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Abstract

Search results from local alignment search tools use statistical scores that are sensitive

to the size of the database to report the quality of the result. For example, NCBI

BLAST reports the best matches using similarity scores and expect values (i.e.,

e-values) calculated against the database size. Given the astronomical growth in

genomics data throughout a genomic research investigation, sequence databases grow as

new sequences are continuously being added to these databases. As a consequence, the

results (e.g., best hits) and associated statistics (e.g., e-values) for a specific set of

queries may change over the course of a genomic investigation. Thus, to update the

results of a previously conducted BLAST search to find the best matches on an updated

database, scientists must currently rerun the BLAST search against the entire updated

database, which translates into irrecoverable and, in turn, wasted execution time,

money, and computational resources. To address this issue, we devise a novel and

efficient method to redeem past BLAST searches by introducing iBLAST. iBLAST
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intelligently leverages previous BLAST search results to conduct the same query search

but only on the incremental (i.e., newly added) part of the database, recomputes the

associated critical statistics such as e-values, and combines these results to produce

updated search results. Our experimental results and fidelity analyses show that

iBLAST delivers search results that are identical to NCBI BLAST at a substantially

reduced computational cost, i.e., iBLAST performs (1 + δ)/δ times faster than NCBI

BLAST, where δ represents the fraction of database growth. We then present three

different use cases to demonstrate that iBLAST can enable efficient biological discovery

at a much faster speed with a substantially reduced computational cost.

Availability: iBLAST is available at the following web site:

https://github.com/vtsynergy/iBLAST

Keywords: Pairwise sequence search, sequence similarity search, BLAST, e-value

correction, taxon-specific BLAST, local alignment

Contacts: sajal@vt.edu, wfeng@vt.edu

Supplementary information: Supplementary data is available at the end of the

document.

Author Summary

Local alignment search is a critical step towards establishing sequence identity in many

bioinformatic-analyses. The databases of biological sequences that these analyses query

grow exponentially over time and a bioinformatic analysis can run for a lengthy period

of time. Hence, an incremental update of the search-result can expedite the analysis by

lowering the required compute resources. For a large query such as a new organism’s

whole transcriptome, this requirement can be financially and chronologically prohibitive.

Traditional sequence similarity search tools such as NCBI BLAST performs searches

from scratch every time a database accumulates new sequences. Incrementally updating

search results requires merging two search results from two subsets of the same database

using statistical correction. In this work, we developed necessary statistical methods for

correcting e-value (a quality measure of the search-result) when two or more search

results are combined and developed a sequence similarity search tool called iBLAST that

leverages these e-value correction methods to perform incremental searches. Through
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three different case studies representing typical scenarios encountered in bioinformatics

research, we demonstrate that iBLAST finds better search-results than NCBI BLAST

on a novel and large transcriptomic dataset at a much-reduced computational cost.

Introduction

The utilization of a sequence similarity search tool is an indispensable step in most

bioinformatics research involving nucleotide or protein sequences. BLAST, short for

Basic Local Alignment Search Tool, is a widely used tool capable of conducting a

sequence similarity search for a sequence of interest against a sequence database.

BLAST relies on a heuristic approach for searching and provides results based on the

identification of regions of similarity between target and query sequences through a

seed-and-extend based local alignment [1]. The number of queries and the size of the

reference database can significantly impact the execution time of BLAST. Hence, the

fast accumulation of sequences in NCBI-curated databases have a profound impact on

the computational efforts required to perform sequence similarity searches. The

sequencing data that is stored in the NCBI database has grown tremendously over the

years, reportedly doubling the number of bases submitted to GenBank [2] every year

over the last three decades (1982-present). This rapid accumulation of sequence data is

one of the key factors responsible for transforming the field of genomics into one of the

most demanding big-data science disciplines [3].

Hence, providing fast and biologically valuable sequence alignment tools via

high-performance computing (HPC) and algorithmic innovations has been a highly

active area of bioinformatics research, particularly in the context of rapidly expanding

databases. For example, several sequence alignment programs have relied on

contributing algorithmic improvements (e.g., HMMER [4], DIAMOND [5],

CaBLAST [6]) while others have focused on improving parallelization to take advantage

of emerging high-performance computing (HPC) platforms and programming paradigms

(e.g., cuBLASTP [7], muBLASTP [8], mpiBLAST [9], SparkBLAST [10], and

SparkLeBLAST [11]).

Both DIAMOND [5] and CaBLAST [6] improve the execution time of sequence

alignment by compressing the sequence database. Specifically, DIAMOND reduces the
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amino-acid alphabet while CaBLAST compresses the sequences by sequence redundancy.

