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Abstract—Cancer is a leading cause of death in the US,
second only to heart disease. It is primarily a result of a
combination of an estimated two–nine genetic mutations (multi-
hit combinations). Although a body of research has identified
hundreds of cancer-causing genetic mutations, we don’t know
the specific combination of mutations responsible for specific
instances of cancer for most cancer types. An approximate algo-
rithm for solving the weighted set cover problem was previously
adapted to identify combinations of genes with mutations that
may be responsible for individual instances of cancer. However,
the algorithm’s computational requirement scales exponentially
with the number of genes, making it impractical for identifying
more than three-hit combinations, even after the algorithm was
parallelized and scaled up to a V100 GPU. Since most cancers
have been estimated to require more than three hits, we scaled out
the algorithm to identify combinations of four or more hits using
1000 nodes (6000 V100 GPUs with ≈ 48×106 processing cores) on
the Summit supercomputer at Oak Ridge National Laboratory.
Efficiently scaling out the algorithm required a series of algo-
rithmic innovations and optimizations for balancing an exponen-
tially divergent workload across processors and for minimizing
memory latency and inter-node communication. We achieved an
average strong scaling efficiency of 90.14% (80.96% – 97.96% for
200 to 1000 nodes), compared to a 100 node run, with 84.18%
scaling efficiency for 1000 nodes. With experimental validation,
the multi-hit combinations identified here could provide further
insight into the etiology of different cancer subtypes and provide
a rational basis for targeted combination therapy.

I. INTRODUCTION

Cancer is one of the leading causes of death in the US,
accounting for 21% of all deaths, second only to heart disease
[1]. Clearly, there is a need for more effective treatments.
Cancer is a polygenic disease, resulting from a combination of
multiple genetic mutations (multi-hit combinations) [2], [3].

The overall goal of this work is to identify the most
likely combinations of genes with mutations that may be

responsible for individual instances of cancer. This approach is
unlike most existing computational approaches that search for
individual cancer genes in which mutations increase the risk of
cancer [4]–[10]. Although there are many contributing factors
to the genesis and progression of cancer, other than genetic
mutations, such as tumor micro-environment [11], epigenetic
modifications [12], copy number variations [13], etc., this work
is limited to identifying combinations of genes with mutations
that may play a role in carcinogenesis or cancer progression.

An algorithm based on an approximate solution to the
weighted set cover problem was previously developed to
identify multi-hit combinations of genes with mutations that
may be responsible for individual instances of cancer [14]–
[16]. While there are several parallel algorithms [17], [18] for
the set cover problem with a comparable approximation ratio
(accuracy), we selected and extended the one [19] that best
mapped to our formulation of the problem: enumerating a set
as a combination of a given length with set-weight calculated
from input data associated with each combination.

However, the computational complexity of the algorithm
scales exponentially with the number of hits, i.e. Gh, where
G ≈ 20000 is the number of genes and h is the number
of hits. This exponential scaling limits the number of hits
that can be practically identified to three-hit combinations,
for sample size greater than 200, even with parallelization
across thousands of processors on an NVIDIA V100 graphical
processing unit (GPU) [16]. For example, the identification of
three-hit combinations took 13860 minutes on a single CPU
and 23 minutes on a single GPU [16]. We estimate that the
identification of four-hit combinations would require over 500
years on a single CPU and over 40 days on a single GPU.

Previous studies have shown that most cancers require
an estimated four – nine hits, on average [3], [20]–[22].
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We previously estimated that 11 of 17 cancer types studied
required four or more hits [3]. Therefore, two- and three-hit
combinations will not be able to identify the specific combi-
nation of gene mutations responsible for individual instances
of most cancers, which is the ultimate goal of this approach.

To be able to identify combinations of more than three-
hits, we restructured and optimized the algorithm for parallel
execution across multiple GPUs on multiple nodes of the
Summit supercomputer at the Oak Ridge National Laboratory.
Efficiently scaling out the algorithm for parallel execution
across thousands of GPUs presented three key challenges:
balancing the load across millions of GPU processing cores,
minimizing the use of slow global memory, and minimizing
inter-processor and inter-node communication. We describe
our approach for addressing these challenges in Section III.
This approach resulted in an estimated 7192-fold speedup
using 6000 V100 GPUs (1000 Summit nodes), compared to
the execution on a single GPU, for identifying four-hit com-
binations, as described in the Results section. In Section V,
we describe limitations of our approach and how they might
be addressed. Our findings are summarized in Section VI.

