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Abstract

Next-generation e-Science applications will require the abil-
ity to transfer information at high data rates between dis-
tributed computing centers and data repositories. A Lambda-
Grid offers dedicated, optical, circuit-switched, point-to-
point connections that can be reserved exclusively for such
applications. These dedicated high-speed connections elim-
inate network congestion as seen in traditional Internet, but
they effectively push the network congestion to the end sys-
tems, as processing speeds cannot keep up with networking
speeds. Thus, developing an efficient transport protocol over
such high-speed dedicated circuits is of critical importance.

We propose the idea of a end-system aware, rate-adaptive
protocol for network transport, based on end-system perfor-
mance monitoring. Our proposed protocol significantly im-
proves the performance of data transfer over LambdaGrids by
intelligently adapting the sending rate based on end-system
constraints. We demonstrate the effectiveness of our pro-
posed protocol and illustrate the performance gains achieved
via wide-area network emulation.

1 Introduction

The OptIPuter project [Smarr et al. 2004] observed that net-
work speeds have been outstripping the ability of processor
speeds to keep up. This technology inversion resulted in
the emergence of LambdaGrids, which have fundamentally
changed the way that we think about high-performance dis-
tributed computing.
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LambdaGrids are a new paradigm in distributed comput-
ing, where dedicated high-bandwidth optical networks allow
globally distributed compute, storage, and visualizationsys-
tems to work together as a planetary-scale supercomputer.
Such a distributed supercomputer will enable scientists to
analyze, correlate, and visualize extremely large and remote
datasets on-demand and in real time.

The networking aspect of a LambdaGrid consists of two in-
terdependent parts. The first part requires an architectural in-
frastructure to enable a LambdaGrid, i.e., globally distributed
nodes with different capabilities that are interconnectedvia
high-bandwidth optical networks. Examples of such optical
networks include National LambdaRail (NLR) [NLR 2006],
DOE UltraScience Net [DoE 2006], CANARIE CA*net [Ca-
narie 2005], and UKLight [UKLight 2006]. The second part
consists of a collection of hardware-software interface tools
that overlay the aforementioned architectural infrastructure
to allow e-Science applications to harness and realize the po-
tential of the LambdaGrid. This part has been the focus of
significant research in the recent years.

In contrast to shared, packet-switched, Grid infrastructures,
LambdaGrids have computational endpoints that are inter-
connected via dedicated high-speed links (e.g., OC-192≈ 10
Gbps), thus providing an environment with no internal net-
work congestion but significant endpoint congestion. In addi-
tion, LambdaGrids typically connect a small number of large
computational resources (such as clusters) and might involve
data-transfer models ranging from point-to-point communi-
cation to a collection of endpoints that engage in many-to-one
or one-to-many communication. For example, a distributed
scientific computation running on a LambdaGrid might en-
gage in coordinated communication across a number of data
servers in order to fetch large quantities of data from distinct
and distributed servers to feed a local computation or visual-
ization. These and other similar scenarios pose a new set of
research challenges for network communication in Lambda-
Grids.

Optical networks in LambdaGrids typically span over large
intra-continental or inter-continental distances, thus result-
ing in networks with large bandwidth-delay products (BDPs),
i.e., they are characterized by both high bandwidth (e.g.,
10 Gbps) as well as long round-trip time (RTT) delays (e.g.,
100 ms). Delivering high throughput in large BDP networks
is a long-standing research challenge, one that now has an



entire workshop devoted to it —The International Work-
shop on Protocols for Fast Long-Distance Networks (PFLD-
net). TCP and its variants [Jacobson 1988; Brakmo and Pe-
terson 2003; Mathis et al. 1996] have been used in shared,
packet-switched networks for adjusting the sending rate de-
pending on the inferred state of congestionin the network.
Given that this type of congestion does not occurin a dedi-
cated, circuit-switched, optical network; TCP and its variants
have been shown to be inefficient in such networks [Feng
and Tinnakornsrisuphap 2000]. Accordingly, researchers
have pursued alternative solutions to overcome the the lim-
itations of TCP/IP in large BDP networks and provide high-
performance networking capabilities in such environments.
In recent years, rate-controlled UDP/IP-based protocols [He
et al. 2002; Xiong et al. 2005; Gu and Grossman 2004; Wu
and Chien 2004; Dickens 2003; Zheng et al. 2004; Rao et al.
2004] have emerged as feasible alternatives.

For example, in RBUDP (Reliable Blast UDP), the sender
transmits UDP data packets at a fixed bit rate, specified by
the user. After all the data has been transmitted, the receiver
sends the error-sequence numbers corresponding to the data
packets that it did not receive (due to network congestion
in a packet-switched network or end-system congestion in
a circuit-switched network) to the sender via a TCP connec-
tion. The sender then re-transmits the error-sequenced data
packets via UDP. The above cycle continues until the receiver
has received all data packets successfully. In this manner,a
reliable mechanism for packet delivery is imposed on top of
the unreliable connectionless UDP.

Although RBUDP performs reasonably well in LambdaGrid
environments [He et al. 2002], its main weakness is its in-
ability to adapt its sending rate. This leads to unwanted
packet losses, particularly when the receiving end-systemis
swamped with too many packets to process, i.e., the network
outstrips the ability of the processor to keep up [Smarr et al.
2004].