All of these sequence similarity search tools improve computational speed (i.e., reduce

execution time) but sometimes at the cost of reduced sensitivity. DIAMOND only

achieves 91%-99% sensitivity while CaBLAST achieves more than 99% sensitivity.

Sequence similarity tools play a vital role in genome projects as annotations of

assembled sequences require the utilization of BLAST-like tools for homology

assignment. In reality, genome sequencing and annotation projects can be fairly long

term, and thus, can require multiple sequence updates, e.g., regular annotation

updates [12,13]. However, such updates require executing sequence similarity search

from scratch as BLAST uses similarity scores and e-values that depend on the

ever-increasing size of the database. For this reason, it is currently required to discard

the results of prior search efforts and rerun the entire search, which translates to

unredeemable execution time, money, and computational resources, as shown in

Fig. 1(A). For bioinformatics projects requiring large-scale sequence similarity searches,

such as those involving many transcriptomes from many taxa, the computational

burden can be especially prohibitive. This problem could be addressed by performing

iterative taxon-specific searches rather than conducting BLAST on the entire

non-redundant (nr) database. However, adopting such an approach has been historically

difficult as one would need to standardize e-values while adding new databases to find

the optimal identity of each query, as shown in Fig. 1(B).

In practice, new sequences get added to the search database(s) of interest in two

ways: temporally or spatially. Adding new sequences temporally, as illustrated in

Fig. 1(A), means that new sequences are added to a database over time (e.g., a regular

update to the nr database). Adding new sequences spatially, as illustrated in Fig. 1(B),

means that different databases are available for search simultaneously and that we need

to combine the search results against these databases as if the result was obtained by

searching against a combination of all these databases. Currently, to the best of our

knowledge, there exists no tool that can merge BLAST results of databases that have

been added to either temporally or spatially. Thus, we propose a statistical approach to

compose temporal and spatial BLAST search results through a novel method of e-value

correction. We derive how to do this mathematically and provide a software artifact

called iBLAST to implement this automated e-value correction.
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(A) Adding new sequences over time
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Fig 1. Addition of new sequences. (A) BLAST search when new sequences are
added to the database. At time t, the database is Dt. In next δt interval, new sequences
Dt+δt −Dt are added, and the database becomes Dt+δt. With the traditional approach,
the prior search result at time t cannot be reused, and we have to perform an entire
BLAST search against the entire Dt+δt database. (B) BLAST search when several
taxon-specific databases are present and a result against the combined database is
needed. For three taxa, A, B, and C, we can perform individual BLAST searches
against the databases DA, DB , DC , respectively. If we want to obtain a search result
against the combined database DA∪B∪C , we need to merge the search results in a way
that their e-values reflect the combined database size.

In summary, iBLAST facilitates the recycling of previous BLAST search results and

subsequently saves a substantial amount of execution time and computational resources.

It also enables taxon-specific BLAST searches, including the incremental addition of

specific biologically-relevant taxa to BLAST databases with subsequent merging. The

iBLAST tool consists of Python modules that are compatible with all recent versions

(since 2012) of the NCBI BLAST command-line tools. It can run on all major operating

systems (Windows, Linux, and MacOS). The iBLAST tool is particularly useful for

bioinformatics analysis projects involving large-scale sequence similarity search tasks.

Furthermore, it incurs minimal cognitive and installation overhead for the users of

NCBI BLAST.

Our contribution

We report three main contributions in this paper.

1. We devised e-value correction formulas for Karlin-Altschul and Spouge statistics

to combine BLAST search results performed on different sequence databases

across various time instances and domains.
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2. We created iBLAST, a sequence similarity search tool that allows search against a

growing sequence database through automated e-value correction at (1 + δ)/δ

faster speed than NCBI BLAST, where δ represents the fraction of new sequences

that have been added to the sequence database.

3. We demonstrated the efficacy and means to incorporate domain knowledge into

bioinformatics analysis using iBLAST through case studies using de novo

assembled transcriptome of the venom gland of an Oak gall wasp.

Results

We created a tool called iBLAST for e-value correction and incremental BLAST search

in the temporal and spatial domain. Our first result is the tool itself, which we describe

below, along with its usage. Then, through case study I, we show that bioinformaticians

can use iBLAST for e-value correction and incremental BLAST search for moderate

query sizes via a typical BLAST procedure. Through case study II, we show that

iBLAST can achieve (1 + δ)/δ speedup over NCBI BLAST for a δ increase in the

database; for a large query, this speedup can be significant. Via case study III, we

demonstrate that incorporating taxon-specific domain knowledge and our methods of

e-value correction can reduce BLAST search space significantly.

iBLAST software allows the user to perform incremental

BLAST search with minimal overhead

The iBLAST program v1.0 includes a collection of Python scripts that can be

downloaded at https://github.com/vtsynergy/iBLAST. To facilitate the use of

iBLAST, we have provided instructions for installation, a user’s manual, a quick start

guide and examples of how to use iBLAST in several typical scenarios of bioinformatics

research.

