
A Feasibility Study for MPI over HDFS
W. Feng, D. Zhang, J. Zhang, K. Hou, S. Pumma, and H. Wang

Department of Computer Science, Virginia Tech
Blacksburg, VA USA

Email: {wfeng, daz3, zjing14, kaixihou, sarunya, hwang121}@vt.edu

Abstract—With the increasing prominence of integrating high-
performance computing (HPC) with big-data (BIGDATA) pro-
cessing, running MPI over the Hadoop Distributed File System
(HDFS) offers a promising approach for delivering better scala-
bility and fault tolerance to traditional HPC applications. How-
ever, it comes with challenges that discourage such an approach:
(1) two-sided MPI communication to support intermediate data
processing, (2) a focus on enabling N-1 writes that is subject to the
default HDFS block-placement policy, and (3) a pipelined writing
mode in HDFS that cannot fully utilize the underlying HPC
hardware. So, while directly integrating MPI with HDFS may
deliver better scalability and fault tolerance to MPI applications,
it will fall short of delivering competitive performance.

Consequently, we present a performance study to evaluate
the feasibility of integrating MPI applications to run over
HDFS. Specifically, we show that by aggregating and reordering
intermediate data and coordinating computation and I/O when
running MPI over HDFS, we can deliver up to 1.92⇥ and 1.78⇥
speedup over MPI I/O and HDFS pipelined-write implementa-
tions, respectively.

I. INTRODUCTION

Apache Hadoop [3] has become synonymous with big-data
(BIGDATA) processing. Solutions built atop Hadoop include
Mesos [10], Tachyon [17], YARN [24], and Spark [29], [30].
Moreover, many data-centric applications integrate with dif-
ferent parts of Hadoop, e.g., Hadoop Distributed File System
(HDFS) and Hadoop Database (HBase), to provide distributed
data services. In contrast, the high-performance computing
(HPC) community typically uses traditional parallel program-
ming models (e.g., MPI, OpenMP, and Pthreads) atop HPC
parallel file systems (e.g., Lustre [1] and GPFS [22]) for
compute-centric applications on HPC clusters.

With the increasing prominence of integrating HPC and
BIGDATA infrastructures, including [8], [9], [12], [14], [15],
[18], [20], [25], [26], [27], [28], running MPI applications
over a commodity distributed file system, like HDFS, offers
a promising cost-effective solution to support better scala-
bility and fault tolerance for traditional HPC applications.
For example, emerging deep-learning systems, e.g., the COTS
system for image classification [6] and the Deep Speech 2
system for speech recognition [2], use MPI for frequent data
communication and a distributed file system for large-scale and
fault-tolerant data storage. However, several challenges inhibit
their integration. First, MPI developers must invest significant
effort to implement intermediate data processing, e.g., merge

This research was supported in part by the NSF XPS program via CCF-
1337244. We also acknowledge Advanced Research Computing at Virginia
Tech for access to their production computational resources.

and sort, due to the lack of standard support in MPI. Second,
most MPI-based applications use two-sided communication
to process intermediate data, resulting in a lost opportunity
to overlap computation and disk I/O. Third, previous studies
that support MPI applications on HDFS, including [8], [27],
[28], focus on translating I/O requests or modifying the lock
mechanism of HDFS to enable the N-1 writes and are subject
to the default HDFS block placement policy, resulting in poor
data locality. Fourth, the pipelined-write mode used in HDFS
cannot fully utilize the underlying HPC infrastructure.

In this paper, we tackle these challenges by proposing
an underlying data communication and I/O middleware layer
between an MPI application and HDFS that aggregates and
reorders intermediate data and coordinates (ARC) them with
computation and disk I/O via a set of user-friendly MPI-like
interfaces for developers to manipulate intermediate data at
will. In all, this paper makes the following contributions:

• A highly-optimized approach to merge and sort inter-
mediate data to enrich (or supplement) MPI.

• Application of one-sided communication to expose more
opportunities to overlap communication, computation,
and disk I/O for intermediate data processing.

• A coordinator-selection mechanism that supports a set
of I/O strategies that take into account data locality and
communication pattern.

• A parallel-write mechanism for HDFS with delay-write
mode to support fast disk I/O.

• An empirical study that illustrates how our performance-
oriented approach can feasibly achieve between 1.31⇥
and 1.92⇥ speedups over MPI I/O and default HDFS
(with pipelined write), respectively.

II. BACKGROUND

The convergence of high-performance computing (HPC)
and big-data (BIGDATA) processing has spawned two main
approaches: (1) data-centric and (2) compute-centric. In turn,
these approaches differ in both their programming models and
hardware/software configurations.

In data-centric approaches, the programming models (e.g.,
MapReduce) partition data into blocks to enable distributed
processing on a cluster. During processing, communication
is minimal due to the independence between the blocks. In
contrast, compute-centric approaches rely more heavily on
communication and synchronization, and thus, the correspond-
ing programming models (e.g., MPI) provide support for

IEEE	High	Performance	Extreme	Compu6ng	Conference	(HPEC),	September	2020

collective communication (e.g., gather, scatter, all-to-all) and
explicit synchronization (e.g., barrier, wait, wait-all).