The LambdaStream approach [Xiong et al. 2005] primarily
supports visualization applications that can tolerate packet
losses rather than applications that need reliable delivery
(e.g., bulk data transfer). As such, our proposed end-
system aware, rate-adaptive protocol, described in Section 6,
arguably provides a complementary solution to LambdaS-
tream.

The UDP-based data transfer (UDT) protocol [Gu and Gross-
man 2004] proposes rate-based congestion control that is im-
plemented as application-level processes running atop UDP.
Though UDT performs better than TCP over large BDP net-
works, UDT’s potential is not fully realized as it does not
model the end-system interactions between the operating sys-
tem (OS) and network that contribute to congestion. The lack
of such a model then forces UDT to rely on intuitive, but the-
oretically unfounded, heuristics.

The approach proposed in [Zheng et al. 2004] can achieve
relatively high circuit utilization if the initial sendingrate is
set appropriately, but like RBUDP, it lacks rate adaptationat
the sender side, which leads to unwanted packet losses if the
initial sending rate is set too high.

Overall, we argue that the main problem with all the afore-
mentioned protocols is that because they donot rigorously
model the end-system dynamics between the OS scheduler,
network, and other applications, they only perform well in
isolated scenarios, e.g., when network transport is essen-
tially theonly task running on the sending and receiving end-
systems. However, in addition to network transport, the re-
ceiving (or sending) end-system oftentimes runs other pro-
cesses — from a seemingly innocuous desktop environment
like GNOME to a more intrusive real-time visualization and
analysis of the received data, which may be computation-
ally intensive. With respect to the latter, the OS on the re-
ceiving end-system must schedule a CPU-bound process (vi-
sualization and analysis) and an I/O-bound process (receiv-
ing data) simultaneously. Because the buffer size on the
end-system’s network interface card (NIC) is typically small,
packets are routinely dropped due to buffer overflow, e.g.,
when the receiving-data process is not scheduled by the OS
at appropriate times to transfer the packets from the line-card
buffer on the NIC to physical memory. Transmitting data to
such an end system (at a fixed rate relentlessly as in RBUDP
or FRTP only exacerbates the problem of end-system conges-
tion).

Therefore, we propose the notion of an end-system aware,
rate-adaptive protocol, based on performance monitoring,to
significantly improve the performance of data transport over
a LambdaGrid. In particular, we focus on dynamically mon-
itoring the packet losses at the receiving end-system so that
it can be used as a trigger to modulate the sending rate, and
hence, avoid further losses while still ensuring high circuit
utilization in the presence of end-system constraints.

The rest of this paper is organized as follows. Section 2 de-
scribes the problem and potential approaches to the problem.
Section 3 discusses the end-system task monitoring that is
needed to support our end-system modeling, and hence, end-
system aware, rate-adaptive protocol. Section 4 provides an
overview of the internals of an operating system (OS) that
are relevant to network scheduling over LambdaGrids, in-
cluding the life cycle of a process and the structure of pro-
cessor run-queues and task migration. With an understand-
ing of the key OS internals for LambdaGrid networking in
place, Section 5 presents detailed performance models for
receiver-driven feedback in support of preemptive data trans-
fer and theoretically proves the impossibility of accurately
estimating the process context-switch intervals in a general-
purpose OS (such as Linux) at the receiving end-system.
Consequently, current rate-adaptive protocols that are based



on such estimations are flawed, and Section 5 closes with
an illustration of this via a network-emulation study. Sec-
tion 6 presents our end-system aware, rate-adaptive protocol,
followed by experimental results in Section 7. Finally, we
conclude the paper in Section 8.

2 Problem Depiction & Approaches

Dense wavelength division multiplexing (DWDM) allows
optical fibers to carry hundreds of wavelengths of 2.5 to 10
Gbps each for a total of terabits per second (Tbps) capacity
per fiber. A LambdaGrid is a set of distributed resources di-
rectly connected with such DWDM links, in which network
bandwidth is no longer the key performance limiter to com-
munication.

Network performance can be substantially improved in
LambdaGrid environments if packet losses (due to end-
system congestion) are avoided, e.g., when the receiving end-
system OS is context-switched to another process other than
the networking process. The following are some possible ap-
proaches:

• A real-time OS (RTOS) can be employed. A RTOS
allows hard deadlines to be specified for tasks. How-
ever, a RTOS is generally expensive to maintain and un-
likely to be adopted by the general scientific community.
Furthermore, device driver and hardware support is not
commonplace for a RTOS. For example, no 10-Gigabit
Ethernet NIC support currently exists in a RTOS.

• The buffer size on the network interface card (NIC) can
be increased so that packets are not dropped when the
OS is not ready to handle them. However, this is a very
expensive hardware solution that NIC vendors will not
provide.

• Various parameters of an OS scheduler, such as maxi-
mum allocated timeslice and maximum dynamic-bonus
priority granted to an I/O process, may be adjusted to
reduce packet loss. However, this leads to custom OS
kernels for applications, and application scientists run-
ning in LambdaGrid environments would rather not deal
with customized kernels (or kernel patches) to improve
their network performance.

• A feedback-based, network-scheduling protocol can al-
low the receiver to proactively deliver feedback to the
sender, e.g., to suspend transmission of data for a spec-
ified interval of time, based on the monitoring of the
dynamic priority and scheduling of tasks at the receiv-
ing end-system. These approaches have been studied
by [Banerjee et al. 2006; Datta et al. 2006]; however,
they cannot accurately estimate the context-switch in-
tervals, as will be proven in Section 5, and can also lead

to poor circuit utilization, due to their“stop-and-go”
approach.