First, the user needs to copy the source folder and run the following command from

this directory to install iBLAST:

./iBLAST-installer.sh

Next, we move onto the Python scripts, as described below.
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Main program: iBLAST.py This program provides intelligent and incremental

BLAST search options. It takes in a regular BLAST search command and performs an

incremental search. Below is an example of how to use the script.

python iBLAST.py "blastp -db nr -query Trinity-tx.fasta -outfmt 5 -out result.xml"

Merge scripts: These scripts merge the results of two BLAST searches in XML

format and produce an XML output with corrected e-values.

1. BlastpMergerModule.py: This script merges the results obtained using

Karlin-Altschul statistics (e.g., blastn results).

2. BlastnMergerModule.py: This script merges the results obtained using

Spouge statistics (e.g., blastp results).

3. BlastpMergerModuleX.py These scripts merge more than two BLAST results.

They require several results to merge the input and output.

python BlastpMergerModule.py input1.xml input2.xml output.xml

python BlastnMergerModule.py input1.xml input2.xml output.xml

python BlastpMergerModuleX.py 3 input1.xml input2.xml input3.xml output.xml

Case study I: method verification and performance

Verification. In case study I, we validate whether we can achieve the same results

from a single NCBI BLAST search as from the iBLAST. As shown in Table 1 and

Table 2, iBLAST delivers the same results as NCBI BLAST with a 100% e-value match

and 100% hit match.

• blastn: Sequence alignment using blastn was performed on nt databases

(nucleotide sequences). In all three time periods, iBLAST finds all the same hits

and in the same order as NCBI BLAST does for blastn, including 3, 964 hits at

time t0; 4, 150 hits at time t1, and 4, 924 hits at time t2, thus validating iBLAST

with respect to Karlin-Altschul statistics (Table 1).

• blastp: Sequence alignment using blastp was performed on nr (non-redundant

protein sequences) databases. For each of these three time periods, iBLAST
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reports the same hits in the same order as NCBI BLAST for blastp. The numbers

of reported hits in these three time periods for blastp are 45, 154 hits; 46, 356 hits;

and 46, 869 hits, respectively, thus validating iBLAST with respect to Spouge

statistics (Table 2).

Table 1. Case study I: Fidelity of iBLAST in three consecutive time periods. blastn search was
performed on nucleotide sequence databases (nt). At any time instance, the Past database size is the size of the
database from the previous time instance. The Present database size is the database size at the present time
instance. Delta is the incremental database growth from the previous time instance to the current time instance.
NCBI BLAST must be performed on the entire Present database size, while iBLAST only needs to be performed
on Delta.

NCBI BLAST iBLAST

Time Search
Data-
base

Database Size Delta =
Present – Past

e-value
Match

Hit
Match

Past Present

t0 blastn nt 0 80,740,533,243 80,740,533,243 100% 100%

t1 blastn nt 80,740,533,243 113,749,495,340 33,008,962,097 100% 100%

t2 blastn nt 113,749,495,340 152,471,828,601 38,722,333,261 100% 100%

Performance. For a δ increase in database size, iBLAST performs (1 + δ)/(δ) times

faster than NCBI BLAST. Fig. 2 shows the time saved for both blastp and blastn,

respectively, using iBLAST, resulting in a speedup ranging between approximately

three- and five-fold.

Case study II: large-scale alignment tasks on novel datasets

We performed searches using iBLAST and NCBI BLAST, where a newly obtained gall

wasp (Hymenoptera: Cynipidae) transcriptome dataset was utilized as queries in two

time periods across which there was a 48% increase in the nr database (Table 3). In

both time periods, iBLAST reports the same hits in the same order as an NCBI BLAST

run.
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Table 2. Case study I: Fidelity of iBLAST in three consecutive time periods. blastp search was
performed on nucleotide protein databases (nr). At any time instance, the Past database size is the size of the
database from the previous time instance. The Present database size is the final database size at that instance.
Delta is the incremental database growth from previous time instance to the current time instance. NCBI
BLAST is performed on the Present database size, while iBLAST is performed only on Delta.