For hardware and software configurations, a datacenter often
consists of commodity compute nodes connected by an Eth-
ernet network. Each node has its own local disk, which when
aggregated with other disks forms a distributed file system
(e.g., HDFS [3]) to provide persistent storage. In contrast, a
supercomputing center connects nodes via a high-performance
interconnect (e.g., Mellanox InfiniBand) to better serve the
frequent communication and synchronization in compute-
centric applications. Rather than using local storage, parallel
file systems (e.g., Lustre [1], GPFS [22] and PVFS [21]) use
separate storage to deliver fast I/O.

A. MPI One-sided Communication
MPI is the de facto standard to support interprocess com-

munication for HPC applications. One-sided communication,
i.e., remote memory access (RMA), supports fast and efficient
communication. It only needs the communicating source to
initiate API calls, e.g., MPI_Put() and MPI_Get(), and
set communication parameters. One-sided communication also
defines window objects and a scope to allow each process
to register a memory region accessed by the permitted pro-
cesses. To complete the issued RMA operations, two types of
synchronization mechanisms are supported: (1) active target
synchronization and (2) passive target synchronization.

B. HDFS Pipelined Write
The Hadoop Distributed File System (HDFS) is a popular

distributed file system [3] that is designed to be highly fault-
tolerant and support large-scale data storage. HDFS consists
of a NameNode and multiple DataNodes. The NameNode
manages a namespace of the entire file system and serves as a
proxy between clients and DataNodes; DataNodes store data
blocks and their replicas assigned by the NameNode.

In HDFS, a large input file is split into small blocks, where
each block is replicated and distributed across DataNodes to
support data resilience. Fig. 1 illustrates the workflow of a
traditional HDFS block write with a single NameNode and
three DataNodes, disk0, disk1, and disk2. The workflow con-
sists of three main stages: (1) REQUEST (steps 1-3 in Fig. 1).
A client requests to write a block b0 and the NameNode
determines disk0 to store it and the other disks to store replicas
based on placement policies. (2) WRITE (steps 4-5). The client
transfers b0 to disk0, followed by a sequential replication to
disk1 and then disk2. Asynchronously, other blocks from the
client “flows” the same way from disk0 to disk2, causing
a pipelined write. (3) CLOSING (steps 6-7). Every DataNode
notifies the NameNode when it completes the block replication
and the client is then aware of the completion of writing the
first replica.

III. FEASIBILITY STUDY

To demonstrate the performance feasibility of running MPI
over HDFS, we created proof-of-concept software called ARC,
which supports the aggregation and reordering of intermediate

Name	Node

Name	
Node

5.

3.

Data	Node1

Data	
Node1

Disk1

Write

HDFS

Data	Node2

Data	
Node2

Disk2

Write

Data	Node0

Data	
Node0

Disk0

Write

HDFS	
Client

DFS

Output	stream

1.Create

4.Write
7.Close

5.Write	block 6.Acknowlege

2.Create

8.Complete

5.

6.

6. 6.

3.Notify

6.
3.

6.

Fig. 1: HDFS pipelined write mode.

1 ARCInit(threshold, top, ARC_LEAST_RR);
2 ARCHandle handle = ARCRegister("/output_file");
3 while(true) {
4 size_t num_reads = load_queries(queries);
5 if(num_reads == 0)
6 break;
7 local_search(queries, num_reads, &count, metadata,

realdata);,!
8 ARCWriteAfterSortWithDC((void*) metadata,

sizeof(header), count, compare, desc, handle);,!
9 }

10 ARCFinalize();

Fig. 2: Code snippets: Using ARC interfaces.

data and the coordination of computation and I/O over HDFS.
(Based on the outcomes of this study, as reported in §IV,
we will subsume ARC’s user-friendly MPI-like interface by
simply “hijacking” an MPI application’s I/O calls to run
directly over HDFS but with our ARC functionality.)

A. Interfaces

Table I describes our user-friendly MPI-like interface called
ARC. At a high level, ARC registers and buffers intermediate
data, which generally contains metadata and real data. The
metadata is further distributed amongst MPI processes for
merging and sorting, and ARC uses the results to determine
multiple coordinators via different rules. Then, the coordina-
tors collect real data from all the MPI processes to construct
the output data and flush to HDFS in a parallel manner.

