-
end computing (HEC) has led to supercomputers that
consume vast amounts of electrical power and require
large cooling facilities to ensure proper operation [4],
[5], [15]. To address this inequity, the Green500 List
was created [7] to provide a complementary view to
the TOP500 [17]. Since its debut in November 2007,
the Green500 has garnered increasing interest from
industry, government labs, and academia. The most
recent release of the Green500 at ACM/IEEE SC|09
marked its two-year anniversary.

With two year’s worth of Green500 data now avail-
able, this paper tracks the progress of energy-efficient
supercomputing on the Green500, analyzes trends in
the Green500, and reports on the implications of these
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trends. In addition, reflections from the first year of
the Green500 [8] brought with it new feedback from
the HEC community, which strongly indicated that
the single Green500 List would not be sufficient in
addressing the needs of the HEC community interested
in the pursuit of sustainable green supercomputing. Of
particular interest to the HEC community were the
following:

• Lowering the “barrier to entry” to the Green500
by being more inclusive with the definition of a
supercomputer.

• Rewarding innovation, not only in hardware, but
also in software via alternative energy-efficient
algorithms, power-aware compilation, or adaptive
run-time systems, for example.

• Investigating the possibility of using a different
benchmark(s) to evaluate the energy efficiency of
supercomputers.

Each of these items will be addressed in greater detail
later in this paper.

The rest of the paper is organized as follows. Sec-
tion 2 provides background information on the need
for a Green500 List. Section 3 presents an analysis
of trends in the Green500 List and discusses their
implications. In addition, the section also discusses how
the list is evolving with the announcement of three new
exploratory lists. Finally, Section 4 presents concluding
remarks and discussion of future work.

2. Background

While both the TOP500 and Green500 focus on
performance, the former uses speed as its performance
metric, as measured by floating-point operations per
second (i.e., FLOPS) while the latter uses energy effi-



ciency, as measured by FLOPS/watt. Why should we
care about energy efficiency? As Belady notes in [5]
and as shown in Figure 1, the annual energy cost for
a 1U server in 2008 surpassed its purchase cost. This,
coupled with the annual infrastructure cost for a 1U
server exceeding its purchase cost in 2004, contributes
to a fast-rising total cost of ownership (TCO).

Figure 1. Annual Amortized Costs in the
Data Center.

The “Green Destiny” cluster [6], [9] aggressively
addressed the above issues by turbocharging low-power
x86-compatible Transmeta processors via proactive dy-
namic compilation at run time and by consolidating
common hardware infrastructure via blade technology
in order to massively improve processor performance,
particularly floating-point operations, and significantly
reduce per-node power consumption, respectively. The
use of low-power blades by Green Destiny enabled
compute nodes to be packed more densely, i.e., in-
creased FLOPS per square foot, while simultane-
ously reducing power density, i.e., decreasing watts
per square foot. While the HEC community clearly
understood the benefits of the former, i.e., increas-
ingly computational density, the latter, i.e., reducing
power density, was largely ignored. As a result, though
the subsequent proliferation of server blades created
more densely-packed compute nodes or servers, it also
caused a much faster than expected increase in the
power density of compute servers [3], [18], as shown
in Figure 2.

Continuing to “feed the supercomputing beast” is
not an environmentally sustainable solution as the de-
mand for energy continues to grow rapidly. As noted

Figure 2. ASHRAE Projection of Heat Den-
sity.

earlier, the annual cost to power and to cool a 1U server
has already exceeded the actual cost of the 1U server.
By 2014, the infrastructure and energy cost (I&E), as
shown in Figure 1, will account for 75% of the total
cost of a 1U server. This is in stark contrast to the early
1990s when I&E only accounted for a mere 20% of the
total cost of a 1U server.

Consequently, the energy efficiency of supercomput-
ing systems needs to be improved in order to make
more efficient use of electricity. This is particularly true
of many existing datacenters and HEC centers that are
already constrained by the physical wattage entering
their respective buildings, e.g., the National Security
Agency (NSA) [10], [19]. In the meantime, inefficient
datacenters continue to be constructed, with the data-
center proprietors oftentimes negotiating extraordinar-
ily favorable energy deals with electricity suppliers to
build or upgrade power substations near their datacen-
ters. Examples of such datacenters arguably include,
and are obviously not limited to, the following: Oak
Ridge National Laboratory [20], National Center for
Supercomputing Applications [16], and the aforemen-
tioned National Security Agency [10], [19].

