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Abstract

Next-generation e-Science applications will require thig a

ity to transfer information at high data rates between dis-
tributed computing centers and data repositories. A Lambda
Grid offers dedicated, optical, circuit-switched, poiot-
point connections that can be reserved exclusively for such
applications. These dedicated high-speed connectioms eli
inate network congestion as seen in traditional Interndt, b
they effectively push the network congestion to the end sys-

Virginia Tech

LambdaGrids are a new paradigm in distributed comput-
ing, where dedicated high-bandwidth optical networksvallo
globally distributed compute, storage, and visualizatips-
tems to work together as a planetary-scale supercomputer.
Such a distributed supercomputer will enable scientists to
analyze, correlate, and visualize extremely large and temo
datasets on-demand and in real time.

The networking aspect of a LambdaGrid consists of two in-
terdependent parts. The first part requires an architddtura
frastructure to enable a LambdaGrid, i.e., globally distied

tems, as processing speeds cannot keep up with networkingnodes with different capabilities that are interconnectied

speeds. Thus, developing an efficient transport protocal ov
such high-speed dedicated circuits is of critical impactan

high-bandwidth optical networks. Examples of such optical
networks include National LambdaRail (NLR) [NLR 2006],
DOE UltraScience Net [DoE 2006], CANARIE CA*net[Ca-

We propose the idea of a end-system aware, rate-adaptivg, yje 2005], and UKLight [UKLight 2006]. The second part

protocol for network transport, based on end-system perfor
mance monitoring. Our proposed protocol significantly im-

consists of a collection of hardware-software interfacgsto
that overlay the aforementioned architectural infragtrec

proves the performance of data transfer over LambdaGrids by, a11ow e-Science applications to harness and realizedhe p

intelligently adapting the sending rate based on end-syste
constraints. We demonstrate the effectiveness of our pro-
posed protocol and illustrate the performance gains aetiev
via wide-area network emulation.

1 Introduction

The OptlPuter project [Smarr et al. 2004] observed that net-
work speeds have been outstripping the ability of processor
speeds to keep up. This technology inversion resulted in
the emergence of LambdaGrids, which have fundamentally
changed the way that we think about high-performance dis-
tributed computing.
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tential of the LambdaGrid. This part has been the focus of
significant research in the recent years.

In contrast to shared, packet-switched, Grid infrastmesty
LambdaGrids have computational endpoints that are inter-
connected via dedicated high-speed links (e.g., OC<19P
Gbps), thus providing an environment with no internal net-
work congestion but significant endpoint congestion. In-add
tion, LambdaGrids typically connect a small number of large
computational resources (such as clusters) and mightievol
data-transfer models ranging from point-to-point communi
cation to a collection of endpoints that engage in manyre-o

or one-to-many communication. For example, a distributed
scientific computation running on a LambdaGrid might en-
gage in coordinated communication across a number of data
servers in order to fetch large quantities of data from wicsti

and distributed servers to feed a local computation or VHsua
ization. These and other similar scenarios pose a new set of
research challenges for network communication in Lambda-
Grids.

Optical networks in LambdaGrids typically span over large
intra-continental or inter-continental distances, thesutt-

ing in networks with large bandwidth-delay products (BDPs)
i.e., they are characterized by both high bandwidth (e.g.,
10 Gbps) as well as long round-trip timeTT) delays (e.g.,

100 ms). Delivering high throughput in large BDP networks
is a long-standing research challenge, one that now has an



entire workshop devoted to it —Fhe International Work- ~ The approach proposed in [Zheng et al. 2004] can achieve
shop on Protocols for Fast Long-Distance Networks (PFLD- relatively high circuit utilization if the initial sendingate is

net). TCP and its variants [Jacobson 1988; Brakmo and Pe-set appropriately, but like RBUDP, it lacks rate adaptatibn
terson 2003; Mathis et al. 1996] have been used in sharedthe sender side, which leads to unwanted packet losses if the
packet-switched networks for adjusting the sending rate de initial sending rate is set too high.

pending on the inferred state of congestinrthe network.

Given that th|S type Of Congestion does not oc'mua dedi_ OVera“, we al’gue that the main problem with all the afore-
cated, circuit-switched, optical network; TCP anditsaats ~ Mentioned protocols is that because theyna rigorously
have been shown to be inefficient in such networks [Feng Mmodel the end-system dynamics between the OS scheduler,
and Tinnakornsrisuphap 2000]. Accordingly, researchers Network, and other applications, they only perform well in
have pursued alternative solutions to overcome the the lim-isolated scenarios, e.g., when network transport is essen-
itations of TCP/IP in large BDP networks and provide high- tially theonlytask running on the sending and receiving end-
performance networking capabilities in such environments Systems. However, in addition to network transport, the re-
In recent years, rate-controlled UDP/IP-based protodtés [ Ceiving (or sending) end-system oftentimes runs other pro-
et al. 2002; Xiong et al. 2005; Gu and Grossman 2004; Wu CeSses — from a seemingly innocuous desktop environment

and Chien 2004; Dickens 2003; Zheng et al. 2004; Rao et al. like GNOME to a more intrusive real-time visualization and
2004] have emerged as feasible alternatives. analysis of the received data, which may be computation-