Fig. 2 shows how easily users can write (or port) their
application via the ARC API. ARCInit (line 1) allocates inter-
nal memory buffers and creates and configures the one-sided
communication windows associated with these buffers. Users
also need to set the threshold to trigger the aggregation, set
the output element numbers top, and choose the coordinator-
selecting strategy with coord. In this example, ARC selects
the coordinators with the least local data (see §III-D for
details). After that, ARCRegister registers a file with a handle
(line 2) for the output data. After each round of local search,
ARCWriteAfterSortWithDC (line 8) registers the intermediate
data (i.e., metadata and real data) and leaves tedious data
manipulation, communication, and I/O tasks to ARC. Finally,
ARCFinalize() flushes the buffered output data to HDFS
(line 10), finish all issued I/O requests, and free the windows
and memory buffers. Users are also able to explicitly wait for
the I/O requests against a specific file or just check it without
being blocked by calling ARCWait or ARCTest, respectively.

TABLE I: Description of the messaging functions in ARC

int ARCInit(int threshold, int top, int coord)
Allocate memory and initiate MPI one-sided communication configuration.
threshold: threshold to trigger aggregation. top: number of sorted elements written to HDFS. coord: coordinators selection strategy.
int ARCFinalize()
Flush buffered output data to HDFS. Then deallocate memory and release MPI one-sided communication configuration.
ARCHandle ARCRegister(char *file)
Register a HDFS file with a ARCHandle that can be used, later, to specify the output file or check the completion of HDFS I/O requests at the registered file.
file: HDFS file pathname.
return: a ARCHandle link to the registered file.
int ARCWriteAfterSortWithDC(void *ptr, size_t size, size_t count, int (*compar) (const void *, const void *), struct deep_copy desc, ARCHandle handle)
Write data to HDFS after sorting elements with deep copy.
ptr: pointer to the array of elements(on current MPI process). size: size in bytes of each element. count: number of elements. compar: pointer to the user defined compare
function used by sort. desc: deep_copy variable to describe the number of pointers of deep copy, their offsets in user defined struct, and their data size. handle: ARCHanle of
the output file.
int ARCWriteAfterSort(const void *ptr, size_t size, size_t count, int (*compar) (const void *, const void *), ARChandle handle)
Write data to HDFS after sorting elements without deep copy.
int ARCWrite(const void *ptr, size_t size, size_t count, ARCHandle handle)
Write data to HDFS without sorting and deep copy. The order of elements are not guaranteed.
int ARCWait(ARChandle hanle)
Wait for the completion of all issued I/O requests at the file refered by handle.
int ARCTest(ARChandle hanle)
Check the status of all issued I/O requests at the file refered by handle.
int ARCFlush()
Force to flush buffered output data to HDFS.

B. Aggregation of Intermediate Data
Prior to merge and sort, ARC needs to aggregate the

metadata from all the MPI processes. Traditionally, the MPI-
based merge and sort methods use a centralized solution.
Such a solution assigns a master process to aggregate the
metadata and then merges and sorts them locally, followed
by propagating the result to all MPI processes with two-sided
communication. However, because two-sided communication
inhibits the realization of efficient aggregation and misses
opportunities for overlapping communication, computation,
and I/O to hide latency, we adopt a distributed strategy with
one-sided communication.

In our distributed strategy, ARCInit allocates internal buffers
and registers them with MPI window objects (MPI_Win). To
reduce conflicts within the same window object, we define a
dedicated MPI window object for each MPI process in ARC.

As shown in Fig. 3, ARC ensures that every MPI process
updates its corresponding internal count and data buffers
on each MPI process using MPI_Accumulate and MPI_Put,
respectively, instead of MPI_Get in order to achieve better
performance. To aggregate the real data (i.e., the internal
deep copy buffer), ARC’s coordinators use MPI_Get to avoid
extra synchronization between the coordinators and other MPI
processes. Then, every process merges and sorts the metadata
in its local internal data buffer.

C. Reordering of Intermediate Data
To achieve better performance in the merge and sort step,

as shown in Fig. 3, we leverage our highly optimized SIMD
merge sort methods [11] to sort the elements in the data buffer.

While many compute-centric applications need sorting, such
as muBLASTP [31], such functionality is not provided in
the MPI standard and must be implemented by developers.
To hide the details of data reordering and provide a highly-
optimized sorting kernel, our ARC sort exploits not only

qi

qi+1

qi+2

qi qi

qi+1
qi+1

qi+2

qi+2

WSDC

WSDC

WSDC

WSDC

WSDC

WSDC

WSDC

WSDC

WSDC

process 0 process 1 process 2

…

…

…

Local search results

eScore
brief
brief_size
full
full_size
eScore
brief
brief_size
full
full_size

brief data
brief data

full data
full data

…

…

header

Brief

Full

Internal data buffer
qi+1qi

header0
header1
header2

header0
header1
header2

Internal deep copy buffer
qi+1qi

dcdata0
dcdata1
dcdata2

Internal count buffer
qi

count0
count1
count2

(1) Propagate number
of elements

(2) Distribute elements,
then merge and sort

(3) Accumulate deep copy
data

count buffer data buffer deep copy buffercompute stage

WSDC:
ARCWritteAfterSort
withDC

dcdata0
dcdata1
dcdata2

disk 0HDFS disk 1 disk 2 (4) Write to HDFS

Fig. 3: Design of coordinating communication and disk I/O with computation.

thread-level parallelism but also data-level parallelism via
carefully designed SIMD operations. We extend the idea of
parallelization [11] to support the metadata structure rather
than the built-in variables (e.g., float, int).