A. Our contributions

We report four contributions through this manuscript.
1) We developed an approximate weighted set cover (WSC)

algorithm to identify multi-hit combinations of carcino-
genic genes from a combinatorially complex search-
space and scaled out the algorithm for parallel execu-
tion on a thousand nodes of Summit supercomputer to
achieve an average strong scaling efficiency of 90.14%.

2) The WSC algorithm only needs to process the upper
tetrahedral portion of three dimensional matrices, lead-
ing to half the threads being idle. We mapped the upper
tetrahedral portion of the matrix to a linear thread index
to eliminate idle threads.

3) Although the above eliminated idle threads, the work-
load within each thread varied exponentially from O(1)
to O(G2), where G is the number of genes. We de-
veloped a workload scheduler that efficiently allocates
threads to GPUs such that each GPU has approximately
equal workload.

4) Through a combined strategy of hierarchical data struc-
ture design and multi-kernel, multi-level parallel re-
duction, we reduced our memory requirement from
petabytes to gigabytes. This strategy also reduced irreg-
ular memory access, memory migration between host
and device, and inter-node communication overhead.

II. RELATED WORK

Existing computational approaches for identifying carcino-
genic mutations are primarily based on evaluating mutational
characteristics in tumors relative to an expected baseline [2],
[4]–[8], [23]. Carcinogenic mutations, thus identified, have
been shown to be associated with an increased risk of the
disease. However, in general they do not result in cancer

by themselves. Most cancers require some combination of
additional carcinogenic mutations.

A. Existing approaches for identifying carcinogenic mutations

Existing approaches compare some combination of the
following characteristics in tumor samples to a presumed
baseline, to identify likely driver mutations. Genes with a
mutation rate that is significantly higher than an estimated
baseline mutation rate are considered to be probable cancer
genes [2]. Copy number variations [23], expression levels [8],
gene function [10], interaction networks/pathways [8], and
structural information [9] are also considered in identifying
potential cancer genes. The estimated background mutation
rate is generally normalized for gene size, CpG content, and
synonymous mutation rate [4], [5]. Specific mutations within
these cancer genes are further evaluated for recurrence, func-
tional impact, protein sequence clustering and expected pattern
of mutations, to determine which mutations are likely driver
mutation [2], [6], [24]. However, none of these approaches
attempt to identify combinations of mutations that are likely
to be responsible for individual instances of cancer, as the
following multi-hit algorithm does.

B. The multi-hit algorithm for identifying carcinogenic gene
combinations

The approach presented here, unlike existing approaches,
is designed specifically to identify multi-hit combinations of
mutations. In our prior work [15], we mapped the problem
to the weighted set cover (WSC) problem and proposed an
approximate algorithm to solve it. The goal of this algorithm
is to identify a set of multi-hit combinations that are frequently
present in tumor samples but rarely in normal samples. The
idea being that these combinations are likely to be oncogenic.
Based on the observation that at least one multi-hit combina-
tion should be present in every tumor samples, i.e. ”cover” the
set of tumor samples, we mapped this problem to the Weighted
Set Cover (WSC) problem [15].

WSC is an NP-Complete problem with no known poly-
nomial time exact solution [25], [26]. The computational
complexity for this problem is O(2M ), which is the number of
all possible sets of multi-hit combinations, where M =

(
G
h

)
is

the number of all possible h-hit combinations, G ≈ 20000
is the number of genes and h is the number of hits. For
four-hit combinations, M ≈ 7E15, making the problem
computationally intractable. However, there are approximate
greedy algorithms that reduce computational complexity to
O(M ×Nt) making the problem tractable for small h, where
Nt is the number of tumor samples.

We previously developed an approximate algorithm to solve
this mapped problem [15]. Briefly, the algorithm iterates
through the following steps until all tumor samples have been
excluded:

1) Enumerate all possible h-hit gene combinations and
compute F (weight)

2) Choose the combination with maximum F
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3) Exclude all tumor samples containing mutations in the
gene combination, from further consideration

The weight F is defined as follows:

F =
(αTP + TN

Nt +Nn

)
(1)

Here, TP (True Positives) is the number of tumor samples
containing mutations in the gene combination, TN (True
Negatives) is the number of normal samples that do not contain
mutations in the gene combination, Nt is the total number of
tumor samples, Nn is the total number of normal samples, and
α = 0.1 is a penalty term to offset the algorithm’s inherent
bias towards true positives relative to true negatives. See Ref
[15] for details.