ally intensive. With respect to the latter, the OS on the re-
For example, in RBUDP (Reliable Blast UDP), the sender ceijving end-system must schedule a CPU-bound process (vi-
transmits UDP data packets at a fixed bit rate, specified by syalization and analysis) and an 1/0-bound process (receiv
the user. After all the data has been transmitted, the receiv |ng data) simuitaneous|y_ Because the buffer size on the
sends the error-sequence numbers corresponding to the datand-system’s network interface card (NIC) is typically #ma
packets that it did not receive (due to network congestion packets are routinely dropped due to buffer overflow, e.g.,
in a packet-switched network or end-system congestion in when the receiving-data process is not scheduled by the OS
a circuit-switched network) to the sender via a TCP connec- at appropriate times to transfer the packets from the lare-c
tion. The sender then re-transmits the error'sequencw dat buffer on the NIC to physicai memory. Transmitting data to
packets via UDP. The above cycle continues until the receive sych an end system (at a fixed rate relentlessly as in RBUDP

has received all data paCketS SUCCQSSfU“y. In this maaner, or FRTP Oniy exacerbates the probiem of end_system conges-
reliable mechanism for packet delivery is imposed on top of tjon).

the unreliable connectionless UDP.

Therefore, we propose the notion of an end-system aware,

rate-adaptive protocol, based on performance monitoting,

significantly improve the performance of data transportove

a LambdaGrid. In particular, we focus on dynamically mon-

itoring the packet losses at the receiving end-system go tha

it can be used as a trigger to modulate the sending rate, and

Smarr et al hence, avoid further losses while still ensuring high dircu
utilization in the presence of end-system constraints.

Although RBUDP performs reasonably well in LambdaGrid
environments [He et al. 2002], its main weakness is its in-
ability to adapt its sending rate. This leads to unwanted
packet losses, particularly when the receiving end-syssem
swamped with too many packets to process, i.e., the network
outstrips the ability of the processor to keep up [
2004].

The LambdaStream approach [Xiong et al. 2005] primarily

supports visualization applications that can toleratekptic Th? rest of this paper is orgam;ed as follows. Section 2 de-
losses rather than applications that need reliable dgliver scribes the problem and potential approaches to the problem

(e.g., bulk data transfer). As such, our proposed end- Section 3 discusses the end-system task monitoring that is
system aware, rate-adaptive protocol, described in Se6tio needed to support our end-system modeling, and hence, end-

arguably provides a complementary solution to LambdaS- SySte'_“ aware, r:_;xte—adaptwe protocol. _Sect|on 4 provides a
tream. overview of the internals of an operating system (OS) that

are relevant to network scheduling over LambdaGrids, in-
The UDP-based data transfer (UDT) protocol [Gu and Gross- cluding the life cycle of a process and the structure of pro-
man 2004] proposes rate-based congestion control that is im cessor run-queues and task migration. With an understand-
plemented as application-level processes running atop. UDPing of the key OS internals for LambdaGrid networking in
Though UDT performs better than TCP over large BDP net- place, Section 5 presents detailed performance models for
works, UDT’s potential is not fully realized as it does not receiver-driven feedback in support of preemptive datastra
model the end-system interactions between the operat#ag sy fer and theoretically proves the impossibility of acculate
tem (OS) and network that contribute to congestion. The lack estimating the process context-switch intervals in a ganer
of such a model then forces UDT to rely on intuitive, but the- purpose OS (such as Linux) at the receiving end-system.
oretically unfounded, heuristics. Consequently, current rate-adaptive protocols that aseda



on such estimations are flawed, and Section 5 closes with to poor circuit utilization, due to theifstop-and-go”
an illustration of this via a network-emulation study. Sec- approach.

tion 6 presents our end-system aware, rate-adaptive miptoc
followed by experimental results in Section 7. Finally, we
conclude the paper in Section 8.

Given that a feedback-based, network-scheduling protocol
is the most feasible approach of the above alternatives, we
demonstrate in this paper the problems with a feedbackdbase
network-scheduling algorithm that is based on end-system
. . monitoring using d'stop-and-go” approach. More specif-

2 Problem Depiction & Approaches ically, we rigorously expose the problems with the latest,

and arguably, one of the best-performing algorithms over

Dense wavelength division multiplexing (DWDM) allows LambdaGrids calle®RBUDP* [Datta et al. 2006] and pro-
optical fibers to carry hundreds of wavelengths of 2.5 to 10 Pose a new end-system aware, rate-adaptive protocol called
Gbps each for a total of terabits per second (Tbps) capacityRAPID™ that addresses these problems.

per fiber. A LambdaGrid is a set of distributed resources di-

rectly connected with such DWDM links, in which network

bandwidth is no longer the key performance limiter to com- 3 End-System Task Monitoring
munication.