D. Selecting Coordinators
ARC uses coordinators to aggregate and flush the output

data, resulting in additional overhead for the coordinators,
which might delay the completion time of the application.
In ARC, we provide four coordinator-selecting strategies: (1)
most local data, ARC_Most; (2) least local data, ARC_LEAST;
(3) most local data with round robin, ARC_MOST_RR; and (4)
least local data with round robin, ARC_LEAST_RR. ARC_Most
chooses coordinators with the most local data contributing to
the output data; it may produce less communication overhead
because less data is being transferred. Thus, it might fit MPI
applications with large unbalanced local data. In contrast,

ARC_LEAST might implicitly suggest a faster workload and
lead to better overlapping for an unbalanced workload. More-
over, due to the nature that the runtime of a MPI application is
determined by the slowest process, ARC_LEAST might help
avoid the extra overhead on the slower process and reduce
delay on the completion time of the application.

ARC_MOST_RR and ARC_LEAST_RR with round robin
can help balance data-block distribution among DataNodes of
HDFS. In addition, round robin might benefit ARC_Most from
reducing extra overhead on the slower processes and lead to
less communication overhead for ARC_Least. We also need
to consider the availability of free space, due to the limited
space of local disk (configured to be part of HDFS).

E. Parallel Block Write on HDFS

In contrast to the pipelined write in HDFS, ARC realizes
an HDFS parallel write that supports writing replicas to
DataNodes in a parallel manner. Specifically, ARC enables
multiple MPI processes to be coordinators to write replicas to
HDFS in parallel. Due to the importance of data locality in
selecting writers, ARC maintains a table that maps DataNodes
to running MPI processes. Then, during ARC’s selection
of coordinators (cf. III-D), ARC can select the top MPI
processes with sufficient disk space and execute them on
different DataNodes. The number of selected MPI processes
equals the the number of replicas configured for HDFS. These
coordinator processes aggregate output from all MPI processes
and then write the final data locally in parallel.

Fig. 4 shows our parallel block writes on HDFS. The
processes on three DataNodes are selected as coordinators to
write the three replicas of one data block. One of the three
MPI processes is assigned as a leader to communicate with
the NameNode. To execute a parallel block write, (1) the leader
sends a request to the NameNode to write a data block; (2) the
NameNode generates a local file path for the block and adds
metadata of the block into the namespace; (3) the NameNode
returns the local path to the leader process; (4) the leader
process sends the local path to the two other coordinators via
one-sided MPI communication; (5) upon receipt of the local
path, all coordinators write data to the local disk in parallel
and notify the leader; the leader; and (7) the leader notifies
the Namenode that all blocks are successfully written. In case
of failure, all previous operations are retired, and another
coordinator is chosen as the new leader. For client-NameNode
communication, ARC uses remote procedure call (RPC); for
writer-writer communication, ARC uses MPI.

In addition, because HDFS does not support N-1 write,
which allows multiple writers to write in the same file con-
currently, many research efforts have proposed N-1 write on
HDFS [4], [8], [27], [28]. In ARC, we enable N-1 write on
HDFS via a two-step process: (1) a N -M write (M is the
number of replicas), where M coordinators aggregate the data
from all processes via MPI one-sided communication, and (2)
the coordinators perform a M -M write to write the data to
HDFS via ARC’s parallel write.

Name	Node
Name	
Node

1.Create	meta
2.Return	
local	path

3.Send	local	
path

5.Ack

6.Ack

Data	Node1

WSDC

Disk1

4.Write

ARC

3.Send	local	
path

5.Ack

HDFS
Data	Node2

WSDC

Disk2

4.Write

Data	Node0

WSDC

Disk0

4.Write

Fig. 4: HDFS parallel write mode in ARC.

IV. EXPERIMENTS

Here we present the empirical results of our feasibility study
for MPI over HDFS via our ARC middleware. The study
uses a 17-node Hadoop cluster using Hadoop 2.7.2, where one
node is the NameNode and the other 16 are DataNodes. Each
node has two Intel oct-core Sandy Bridge Xeon CPUs (E5-
2670) with 64-GB main memory and 205-GB local disk. The
communication network is QDR InfiniBand while the storage
network is 10-Gbps Ethernet. We set up Hadoop with the
default configuration, where the nblock size is 128 MB and the
number of replicas is three. All programs are compiled with
the Intel C/C++ compiler 13.1 with flags -O3 and MPI-3.2.

A. Test Applications

To test the efficacy of ARC and, in turn, the feasibility of
MPI over HDFS, we use two applications: (1) pBWA [19],
short for parallel Burrow-Wheeler Aligner, a popular short-
read alignment tool for mapping short DNA reads to a long ref-
erence genome [16] and (2) pDIAMOND, an MPI-parallelized
version of the DIAMOND sequence alignment tool [5].