NCBI BLAST iBLAST

Time Search
Data-
base

Database Size Delta =
Present – Past

e-value
Match

Hit
Match

Past Present

t0 blastp nr 0 17,686,779,866 17,686,779,866 100% 100%

t1 blastp nr 17,686,779,866 23,752,080,639 6,065,300,773 100% 100%

t2 blastp nr 23,752,080,639 30,030,148,449 6,278,067,810 100% 100%

Table 3. Case study II: Fidelity of iBLAST in two consecutive time periods. blastp search was
performed on a large-scale novel transcriptome. At any time instance, the Past database size is the size of the
database from the previous time instance. The Present database size is the final database size at that instance.
Delta is the incremental database growth from previous time instance to the current time instance. NCBI
BLAST is performed on the Present database size, while iBLAST is performed only on Delta.

NCBI BLAST iBLAST

Time Search
Data-
base

Database Size Delta =
Present – Past

e-value
Match

Hit
Match

Past Present

t0 blastp nr 0 40,077,622,077 40,077,622,077 100% 100%

t1 blastp nr 40,077,622,077 59,270,473,315 19,192,851,238 100% 100%

For this increase in the database size, iBLAST is 3.1 times faster than NCBI

BLAST. Relative to the total execution time of 134 minutes, the time needed for e-value

correction and merging the results is minimal, i.e., less than a minute using only 20 cores.

Overall, NCBI BLAST completes the alignment search in 24, 862 seconds (6 hours, 54

minutes) on average, while iBLAST completes the search in only 8, 009 seconds (2
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Fig 2. Performance comparison between NCBI BLAST and iBLAST for
case study I. (A) Performance comparison between regular blastn and incremental
blastn at 3 periods when nt database is growing over time, using 100 nucleotide queries.
For 40.8% and 34.0% increase in the database size, iBLAST performs 2.93 and 3.03
times faster respectively. (B) Performance comparison between regular blastp and
incremental blastp at 3 periods when nr database is growing over time, using 100
protein queries. For 34.1% and 26.3% increase in the database size, iBLAST performs
4.33 and 4.98 times faster respectively.

hours, 14 minutes). The merge time for each of these tasks is 40 seconds on average.

This computational efficiency matches our projected speedup (1 + 0.48)/0.48 = 3.08.

We observed the effect of query partitioning on load balancing (see

Section “Distributing workload across nodes”). Our approach to partition the queries

based on the number of residues shows superior load-balancing over the traditional

strategy to partitioning the queries based on the number of queries. We elaborate on

this point further in Section ”Load-balancing via query partitioning.”

Case study III: Taxon-specific searches to expedite informatics

To examine the fidelity of iBLAST while merging multiple (taxon-specific) databases,

we first compared the iBLAST merged results from multiple individual BLAST (blastp)

searches on seven biologically relevant taxa separately to results obtained when a

BLAST search was performed against a database combining all the sequences belonging

to these taxa simultaneously. The result exhibits 100% fidelity. Then, as presented in

Table 4, we compare the merged BLAST results of individual taxon-level database

search with the BLAST results obtained in case study II (time period 1), where the

same queries were searched against the entire nr database to better understand the
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relative time savings vs. accuracy of taxon-guided approaches. The taxon-specific

approach is much more time-efficient and computationally inexpensive as it searched

much smaller-sized databases. With our initial set of 6 taxa, we sampled only 0.35% of

the nr database and retrieved 8.124% of the top hits obtained when searching nr.

Although this number is low, the identity of top hits is likely to be similar even if the

best taxonomic hit to that gene was not retrieved, as gall wasps do not have any close

relatives currently hosted in NCBI databases but rather many equidistant relatives.

Given this, we then added in sequences of the rest of Hymenopteran species to see if

this improves the number of shared top hits. With this analysis, we conducted BLAST

search on only 1.17% of the total nr yet obtained 87.75% similarity in top hits to a full

nr BLAST. This result demonstrates the potential of performing more taxon-guided

approaches to save on the costs of large-scale BLAST searching jobs. Performing the

analysis in this way has also enabled improved curation of hits by taxon, which

facilitates better biological interpretation of these results.