C. Restructuring and optimizing for parallel execution on a
single GPU

The use of the greedy algorithm described above made it
possible to identify two-hit combinations on a single proces-
sor [15]. However, due to its exponential scaling, the algo-
rithm was impractical for more than two-hit combination. To
identify three-hit combinations in a practical time-frame (< 15
days), the sequential algorithm was restructured and optimized
for parallel execution across thousands of processors on an
NVIDIA V100 GPU [16]. Two key optimizations included
representing the input data in a compressed binary format and
mapping the upper triangular matrix of gene combination to
a linear index, as summarized below.

The input data for the algorithm consists of two binary
gene-sample matrices, one for tumor samples and another
for normal samples. Each element of the matrix is 0 or 1
depending on whether the corresponding sample has mutations
in the corresponding gene. These matrices were compressed
into a binary representation with 64 samples being grouped
into a single unsigned long long int variable. This compressed
binary representation resulted in a 32x reduction in memory
utilization for these matrices. In addition, the number of
arithmetic operations were reduced through the use of bitwise
operations for counting the number of samples containing
mutations in a given combination of genes. Another important
benefit of using bitwise operations was that it reduced the num-
ber of divergent branching operations, resulting in improved
processor utilization in a GPU [27]. See Ref [16] for details.

For two-hit combinations, all possible combinations of G
genes are represented by the upper triangular portion of a
G × G matrix. A naive parallel implementation assigned
each element of the matrix to a separate thread which then
computed the value of F for the combination i and j. However,
since the matrix is symmetrical along the diagonal, half of the
work is redundant. It results in unbalanced workload since
half of the threads are idle. By mapping the upper triangular
matrix to a linear index λ [28], the idle threads where j < i
were eliminated, reducing the unbalanced workload as shown
in Algorithm 1.

This mapping also reduces the workload imbalance for
combinations of more than two hits. See Ref. [16] for details.

Algorithm 1 Computing 3-hit combinations with sequential
mapping of upper triangular matrix (two for loops)

1: for λ = 1→
(
G
2

)
do

2: j ← b
√
1/4 + 2λ+ 1/2c

3: i← λ− j(j − 1)/2
4: for k = j + 1→ G do
5: Compute Fi,j,k for combination (gi, gj , gk)
6: . . .

III. IDENTIFYING COMBINATIONS OF MORE THAN THREE
HITS

Despite the optimizations described in the previous sec-
tion, 4-hit combinations for most cancer types could not
be identified in a practical timeframe (< 15 days), on a
single GPU. Therefore, in this work we scaled out the al-
gorithm by restructuring and optimizing computational steps
of the algorithm, and by developing a scheduler for balanced
workload distribution across GPUs and nodes of the Summit
supercomputer at the Oak Ridge National Laboratory (ORNL).

A. Distributing workload across multiple nodes and GPUs

256 GB DDR4

CPU0

GPU0

Fig. 1: Summit node as a computational unit and its
abstraction with a single MPI process per node. Top:
Each Summit node consists of two IBM Power9 CPUs
and six NVIDIA V100 GPUs. Bottom: Each Summit node
is assigned to a single MPI process along with a range
of threads (curved lines) that are in turn assigned to
individual processors within the GPUs.

Each Summit node has two IBM Power9 CPUs and six
NVIDIA V100 GPUs. For simplicity, we abstract each node
as having one CPU core that uses six V100 GPU devices, and
each GPU device can serve thousands of threads (Fig. 1). For
identifying four-hit combinations, a sequential implementation
of the algorithm would iterate over nested for loops of depth
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four to examine all
(
G
4

)
combinations. Two–four of the four

outer for loops can be flattened into a single for loop.
The outermost for loop can then be parallelized with one
thread processing one iteration of the outermost for loop.
Depending on the number of outer loops flattened, we define
four parallelization schemes. We implemented two of these
schemes and we present our analysis of their scaling efficiency.

1) 1x3 scheme: Launch G threads, each thread will run a
nested loop of depth 3.

2) 2x2 scheme: Flatten outer two loops, launch
(
G
2

)
threads, each thread will run a nested loop of depth 2.

3) 3x1 scheme: Flatten outer three loops, launch
(
G
3

)
threads, each thread will run one for loop.

4) 4x1 scheme: Flatten all four loops, launch
(
G
4

)
threads,

each thread will process only one combination.
We define workload as the number of combinations as-

suming each combination yields same number of arithmetic
operations. The first scheme offers a small number of threads
(limited parallelization) with heavy workload per thread. The
fourth scheme offers astronomically large threads with con-
stant operation. So, we did not consider these two. We first
implemented the 2x2 scheme and built the 3x1 scheme from
the lessons learnt from the former scheme.