Network performance can be substantially improved in As part of our initial study in [Datta et al. 2006], we mon-

LambdaGrid environments if packet losses (due to end- itored end-system performance, so as to identify foredaste
system congestion) are avoided, e.g., when the receivithg en periods of end-system congestion. By predicting the time
system OS is context-switched to another process other tharat which the receiving end-system OS may allocate a large
the networking process. The following are some possible ap-timeslice to a CPU-intensive process (and hence, not respon
proaches: to packet-handling interrupts from the NIC), we can approx-

e A reaktime OS (RTOS) can be employed. A RTOS imately estimate when end-system congestion might occur.

allows hard deadlines to be specified for tasks. How- In [Datta et al. 2006], a soft real-time (SRT) process was im-
ever, a RTOS is generally expensive to maintain and un- plemented at the receiving end-system in order to predict pe
likely to be adopted by the general scientific community. riods of end-system congestion and to send explicit feddbac
Furthermore, device driver and hardware support is not notification back to the sender to stop data transfer for a-spe

commonplace for a RTOS. For example, no 10-Gigabit ified duration of time. This was then used to implement a
Ethernet NIC support currently exists in a RTOS. feedback-based, network-scheduling protocol on the Linux
2.6 kernel. That is, we modified theeliable Blast UDP

e The buffer size on the network interface card (NIC) can . .
be increased so that packets are not dropped when the(RBUDP) protocol and studied the performance of this mod-

OS is not ready to handle them. However, this is a very ified protocol (named RBUDP) under varying transmission

. . : rates. A similar approach was studied in [Banerjee et al.
expensive hardware solution that NIC vendors will not : . .
provide. 2006], but its feedback mechanism was based on monitor-

ing the priority levels of tasks using MAGNET (dhitoring

e Various parameters of an OS scheduler, such as maxi-Apparatus for ®neral Kerl-Event Tracing) [Feng et al.
mum allocated timeslice and maximum dynamic-bonus 2002; Gardner et al. 2003] and had the limitation that it
priority granted to an 1/0O process, may be adjusted to worked only for round-trip timeRTT) values on the order
reduce packet loss. However, this leads to custom OSof 100 ms or less. Since a typical LambdaGrid environ-
kernels for applications, and application scientists run- ment could experience much higher RTT values, the work
ning in LambdaGrid environments would rather not deal in [Banerjee et al. 2006] was not general enough and inval-
with customized kernels (or kernel patches) to improve idated the use of this approach under such conditions. Ulti-
their network performance. mately, however, the fundamental problem with both the ap-

proaches studied in [Banerjee et al. 2006; Datta et al. 2006]

* @Jvefr?:?ecgé?\fre% n?;ggtri\lxjcZee?i?/!;??‘eperggogc?: E[::?ha;- is that they attempt to decide exactly when to suspend data
P y transmission at intermittent intervals, i.e., tistop-and-go”

sender, e.g., to suspend transmission of data for a Spec'approach thus resulting in low circuit utilization
ified interval of time, based on the monitoring of the ' '

dynamic priority and scheduling of tasks at the receiv- The following sections illustrate the difficulties and limi
ing end-system. These approaches have been studiedations that we encountered during our implementation of
by [Banerjee et al. 2006; Datta et al. 2006]; however, RBUDP" proposed in [Datta et al. 2006]. The ensuing sec-
they cannot accurately estimate the context-switch in- tions also describe why this approach is not accurate due to
tervals, as will be proven in Section 5, and can also lead the dynamics of process handling in a Linux kernel.



& return mode. Assume at this point that the system call made was to
read a file on the hard disk. Because the read is not carried
out immediately, the process goes to sleep, waiting on the
event that the system has read the disk and the data is ready.
It is now in State 5. When the data is ready, the process is
awakened. This does not mean it runs immediately, but rather
it is once again ready to run in main memory (State 2).

interrupt (State 3), it moves into State 4 where it begins to run in Kerne

sys call or

interrupt and user mode

context

If a process that was asleep is awakened (perhaps when the
data is ready), it moves from State 5 (sleeping) to State 2

s (ready to run). This can be in either user mode (State 3) or
sleeping new process kernel mode (State 4).
ﬂ) A process can end its life by either explicitly calling #hét()
system call or having it called for them. Theit() system

call releases all the data structures that the process wag us

If the exiting process has any children, they are "inhetited

by init. 1 One value stored in the process structure is the

PID of that process’ parent process. This value is (logigall

4 QOS Internals for Networking referred to as the parent process ID or PPID. When a process
is inherited byinit, the value of its PPID is changed to 1 (the

. : . PID of init).
Here we provide an overview of the internals of an operat-

ing system (OS) that are relevant to network scheduling over A process state change can cause a context switch in several
LambdaGrids, specifically the life cycle of a process and the different cases. One case is when the process voluntagly go
structure of processor run-queues and task migration heor t to sleep, which can happen when the process needs a resource
sake of convenience, we focus on the Linux OS, particularly that is notimmediately available. When a process putditsel
given its ubiquity in LambdaGrid environments. to sleep, it sleeps on a particular wait chani#CHAN).
When the event that is associated with that wait channel oc-
curs, every process waiting on that wait channel is awakened

Figure 1: Different states of a process during its life cycle

4.1 Life Cycle of a Linux Process When a process puts itself to sleep, it voluntarily relirstpais

the CPU. A process that puts itself to sleep can then set the
Below we outline the different states that a process migrate priority at which it will run when it awakens. Normally, the
through from its invocation until it exits from therocess ta- kernel process-scheduling algorithm calculates the itigsr
ble. These changes can occur, for example, when the procesgf )| the processes. However, in exchange for voluntarily

makes a system call, it is someone else’s turn to run, arinter giving up the CPU, the process is allowed to choose its own
ruptoccurs, or the process asks for aresource thatis dlyrren  priority.

not available.