Given that a feedback-based, network-scheduling protocol
is the most feasible approach of the above alternatives, we
demonstrate in this paper the problems with a feedback-based
network-scheduling algorithm that is based on end-system
monitoring using a“stop-and-go” approach. More specif-
ically, we rigorously expose the problems with the latest,
and arguably, one of the best-performing algorithms over
LambdaGrids calledRBUDP+ [Datta et al. 2006] and pro-
pose a new end-system aware, rate-adaptive protocol called
RAPID+ that addresses these problems.

3 End-System Task Monitoring

As part of our initial study in [Datta et al. 2006], we mon-
itored end-system performance, so as to identify forecasted
periods of end-system congestion. By predicting the time
at which the receiving end-system OS may allocate a large
timeslice to a CPU-intensive process (and hence, not respond
to packet-handling interrupts from the NIC), we can approx-
imately estimate when end-system congestion might occur.

In [Datta et al. 2006], a soft real-time (SRT) process was im-
plemented at the receiving end-system in order to predict pe-
riods of end-system congestion and to send explicit feedback
notification back to the sender to stop data transfer for a spec-
ified duration of time. This was then used to implement a
feedback-based, network-scheduling protocol on the Linux
2.6 kernel. That is, we modified theReliable Blast UDP
(RBUDP) protocol and studied the performance of this mod-
ified protocol (named RBUDP+) under varying transmission
rates. A similar approach was studied in [Banerjee et al.
2006], but its feedback mechanism was based on monitor-
ing the priority levels of tasks using MAGNET (Monitoring
Apparatus for General KerNel-Event Tracing) [Feng et al.
2002; Gardner et al. 2003] and had the limitation that it
worked only for round-trip time (RTT) values on the order
of 100 ms or less. Since a typical LambdaGrid environ-
ment could experience much higher RTT values, the work
in [Banerjee et al. 2006] was not general enough and inval-
idated the use of this approach under such conditions. Ulti-
mately, however, the fundamental problem with both the ap-
proaches studied in [Banerjee et al. 2006; Datta et al. 2006]
is that they attempt to decide exactly when to suspend data
transmission at intermittent intervals, i.e., the“stop-and-go”
approach, thus resulting in low circuit utilization.

The following sections illustrate the difficulties and limi-
tations that we encountered during our implementation of
RBUDP+ proposed in [Datta et al. 2006]. The ensuing sec-
tions also describe why this approach is not accurate due to
the dynamics of process handling in a Linux kernel.



Figure 1: Different states of a process during its life cycle

4 OS Internals for Networking

Here we provide an overview of the internals of an operat-
ing system (OS) that are relevant to network scheduling over
LambdaGrids, specifically the life cycle of a process and the
structure of processor run-queues and task migration. For the
sake of convenience, we focus on the Linux OS, particularly
given its ubiquity in LambdaGrid environments.

4.1 Life Cycle of a Linux Process

Below we outline the different states that a process migrates
through from its invocation until it exits from theprocess ta-
ble. These changes can occur, for example, when the process
makes a system call, it is someone else’s turn to run, an inter-
rupt occurs, or the process asks for a resource that is currently
not available.

A newly created process enters the system in State 1 as shown
in Figure 1. If the process is simply a copy of the original
process (i.e., afork but not anexec), it then begins to run in
the state that the original process was in (State 3 or State 4).
If an exec() is made, then the process will end up in kernel
mode (State 4). It is possible that thefork()-exec() was done
in system mode, and the process goes into State 3. However,
this is highly unlikely.

When a process is running, an interrupt may be generated
(more often than not, this is the system clock), and the cur-
rently running process is preempted (State 2). This is the
same state as State 2 because it is still ready to run and in
main memory. The only difference is that the process was
just kicked off the processor.

When the process makes a system call while in user mode

(State 3), it moves into State 4 where it begins to run in kernel
mode. Assume at this point that the system call made was to
read a file on the hard disk. Because the read is not carried
out immediately, the process goes to sleep, waiting on the
event that the system has read the disk and the data is ready.
It is now in State 5. When the data is ready, the process is
awakened. This does not mean it runs immediately, but rather
it is once again ready to run in main memory (State 2).

If a process that was asleep is awakened (perhaps when the
data is ready), it moves from State 5 (sleeping) to State 2
(ready to run). This can be in either user mode (State 3) or
kernel mode (State 4).

A process can end its life by either explicitly calling theexit()
system call or having it called for them. Theexit() system
call releases all the data structures that the process was using.
If the exiting process has any children, they are ”inherited”
by init. 1 One value stored in the process structure is the
PID of that process’ parent process. This value is (logically)
referred to as the parent process ID or PPID. When a process
is inherited byinit, the value of its PPID is changed to 1 (the
PID of init).

A process state change can cause a context switch in several
different cases. One case is when the process voluntarily goes
to sleep, which can happen when the process needs a resource
that is not immediately available. When a process puts itself
to sleep, it sleeps on a particular wait channel (WCHAN).
When the event that is associated with that wait channel oc-
curs, every process waiting on that wait channel is awakened.