The entire workload
((

G
2

)
or
(
G
3

)
threads

)
is distributed

across hundreds of Summit nodes using the message passing
interface (MPI) where each node serves one MPI process.

Algorithm 2 Computing 4-hit combinations with sequential
mapping of upper triangular matrix (2x2 scheme, 3 for loops)

1: for λ = 1→
(
G
2

)
do

2: j ← b
√

1/4 + 2λ+ 1/2c
3: i← λ− j(j − 1)/2
4: for k = j + 1→ G− 1 do
5: for l = k + 1→ G do
6: Compute Fi,j,k for comb (gi, gj , gk, gl)
7: . . .

B. Reducing workload imbalance across threads

The workload for each thread (λ) can be represented by
the number of gene combinations of (gk, gl) processed in the
inner two (one) for loops in Algorithm 2 (Algorithm 3). The
workload per thread decreases exponentially with thread ID
(Fig. 2). As the figure shows, for G = 10, there is considerable
difference between the first and last thread’s workload. This
difference, which is

(
G
2

)
for the 2x2 scheme, limits scaling

efficiency. To reduce this difference in workload between
threads, we mapped the upper tetrahedral matrix, i ≤ j ≤ k
to a linear thread ID, as shown in Algorithm 3 (3x1 scheme).
This mapping spreads the workload across a larger number of
threads (

(
G
3

)
), such that the difference between the first and

last thread is reduced to G (Fig. 2).

C. Reducing workload imbalance across GPUs

Although the mapping in Algorithm 3 reduces workload
difference between the first and last thread from O(G2) to

Algorithm 3 Computing 4-hit combinations with sequential
mapping of upper tetrahedral matrix (3x1 scheme, 2 for
loops)

1: for λ = 1→
(
G
3

)
do

2: q ← (
√
729λ2 − 3 + 27λ)1/3

3: k ← b(q/32)1/3 + 1/(3q)1/3 − 1c
4: Tz ← k(k + 1)(k + 2)/6
5: λ′ = λ− Tz
6: j ← b

√
1/4 + 2λ′ − 1/2c

7: i← λ′ − j(j + 1)/2
8: for l = k + 1→ G do
9: Compute Fi,j,k for comb (gi, gj , gk, gl)

10: . . .
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Thread ID

0
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#
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m

b
)

3 for loops

2 for loops

Fig. 2: Thread workload distribution for sequential map-
ping of upper triangular (i ≤ j) (Algorithm 2, 2x2 scheme)
and upper tetrahedral (Algorithm 3, 3x1 scheme) matrices.
Tetrahedral mapping spreads out the computation across
a larger number of threads, thus reducing workload im-
balance between threads. Workload calculated for number
of genes G = 10.

O(G), with G ≈ 20000 the remaining difference still has a
significant effect on scaling efficiency. The workload

((
G−j
2

))
vs λ shows an exponential curve with reducing amount of
workload with increasing global thread id λ (Figure 3(a)).
A naive implementation assigns equal number of threads to
each node (and each GPU), which we refer to as equi-distance
(ED) scheduling. The area under this curve for each partition
represents the total work per GPU. From Figure 3(a), we can
see that areas under these different curves are very different.
This will create significant load imbalance across MPI pro-
cesses. To balance the workload we developed an alternate
scheduling approach, which we refer to as equi-area (EA)
scheduling. We partition the workload across MPI processes
and their GPUs based on the area under each partition’s
curve (Figure 3(b)), resulting in a more balanced workload
across GPUs (Figure 3(c)). However, efficiently determining
the range of threads for each GPU is a non-trivial problem.

The objective of the equi-area scheduler was to sequentially
assign threads to GPUs such that the cumulative workload
is approximately equal to the average workload per GPU. A
naive way to determine the partitioning of threads would be to
sequentially go through each thread and accumulate workload
until the average workload per GPU is reached. With

(
G
3

)
threads, this approach takes tens of hours and the system
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runs out of memory to store the intermediate results using
a single node. We designed a more efficient method by taking
advantage of the G discrete and sequential workload levels
for each thread (Fig. 2). Knowing the number of threads
per workload level

((
k
3

))
, where 1 ≤ k ≤ G − 2 is the

workload level, we were able to sequentially determined the
number of threads from each level to assign each GPU in O(G)
operations. This approach takes less than a minute to compute
the entire schedule using similar resources as before.