For pBWA, we realized three MPI implementations: (1)
pBWA, the original pBWA implementation using MPI two-
sided communication and MPI I/O interfaces to write the
results to the underlying parallel file system; (2) pBWA with
HDFS, the original pBWA using the default HDFS pipelined
write to write the result on HDFS; and (3) pBWA with ARC,
our modified pBWA with ARC to communicate and write the
result to HDFS. For inputs, we use two real-world datasets
from the 1000 Genomes Project [7], as shown in Table II.
The reference genome is the 3-GB hg19.fa from [23].

TABLE II: pBWA input datasets

Name Number of reads Size(GB)
SRR096576_1 95,661,734 18
SRR077475_1 22,493,783 5.6

For pDIAMOND, we also realized three MPI versions: (1)
pDIAMOND, an MPI implementation of DIAMOND using
MPI two-sided communication and MPI I/O to flush the data
to the underlying parallel file system; (2) pDIAMOND with
HDFS, i.e., pDIAMOND but using HDFS pipelined write to
flush data to HDFS; and (3) pDIAMOND with ARC, our mod-
ified pDIAMOND with ARC. We use two sequence databases:

nr and env_nr, as shown in Table III. We randomly sample
10,000 sequences from each database as inputs, respectively.

TABLE III: DIAMOND reference databases

Name Number of sequences Size(GB)
nr 85,107,862 53

env_nr 6,865,992 1.7

B. Results via Different Strategies for Selecting Coordinators

As shown in Fig. 5, we tested the performance of our four
strategies for selecting coordinators: (1) ARC_LEAST, choos-
ing nodes with the least local data; (2) ARC_MOST, choosing
nodes with the most local data; (3) ARC_LEAST_RR, choosing
nodes with the least local data and round-robin method; and
(4) ARC_MOST_RR, choosing nodes with the most local data
and round-robin method. The execution times are normalized
to the total execution time of using ARC_LEAST.

0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60

SRR096576_1 SRR077475_1

No
rm

al
ize

d	
Ti
m
e

ARC_LEAST ARC_MOST

ARC_LEAST_RR ARC_MOST_RR

(a) pBWA with ARC

0.90
0.95
1.00
1.05
1.10
1.15

nr env_nr

No
rm

al
ize

d	
Ti
m
e

ARC_LEAST ARC_MOST

ARC_LEAST_RR ARC_MOST_RR

(b) MPI DIAMOND with ARC

Fig. 5: ARC using different coordinators selecting strategies for pBWA and
pDIAMOND (or MPI DIAMOND).

In all of our experiments, the ARC_LEAST strategy achieved
the best performance. Selecting these “least local data” nodes
can better exploit overlapping communication and disk I/O
with computation and avoid extra overhead on the slowest
nodes. In Fig. 5(a), the experimental results for pBWA with
ARC on dataset SRR096576_1 show a skewed workload.
ARC_MOST continually selected the slowest nodes to flush the
output data, resulting in heavy delay on its completion time.
The round-robin method (e.g., ARC_MOST_RR) can be used
to balance block distribution. However, there are cases that
round-robin methods add extra overhead and slightly degrade
performance, as indicated in Fig. 5(b).

C. Results via Different Implementations of Applications

1) pBWA: Fig. 6 shows the normalized execution times of
our three pBWA implementations for different datasets on 8
and 16 nodes, respectively. We normalize the performance
relative to the total execution time of pBWA with ARC,
which achieves the fastest execution time in all cases. (Note:
Lower normalized execution time means better performance.)
In Figs. 6(a) and 6(b) for dataset SRR096576_1, pBWA with
ARC delivers 1.28⇥ and 1.31⇥ improvement over pBWA on 8
and 16 nodes, respectively, and 1.34⇥ and 1.75⇥ improvement
over pBWA with HDFS, on 8 and 16 nodes, respectively.
In Figs. 6(c) and 6(d) for the dataset SRR077475_1, pBWA
with ARC achieves 1.30⇥ and 1.22⇥ speedup over pBWA and

1.36⇥ and 1.92⇥ speedup over pBWA with HDFS, on 8 and
16 nodes, respectively.

Why did our ARC-optimized pBWA implementation achieve
superior performance to its pBWA counterparts? First, the disk
I/O on a traditional file system consumes a large portion
of the overall execution time for pBWA – 37%. In contrast,
our HDFS parallel write provides fast disk I/O by flushing
the output data to local disk, resulting in only 18% I/O
overhead. By leveraging MPI one-sided communication in
ARC to aggressively overlap disk I/O with communication
and computation, this I/O overhead is reduced even further.
In addition, in contrast to HDFS pipelined write, ARC buffers
the output data to fit a block instead of flushing them to HDFS
directly, thus avoiding many small write operations.