And when not enough cheap power can be built
at or near the datacenters, many institutions simply
move their datacenters to the power source. Exam-
ples arguably include, and again are not limited to,
the following: Google [2], [15], Microsoft [21], and
NSA [14].

Hence, the mission of the Green500 is to raise
awareness in the energy efficiency of supercomputing
and drive energy efficiency as a first-order design
constraint (on par with performance).



3. Analysis and Evolution of the Green500

In this section, we first present an analysis of the
Green500, which ranks the energy efficiency of top
500 supercomputers in the world. We then discuss the
evolution of the Green500 into three new exploratory
lists.

3.1. Analysis

Overall Energy Efficiency. As shown in Figure 3,
where the “MFLOPS/W” is plotted over the Green500
rank for machines on the three November lists, the
overall energy efficiency of supercomputers has con-
tinued to improve over the past two years. While
improvements are observed over the full range of
machines, the majority comes from the top half of the
lists, similar to what we observed in our last year’s
report [8]. To obtain further insight, Figure 4 plots the
maximum and average energy efficiency of the past
five releases. Most notably, both metrics have more
than doubled over the two years. More specifically,
from November 2007 to November 2009, the maxi-
mum energy efficiency increased by 102% from 357
MFLOPS/W to 723 MFLOPS/W while the average en-
ergy efficiency increased by 108% from 60 MFLOPS/W
to 125 MFLOPS/W.
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Figure 3. Energy Efficiency by Green500
Rank

After “Year One” of the Green500 [8], we surmised
that the growth of overall energy efficiency might
follow Moore’s Law, as strongly suggested by the
first year’s 75% improvement on the measured average
energy efficiency. While the average energy efficiency
improved only 37% in “Year Two” of the Green500,
it still resulted in a Moore’s Law effect with respect

to average energy efficiency, which doubled over the
24-month existence of the Green500.

0 

100 

200 

300 

400 

500 

600 

700 

800 

Nov 07  Jun 08  Nov 08  Jun 09  Nov 09 

M
eg
afl

op
s 
/ 
W
a;

 

List Release 

Maximum 

Average 

Average (Measured) 

Figure 4. Maximum and Average Energy
Efficiency per Green500 Release.

Figure 4 also illustrates non-linear growth in the
maximum energy efficiency across Green500 Lists.
After an initial leap, there was an apparent slowdown
from June 2008 to June 2009. One possible explanation
of the initial rapid growth is the “plucking” of low-
hanging fruit in energy efficiency, e.g., using existing
low-power microprocessors to build supercomputers.
After the initial stage, further improvements would
require novel energy-centric architectural designs, and
hence, would take longer to achieve. One example
of such architectural innovations is the IBM QPACE
(quantum chromodynamics parallel computing on the
Cell). Built on the energy-efficient PowerXCell 8i pro-
cessors connected by a network of FPGA (Field Pro-
grammable Gate Arrays), the IBM QPACE delivered
a 35% boost in the MFLOPS/W rating over the top-
ranked green machine on the previous list, i.e., June
2009, and landed at the top of the November 2009
release of the Green500.
Energy Efficiency vs. Speed. Many in the HEC com-
munity have inquired about how the energy efficiency
of supercomputers correlates to their performance. In-
tuitively, one would think that lower-ranked machines
in the TOP500 list tend to have smaller system sizes,
and hence, can be more energy efficient because of
the overhead of scaling a system. More specifically,
as the system size increases, the FLOPS measured by
LINPACK increases sub-linearly, while the power con-
sumption increases perfectly linearly to super-linearly.
To verify our intuition, we took a statistical approach
to the problem, as outlined below.

The linear correlation between two variables is com-



monly measured by the Pearson Correlation Coeffi-
cient [1], which is defined as the covariance of the
two variables divided by the product of their standard
deviations as follows:

ρX,Y =
cov(X,Y )

σxσy
=
E[(X − µX)(Y − µY )]

σxσy
(1)

where E is the expectation, µ is the mean, and σ is the
standard deviation. The Pearson Correlation Coefficient
yields a value between -1 and 1. A value greater than
0 indicates a positive correlation between the variables,
whereas a value less than 0 indicates a negative correla-
tion. The closer that the absolute value of the coefficient
is to 1, the stronger is the correlation.