A newly created process enters the system in State 1 as show
in Figure 1. If the process is simply a copy of the original
process (i.e., &ork but not anexec), it then begins to run in i ) i
the state that the original process was in (State 3 or State 4) "€ run-queue data structure is the most basic structunein t
If an exec() is made, then the process will end up in kernel Linux 2_.6 scheduler; there is one run-queue per processor.
mode (State 4). It is possible that thek()-exec() was done Essentially, a run-queue keeps track of all runnable tasks a

in system mode, and the process goes into State 3. HoweverSigned to a particular CPU. In Linux 2.6, there are two prior-

this is highly unlikely. ity arrays, one is thactive arrayand the other is thexpired
array. These are queues of runnable processes per priority

When a process is running, an interrupt may be generatedevyel.

(more often than not, this is the system clock), and the cur- . .

rently running process is preempted (State 2). This is the Each of thesg arrays consists qf dlfferent_qL_Jeues of ruenabl

same state as State 2 because it is still ready to run and ipprocesses with each set at a different priority level. Fer ex

main memory. The only difference is that the process was 1t is the parent of all processes. Its primary role is tateeprocesses

just kicked off the processor. from a script stored in the filetc/inittab. This file usually has entries which
o cause init to spawgettys on each line that users can log in. It also controls
When the process makes a system call while in user modeautonomous processes required by any particular system.

4.2 Process Run-Queues & Task Migration




ample, in Figure 2 we have different processes in the active
array varying between priority levels. - - m. Each priority
level can have a varying number of tasks, with each having
a particular allocatetimeslicefor execution and a static pri-
ority (set relative to task niceness) and dynamic priomsst (
equal to the priority level).

Active tasks run queues

Active Array

Expired Array

Figure 2: Active and expired priority arrays at differeni-pr
ority levels.

Similarly, we have a set of processes between priority fevel
1.-.--min theexpired array All tasks have a static priority,
often called anice value. In Linux, nice values range from
-20 to +19, where higher values correspond to lower prior-
ity (tasks with high nice values are nicer to other tasks). By
default, tasks start with a static priority of 0, but thatqpsi

ity can be changed via thece() system call. A task’s static
priority is stored in itsstatic_prio variable, wherg is a task,
p—staticprio is its static priority.

The Linux 2.6 scheduler rewards I/O-bound tasks and pun-

ishes CPU-bound tasks by adding or subtracting a task’s

static priority. The adjusted priority is called a task’s-dy
namic priority and is accessible via the taspiso variable
(e.g. p—prio wherep is a task). If a task is interactive (the
scheduler’s term for 1/0-bound), its priority is boostedr F
more details about how the dynamic priorities are calcdlate
interested readers should refer to [LinuxScheduler 2086].
the end of its timeslice, each task’s dynamic priority is re-

calculated, based on the bonus (which again depends on the

5 End-System Modeling and Evalu-
ation

Building on our understanding of the key OS internals for
LambdaGrid networking, this section first presents dedaile
performance models for receiver-driven feedback in suppor
of preemptive data transfer. These performance models then
form the basis of our proof on the impossibility of accunatel
estimating the process context-switch intervals in a gdner
purpose OS at the receiving end-system, estimations that cu
rent state-of-the-art rate-adapting protocols depend upis
nally, the section concludes with a network emulation that
empirically demonstrates the above problem.

There are several scenarios that can occur in the kernel, and
we illustrate why it is impossible to accurately estimate th
time bounds for which a process will be context-switched
out, thus effectively invalidating the “stop-and-go” apach

of proactive feedback from the receiver, as proposed in
RAPID [Banerjee et al. 2006] and iRBUDP™ [Datta et al.
2006]. We provide an in-depth derivation of different pessi
bilities of task-migration scenarios in the kernel and gral

how easy or difficult it is to estimate accurate time bounds fo
which to suspend data transfer.

Here we propose two end-system models: toestant
model and thevarying model. The constant model assumes
that the fraction of tasks from each priority level that gets
re-inserted to the active array is a constant across altigyrio
levels (when such a scenario occurs). In the varying model,
we assume that the fraction of tasks from each priority level
that gets re-inserted to either the active array or in théredp
array ahead of the 1/0-task varies with the priority levels.

5.1 Notation
The following are the notations that we will be used in this
section:
e a;: No of tasks in the'" level of active array.
i=1,2---m(Figure 2).
e [3: No of tasks in thé'" level of expired array.
i=1,2---m(Figure 2).

o t): kN task in thejt™ level

average sleep time of the task). Depending on the value of the

newly calculated dynamic priority and whether other tasks i
theactive arrayhave surpassed th&TARVATIONLIMIT, a
task can get re-entered into any of the priority levels in the
active arrayor may be migrated to thexpired array

j=12---m
k=1,2---a;or
k=1,2---B.

o T.: value of timeslice of th&h task in thej™ level

j=1,2.--m



k=1,2---a;or Casell: Letltl =1 for the 1/0O-bound task after re-calculation

k=12---B. of the dynamlc priority but withp # 0. In this case, some
j.current, h tasksp-t) (VK, j = 1,2---m) from the active array are re-
* :3 ) Current dynamic priority ok™ task in thej"" entered into the active array, herige= 1, and for these tasks,
eve . k
D" > Do.

e D" New dynamic priority value at the end of the
timeslice ofk" task in thejt" level.. Varying Model: This case is similar to Case I. Here, the total
time that the data transfer needs to be suspended is equal to

the summation of the timeslices of all the tasks that areén th

active array (before calculation of their new dynamic prior

e p: is the constant fraction of tasks from each level in the ity) and the time period for which the tasks are in the wait
active array, that gets re-inserted into the active array queue.
(used in constant model).

e O: maximum deviation of dynamic priority for an 1/0O-
bound task.