Fig. 7 shows the scalability of the three implementations
over different datasets. We vary the number of nodes from 4
to 16 and use the performance on four nodes as the baseline.
As shown in Fig. 7(a) for dataset SRR096576_1, pBWA with
ARC delivers up to 3.58⇥ improvement while pBWA with MPI
I/O and with HDFS pipelined write delivers up to 2.83⇥ and
2.49⇥ improvement, respectively, on 16 nodes. In Fig. 7(b)
for dataset SRR077475_1, we observe up to 3.28⇥, 2.97⇥,
and 2.07⇥ improvement for pBWA with ARC, MPI I/O, and
HDFS pipelined write, respectively, on 16 nodes.

2) pDIAMOND: Fig. 8 presents the normalized execution
times for our three pDIAMOND implementations against two
databases. We normalize the performance relative to the to-
tal execution time of pDIAMOND with ARC. In Figs. 8(a)
and 8(b) for database nr, pDIAMOND with ARC achieves
1.08⇥ and 1.17⇥ speedup over the baseline pDIAMOND
with two-sided MPI communication and MPI I/O (i.e., the
DIAMOND legend in Figs. 8(a) and 8(b)) on 8 and 16 nodes,
respectively. It also delivers 1.18⇥ and 1.20⇥ improvement
over pDIAMOND with two-sided MPI communication and
HDFS pipelined write, on 8 and 16 nodes, respectively.

Figs. 8(c) and 8(d) show our experimental results run-
ning over the env_nr database. Our pDIAMOND with ARC
achieves 1.43⇥ and 1.78⇥ speedup over pDIAMOND with
two-sided MPI communication and MPI I/O, on 8 and 16
nodes, respectively. Comparing our pDIAMOND with ARC
implementation to pDIAMOND with MPI two-sided communi-
cation and HDFS pipelined write, our implementation achieves
1.63⇥ and 1.75⇥ speedup, on 8 and 16 nodes, respectively.
On very large databases like the nr database, disk I/O amounts
to relatively small overhead (up to 15% across the three
implementations) and results in less opportunity to overlap
disk I/O with computation and communication. In contrast,
searching against a small database, i.e., env_nr, can result in
up to 36% disk I/O overhead. Our pDIAMOND with ARC
delivers more speedup than the other two parallelized imple-
mentations. In addition, pDIAMOND needs the intermediate
data to be merged and sorted, which ARC can further improve
the performance of via our optimized SIMD methods.

Fig. 9 shows the scalability of the three pDIAMOND im-
plementations over the two databases. We vary the number of
nodes from 4 to 16 and use the performance with four nodes

0

0.5

1

1.5

2
No

rm
al
ize

d	
Ex
ec
-T
im

e

W/	ARC pBWA W/	HDFS

(a) SRR096576_1 (8 nodes)
0

0.5

1

1.5

2

No
rm

al
ize

d	
Ex
ec
-T
im

e

W/	ARC pBWA W/	HDFS

(b) SRR096576_1 (16 nodes)
0

0.5

1

1.5

2

No
rm

al
ize

d	
Ex
ec
-T
im

e

W/	ARC pBWA W/	HDFS

(c) SRR077475_1 (8 nodes)
0

0.5

1

1.5

2

No
rm

al
ize

d	
Ex
ec
-T
im

e

W/	ARC pBWA W/	HDFS

(d) SRR077475_1 (16 nodes)

Fig. 6: Normalized execution time of pBWA with MPI I/O interfaces, ARC interfaces and HDFS pipelined write interfaces. Times are normalized to the total
execution time of pBWA with ARC interfaces over SRR096576_1 and SRR077475_1 dataset respectively.

1
1.4
1.8
2.2
2.6
3

3.4
3.8

4 8 12 16

Sp
ee
du
p	
ov
er
	4
	N
od
es

W/	ARC pBWA W/	HDFS

(a) SRR096576_1

1
1.4
1.8
2.2
2.6
3

3.4
3.8

4 8 12 16

Sp
ee
du
p	
ov
er
	4
	N
od
es

W/	ARC pBWA W/	HDFS

(b) SRR077475_1

Fig. 7: Scalability of pBWA with ARC interfaces, compared to pBWA with
MPI I/O interfaces and HDFS pipelined write interfaces for SRR096576_1
dataset and SRR077475_1 dataset.

as our reference baseline. In Fig. 9(a) for the nr database,
pDIAMOND with ARC achieves up to 3.33⇥ speedup over
four nodes when running over the nr database while pDIA-
MOND with MPI I/O and pDIAMOND with HDFS pipelined
write achieve up to 2.90⇥ and 3.23⇥ speedup on 16 nodes,
respectively. In Fig. 9(b) for the env_nr database, we observe
up to 2.13⇥, 1.63⇥, and 1.87⇥ speedups for our pDIAMOND
implementations with ARC, MPI I/O, and HDFS pipelined
write, respectively, on 16 nodes versus the four-node baseline.