When a process puts itself to sleep, it voluntarily relinquishes
the CPU. A process that puts itself to sleep can then set the
priority at which it will run when it awakens. Normally, the
kernel process-scheduling algorithm calculates the priorities
of all the processes. However, in exchange for voluntarily
giving up the CPU, the process is allowed to choose its own
priority.

4.2 Process Run-Queues & Task Migration

The run-queue data structure is the most basic structure in the
Linux 2.6 scheduler; there is one run-queue per processor.
Essentially, a run-queue keeps track of all runnable tasks as-
signed to a particular CPU. In Linux 2.6, there are two prior-
ity arrays, one is theactive arrayand the other is theexpired
array. These are queues of runnable processes per priority
level.

Each of these arrays consists of different queues of runnable
processes with each set at a different priority level. For ex-

1init is the parent of all processes. Its primary role is to create processes
from a script stored in the file/etc/inittab. This file usually has entries which
cause init to spawngettys on each line that users can log in. It also controls
autonomous processes required by any particular system.



ample, in Figure 2 we have different processes in the active
array varying between priority levels1 · · ·m. Each priority
level can have a varying number of tasks, with each having
a particular allocatedtimeslicefor execution and a static pri-
ority (set relative to task niceness) and dynamic priority (set
equal to the priority level).

Figure 2: Active and expired priority arrays at different pri-
ority levels.

Similarly, we have a set of processes between priority levels
1 · · ·m in theexpired array. All tasks have a static priority,
often called anice value. In Linux, nice values range from
-20 to +19, where higher values correspond to lower prior-
ity (tasks with high nice values are nicer to other tasks). By
default, tasks start with a static priority of 0, but that prior-
ity can be changed via thenice() system call. A task’s static
priority is stored in itsstatic prio variable, wherep is a task,
p→static prio is its static priority.

The Linux 2.6 scheduler rewards I/O-bound tasks and pun-
ishes CPU-bound tasks by adding or subtracting a task’s
static priority. The adjusted priority is called a task’s dy-
namic priority and is accessible via the task’sprio variable
(e.g. p→prio wherep is a task). If a task is interactive (the
scheduler’s term for I/O-bound), its priority is boosted. For
more details about how the dynamic priorities are calculated,
interested readers should refer to [LinuxScheduler 2005].At
the end of its timeslice, each task’s dynamic priority is re-
calculated, based on the bonus (which again depends on the
average sleep time of the task). Depending on the value of the
newly calculated dynamic priority and whether other tasks in
theactive arrayhave surpassed theirSTARVATIONLIMIT, a
task can get re-entered into any of the priority levels in the
active arrayor may be migrated to theexpired array.

5 End-System Modeling and Evalu-

ation

Building on our understanding of the key OS internals for
LambdaGrid networking, this section first presents detailed
performance models for receiver-driven feedback in support
of preemptive data transfer. These performance models then
form the basis of our proof on the impossibility of accurately
estimating the process context-switch intervals in a general-
purpose OS at the receiving end-system, estimations that cur-
rent state-of-the-art rate-adapting protocols depend upon. Fi-
nally, the section concludes with a network emulation that
empirically demonstrates the above problem.

There are several scenarios that can occur in the kernel, and
we illustrate why it is impossible to accurately estimate the
time bounds for which a process will be context-switched
out, thus effectively invalidating the “stop-and-go” approach
of proactive feedback from the receiver, as proposed in
RAPID [Banerjee et al. 2006] and inRBUDP+ [Datta et al.
2006]. We provide an in-depth derivation of different possi-
bilities of task-migration scenarios in the kernel and analyze
how easy or difficult it is to estimate accurate time bounds for
which to suspend data transfer.

Here we propose two end-system models: theconstant
model and thevarying model. The constant model assumes
that the fraction of tasks from each priority level that gets
re-inserted to the active array is a constant across all priority
levels (when such a scenario occurs). In the varying model,
we assume that the fraction of tasks from each priority level
that gets re-inserted to either the active array or in the expired
array ahead of the I/O-task varies with the priority levels.

5.1 Notation

The following are the notations that we will be used in this
section:

• αi : No of tasks in theith level of active array.

i = 1,2 · · ·m (Figure 2).

• βi: No of tasks in theith level of expired array.

i = 1,2 · · ·m (Figure 2).

• t j
k: kth task in thejth level

j = 1,2 · · ·m

k = 1,2 · · ·αi or

k = 1,2 · · ·βi.

• T j
k : value of timeslice of thekth task in thejth level

j = 1,2 · · ·m



k = 1,2 · · ·αi or

k = 1,2 · · ·βi.

• D j ,current
k : Current dynamic priority ofkth task in thejth

level.

• D j ,new
k : New dynamic priority value at the end of the

timeslice ofkth task in thejth level..

• δ : maximum deviation of dynamic priority for an I/O-
bound task.

• ρ : is the constant fraction of tasks from each level in the
active array, that gets re-inserted into the active array
(used in constant model).

• ρi : is the fraction of tasks from each level that gets
re-inserted into the active array or in the expired array
ahead of the I/O-task (used in varying model).

• ∆: time period for which tasks might enter the wait-
queue waiting for other resources.

• I
t j
k
: Task indicator, indicates whether the task is in the

active or expired array.

I
t j
k
=

{

1 i f t j
k ∈ ActiveArray

0 i f t j
k ∈ ExpiredArray

(1)

• T: Total time period to stop the data transfer.

5.2 Performance Models

The following equations illustrate the constant and the vary-
ing models for the different scenarios of task migration in the
kernel, based on its newly calculated dynamic priority.