We calculate the Pearson Correlation Coefficients
between the registered MFLOPS/W and the LINPACK
performance of machines across the past three Novem-
ber lists. Table 1 shows our results.1 Surprisingly, all the
correlation coefficients are greater than 0, suggesting
that there is no direct support to the hypothesis that
smaller machines are more energy efficient in the
examined lists. However, the relatively low coefficient
values (i.e., less than 0.3) also indicate weak linear
association between energy efficiency and performance.

Correlation Coefficient P Value
Nov. 2007 0.284 9.749e-11
Nov. 2008 0.292 2.816e-11
Nov. 2009 0.252 1.101e-08

Table 1. Correlation between Energy Effi-
ciency (MFLOPS/W) and LINPACK Perfor-
mance (TFLOPS).

Figure 5 plots the registered MFLOPS/W over the
LINPACK performance of machines from the Novem-
ber 2009 list. As expected from the low coefficient
value, the linear regression line fits poorly with the
observed MFLOPS values. It is worth noting that
the slope of the regression line is increasing, which
suggests the energy efficiency tends to be better for
the faster machines. This counterintuitive result can
be attributed to the fact that newly built large-scale
machines strongly tend towards being more energy
efficient than earlier-built small machines. For example,
Roadrunner, the 2nd most powerful supercomputer in
the world, also ranks high in Green500 (i.e., 6th).

Figure 5 also shows that the most energy-efficient

1The P value associated with the correlation analysis of each
November list is also presented. The P value is a statistic that
measures the significance of the correlation. In general, a P value less
than 0.05 means that the analysis results is statistically significant.

machine, IBM QPACE powered by the PowerXCell 8i
processor and FPGA, is nearly 3 times more efficient
(723 MFLOPS/watt vs. 253 MFLOPS/watt) but more
than 40 times slower (42 TFLOPS vs. 1759 TFLOPS)
than the most powerful supercomputer, i.e., Jaguar at
Oak Ridge National Laboratory.
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Figure 5. Energy Efficiency vs. Perfor-
mance for the November 2009 Release.

Commodity vs. Custom. Figure 6 compares the energy
efficiency achieved by the top-ranked commodity and
custom-built machines over the past two years. The
custom-built machines in our study refer to specialized
architectures including IBM Blue Gene/L and Blue
Gene/P, IBM BladeCenter QS22, and IBM QPACE.
As can be seen, both curves show similar growing
trends. However, the top-ranked custom-built machines
maintain a MFLOPS/W rating that is two times higher
on average than the most energy-efficient commodity
machines.

As we observed last year [8], leading-edge commod-
ity machines started to catch-up to previous generation
custom-built machines from two years ago. Specifically,
a supercomputer based on Intel’s 45nm low-power
quad-core Xeon surpassed the overall energy efficiency
of IBM Blue Gene/L. In addition, a commodity ma-
chine based on the Intel Xeon E5540/E5550 CPU and
the AMD Radeon HD4870 GPU accelerator achieved
379.2 MFLOPS/W, making it more efficient than IBM
Blue Gene/P (370 MFLOPS/W).
Power Consumption by Country. Figure 7 depicts
the aggregate power consumption of the top 10 power-
consuming countries in the Green500. As can be seen
in the figure, the aggregate power consumption of the
top 10 countries remained approximately the same from
November 2008 to November 2009. This is surprising
as the aggregate power consumed by all countries
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Figure 6. Energy Efficiency of the Top-
Ranked Commodity and Custom-Built Ma-
chines.

increased 35% from 200.4 MW to 272.2 MW in the
same period (not shown in the figure). The “freeze” in
the aggregate power consumption of top 10 countries
can be attributed to the following:

• Newly built supercomputers are more energy ef-
ficient, a trend suggested by the continuing im-
provement of the average energy efficiency, as
shown in Figure 4.

• The TOP500 machines are more spread out across
different countries. For instance, the top 10 coun-
tries accounted for 90.6% of the total installations
in November 2008 but only 88.4% in November
2009.

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

Nov07  Nov08  Nov09 

M
eg
aW

a2
 

Green500 Release 

UnitedStates 
UnitedKingdom 
Japan 
Germany 
France 
Sweden 
India 
Spain 
Taiwan 
Italy 
China 
NewZealand 
Canada 

Figure 7. Top Ten Countries Ranked by
Aggregate Power Consumption

The United States remains the most power-hungry
country. However, the aggregate power consumption of
the United States experienced a slowdown in the second

year of the Green500. In fact, the power consumption
of the United States decreased slightly from 125.6 MW
to 122.9 MW from November 2008 to November
2009. This can be attributed to similar reasons that
we discussed above. Nonetheless, the United States
continued to dominate the number of installations of
top 500 machines, accounting for 56.6%, 58.2% and
55.4% of all systems in the November 2007, November
2008 and November 2009 lists, respectively.