0 0.5 1 1.5 2

Thread ID 10
4

0

20

40

(a)

0 0.5 1 1.5 2

Thread ID 10
4

0

20

40

W
o
rk

lo
a
d
 (

#
c
o
m

b
)

(b)

0 5 10 15 20 25 30

GPU id

0

2

4
10

4 (c)

Equi-distance scheduler

Equi-area scheduler

Fig. 3: Workload distribution per GPU for G = 50 and
5 nodes (30 GPUs). (a) Work (number of combinations)
processed by each thread. Vertical lines show equi-distance
partitioning of threads (λ) across GPUs. (b) Partitioning
for equi-area scheduling where threads are assigned to
nodes so that each GPU has approximately the same
workload. (c) Workload for each GPU based on equi-
distance and equi-area partitioning.
D. Reducing global memory access for mutation-sample data

In Algorithm 2 and 3, i, j, k, l correspond to genes in
the gene-sample matrices, which reside in global memory.
Reading data for these genes from global memory can stall the
threads while waiting for data transfer. To reduce the number
of global memory accesses, we implemented three different
memory optimizations:

1) MemOpt1: prefetch memories corresponding to genes
i

2) MemOpt2: prefetch memories corresponding to genes
j

3) BitSplicing: splice out covered samples from the tumor
gene-sample matrix, after every iteration of the algo-
rithm

Each thread in Algorithm 3 corresponds to a single unique
value of λ which corresponds to a single unique combination

of i, j and k . Although the values of l vary within a thread,
with i < j < k < l < G, the values for i, j and j
are fixed for a thread. So, instead of repeatedly accessing
matrix rows corresponding to genes i, j and k within the loop
from slower global memory, we prefetch those rows into the
thread’s faster local memory. Pre-fetching data for i and j
(MemOpt1 and MemOpt2) reduces the global memory access
during computation, and the potential for processor stall while
waiting for data to be retrieved from global memory.

Algorithm 3 shows one iteration of the algorithm for
identifying one of multiple multi-hit combinations. Covered
tumor samples (samples that contain the combination with
maximum value for F ) are excluded from further consideration
in subsequent iterations (Sec. II-B). These tumor samples can
be spliced out of the gene-sample matrix, reducing the size
of the matrix and eliminating unnecessary memory accesses.
Combinations identified in earlier iterations tend to exclude
a large number of tumor samples, so, BitSplicing can reduce
the number of columns in the gene sample matrix. With every
64 samples excluded, the number of bitwise AND operations
are reduced by three. Reduced column width of gene sample
matrix effectively reduces the number of bitwise AND oper-
ations linearly. In the later iterations, when fewer samples
gets excluded by each iteration’s best combination, BitSplicing
reduces the matrix size at a slower rate.

E. Reducing requirement for unified memory and inter-node
communication

We defined a structure to store a four-hit combination and its
weight (F-max). The structure consists of four integer values
for four gene ids and one floating point value for F-max, for a
total of 20 bytes per combination. We maintain a list of these
structures to find the best combination. For large G (e.g. G =
19411 for breast invasive carcinoma (BRCA)), the list consists
of 1.22× 1012 entries requiring 24.34 terabytes of memory to
store 4-hit combinations.

Since each GPU has only 16GB global memory and each
node had only 512GB of CPU memory, it is necessary to
distribute the list across multiple nodes or GPUs. For example,
using unified memory for the list can be distributed across 47
nodes. However, accessing this memory will require moving
data across nodes, which combined with irregular memory
access patterns will reduce computational speed significantly.

To reduce memory requirement and inter-node commu-
nication associated with the list, we implemented a multi-
stage, multi-kernel parallel reduction process for calculating
the global F-max value. Our implementation has two kernels:
maxF kernel computes F-value for all the combinations and
parallelReduceMax kernel performs a multi-stage reduction. In
the previous 3-hit implementation (Algorithm 1) we performed
parallel reduction (Sec. II-B) only at the second kernel, which
required larger intermediate memory. To reduce the number of
combinations that needed to be stored, we perform a single-
stage parallel reduction in the first kernel and only stored a
single combination for each block. With a block size of 512,
this reduced the size of the list by a factor of 512 from 24.3
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terabytes to 47.5 GB which fits into the available memory in
each node. In the second kernel, we perform a multi-stage
parallel reduction for all the blocks within each MPI process
(GPU). Each MPI process then returns a single combination
(20 bytes) to the master (Rank 0) process instead of a large
list of combinations. The master process can then perform a
reduction on a much smaller number of values, corresponding
to the number of MPI processes.