Suppose the current dynamic priority of the I/O-bound task,
which is thekth task at thejth level isD j ,current

k . Let the new
dynamic priority of the I/O-bound task at the end of its times-
lice beD j ,new

k = D j ,current
k − δ =D0, irrespective of whether it

is re-entered in the active array or dispatched to the expired
array.

Case I: Let I
t j
k

= 1 for the I/O-bound task after re-calculation

of the dynamic priority withρ = ρi = 0 and for all other tasks
in the active array,t j

k (∀k, j = 1,2 · · ·m) I
t j
k

= 0.

Varying Model: The total time for which the transmission
needs to be suspended in order to avoid data losses can be
accurately calculated in this scenario and is given by:

T =
m

∑
j=1

αi

∑
k=1

T j
k + ∆

The ∆ factor accounts for tasks which migrate to the wait-
queue waiting for some resources or results.

Case II: Let I
t j
k

= 1 for the I/O-bound task after re-calculation

of the dynamic priority but withρ 6= 0. In this case, some
tasksρ ·t j

k (∀k, j = 1,2 · · ·m) from the active array are re-
entered into the active array, henceI

t j
k

= 1, and for these tasks,

D j ,new
k > D0.

Varying Model: This case is similar to Case I. Here, the total
time that the data transfer needs to be suspended is equal to
the summation of the timeslices of all the tasks that are in the
active array (before calculation of their new dynamic prior-
ity) and the time period for which the tasks are in the wait
queue.

T =
m

∑
j=1

αi

∑
k=1

T j
k + ∆

Case III: Let I
t j
k

= 1 for the I/O-bound task after re-

calculation of the dynamic priority. As in Case II, we con-
sider the case whereρ 6= 0 and some tasksρ ·t j

k (∀k, j =
1,2 · · ·m) from the active array are re-entered into the ac-
tive array, i.e. I

t j
k

= 1; but unlike Case II,D j ,new
k ≤ D0 for

these tasks.

• Constant Model: In this case, the total time to sus-
pend the data transfer is equal to the summation of the
timeslices of all the tasks in the active array (before re-
computation of their dynamic priorities), the summation
of the timeslices of the fraction of tasks that keeps re-
entering the active array at priority levels greater than
D0. Hence, the total time is given as:

T =
m

∑
j=1

αi

∑
k=1

T j
k +

D0

∑
j=1

ραi

∑
k=1

T j
k +

D0

∑
j=1

ρ2αi

∑
k=1

T j
k +

D0

∑
j=1

ρ3αi

∑
k=1

T j
k +

· · + ∆

The ∆ factor accounts for time intervals if all the pro-
cesses enter the wait queue and are waiting for certain
resources or results.

• Varying Model: In this case, we assume that the fraction
of tasks from each priority leveli that re-enters the active
array at a priority level higher thanD0 is given byρi ,
instead of a constant ratioρ as considered in the varying
model. The total time is calculated as follows:

T =
m

∑
j=1

αi

∑
k=1

T j
k +

(
D0

∑
j=1

ρ1α1

∑
k=1

T j
k +

D0

∑
j=1

ρ2α2

∑
k=1

T j
k + · +

D0

∑
j=1

ρm1αm

∑
k=1

T j
k ) +

(
D0

∑
j=1

ρ2
1α1

∑
k=1

T j
k +

D0

∑
j=1

ρ2
2α2

∑
k=1

T j
k + · +

D0

∑
j=1

ρ2
m1

αm

∑
k=1

T j
k ) +



(
D0

∑
j=1

ρ3
1α1

∑
k=1

T j
k +

D0

∑
j=1

ρ3
2α2

∑
k=1

T j
k + · +

D0

∑
j=1

ρ3
m1

αm

∑
k=1

T j
k ) + · ·

· + ∆

As can be observed from the equations, the calculation of ei-
ther the approximate or exact total time involves a recursive
addition of the timeslices of afraction of tasks that re-enter
the active array. However, it is impossible to estimate (1)
the exact fraction of tasks that re-enter the active array, (2)
the timeslices of tasks that re-enter the active array (which
is based on the average sleep time of the task), (3) whether
all the tasks would finish their timeslices before re-entering
the active array, and (4) the value of∆ as all tasks migrate
from State 5 to State 2. Consequently, it is impossible to
predict the time period for stopping the sender from send-
ing data since no accurate or approximate estimation can be
made. This “corner case” ultimately results in a partial failure
of the feedback-based“stop-and-go” approaches proposed
in [Banerjee et al. 2006; Datta et al. 2006].

Case IV: Let I
t j
k

= 0 for the I/O-bound task after re-

calculation of the dynamic priority. Consider thatρ = 0 and
all taskst j

k (∀k, j = 1,2 · · ·m) from the active array are dis-
patched to the expired array, i.e.I

t j
k

= 0, and their priorities

areD j ,new
k > D0.

Varying Model: In this scenario, all the tasks in the active
array migrate to the expired array, but at a lower priority as
compared to the I/O task. Therefore, the total time can be
calculated as the summation of the timeslices of all the tasks
in the active array along with the wait period (if all tasks enter
the wait queue). So, the total time is given as follows:

T =
m

∑
j=1

αi

∑
k=1

T j
k + ∆

Case V: Let I
t j
k

= 0 for the I/O-bound task after re-calculation

of the dynamic priority. Consider thatρ = 0 and all taskst j
k

(∀k, j = 1,2 · · ·m) from the active array are dispatched to
the expired array, i.e.,I

t j
k

= 0, but that their newly calculated

priorities areD j ,new
k ≤ D0.