iBLAST finds better scoring hits that are missed by NCBI

BLAST

While iBLAST finds all the hits reported by NCBI BLAST in the same order of

appearance, iBLAST reports several better scoring hits that NCBI BLAST misses in all

the case studies. Since case study II covers the most number of hits, we quantified these

missed hits for this case study. NCBI BLAST misses 1.57% (13171 out of 837942 top

hits) of the better scoring hits. Command-line NCBI BLAST uses a search parameter

max target seqs in an unintended way where instead of reporting all the best

max target seqs hits, it has a bias toward first max target seqs hits. A comprehensive

discussion about this issue was carried out by Sujai Kumar

(https://gist.github.com/sujaikumar/504b3b7024eaf3a04ef5/) and two other

teams of researchers [14,15]. In this process, it misses some of the better scoring hits

that are discovered in a later phase of the search. (Details can be found in

Section “Explanation for NCBI BLAST missing many top hits.”) This is an extra

advantage of iBLAST over NCBI BLAST. Since the former works on smaller databases

and then combines the results instead of searching a single large database, it has more
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Table 4. Potential for taxon-guided searches enabled by iBLAST.
Comparison of merged BLAST results from multiple individual BLAST searches with a
separate BLAST search conducted against a completed nr database shows that
biologically relevant taxa can be added incrementally to obtain similar results to nr by
searching against a much smaller database size.

Species
NCBI

taxon id

%nr
sequences
covered

Number of
nr top hits

covered

%nr top hits
covered

Nasonia vitripennis
(jewel wasp)

7425 0.02% 853 4.84%

Apis mellifera
(honey bee)

7460 0.02% 207 1.17%

Harpegnathos saltator
(Jerdon’s jumping ant)

10380 0.03% 347 1.96%

Drosophila melanogaster
(fruit fly)

7227 0.08% 6 0.034%

Quercus suber
(cork oak)

58331 0.09% 0 0.00%

Glycine max
(soybean)

3847 0.11% 22 0.12%

Rest of Hymenoptera 7399 0.83% 14281 80.98%

Total multiple 1.17% 15476 87.75%

candidate hits to choose from for reporting final hits.

Methods

To perform an iBLAST search temporally, we only need to consider the newly arrived

sequences in the interval δt and perform a BLAST search against these sequences to get

the result Sδt, as shown in Fig. 3(A). iBLAST then corrects the e-value scores for this

incremental result Sδt and the past result St by using the size of the database

Dt+δt = Dt +Dδt. To perform an iBLAST search spatially, as shown in Fig. 3(B),

iBLAST examines the search results from different databases and corrects their e-values

by using the size of the combined database DA∪B∪C = DA ∪DB ∪DC . Then, iBLAST

merges these search results with corrected e-values to obtain the final search result
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Fig 3. Incremental search by iBLAST. (A) Incremental search when new
sequences get added to the database over time. We perform a BLAST search against
the incremental database and combine the result with past results after e-value
correction. (B) Incremental search when search results from different databases are
available. Different search results are corrected for e-value against the combined
database size; the corrected results are then merged together.

In the remaining part of this section, we present the details of our e-value correction

methodology, the implementation details of iBLAST, and the fidelity and efficacy of

iBLAST over NCBI BLAST via three case studies. We start with some background on

core concepts of BLAST constructs, statistics, and metrics.

BLAST concepts and statistics

Here we present the core concepts that underlie BLAST, including the statistics for

e-value computation and existing methods for correcting e-value computation when the

size of the database is perceived to have changed.

Core concepts of a BLAST result: hit, HSP, score, and e-value

When we perform a BLAST search against a sequence database with a query sequence,

the BLAST program returns the best matching sequences from the target database.

These best-matching sequences are called hits. Between the query and a hit sequence,

there exist many pairwise local matches, which are called high scoring pairs or HSPs.

August 28, 2023 13/36

PLOS ONE 2021



One hit can consist of many HSPs. HSPs are scored using some statistical metrics when

comparing aligned symbols. The score for a hit is the score of the highest-scoring HSP

that belongs to that hit. The e-value for an HSP is computed using the score, the

database size, and other statistical parameters. The reported e-value of a hit is the

e-value of the highest-scoring HSP of this hit [16].

BLAST statistics for e-value computation

BLAST programs use two different types of statistics for e-value computation:

Karlin-Altschul statistics and Spouge statistics. Both of these statistical formulae

calculate e-value for the HSPs and hits. blastn and tblastx use Karlin-Altschul statistics

while blastp, blastx, and tblastn use Spouge statistics.

Karlin-Altschul statistics. Karlin-Altschul statistics [1] measures the e-value using

E = e−λ(S−µ) = Kmne−λS . This formula is adjusted for edge effect (see supplementary

section). Here m = ma − l, n = na −N × l, and l = ln (K ×m× n)/H while N is the

number of sequences in the database, ma is the actual length of the query, na is the

actual length of the database, and H is the entropy of the scoring system. The length

adjustment l satisfies l =
α

λ
ln (K(ma − l)(na −Nl)) + β. Here, α, β, andλ are

Karlin-Altschul parameters.