HM_Q.

m
e pi: is the fraction of tasks from each level that gets Z
re-inserted into the active array or in the expired array =1

ahead of the 1/O-task (used in varying model). Case Ill: Let I; = 1 for the I/O-bound task after re-
e A: time period for which tasks might enter the wait- calculation of the dynamic priority. As in Case Il, we con-
gueue waiting for other resources. sider the case wherg # 0 and some taskp- tk vk, j =

1,2.--m) from the active array are re-entered into the ac-
tive array, i.e. | y = = 1; but unlike Case IIDJ MW < D, for

these tasks.

o | Task indicator, indicates whether the task is in the
k

active or expired array.
I :{ 1 if t} € ActiveArray 1) e Constant Model: In this case, the total time to sus-
0 ift) € ExpiredArray pend the data transfer is equal to the summation of the
timeslices of all the tasks in the active array (before re-
computation of their dynamic priorities), the summation
of the timeslices of the fraction of tasks that keeps re-
entering the active array at priority levels greater than

T: Total time period to stop the data transfer.

5.2 Performance Models Do. Hence, the total time is given as:

. . . m a . Do poi . Do p2aj . Do p3ai .
The following equations illustrate the constant and thevar T— z z -|-kJ z + z z Tk + Z Z Tk
ing models for the different scenarios of task migratiorhia t =11 =ik=1 =1k= =1k=1
kernel, based on its newly calculated dynamic priority. S+ A
Suppose the current dynamic priority of the I/O-bound task,  The A factor accounts for time intervals if all the pro-
which is thek™™ task at thej"™ level isDy "™ Let the new cesses enter the wait queue and are waiting for certain
dynamic priority of the I/O-bound task atthe end of its times resources or results.
lice beD]"*" = D)™ — 5 =Dy, irrespective of whether it
is re- entered in the active array or dispatched to the edpire e Varying Model: In this case, we assume that the fraction
array. of tasks from each priority levethat re-enters the active
Casel: Let Itj =1 for the 1/O-bound task after re-calculation array at a priority level h|gher thelao IS given bypi,.

instead of a constant ratfpas considered in the varying

of the dynamic prlonty withp = p = 0 and for all other tasks model. The total time is calculated as follows:
in the active arrayk (Vk, j=1,2---m) Iti =0. n o
Varying Model: The total time for which the transmission T= Z Z Tk
needs to be suspended in order to avoid data losses can be
accur ately calculated in this scenario and is given by: Do p1o1 . Do poaz Dg Pmy Om

j j i
m a j (Zsz+zsz+'+Zsz)+
T= Z Z Tk +A j=1k=1 j=1k=1 =1 k=1

j=1k=1
. . . Do PPy Do P52 Do pr%lorm
The A factor accounts for tasks which migrate to the wait- ( z T+ Z z T+ + z )+
gueue waiting for some resources or results. ; 4 & k ; L, K



Do P30y | Dy P30z Do Py Om the active array are re-entered in the active array| ti.ec. 1.
k

T) + T+ o+ T )+
(,Zl k; K j; kZl k ng k; <) This scenario is similar t€ase |11, and the total time for the
-+A varying and the constant model can be given by the equations
derived above for Case lll. Since it is impossible to acalyat
predict the fraction of tasks that are re-entered in thevacti
array as well as their future timeslices, prediction of iheet
) period is impossible.

As can be observed from the equations, the calculation of ei-
ther the approximate or exact total time involves a recersiv
addition of the timeslices of &action of tasks that re-enter

the active array. However, it is impossible to estimate (1

the exact fraction of tasks that re-enter the active ar@y, ( As can be observed in all the six cases described above, there
the timeslices of tasks that re-enter the active array (lWth are many dynamics in the kernel that cannot be accurate|y
is based on the average sleep time of the task), (3) whetherestimated by the soft real-time process in order to schedule
all the tasks would finish their timeslices before re-elnr@ri feedback at the correct instant in time — particularly, cal-
the active array, and (4) the value Afas all tasks migrate  culating the feedback to stop data transmission for an exact
from State 5 to State 2. Consequently, it is impossible to duration of time. The kernel cannot be certain how the task
predict the time period for stopping the sender from send- timeslices get utilized, nor can it be sure about the time in-
ing data since no accurate or approximate estimation can beerval (A) for which all processes might enter the sleep queue

made. This “corner case” ultimately results in a partidlfia (State 5— 2 in Figure 1).
of the feedback-base@top-and-go” approaches proposed
in [Banerjee et al. 2006; Datta et al. 2006]. In the next subsection, we will illustrate the performance

drawbacks that we observed as part of our feedback-based
Case IV: Let I; = 0 for the 1/O-bound task after re- “stop-and-go”approach in [Datta et al. 2006] due to the in-
calculation of the dynamic priority. Consider that= 0 and accuracy of prediction of the time intervals for which a pro-
all taskstli (vk, j = 1,2---m) from the active array are dis- C€SS gets_ context-switched out. (These drawbacks alsg appl
patched to the expired array, i.l?é =0, and their priorities  to [Banerjee et al. 2006].)