Varying Model: In this scenario, the total time can be cal-
culated as the summation of the timeslices of all tasks in the
active array and the timeslices of these tasks when they are
entered in the expired array at a priority level higher thanD0.
Thus, the total time becomes

T =
m

∑
j=1

αi

∑
k=1

T j
k +

D0

∑
j=1

βi

∑
k=1

T j
k + ∆

Case VI: Let I
t j
k

= 0 for the I/O-bound task after re-

calculation of the dynamic priority. Consider the case where
ρ 6= 0, and hence, some tasks,ρ ·t j

k (∀k, j = 1,2 · · ·m) from

the active array are re-entered in the active array, i.e.I
t j
k

= 1.

This scenario is similar toCase III, and the total time for the
varying and the constant model can be given by the equations
derived above for Case III. Since it is impossible to accurately
predict the fraction of tasks that are re-entered in the active
array as well as their future timeslices, prediction of the time
period is impossible.

As can be observed in all the six cases described above, there
are many dynamics in the kernel that cannot be accurately
estimated by the soft real-time process in order to schedule
feedback at the correct instant in time — particularly, cal-
culating the feedback to stop data transmission for an exact
duration of time. The kernel cannot be certain how the task
timeslices get utilized, nor can it be sure about the time in-
terval (∆) for which all processes might enter the sleep queue
(State 5→ 2 in Figure 1).

In the next subsection, we will illustrate the performance
drawbacks that we observed as part of our feedback-based
“stop-and-go” approach in [Datta et al. 2006] due to the in-
accuracy of prediction of the time intervals for which a pro-
cess gets context-switched out. (These drawbacks also apply
to [Banerjee et al. 2006].)

5.3 Performance Evaluation: “Stop-And-

Go” Scheduling

To emulate a very fast LambdaGrid network, we connected
two machines back-to-back with Chelsio 10-Gigabit Ethernet
(10GigE) adapters. The details of the experimental setup can
be found in [Datta et al. 2006].

We transferred a file of size 700MB via RBUDP [He et al.
2002] and RBUDP+ [Datta et al. 2006]. For both protocols,
we measured the end-system to end-system transfer time for
sending rates between 0.8-3.4 Gbps.2 We performed em-
ulation studies under two scenarios: (1) the receiving end-
system was under no additional computational load, and (2)
the receiving end-system was loaded with a synthetic load.

Figure 3 shows that in the case of no additional computa-
tional load, the RBUDP+ protocol actually performs worse
than the traditional RBUDP protocol. In addition, it shows
that the total data transfer time actually decreases steadily
up to a transmission rate of 2.6 Gbps and then increases
slowly for both the schemes. In the absence of any other
load, the normal RBUDP scheme keeps sending data from
the sender to the receiver and the I/O-bound process never
gets context-switched out. In comparison, RBUDP+ aggres-
sively stops the sender from sending data at certain instances

2Note: We did not enable any of the offload engine support that was
available on the Chelsio NIC’s as they only directly supportTCP, not UDP.



Figure 3: Comparison of data transfer times for RBUDP+

and RBUDP at no load

Figure 4: Comparison of data transfer times for RBUDP+

and RBUDP under load

during its data transfer. This results in RBUDP+ consum-
ing slightly more time for the total data transfer as com-
pared to the RBUDP scheme. As can be seen this“stop-
and-go” approach definitely leads to poor circuit utilization.
The RBUDP+ protocol required 6.6% -50.5% more time in
data transfer as compared to RBUDP protocol.

On the other hand, in the presence of a synthetic load, Fig-
ure 4 shows that RBUDP+ generally performs as well as
or better than RBUDP, particularly at rates greater than 2.4
Gbps. The primary reason for this is that at such high data
rates, the receiver simply gets swamped with too much data.
The RBUDP+ protocol prohibits such a scenario by proac-
tively stopping the sender from sending any data by predic-
tively estimating the time instances for which the I/O-bound
process will get context-switched out and by transmitting
feedback to the sender at the appropriate time. However, due
to the inaccuracies in the prediction (as outlined in Section 5),
we see that RBUDP+ does not perform as well at lower send-
ing rates.

6 RAPID+: Rate-Adaptive Proto-

col for Information Delivery

Because TCP has been shown to be inefficient in networks
with large bandwidth-delay products (BDPs) [Borman et al.
1992; Feng and Tinnakornsrisuphap 2000], a number of TCP
enhancements have been proposed to upgrade TCP’s conges-
tion control and/or flow control. Examples include High-
Speed TCP [Floyd 2003], FAST TCP [Jin et al. 2005], and
ScalableTCP [Kelly 2003]. These protocols are proposed
to be implemented in the kernel space and require modifi-
cations to the OS. To avoid the complexity of kernel changes,
other groups of researchers have proposed new transport pro-
tocols which are implemented as application-level processes
running atop UDP. Examples include SABUL [Gu et al.
2003], UDT [Gu and Grossman 2003], Tsunami [Tsunami
2006], and RBUDP [He et al. 2002]. These protocols are
rate-based, rather than window-based like TCP, because they
are regarded as a more efficient solution for high-speed net-
works [Walrand and Varaiya 2000].