Spouge statistics. Spouge statistics [17] is developed on the Karlin-Altschul formula.

Instead of computing the length adjustment l and then using it to compute the effective

length of the database and query, Spouge statistics applies a finite-size correction (FSC).

Instead of estimating l, FSC estimates area = E[ma − LI(y)]+[na − LJ(y)]+ as a

measure of (ma − l)(na −Nl). The e-value E is then calculated as

E = area×Ke−λS × db scale factor where db scale factor =
n

m
.

Existing e-value correction software and their features

Here we discuss the different approaches for correcting e-value scores when the search

database is partitioned.

mpiBLAST [9], a parallel implementation of NCBI BLAST on a cluster, partitions

the database and performs BLAST searches against these partitions in parallel. For
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accurate e-value correction, mpiBLAST requires prior knowledge of the entire

database [9]. NOBLAST [18] corrects e-values when split databases are in use and

results need to be aggregated. However, it does not work with Spouge statistics. We

provide a detailed explanation of these tools in Section “Existing e-value correction

software and their features.”

Both tools (mpiBLAST and NOBLAST) provide exact e-value statistics for

Karlin-Altschul statistics when knowledge about the entire database is available a priori.

However, they are not useful when the database keeps changing or when two different

search results against two different instances of similar databases need to be aggregated.

Table 5 provides a high-level comparison between mpiBLAST, NOBLAST, and our

iBLAST.

Table 5. Comparison of three different BLAST tools that explicitly deal
with e-value statistics correction. iBLAST supports e-value correction across time
and space without requiring prior knowledge of the entire database while the other tools
can perform e-value correction in limited scenarios.

Feature mpiBLAST NOBLAST iBLAST

E-value correction for
Karlin-Altschul statistics

3 3 3

E-value correction for Spouge
statistics

7 7 3

Aggregate search results against
pre-planned database segments

3 3 3

Aggregate search results against
arbitrary database instances

7 7 3

Reuse existing search results 7 7 3

Redundancy in data vs. redundancy in computation

Prior efforts to leverage redundancy in data (e.g., DIAMOND and CaBLAST) have

successfully accelerated BLAST but at the cost of a small reduction in sensitivity.

CaBLAST’s compressive algorithm achieves over 99% sensitivity for the improved

speed [6]. Different versions of DIAMOND have sensitivity in the range 91.04%− 99%

for various datasets [5]. In contrast, iBLAST aims to eliminate redundant computation

while maintaining 100% sensitivity.
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e-value correction in an incremental setting

Correct e-value computation requires the actual database length (i.e., total number of

bases/residues) in both Karlin-Altschul statistics and Spouge statistics. While

database-partitioning parallel BLAST applications, like mpiBLAST and NOBLAST,

require prior knowledge about the total database length, iBLAST leverages the partial

knowledge from a previous BLAST search and combines it with the new sequence

additions to the database to infer the total database length and compute the adjusted

e-value in relation to the updated database. The mpiBLAST and NOBLAST tools pass

the actual database length to each of their parallel jobs, thus forcing the statistics

module to compute correct e-values from the beginning. For the iBLAST search,

whenever new data arrives to the database, the pairwise sequence search is

automatically refined in two steps. First, the search is only run on the databases

constructed from new sequences that have been added to the database. Second, the

results generated from searching the new sequences in the database are then merged

with the saved results from the previous BLAST search.

e-value correction for Karlin-Altschul statistics

Let nc represent the current database length and nd represent the length of the newly

arrived sequences for the database. Also, let Nc be the number of sequences in the

current database and Nd be the number of sequences in the newly arrived part of the

database. Then, we have

Actual length of the updated database: nt = nc + nd.

Total number of sequences in updated database: Nt = Nc +Nd.

The actual query length m does not change with the change in the database. However,

we do need to recompute the effective length l by solving the fixed-point equation for

the new database length using Equation (1).

l =
α

λ
ln

(
K(m− l)

(
(nc + nd)− (Nc +Nd)× l

))
+ β (1)

Now, with the updated length adjustment l, we can either recompute the e-values for

all the matches or correct the e-values. To recompute all the e-values from scratch, we
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use Equation (2).