areD}/"™" > Dy,

Varying Model: In this scenario, all the tasks in the active 5.3 Performance Evaluation: “Stop-And-
array migrate to the expired array, but at a lower priority as Go” Scheduling
compared to the 1/O task. Therefore, the total time can be

palculate_d as the summat.ion of the.time.slice's of all thestask 14 emulate a very fast LambdaGrid network, we connected
in the active array along with the wait period (if all taskseen 5 machines back-to-back with Chelsio 10-Gigabit Etherne
the wait queue). So, the total time is given as follows: (10GigE) adapters. The details of the experimental setop ca
m a be found in [Datta et al. 2006].
T =
:

j
T +A
1
CaseV: Let |tj =0 for the I1/O-bound task after re-calculation
k

s}

We transferred a file of size 700MB via RBUDP [He et al.

2002] and RBUDP [Datta et al. 2006]. For both protocols,

. we measured the end-system to end-system transfer time for

of the dynamic priority. Consider that= 0 and all tasks, sending rates between 0.8-3.4 GBpaNe performed em-

(vk, j = 1,2---m) from the active array are dispatched to ulation studies under two scenarios: (1) the receiving end-

the expired array, i.el,; = 0, but that their newly calculated ~ System was under no additional computational load, and (2)
k the receiving end-system was loaded with a synthetic load.

k

priorities areD}"*" < Dy,
Figure 3 shows that in the case of no additional computa-

Valrymg MO?]eI: In this _scen?nho, t_he tc:_tal t|mfe ﬁan kl)(e _cal;] tional load, the RBUDP protocol actually performs worse
culated as the summation of the timeslices of all tasks In the y, -, e traditional RBUDP protocol. In addition, it shows

active array and the timeslices of thse tasks.when they a'%hat the total data transfer time actually decreases tyeadi
entered in the expired array ata priority level higher than ) 44 5 transmission rate of 2.6 Gbps and then increases

Thus, the total time becomes slowly for both the schemes. In the absence of any other

ma Do B load, the normal RBUDP scheme keeps sending data from
T=5%> T+ > > T, +A the sender to the receiver and the I/O-bound process never
j=1k=1 j=1k=1 gets context-switched out. In comparison, RBUDdRygres-

Case VI: Let |; = 0 for the I/O-bound task after re- sively stops the sender from sending data at certain instanc
: t

. k o .
calculation of the dynamic priority. Co_nS|der the case weher 2Note: We did not enable any of the offload engine support thest w
p # 0, and hence, some taSIﬁSId (vk, j=12,2---m) from available on the Chelsio NIC’s as they only directly supda@P, not UDP.



6 RAPID": Rate-Adaptive Proto-
col for Information Delivery
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Because TCP has been shown to be inefficient in networks
with large bandwidth-delay products (BDPs) [Borman et al.
1992; Feng and Tinnakornsrisuphap 2000], a number of TCP
enhancements have been proposed to upgrade TCP’s conges-
tion control and/or flow control. Examples include High-
Speed TCP [Floyd 2003], FAST TCP [Jin et al. 2005], and
08 b 12 14 e 18 2 26 28 3 32 34 ScalableTCP [Kelly 2003]. These protocols are proposed
Rate (Gbps) . . . .
to be implemented in the kernel space and require modifi-
cations to the OS. To avoid the complexity of kernel changes,
other groups of researchers have proposed new transpert pro
Figure 3: Comparison of data transfer times for RBUDP  t5¢ols which are implemented as application-level progess
and RBUDP at no load running atop UDP. Examples include SABUL [Gu et al.
2003], UDT [Gu and Grossman 2003], Tsunami [Tsunami
2006], and RBUDP [He et al. 2002]. These protocols are
rate-based, rather than window-based like TCP, becauge the
are regarded as a more efficient solution for high-speed net-
works [Walrand and Varaiya 2000].

Total transfer time (secs)
[ N

(=]
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Our proposed®RAPID* is an end-system aware, rate-adaptive
protocol that fundamentally differs from the aforemenédn

an protocols in that it models the dynamics of end-system in-

20 “ II II IJ IJ II II teractions between the OS and the network and intelligently

0 adapts its rate based on information from this model in or-
0.8 1.2 1.6 2 2.4 2.6 2.8 3 3.2 34

der to achieve high circuit utilization while simultanebus
Rate (Gbps) allowing multiple applications to run on the end-systems.
M Effective-RBUDP+ (Sender) B RBUDP+ (Receiver) MRBUDP

Total transfer time (secs)
@ =]
= =

In RAPID™, we propose to use a UDP blast channel for data
transfer from the sender to a receiver and a TCP control chan-
nel from the receiver to the sender for acknowledging receip
of data and for the notification of lost packet sequenceseat th
receiver, which can be re-transmitted from the sender (show