F. Mapping global thread id λ to i, j, k

λ is stored in a 64-bit unsigned long long int variable.
However, an intermediate step requires computing A =√
729λ2 − 3, which requires 128-bit arithmetic. Without built-

in support for 128-bit operations, we compute the quantity in-
directly by first computing the logarithm and then the exponen-
tial using the expression A = exp

(
0.5×

(
log(double(3λ)) +

log(double(243λ− 1.0/λ))
))

.

G. Training and test datasets

Gene mutation data in mutation annotation format (MAF),
for 31 cancer types, were downloaded from the cancer genome
atlas (TCGA) and summarized for input to the multi-hit algo-
rithm. Mutations were called using the Mutect2 protocol. The
cancer types, sample sizes, and summarized data associated
with these cancers are included in Supplementary Information.
75% of these samples were randomly selected for the training
set, with the remaining 25% being the test set. Of the 31
cancers, 11 were previously estimated to require four or more
hits for oncogenesis [3]. These 11 cancer types were used for
this study.

H. Experimental setup

To measure runtime performance, we performed two runs
for each large node configuration (100-1000 Summit nodes at
100 nodes increment) and reported the average runtime. For
measuring various performance metrics, we used NVIDIA’s
profiling tool NVPROF.

IV. RESULTS

With the optimizations described above, we achieve an
average strong scaling efficiency of 90.14% for 200–1000
Summit nodes, compared to 100 nodes, allowing us to identify
4-hit combinations for the 11 cancer types estimated to require
four or more hits [3]. For the analysis presented below we
used the cancer type with the largest dataset, breast invasive
carcinoma (BRCA) with 911 tumor samples, even though this
cancer type was estimated to require only two–three hits. This
larger dataset gives a more accurate estimated for scaling
efficiency, while allowing us to identify potential bottlenecks
or limitations that may not be evident with a smaller datasets.

A. Scaling efficiency
Strong scaling efficiency (ideal runtime / actual runtime) for

BRCA ranged from 80.96% – 97.96% depending on number
of nodes, with a scaling efficiency of 84.18% for 1000 nodes
and an average scaling efficiency of 90.14% for 200 to 1000

nodes (Fig. 4(a)). The Summit resource allocation system
limits the maximum runtime to 2 hours when less than
100 nodes are used. With less than 100 nodes, the runtime
exceeded 2 hours, therefore we used 100 nodes as the baseline
for scaling efficiency calculations.
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Fig. 4: Scaling efficiency for 3x1 scheme. (a) Strong scaling
from 100 nodes (600 GPUs) to 1000 nodes (6000 GPUs)
for the BRCA dataset. Strong scaling efficiency is 84% for
1000 nodes relative to a baseline of 100 nodes. (b) Weak
scaling from 100 node (600 GPUs) to 500 nodes (3000
GPUs). Weak scaling efficiency is 90% for 500 nodes.

The strong scaling described above represents the effect of
increasing the number of resources (GPUs), on runtime, for a
fixed total workload. Weak scaling efficiency shows the effect
of increasing the number of GPUs, on runtime, for a fixed
workload per processor. The equi-area scheduler assigns an
equal amount of work to each processor. However, to ensure
a fixed workload per processor we limited the runs to the
first iteration (Section II-B), since depending on the number
of nodes used, the later iterations produce varying amount of
workload. The average weak scaling efficiency for BRCA is
94.6% for 200 to 500 nodes (Figure 4(b)).

B. Contribution of optimizations to reduction in runtime
We evaluated the effect of the three memory optimization

strategies, described in Section III-D, using the BRCA dataset
for the three-hit algorithm running on a single GPU. Together,
prefetching data for samples associated with gene i (Mem-
Opt1), prefetching data for samples associated with gene j
(MemOpt2) and splicing out data for samples associated with
covered gene combinations (BitSplicing), result in a 3-fold
speedup (Fig. 5).

Based on a test of the four-hit algorithm (2x2 scheme) for
BRCA, equi-area scheduler (EA) achieves a 3x speedup over
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Fig. 5: Effect of three memory optimizations on runtime.

equi-distance scheduler (ED), by virtue of its more balanced
workload, as described in Section III-A. The runtimes for the
ED and EA schedulers were 13943 s and 4607 s respectively,
for 100 node runs.

C. Compute utilization and analysis of its variance across
GPUs for 2x2 scheme

The equi-area scheduler distributes approximately the same
amount of workload, as measured by the number of combi-
nations processed, across MPI processes, which are served by
different nodes. The workload distributed among GPUs within
each node for different MPI processes is also approximately
the same. However, individual threads within a GPU and
across GPUs will have different workloads. This combined
with different memory access patterns for different GPUs
resulted in a less than ideal strong scaling efficiency (77%
for 100 nodes compared to 50 nodes).