As of the November 2009 list, two countries made
their first appearances in the top 10 most power-
consuming countries: Canada and New Zealand. These
two countries are also the second and the third fastest
growing countries in power consumption, respectively.
That is, Canada increased 400% from 0.7 MW to
3.5 MW, and New Zealand increased 120% from
2.0 MW to 4.4 MW. The country with the greatest
relative increase in total power consumption is South
Korea, whose aggregate power increased 17-fold from
0.1 MW to 1.7 MW.

Overall Observations. The total power consumption of
the supercomputers on the Green500 continued to grow
— from 161.2 MW in November 2007 to 200.4 MW in
November 2008 to 272.2 MW in November 2009. The
total power consumption grew even faster in the second
year, with a 35.8% increase compared to a 24.3%
increase in the first year. This increasing trend suggests
that satisfying the energy requirement of supercomput-
ers will remain challenging in the near future. Thus, it
is imperative to consider energy efficiency as a first-
order design constraint.

In the first year of the Green500 [8], we noticed
skewness in the improvement of energy efficiency in
supercomputers, i.e., the top-ranked machine improved
much faster than the bottom-ranked machine (50.1%
vs. 11.2%). In the second year, the skewness was
dramatically reversed; the energy efficiency of the
bottom-ranked machine achieved an astounding 3.2-
fold improvement, far surpassing the improvement of
the top-ranked machine (35%).

Finally, 15% of the most power-hungry supercom-
puters on the current Green500 list consume more than
half the total power of all the supercomputers on the
same list. This percentage is the same as that of the
November 2008 list.

3.2. Evolution

As introduced in Section 1, the HEC community
raised the following suggestions for the Green500: (1)
lowering the “barrier to entry” to the Green500, (2)



rewarding innovation, not only in hardware, but also in
software, and (3) investigating the possibility of using a
different benchmark(s) to evaluate the energy efficiency
of supercomputers. We address each of these in greater
detail below.

Exploratory Lists: Little, Open, HPCC. First, with
energy efficiency being the focus for the Green500, the
HEC community questioned why the Green500 only
evaluated the energy efficiency of the top 500 fastest
supercomputers in the world. Why not look at the most
energy-efficient supercomputers in the world instead?
However, this question in turn raised the following is-
sue: What defines a “supercomputer”? Or more specif-
ically, how far should the Green500 “lower the bar”
of eligibility in terms of what would constitute a su-
percomputer? Lowering the bar of eligibility ultimately
favors smaller supercomputers, as we argue it should,
since the FLOPS/watt metric scales “sub-linearly” as
machine size increases [12]. That is, FLOPS increases
less than perfectly linearly as machine size increases
whereas watts increases perfectly linearly to super-
linearly due to added aggregating infrastructure. To
address the above, we introduced the Little Green500.
To be eligible for the Little Green500, a supercomputer
must be as “fast” as the 500th-ranked supercomputer
on the TOP500 that was listed 18 months prior to the
release of the Little Green500.

Second, the HEC community felt that the Green500
should promote and reward energy-efficient innovation,
particularly with respect to algorithms and software.
For instance, automated run-time systems that opti-
mize for energy efficiency while still delivering high
performance can improve the energy efficiency of a
supercomputer, as measured in FLOPS/watt, by 20% on
average [11] by significantly reducing the denominator
of the performance metric. Analogously, alternative
algorithms that deliver the same solution faster, e.g.,
mixed-precision arithmetic [13], can increase the en-
ergy efficiency of a supercomputer by significantly
increasing the numerator of the FLOPS/watt metric.
Consequently, we introduced the Open Green500 as an
exploratory list that allows for mixed-precision algo-
rithms and innovative software to measurably improve
the FLOPS/watt metric.

Third, while the LINPACK benchmark has been
the de facto standard in measuring the performance
of supercomputers, its utility beyond scientific com-
puting arguably remains questionable. As a result, the
Green500 intends to leverage alternative benchmark
suites, namely the HPCC benchmark suite, to create
another exploratory list called HPCC Green500. The

biggest challenge here is converging on a “single num-
ber” metric for HPCC performance, and hence, for
HPCC energy efficiency.