V. RELATED WORK

There has been much research on taking advantage of dis-
tributed file systems for high-performance computing (HPC)
applications, especially in the direction of enabling and op-
timizing “N-1 write.” SDAFT [28] translates parallel I/O re-
quests to distributed I/O requests for the HDFS system, which
realizes the functionality of the N-1 write. SCALER [27]
modifies the lock mechanism of HDFS NameNode to allow
each worker to obtain the file write token, thereby supporting
concurrent write on multiple blocks of a HDFS file. In
particular, it can select multiple workers as aggregators to
collect data with MPI and such data is written to the same
data block of a HDFS file. PLFS [4], originally designed to
optimize N-1 write on parallel file systems, has been extended
on HDFS [8] to handle concurrent write checkpoint workloads.
Our work differs by not only focusing on N-1 write, but also
by delivering further performance optimizations, including
optimized functionality, communication, and parallel disk I/O.

For parallel write on HDFS, Islam et al. [13] extend the
socket-based HDFS in the Apache Hadoop and RDMA-based
HDFS [14] to enable parallel replication with multiple output
streams. They compare their parallel replication design with

the pipelined replication design and claim that parallel repli-
cation can benefit HDFS for high-performance interconnects
and protocols such as IPoIB and RDMA. Compared to their
work, our proposed HDFS parallel write can deliver fast
and efficient parallel I/O by using optimized MPI one-sided
communication for data aggregation and flushing output data
with the consideration of locality.

VI. CONCLUSIONS

In this paper, we present a feasibility study for running
MPI applications over the commodity HDFS. Towards that
end, we created ARC, a middleware prototype that aggregates
and reorders intermediate data and coordinates computation
and I/O. As a communication and I/O middleware layer, ARC
enables MPI applications to efficiently execute on HDFS. End
users can register the intermediate data with our user-friendly
interfaces in a similar fashion to writing MPI programs. ARC
then takes care of the data processing, i.e., using optimized
merge and sort methods with MPI one-sided communication
for data aggregation. With the selected coordinators, ARC
can boost the performance by overlapping the computation,
communication, and disk I/O. Moreover, we design an HDFS
parallel write mechanism in ARC to take advantage of fast
disk I/O. We demonstrate the efficacy of ARC and, in turn,
the feasibility for running MPI applications over the com-
modity HDFS via two real-world applications: pBWA and
pDIAMOND. These case studies demonstrate that ARC can
achieve significant performance improvement over traditional
MPI I/O and HDFS pipelined write.

REFERENCES

[1] Lustre: A scalable, high-performance file system. Whitepaper, 2003.
[2] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro,

J. Chen, M. Chrzanowski, A. Coates, G. Diamos, et al. Deep speech 2:
End-to-end speech recognition in english and mandarin. In Proc. of the
Int’l Conf. on Machine Learning, 2016.

[3] Apache. Hadoop. http://hadoop.apache.org/.
[4] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,

M. Polte, and M. Wingate. Plfs: a checkpoint filesystem for parallel ap-
plications. In Proc. of the ACM Conf. on High Performance Computing
Networking, Storage and Analysis, 2009.

[5] B. Buchfink, C. Xie, and D. H. Huson. Fast and sensitive protein
alignment using diamond. Nat Meth, 2015.

[6] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew.
Deep learning with cots hpc systems. In Proc. of the 30th Int’l Conf.
on Machine Learning, 2013.

[7] G. P. Consortium et al. A global reference for human genetic variation,
2015.

0

0.25

0.5

0.75

1

1.25
No

rm
al
ize

d	
Ex
ec
-T
im

e

W/	ARC DIAMOND W/	HDFS

(a) nr (8 nodes)
0

0.25

0.5

0.75

1

1.25

No
rm

al
ize

d	
Ex
ec
-T
im

e

W/	ARC DIAMOND W/	HDFS

(b) nr (16 nodes)
0

0.5

1

1.5

2

No
rm

al
ize

d	
Ex
ec
-T
im

e

W/	ARC DIAMOND W/	HDFS

(c) env_nr (8 nodes)
0

0.5

1

1.5

2

No
rm

al
ize

d	
Ex
ec
-T
im

e

W/	ARC DIAMOND W/	HDFS

(d) env_nr (16 nodes)

Fig. 8: Normalized execution time of (p)DIAMOND with MPI two-sided communication and MPI I/O and (p)DIAMOND with HDFS pipelined write with
respect to (p)DIAMOND with ARC. Times are normalized to the total execution time of (p)DIAMOND with ARC running over the nr and env_nr databases,
respectively.

1

1.5

2

2.5

3

3.5

4 8 12 16

Sp
ee
du
p	
ov
er
	4
	N
od
es

W/	ARC DIAMOND W/	HDFS

(a) nr database

1

1.5

2

2.5

3

3.5

4 8 12 16

Sp
ee
du
p	
ov
er
	4
	N
od
es

W/	ARC DIAMOND W/	HDFS

(b) env_nr database

Fig. 9: Scalability of pDIAMOND with ARC, compared to pDIAMOND with
MPI two-sided communication and MPI I/O and pDIAMOND with MPI two-
sided communication and HDFS pipelined write over the nr and env_nr
databases.