We analyzed compute utilization for the 600 GPUs in a
100-node run for the cancer type with the smallest dataset,
adenoid cystic carcinoma (ACC) (Fig. 6), to identify the
reason for the low scaling efficiency. We used metrics on
DRAM read/write throughput and instruction issue efficiency
to analyze the variance of compute utilization cross GPUs.
In general, utilization decreases with the increasing GPU
index, with spikes in utilization around GPU #372, #504,
and #560. GPUs with lower utilization represent processors
that have completed their assigned work faster and are idle
while the first GPU, with 100% utilization, is still running.
Our analysis shows that compute utilization primarily depends
on memory read/write throughput. Additional strategies for
reducing memory access latency are discussed in Section 5.

1) DRAM read/write throughput: Figures 6(a) and (b) show
that compute utilization up to GPU #500 is inversely correlated
with DRAM read/write throughput. Although each GPU is
assigned approximately the same workload, the range of
memory accessed by threads within those GPUs decreases
exponentially. For example, the thread with thread-id λ = 0
accesses G ≈ 20000 different memory locations, while the
thread with λ =

(
G
2

)
− 2 accesses only 3 memory locations.

DRAM read/write thoughput is an indication of the number of
cycles required for successful memory accesses. Above GPU
#500 read/write throughput continues to increase without a
corresponding decrease in utilization, indicating a transition
of processor bottleneck from being memory bound to being
compute bound. During this transition read/write throughput

still affects utilization but to a smaller extent. This is reflected
in the smaller spikes in utilization corresponding to spikes in
read/write throughput for GPU index > 500.

2) Instruction issue efficiency: To further understand how
DRAM read/write throughput affects compute utilization, we
analyzed instruction issue efficiency. Thread blocks assigned to
a GPU are assigned to its streaming multiprocessors (SM) and
their execution is scheduled in groups of 32 threads (warp).
The execution of these warps can be stalled if all necessary
resources are not available or if all dependencies have not
been satisfied. A breakdown of the stalled cycles shows three
major contributors: memory dependency, memory throttle,
and execution dependency (Fig. 6(c)). Stalls due to memory
dependency indicate that resources required for load/store from
memory are not available. Stalls due to memory throttle indi-
cate that excessive pending memory operations are preventing
further execution. Stalls due to execution dependency indicate
that input data required for the instruction is not yet available.
DRAM read/write throughput affects all three of these factors
resulting in reduced compute utilization.

D. Compute utilization for 3x1 scheme
The scaling efficiency for the 2x2 scheme was as low as

36% for ESCA (Esophageal Carcinoma) for a 500 node run
compared to a 100 node run. Our analysis from Section IV-C
indicates this poor performance can be attributed to the vari-
ability in the compute utilization across nodes. To improve
compute utilization by making memory access more regular,
we adopted the 3x1 scheme which resulted in an average of
91.14% strong scaling efficiency. Figure 7 shows a balanced
compute utilization across MPI processes for a 100-node run.

E. Communication overhead for 3x1 scheme

Due to the slight variance in the computation time of various
MPI processes, the message passing overhead is hidden by
the largest computation time of individual MPI processes
(Figure 8).

F. Classification performance for the 4-hit combinations iden-
tified

We identified 151 4-hit combinations for 11 cancer types,
using a 75% training dataset. Names of the 11 cancer types and
all of the 4-hit combinations identified are listed in Supporting
Information.

To evaluate the quality of the identified 4-hit combinations,
we built a classifier per cancer type. The classifier measures
the accuracy (sensitivity and specificity) with which the 4-hit
combinations for each cancer type can differentiate between
tumor and normal samples. For a given cancer type, let the set
of combinations be c1, c2, . . . , cp. The classifier will classify a
sample as a tumor sample if that sample has mutations in all
the genes of any one of the combinations ci (1 ≤ i ≤ p). If
there is no such combination, the sample will be classified
as a normal sample. Using these per-cancer classifiers, we
evaluate the classifiers’ performance on the test dataset for
each of the 11 cancer types. These classifiers achieve 83%
sensitivity (95% Confidence Interval (CI) = 72 − 90%) and
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Fig. 6: Compute utilization (a) is inversely correlated with DRAM read/write throughput up to GPU #500 (b). Above
GPU #500 read/write throughput increases and the processor transitions from being memory bound to being compute
bound. (c) Low read/write throughput stalls warp execution while data from memory is accessed.
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Fig. 7: Compute utilization for 3x1 scheme using BRCA
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Fig. 8: Computation- and communication-time distribution
across MPI processes for a 1000-node run.