Little Green500 vs. Current Green500? Given that
the Little Green500 is the only exploratory list that
is currently populated (albeit with a subset of eligible
machines), we present a comparative analysis between
the Little Green500 List and the current Green500
List. For the November 2009 release, the minimum
performance requirement for an eligible machine in the
Little Green500 was 9 TFLOPS (i.e., the LINPACK
performance of the 500th-ranked machine in the June
2008 TOP500 list), thus resulting in a total of 878
eligible machines from the past lists.

First and foremost, we are interested in knowing how
much the Little Green500 deviates from the current
Green500. To this end, Figure 8 plots MFLOPS/W
distributions for both. As expected, the machines in the
Little Green500 have better energy efficiency than those
in the current Green500, especially in the bottom half
of the lists.
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Figure 8. Energy Efficiency Distribution of
Current Green500 and Little Green500.

Next, we compare the normalized MFLOPS of the
maximum, average, median and minimum values of
both lists, as depicted in Figure 9. Interestingly, the top-
ranked machine is the same on both lists. The average
and median values deviate moderately by 19% and
27%, respectively. The most striking difference comes
from the minimum MFLOPS/W, which differs by 80%
between the two lists.

The minimum MFLOPS/W in the Little Green500
is 65.14 MFLOPS/W, which equals that of the 333rd
machine on the current Green500. This implies that 167
out of 500 or 33.4% machines on the current Green500
List could NOT make the Little Green500.
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of the Current Green500 and the Little
Green500.

4. Conclusion and Future Work

With the Green500 List turning two years-old in
November 2009, this paper presented an analysis of
the Green500 data since the launch of the first list in
November 2007. In addition, we reported on construc-
tive feedback from the HEC community and our efforts
to address that feedback via three new exploratory lists.

The findings from our analysis can be summarized
as follows:

• The overall power efficiency continued to improve
at a rate similar to Moore’s Law, i.e., doubling
every 24 months.

• The energy efficiency of today’s commodity ma-
chines is equivalent to the energy efficiency of
custom-built machines from two years ago. (For
example, a commodity machine built with the Intel
Xeon E5540/E5550 CPU and the AMD Radeon
HD4870 GPU accelerator surpassed IBM Blue
Gene/P in energy efficiency.

• The exploratory Little Green500, which lowered
the “barrier to entry” of supercomputers, differed
substantially from the current Green500.

• While the total power consumption of top 500
supercomputers increased considerably, the aggre-
gate power consumption of the top 10 countries
remained the same.

In addition to the above analysis, The high-end com-
puting (HEC) community indicated interest in pursuing
the following agenda, which in turn, resulted in the
launching of three new exploratory lists:

• The Little Green500, which lowers the “barrier to
entry” to the Green500 by being more inclusive
with the definition of a supercomputer.

• The Open Green500, which rewards innovation,
not only in hardware, but also in software via al-
ternative energy-efficient algorithms, power-aware
compilation, or adaptive run-time systems, for
example.

• The HPCC Green500, which investigates the pos-
sibility of using a different benchmark(s) to eval-
uate the energy efficiency of supercomputers.

However, these new lists may have opened up a
Pandora’s box. For instance, while the Little Green500
demonstrates potential in offering complementary in-
formation to the current Green500, early indications
are that it will “only” be useful in guiding the purchase
decisions on smaller, but commodity, supercomputers.
(It is important to keep in mind that these are only early
indications on a small set of data.) More rigorous data
analysis on a larger data set will be needed not only to
justify the criteria of choosing candidate machines, i.e.,
by “lowering the bar”, but also to justify the existence
of the exploratory Little Green500. Similar arguments
hold for the exploratory Open Green500, but in this
case, it is much too early to tell.

While the HPCC benchmark suite offers a more
comprehensive view to the performance of a supercom-
puter, how to use the multi-dimensional information
that HPCC produces in order to rank supercomputers
remains a particularly challenging and difficult task.
One possible solution, which would loosely parallel
what HPCC does with performance, is to offer different
rankings along individual dimensions, such as sustain-
able memory bandwidth, Fast Fourier Transform (FFT)
performance, and so on. Alternatively, a comprehensive
model needs to be developed to take into account all
performance metrics.

Irrespective of all the aforementioned lists, the
Green500 seeks to raise awareness in the energy effi-
ciency of supercomputing by driving energy efficiency
as a first-order design constraint (on par with perfor-
mance) and encouraging fair use of the list rankings
to promote energy efficiency in high-end computing
(HEC) systems.
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