[8] C. Cranor, M. Polte, and G. Gibson. Hpc computation on hadoop storage
with plfs. Parallel Data Laboratory at Carnegie Mellon University,
2012.

[9] Y. Guo, W. Bland, P. Balaji, and X. Zhou. Fault tolerant mapreduce-mpi
for hpc clusters. In Proc. of the ACM Int’l Conf. for High Performance
Computing, Networking, Storage and Analysis, 2015.

[10] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica. Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center. In NSDI, 2011.

[11] K. Hou, H. Wang, and W.-c. Feng. Aspas: A framework for automatic
simdization of parallel sorting on x86-based many-core processors. In
Proc. of the ACM on Int’l Conf. on Supercomputing (ICS), 2015.

[12] J. Huang, X. Ouyang, J. Jose, M. Wasi-ur Rahman, H. Wang, M. Luo,
H. Subramoni, C. Murthy, and D. K. Panda. High-performance design
of hbase with rdma over infiniband. In IEEE Int’l Parallel & Distributed
Processing Symp. (IPDPS), 2012.

[13] N. S. Islam, X. Lu, M. W. ur Rahman, and D. K. Panda. Can parallel
replication benefit hadoop distributed file system for high performance
interconnects? In IEEE Symp. on High-Performance Interconnects,
2013.

[14] N. S. Islam, M. Rahman, J. Jose, R. Rajachandrasekar, H. Wang,
H. Subramoni, C. Murthy, and D. K. Panda. High performance rdma-
based design of hdfs over infiniband. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis. IEEE Computer Society Press, 2012.

[15] W. Jiang, V. T. Ravi, and G. Agrawal. A map-reduce system with an
alternate api for multi-core environments. In Proc. of the IEEE/ACM
Int’l Conf. on Cluster, Cloud and Grid Computing, 2010.

[16] H. Li and R. Durbin. Fast and accurate short read alignment with
burrows–wheeler transform. Bioinformatics, 2009.

[17] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Tachyon:
Reliable, memory speed storage for cluster computing frameworks. In
Proc. of the ACM Symp. on Cloud Computing, 2014.

[18] X. Lu, N. S. Islam, M. Wasi-Ur-Rahman, J. Jose, H. Subramoni,
H. Wang, and D. K. Panda. High-performance design of hadoop rpc
with rdma over infiniband. In IEEE Int’l Conf. on Parallel Processing,
2013.

[19] D. Peters, X. Luo, K. Qiu, and P. Liang. Speeding up large-scale
next generation sequencing data analysis with pbwa. J. Appl Bioinform
Comput Biol 1:1, 2012.

[20] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
Evaluating mapreduce for multi-core and multiprocessor systems. In
IEEE Int’l Symp. on High Performance Computer Arch. (HPCA), 2007.

[21] R. B. Ross, R. Thakur, et al. Pvfs: A parallel file system for linux
clusters. In Proc. of the Linux Showcase and Conf., 2000.

[22] F. B. Schmuck and R. L. Haskin. Gpfs: A shared-disk file system for
large computing clusters. In FAST, 2002.

[23] M. L. Speir, A. S. Zweig, K. R. Rosenbloom, B. J. Raney, B. Paten,
P. Nejad, B. T. Lee, K. Learned, D. Karolchik, A. S. Hinrichs, et al. The
ucsc genome browser database: 2016 update. Nucleic acids research,
2016.

[24] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apache Hadoop
Yarn: Yet Another Resource Negotiator. In Proc. of the ACM Symp. on
Cloud Computing, 2013.

[25] E. H. Wilson, M. T. Kandemir, and G. Gibson. Will they blend?:
Exploring big data computation atop traditional hpc nas storage. In
IEEE Int’l Conf. on Distributed Computing Systems (ICDCS), 2014.

[26] C. Xu, R. Goldstone, Z. Liu, H. Chen, B. Neitzel, and W. Yu. Exploiting
analytics shipping with virtualized mapreduce on hpc backend storage
servers. IEEE Trans. on Parallel and Distributed Systems (TPDS), 2016.

[27] X. Yang, Y. Yin, H. Jin, and X.-H. Sun. Scaler: Scalable Parallel File
Write in HDFS. In IEEE Int’l Conf. on Cluster Computing (CLUSTER),
2014.

[28] J. Yin, J. Zhang, J. Wang, and W.-c. Feng. SDAFT: A novel scalable
data access framework for parallel BLAST. Parallel Computing, 2014.

[29] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In Proc.
of the USENIX conf. on Networked Systems Design and Impl. (NSDI),
2012.

[30] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized streams: Fault-tolerant streaming computation at scale. In
Proc. of the ACM Symp. on Operating Systems Principles (SOSP), 2013.

[31] J. Zhang, S. Misra, H. Wang, and W.-c. Feng. mublastp: database-
indexed protein sequence search on multicore cpus. BMC Bioinformat-
ics, 2016.