90% specificity (95% Confidence Interval (CI) = 81 − 96%)
on average (Fig. 9).

V. DISCUSSION

The algorithm presented in this work was able to identify
sets of multi-hit combinations that could differentiate between
tumor and normal samples with an average 83% sensitivity and
90% specificity. However, many of the mutations in the gene
combinations were correlated but not causative, i.e. passenger
mutations, not driver mutations. Consider for example the top
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Fig. 9: Classification performance of the identified com-
binations. 4-hit combinations were identified using a
training dataset consisting of randomly selected 75% of
the available tumor and normal samples. Classification
performance measured by sensitivity and specificity was
based on the remaining 25% test dataset. For the 11 cancer
types considered here, average sensitivity and specificity
were 83% and 90% respectively. Error bars represent 95%
confidence interval (CI).

4-hit combination for brain low grade glioma (LGG). The 4-
hit combination consists of the genes IDH1, MUC6, PABPC3
and TAS2R46. The distribution of mutations for IDH1 and
MUC6 in tumor and normal samples are shown in Fig. 10.
Comparing the distribution of IDH1 mutations in LGG tumor
samples to mutations in normal samples (Fig. 10(a)) shows
that a mutation at amino acid position 132 occurs significantly
more frequently in tumor samples (400 mutations in 532 tumor
samples) compared to normal samples (0 mutations in 329
samples), suggesting that it may be positively selected for in
tumor cells. In fact, the mutation of this particular amino acid
(Arginine 132) is a known prognostic marker for gliomas [29].
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Comparing the distribution of MUC6 mutations in LGG tumor
samples to mutations in normal samples (Fig. 10(b)) shows
no significant differences. It is likely that the mutations in
MUC6 are passenger mutations that do not contribute to tumor
progression.

The above example illustrates that, although our algorithm
may be able to identify mutations that contribute to cancer
progression (e.g. IDH1), many of the mutations in the gene
combinations identified are likely to be passenger mutations
(e.g. MUC6). To identify combinations of true oncogenic
mutations will require searching for specific combinations of
mutations within genes instead of combinations of genes with
mutations.

Based on the computational complexity of the algorithm
(see Section II-B), extending the 4-hit algorithm from com-
binations of ∼ 2 × 104 genes to combinations of ∼ 4 ×
105 protein-altering mutations will require a computational
speedup of ∼ 105 relative to the estimated single GPU
runtime for the optimized code presented above. In addition,
identifying combination of each additional number of hits
will require an additional speedup of ∼ 4 × 105, e.g. going
from 4-hit combinations t o 5-hit combinations. An additional
challenge presented by mutation level combinations is that
the input mutation-sample matrices are 20 times larger than
gene-sample matrices, representing increased latency due to
additional global memory access requirements. Following are
three of many possible strategies that can help address these
challenges. (1) Parallelize execution across the 27,648 GPUs
on the Summit supercomputer. (2) Distributing only the re-
quired subset of mutation-sample matrices to each GPU. (3)
Limit combinations to the most probable oncogenic mutations.
(4) Incorporate memory latency into the scheduling algorithm.

VI. CONCLUSIONS

Cancer is caused primarily by a combination of a small
number of genetic mutations – multi-hit combinations. An
algorithm based on an approximate solution to the weighted set
cover problem can identify potential multi-hit combinations.
However due to the exponential scaling of the computational
requirement of the algorithm with the number of hits, the iden-
tification of more than 3-hit combinations proved infeasible
even after parallelization across the thousands of processing
cores on a NVIDIA V100 GPU. Most cancers however require
an estimated four – nine hits. To identify combinations of
more than three hits, we restructured and optimized the
algorithm for parallel execution across multiple GPUs on
multiple nodes of the Summit supercomputer at the Oak Ridge
National Laboratory. The algorithmic optimizations described
here resulted in a scaling efficiency of 84% for 1000 Summit
nodes, compared to 100 nodes, allowing us to identify 4-hit
combinations for 11 cancer types estimated to require more
than 3-hits. Analysis of the multi-hit combinations identified,
shows that many of the genes contain passenger mutations
rather than driver mutations, indicating a need to use individual
mutations within genes as the input data instead of genes with
mutations. Despite this limitations, the multi-hit combinations

identified do include known cancer genes, suggesting that
with further refinement the algorithm has the potential for
identifying combinations of cancer causing mutations.

SUPPORTING INFORMATION

Code, data and results are available at
https://bitbucket.org/sajal000/multihit-on-summit
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