E = e−λ(S−µ) = K(m− l)
(
(nc + nd)− l

)
e−λS (2)

Alternatively, we can correct the e-values from the current values. First, we use l to

recompute the value of the effective search space. We then use the newly computed

effective search space to recalibrate the e-values for all the reported HSPs from the

current and delta search results. Assuming that Dpart is the partial effective search

space and that Dtotal is the total effective search space, then the corrected e-value is

given by

Etotal = Epart +Ke−λS × (Dtotal −Dpart) (3)

While both approaches require a constant number of arithmetic operations, the

former approach, i.e., recomputing all the e-values from scratch, requires fewer

arithmetic operations.

e-value correction for Spouge statistics

For Spouge statistics, the value of area described in Section “Spouge statistics” does not

change since it is a function of the query length, sequence length, and Gumbel

parameters. However, the database scale factor does change, and thus, we need to

account for it. If the actual database lengths for the newly added part of the database

and the total database are npart and ntotal, respectively, then

Epart = area× e−λS × npart
m

and Etotal = area× e−λS × ntotal
m

So,

Etotal = Epart ×
ntotal
npart

(4)

Therefore, based on this derivation, we only have to re-scale the e-values instead of

using Spouge’s e-value computational methods.1

1Note: For re-scaling e-values that have been previously (and imprecisely) rounded to 0.0 by NCBI
BLAST, re-scaling an e-value smaller than e−180 that was previously (and imprecisely) rounded to 0.0
by NCBI BLAST results in an incorrect 0.0 value. In this less than 0.1% occurrences of an extremely
small but non-zero e-value, iBLAST ensures that this imprecise rounding does not occur.
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Merging two search results with correct e-value statistics

The hits reported by both searches are statistically significant. Once we correct e-values

for both the current search result and the new search result, we merge the hits into a

single sorted list. Because iBLAST reports some better scoring hits that NCBI BLAST

misses (explained in detail in Section “iBLAST finds better scoring hits that are missed

by NCBI BLAST”), reporting only max target seqs hits will result in missing some of

the lower-scoring hits from NCBI BLAST. So, we store and report 2×max target seqs

hits. Algorithm 1 documents the procedure to merge the hits from two results for the

same query. All statistical parameters dependent on total database size is re-calibrated

to recompute or re-scale the e-values. The hits are selected in the ascending order of

their e-values (descending order of their scores).

Algorithm 1 Merging results for Karlin-Altschul/Spouge statistics

1: Input: result1, result2

2: merged result← Φ

3: recompute/re-scale e-values

4: m,n← 0

5: for i = 1→ num of hits do

6: e-value1, score1← min(result1.alignment[m].hsps)

7: e-value2, score2← min(result2.alignment[n].hsps)

8: if (e-value1 < e-value2) or (e-value1 == e-value2 and score1 > score2) then

9: merged result.add(result1.alignments[m])

10: increment m

11: else

12: merged result.add(result2.alignments[n])

13: increment n

14: end if

15: end for

16: return merged result

Additional details on recomputing and re-scaling e-values is provided in

Section “e-value correction.”
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iBLAST implementation

We develop iBLAST for performing BLAST search as an extension to the NCBI BLAST

code. It consists of Python wrapper scripts around the extended BLAST code and uses

NCBI BLAST programs as black-box routines. Fig. 4 shows the software stack of

iBLAST, which consists of three major components: (1) user interface, (2) incremental

logic, and (3) record database. These modules interact with BLAST databases through

the BLAST+ programs.

./iBLAST.py "blastp -query q.fa -db nr
-out o.xml"

BLAST
database

BLAST+ programs
(blastn, blastp)

SearchRecord lookup

Delta and past database
creation

SearchRecord writer

Statistics (e-value correction,
merge)

Query
queryPK

DBInstance
instanceidPK
queryFK

timestamp
dbname
partsfile

SearchRecord
instanceidPK,FK

record

Incremental logic Record database

User interface
NCBI BLAST tools and

databases

Fig 4. Software stack of iBLAST. The user can initiate a search using the user
interface. The search parameters are then passed to the ”Incremental logic” module.
After performing an incremental search, this module’s back-end corrects the e-value
statistics and merges the result. The ”Incremental logic” module looks into an external
lightweight database module called the (Record database) to decide whether and how to
perform the incremental search. For the actual search and delta database creation, we
use NCBI BLAST tools such as blastdbcmd, blastdbalias, blastp, and blastn.

Command-line user interface. In our current version, we provide a command-line

user interface for iBLAST, which provides NCBI BLAST-like search options.