Our proposedRAPID+ is an end-system aware, rate-adaptive
protocol that fundamentally differs from the aforementioned
protocols in that it models the dynamics of end-system in-
teractions between the OS and the network and intelligently
adapts its rate based on information from this model in or-
der to achieve high circuit utilization while simultaneously
allowing multiple applications to run on the end-systems.

In RAPID+, we propose to use a UDP blast channel for data
transfer from the sender to a receiver and a TCP control chan-
nel from the receiver to the sender for acknowledging receipt
of data and for the notification of lost packet sequences at the
receiver, which can be re-transmitted from the sender (shown
in Figure 5). A new session starts with a TCP connection es-
tablishment between the sender and the receiver. The sender
opens a TCP listening port and waits for an incoming connec-
tion attempt. A TCP connection is established upon receipt
of a request from the receiver. The sender and receiver then
exchange a set of parameters via the TCP connection, such as
the user-specified sending rate and UDP data channel’s port
number. The end-to-end RTT and the NIC buffer capacity
can also be conveyed as part of the initial connection setup.

After successful control-channel establishment and parame-
ter exchange over TCP, the data transfer on the end-to-end
circuit starts over the UDP channel. During the data transfer,
the sender is responsible for data transmission and retrans-
mission based on feedback from the receiver. Prior to the data
transfer, the sender and receiver negotiate aninitial sending
rate. The sender starts blasting data to the receiver at this ini-
tial rate. At the receiving end, the rate at which the receiving
application reads the data is calculated based on the packets
received as compared to the packets sent by the UDP blast,



Figure 5:RAPID+: Rate-Adaptive Protocol for Information
Delivery

and the sequence numbers (SN’s) of the packets that arenot
received are marked to be re-sent by the sender in subsequent
intervals. All this information is then used to tune the sending
rate appropriately.

Based on the measurements made by the receiving end-
system, a feedback message is sent back to the sender. This
message notifies the sender of the receiver’s reading rate and
the error-sequence numbers for the packets that have not been
received. After the receipt of the feedback, the sender mod-
ulates its sending rate (based on the algorithm described be-
low) until the next feedback message arrives. The end result
is thatRAPID+ supports both rate adaptation and maximal
circuit utilization under end-system constraints.

The details of the rate-adaptation algorithm inRAPID+ are
described below as well as shown in Figure 6. Figure 7 il-
lustrate the feedback checking at the sender and the feedback
sending at the receiver.

6.1 Notation

Below is the notation that we will use in this section.

• BNIC: The buffer capacity of the NIC at the receiver.

• RTT: The round trip time delay between the sender and
the receiver.

• δn: The number of incoming packets read by the receiv-
ing application at the receiver (measured using MAG-

Input: The rate at which the application drains the NIC
buffer space (δn), the current packet loss rate (αn), packet
loss rate at the preceding iteration (αn−1) and the user-
defined parameterk.

Output: (a) The new rate (Rn+1) for data transfer from
sender to receiver.

Initialization Parameters: R1 (user-defined),n=2,
count =0;γ = 0;

Algorithm:
While (Data to be sent from the sender6= 0)

{
Measureδn−1;
If (αn ≤ αn−1)
{

count++;
If (count≤ k)
{

Rn+1 = Rn

γ = (γ + (αn−1 / αn))/count;
n++;

}
Else
{

Rn+1 = Rn(1 + γ);
/* Scaling the rate according to */
/* the measured decrement rate */
count = 0;γ = 0;
n++; continue;

}
}

Else,
{

Rn+1 = δn−1; γ = 0; n++; count =0;
}

}

Note: The above algorithm attempts to minimize data losses
at the receiver and to maximize end-to-end circuit utilization
under receiver end-system constraints.

Figure 6: Rate-Adaptation Algorithm

NET) during the current iteration.3

• αn: The number of packets lost due to buffer overruns,
at the receiver during thenth iteration.

• αn−1: The number of packets lost at the receiver during
the last (n-1th) iteration of data sent.

• Rn: The sending rate at the current (nth) iteration.

• Rn+1: The sending rate at the next (n+1th) iteration.

• γ : The average rate of decrement of packet losses over
k successive iterations.

3Note that each iteration here indicates instances when datais sent from
the sender, after receiving a feedback from the receiver



Figure 7: (a) Feedback checking and processing at the sender. (b) Feedback sending at the receiver.

We know the following:

αn = Rn×RTT/2− δn−BNIC (2)

At the initiation of the algorithm,n= 2 andγ = 0. The initial
data transfer rate is set to the user-definedR1. The initial rate
is set assuming that the NIC buffer space can be completely
utilized to hold data that is transferred from the sender.

As data transmission proceeds, the rate-control mechanism
tunes the sending rate at the sender according to the set of
functions given below: If the packet-loss rate at the current
iteration of measurement (αn) is identical to or lower than the
packet loss at the preceding iteration (αn−1), then the send-
ing rate for the next iteration of packet send, is held equal
to the current sending rate. Otherwise, our attempt would
be to make the packet loss minimal, i.e., zero. Hence, using
Equation 2 and assuming that the buffer space (BNIC) would
already be full with packets from the preceding transmission,
our new sending rate for the next iteration is set equal to the
rate at which the application is draining the buffer at the re-
ceiver at the preceding iteration. Hence the new sending rate

would be

Rn+1 = δn−1 (3)

If the packet-loss rates at the receiver continue to decrease in
successive iterations, we proportionately ramp up the sending
rate based on the rate at which the packet loss decreases over
successive iterations. Let us assume that the rate at which the
packet loss decreases overk successive iterations is given by
γ.4

Then, we use the following equation to update the value ofγ
for k successive iterations.