Figure 4: Comparison of data transfer times for RBUDP
and RBUDP under load

during its data transfer. This results in RBUDRonsum- in Figure 5). A new session starts with a TCP connection es-
ing slightly more time for the total data transfer as com- tablishment between the sender and the receiver. The sender
pared to the RBUDP scheme. As can be seen‘8ip- opens a TCP listening port and waits for an incoming connec-

and-go” approach definitely leads to poor circuit utilization. tion attempt. A TCP connection is established upon receipt
The RBUDP" protocol required 6.6% -50.5% more time in of a request from the receiver. The sender and receiver then
data transfer as compared to RBUDP protocol. exchange a set of parameters via the TCP connection, such as
) _ _ the user-specified sending rate and UDP data channel’s port
On the other hand, in the presence of a synthetic load, Fig-,ymper. The end-to-end RTT and the NIC buffer capacity

ure 4 shows that RBUDP generally performs as well as  an also be conveyed as part of the initial connection setup.
or better than RBUDP, particularly at rates greater than 2.4

Gbps. The primary reason for this is that at such high data After successful control-channel establishment and param
rates, the receiver simply gets swamped with too much data.ter exchange over TCP, the data transfer on the end-to-end
The RBUDP" protocol prohibits such a scenario by proac- circuit starts over the UDP channel. During the data transfe
tively stopping the sender from sending any data by predic- the sender is responsible for data transmission and retrans
tively estimating the time instances for which the I/O-bdun  mission based on feedback from the receiver. Prior to thee dat
process will get context-switched out and by transmitting transfer, the sender and receiver negotiatinéial sending
feedback to the sender at the appropriate time. However, duerate. The sender starts blasting data to the receiver at this ini-
to the inaccuracies in the prediction (as outlined in Sedip tial rate. At the receiving end, the rate at which the recejvi

we see that RBUDP does not perform as well at lower send- application reads the data is calculated based on the gacket
ing rates. received as compared to the packets sent by the UDP blast,
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Figure 5:RAPID": Rate-Adaptive Protocol for Information
Delivery

and the sequence numbers (SN’s) of the packets thatadre
received are marked to be re-sent by the sender in subsequent
intervals. All this information is then used to tune the sagd

rate appropriately.

Based on the measurements made by the receiving end-
system, a feedback message is sent back to the sender. This
message notifies the sender of the receiver’s reading rete an
the error-sequence numbers for the packets that have not bee
received. After the receipt of the feedback, the sender mod-
ulates its sending rate (based on the algorithm described be
low) until the next feedback message arrives. The end result
is thatRAPID™ supports both rate adaptation and maximal
circuit utilization under end-system constraints.

The details of the rate-adaptation algorithmRAPID™ are
described below as well as shown in Figure 6. Figure 7 il-
lustrate the feedback checking at the sender and the feledbac
sending at the receiver.

6.1 Notation

Below is the notation that we will use in this section.
e Byic: The buffer capacity of the NIC at the receiver.

e RTT: The round trip time delay between the sender and
the receiver.

Input: The rate at which the application drains the N
buffer space &), the current packet loss ratey), packet
loss rate at the preceding iteratioon(1) and the use
defined parametéx.

Output: (a) The new rateR,,1) for data transfer fron
sender to receiver.

Initialization Parameters. Ry (user-defined)n=2,
count =0;y = 0;
Algorithm:
While (Datato be sent from the sender 0)
{
Measured,_1;
If (an < an-1)
{
count++;
If (count < k)
{
Rhi1 =Ry
y=(y+ (an-1/ an))/count;
n++;

}

Else

{
Rat1 =Ra(1 +V);
[* Scaling the rate according to */
/* the measured decrement rate */
count=0;y=0;
n++; continue;

Rni1 = n_1; Y= 0; n++; count =0;
}
}

Note: The above algorithm attempts to minimize data log
at the receiver and to maximize end-to-end circuit utilaa

C

n

Ses

under receiver end-system constraints.

Figure 6: Rate-Adaptation Algorithm

NET) during the current iteratiof.
at the receiver during tha" iteration.

the last 0-1") iteration of data sent.
Rn: The sending rate at the current!)) iteration.
Rn1+1: The sending rate at the next(1™") iteration.

e y: The average rate of decrement of packet loss

k successive iterations.

e O,: The number of incoming packets read by the receiv-

an: The number of packets lost due to buffer overruns,

on-1: The number of packets lost at the receiver during

es over

) T : . 3Note that each iteration here indicates instances wheriglagnt from
ing application at the receiver (measured using MAG- the sender, after receiving a feedback from the receiver



check & process
feedback from

receiver

** gend feedback
to the sender if
necessary

Is there
a feedback ?

Insert the SN's of all
outstanding pkis in the
loss list

there any
missing
pkts in Tx 7,

Check rate of pkts lost
at the receiver
in the preceeding interval

All the data has been
transferred

Send ERR (All SN's

Calculate th di t
sl in the loss list)

for the next iteration

- v

Figure 7: (a) Feedback checking and processing at the sebji€eedback sending at the receiver.

We know the following: would be

On =Ry x RTT/2— 3 —Bnic (2) Rat1 = 0n-1 3

Atthe initiation of the algorithmp = 2 andy = 0. The initial e hacket-loss rates at the receiver continue to deerigas
Qata transfer.rate is set to the user-defiRgedThe initial rate successive iterations, we proportionately ramp up theiagnd

is set assuming that the NIC buffer space can be completely, e pased on the rate at which the packet loss decreases over
utilized to hold data thatis transferred from the sender. successive iterations. Let us assume that the rate at whiech t
As data transmission proceeds, the rate-control mechanisnpacket loss decreases okesuccessive iterations is given by
tunes the sending rate at the sender according to the set of:*

functions given below: If the packet-loss rate at the curren Then, we use the following equation to update the valug of
iteration of measurementrf) is identical to or lower than the for k successive iterations.
packet loss at the preceding iteratian, (1), then the send-

ing rate for the next iteration of packet send, is held equal y= }'(V+ anfi)
to the current sending rate. Otherwise, our attempt would k Ohn
be to make the packet loss minimal, i.e., zero. Hence, using .