γ =
1
k
· (γ +

αn−i

αn
) (4)

whereαn is the loss rate at the current snapshot of mea-
surement andαn−1 is the loss rate at the preceding iteration.
Equation 4 averages the proportionate increase in the number

4The value ofk is empirical and can be varied in the experiments to study
the aggressiveness in rate adaptation of the protocol.



of packets received at the receiver between two consecutive
iterations, overk successive iterations. This factor is utilized
to increase the sending rate by a factor of (1 +γ) as shown in
Figure 6.

7 Experimental Results

To test our proposedRAPID+, we connected two machines
(2-GHz Pentium 4s with 512-KB cache and 1-GB DDR
RAM) via a 3-Com Gigabit Ethernet switch. We emulated
an end-system to end-system file transfer by transferring two
files of size 1GB and 2GB between these two machines. The
experimental setup is an emulation of a wide-area network
with any amount of variation in round-trip times. It is to be
noted that the decision points for the sending rate-adaptation
in our initial implementation modifying the RBUDP proto-
col, depends on the feedback from the receiver and hence is
dependent on the round-trip time (RTT). However the varia-
tion or the modulation in the sending rate is independent of
the value of RTT.

The dependence of the rate modulation instances on the RTT,
is inherently because of the way RBUDP works, it can mod-
ulate the sending rates only after receiving a feedback from
the receiver, before sending off a new blast of data. The
proposedRAPID+ protocol does not necessarily impose any
constraints for rate-adaptation at the end of each RTT. The
rate-adaptation can happen independent of the round-trip
time for data transfer.

In our initial implementation ofRAPID+, we modified the
RBUDP protocol to make it rate-adaptive at the sender, based
on feedback from the receiver. The traditional RBUDP pro-
tocol transmits the entire file as a UDP blast and keeps re-
sending the sequence of packets that is not received by the
receiver (based on the error map it receives from the receiver)
until the entire file is transmitted. InRAPID+, we modulate
the rate at which the packets are sent, each time, based on sta-
tus notification from the receiver. Once the packet loss rate
at the receiver reaches zero, the entire file is transmitted.

We compared the data-transfer times for transferring the files
of sizes 1GB and 2GB using the RBUDP protocol [He et al.
2002] and an initial implementation of our proposedRAPID+

transport protocol. For both protocols, we measured the end-
system to end-system transfer time for starting sending rates
varying between 500-900 Mbps.

Comparisons of the data-transfer times between RBUDP and
RAPID+ for the 1-GB and 2-GB files are shown in Figures 8
and 9, respectively. These figures show thatRAPID+ im-
proves the transfer times by 6.03% and 18.22% for the 1-GB
and 2-GB files, respectively.

We also note the significant improvements that we observed

Figure 8: Comparison of transmission times for 1GB file

Figure 9: Comparison of transmission times for 2GB file

in the actual amount of data that was transmitted by the
sender while sending the 1-GB and 2-GB files for RBUDP
andRAPID+, respectively. In Figure 10, we see a 41.47%-
111.86% reduction in the amount of actual packets that are
transmitted for a 1-GB file. In Figure 11, we see an even more
dramatic 139.32%-387.91% reduction when transmitting a 2-
GB file. From these figures, theRAPID+ protocol needs sig-
nificantly less packet re-transmission to transfer large files.

Finally, Figures 12 and 13 show how the transmission rates
at the sender get modulated in the initial implementation of
RAPID+ when the initial sending rate starts between 500-900
Mbps.

8 Conclusion

In this paper, we presented the design and initial imple-
mentation and evaluation of a next-generation Rate-Adaptive
Protocol for Information Delivery (RAPID+) that is end-
system aware and designed specifically to transport data over



Figure 10: Comparison of actual packets transmitted for 1GB
file

Figure 11: Comparison of actual packets transmitted for 2GB
file

dedicated end-to-end circuits in support of LambdaGrids.

RAPID+ has two features that distinguish it from other trans-
port solutions: (1) data is transmitted at a rate that is adapted
to the end-system (receiver) limitations, moreover attempting
to keep the circuit fully utilized under such constraints; (2) it
uses dual communication paths — a unidirectional dedicated
end-to-end circuit for data transfer and the Internet for end-
system congestion notification and rate adaptation. We im-
plementedRAPID+ as an extension of the standard RBUDP
protocol and carried out a series of experiments in our local
testbed to quantify its performance. The experimental results
show that theRAPID+ implementation is effective in signifi-
cantly improving the data-transfer times and the actual num-
ber of packets that needs to be transmitted for transferringa
file.

Future work includes explicitly demonstrating the effective-
ness ofRAPID+ over a real wide-area network rather than
an emulated one as well as varying the load scenarios at the

Figure 12: Rate adaptation at the sender while transferringa
1GB file

Figure 13: Rate adaptation at the sender while transferringa
2GB file

sender and receiver. In addition, we intend to more rigorously
analyze and characterize our proposed feedback control loop
in RAPID+, relative to issues such as scalability, throughput,
and stability.
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