Equation 2 and assuming that the buffer spaad) would where a,, is the Iqss rate at the current snapghqt of mea-
already be full with packets from the preceding transmigsio  Surementandn_y is the loss rate at the preceding iteration.
our new sending rate for the next iteration is set equal to the Eduation 4 averages the proportionate increase in the numbe
rate at which the application is draining the buffer at the re  41ne value okis empirical and can be varied in the experiments to study
ceiver at the preceding iteration. Hence the new sendirg rat the aggressiveness in rate adaptation of the protocol.

(4)




of packets received at the receiver between two consecutive
iterations, ovek successive iterations. This factor is utilized
to increase the sending rate by a factor of (%) &s shown in

60

3 | Slﬁ-i’ sj.li ST

g
Figure 6. * ”
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7 Experimental Results HET
E 50
To test our pr_oposeBAI_DID+, we connected two machines " n — | | =
(2-GHz Pentium 4s with 512-KB cache and 1-GB DDR 500Mbps  600Mbps  700Mbps  800Mbps  SO0OMbps
RAM) via a 3-Com Gigabit Ethernet switch. We emulated Transmission Rates
an end-system to end-system file transfer by transferriong tw RBUDP  RAPID+

files of size 1GB and 2GB between these two machines. The
experimental setup is an emulation of a wide-area network  figyre 8: Comparison of transmission times for 1GB file
with any amount of variation in round-trip times. It is to be

noted that the decision points for the sending rate-adaptat

in our initial implementation modifying the RBUDP proto- 3o

col, depends on the feedback from the receiver and hence is
dependent on the round-trip time (RTT). However the varia-

tion or the modulation in the sending rate is independent of

the value of RTT.

P
1%
(=3

e AL e T

[
(=]
(=]

The dependence of the rate modulation instances on the RTT.
is inherently because of the way RBUDP works, it can mod-
ulate the sending rates only after receiving a feedback from
the receiver, before sending off a new blast of data. The o et S NS W
proposeRAPID* protocol does not necessarily impose any S00Mbps "“"M“i;nsx:‘izfmzz""b“ S00MBps
constraints for rate-adaptation at the end of each RTT. The

rate-adaptation can happen independent of the round-trip
time for data transfer.

Time for data transfer (secs)
= =
=1 un
=1 [=1

un
(=3

RBUDF  RAPID+

In our initial implementation oRAPID*, we modified the Figure 9: Comparison of transmission times for 2GB file

RBUDP protocol to make it rate-adaptive at the sender, based

on feedback from the receiver. The traditional RBUDP pro- iy the actual amount of data that was transmitted by the
tocol transmits the entire file as a UDP blast and keeps re-sender while sending the 1-GB and 2-GB files for RBUDP
sending the sequence of packets that is not received by theandRAPID, respectively. In Figure 10, we see a 41.47%-
receiver (based on the error map it receives from the reQeive  111.86% reduction in the amount of actual packets that are
until the entire file is transmitted. |RAP|D+, we modulate transmitted for a 1-GB file. In Figure 11, we see an even more
the rate at which the packets are sent, each time, based-on stajramatic 139.32%-387.91% reduction when transmitting a 2-
tus notification from the receiver. Once the packet loss rate GB file. From these figures, tHRAPID T protocol needs sig-

at the receiver reaches Zero, the entire file is transmitted. niﬁcant'y less packet re-transmission to transfer |ar%f||

We compared the data-transfer times for transferring tag fil  Finally, Figures 12 and 13 show how the transmission rates
of sizes 1GB and 2GB using the RBUDP protocol [He et al. at the sender get modulated in the initial implementation of

2002] and an initial implementation of our propo$&P1D " RAPID™ when the initial sending rate starts between 500-900
transport protocol. For both protocols, we measured the end \pps.

system to end-system transfer time for starting sendiregrat
varying between 500-900 Mbps.

Comparisons of the data-transfer times between RBUDP and§  Conclusion
RAPID for the 1-GB and 2-GB files are shown in Figures 8
and 9, respectively. These figures show tRAPID* im-
proves the transfer times by 6.03% and 18.22% for the 1-GB
and 2-GB files, respectively.

In this paper, we presented the design and initial imple-
mentation and evaluation of a next-generati@teRAdaptive
Protocol for Information _Delivery (RAPID™) that is end-
We also note the significant improvements that we observedsystem aware and designed specifically to transport data ove
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dedicated end-to-end circuits in support of LambdaGrids.  sender and receiver. In addition, we intend to more rigdyous

+h f hat distinguish it f h analyze and characterize our proposed feedback contml loo
RAPID™ has two features that distinguish it from other trans- i, g Ap|D* relative to issues such as scalability, throughput,

port solutions: (1) data is transmitted at a rate that is tathp and stability.

to the end-system (receiver) limitations, moreover atté&mgp

to keep the circuit fully utilized under such constraing; i

uses dual communication paths — a unidirectional dedicated

end-to-end circuit for data transfer and the Internet fal-en  References
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