Incremental logic. This module decides whether to perform a new BLAST search

based on current results. Whenever the user requests a new BLAST search, this module

checks for any pre-existing search result. If it does not find any pre-existing result, it

performs a regular NCBI BLAST; but if there is a pre-existing result, the module first

compares the database instance from the time of the past search with that of the

present search. If there is any difference in the database size, this module builds a delta
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database that consists of the difference in these two instances. For computing the delta

database, this module compares the lists of filenames of the two most recent instances

and constructs a database alias using the difference (see Section “Computing delta

database” for details). It then performs a new BLAST search only against the delta

database and merges the previous result with the new incremental result after statistical

correction for e-values. This module allows multiple updates to current searches with

little extra time investment. The “Incremental logic” module contains four sub-modules:

(1) SearchRecord lookup, (2) Delta and past database creation, (3) Statistics, and (4)

SearchRecord writer.

1. SearchRecord lookup. This sub-module looks for an existing search result with

the help of the record database.

2. Delta and past database creation. This sub-module constructs a delta

database by comparing the current database against the database’s past instance

and performs a BLAST search on the incremental database.

3. Statistics. This sub-module reads the past and the new incremental search

results; it then re-evaluates the e-values in both results and merges them

according to their recomputed/re-scaled e-values.

4. SearchRecord writer. This module writes the updated search result in one of

the NCBI BLAST formats.

Whenever the user initiates a BLAST job, the above “Incremental Logic” module first

checks if a current search result is available. A delta database consisting of the newly

added sequences is constructed if there is a search result against an outdated BLAST

database. A BLAST search is then performed against the delta database (i.e.,

incremental database). In the final stage, the current search result and the incremental

search result are merged, and the associated e-values are corrected.

Record database for storing incremental search results Whenever the user

performs a BLAST search, iBLAST saves meta-information (e.g., the size of the

database and a list of the filenames) about the instance of the database and the search

result in a lightweight SQLite database. We design iBLAST to save a minimalist index
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structure and size information that requires only a few bytes of storage. We keep the

search parameters along with the search results as well. iBLAST does not save any

redundant copy of any part of the actual sequence database. It stores only the most

recent result for a specific query and a database, which keeps the storage overhead to a

minimum.

Case studies

To demonstrate the efficiency and benefits of using the iBLAST program over standard

NCBI BLAST, we analyze different scenarios on actual nucleotide and protein sequence

datasets as case studies.

Case study I: method verification

We explore the scenario where hits from a collection of 100 query sequences are updated

to account for the growth of NCBI sequence databases across the duration of the

project. To demonstrate the application’s use for BLAST programs that use

Karlin-Altschul statistics, we ran blastn against a nucleotide database (growing subsets

of NCBI nt) for 100 nucleotide sequences from Bombus impatiens available at

ftp://ftp.ncbi.nlm.nih.gov/genomes/Bombus_impatiens/CHR_Un/bim_ref_BIMP_

2.1_chrUn.fa.gz. To demonstrate its utility on BLAST programs that use Spouge

statistics, we ran blastp against a non-redundant protein database (a growing subset of

NCBI nr) for 100 protein sequences from Bombus impatiens assembly available at ftp:

//ftp.ncbi.nlm.nih.gov/genomes/Bombus_impatiens/protein/protein.fa.gz.

We demonstrate iBLAST’s fidelity and performance over three time periods for case

study I, as shown in Fig. 5(A). The instances for nucleotide database changes through

time as follows:

• Time 0: The nucleotide database comprises 44.5% of the fully available nt

database. Both NCBI BLAST and iBLAST search on the same database.

• Time 1: The nucleotide database comprises 62.7% of the nt database. While

NCBI BLAST searches 62.7% of nt, iBLAST searches only 18.2% of nt. The

database grew by 40.8% (= (62.7− 44.5)/44.5) from time 0.
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• Time 2: The nucleotide database comprises 84.1% of the nt database. While

NCBI BLAST searches 84.1% of nt, iBLAST searches only 21.4% of nt. The

database grew by 34.1% (= (84.1− 62.7)/62.7) from time 1.

(A) Case study I (B) Case study II

(C) Case study III

(44.5% nt)

(62.7% nt)

Fig 5. Experimental design of three case studies. (A) Case study I: Incremental
addition of sequences in the nt database over three time periods. (B) Case study II:
Incremental addition of sequences in the nr database over two time periods. (C) Case
study III: Incremental search of taxon-specific databases.

For this case study, we also similarly applied NCBI BLAST and iBLAST to an

evolving nr database. That is, the instances of the protein database change over time

(in a similar way to the nt database, as captured by Fig. 5(A)). Specifically, the nr

database comprises 35.4%, 47.5%, and 60.0% of nr at times 0, 1, and 2, respectively.

The protein database grew by 34.1% (i.e., (47.5− 35.4)/35.4) and 26.3% (i.e.,

(67.5− 35.4)/48) by times 1 and 2, respectively, from the earlier time periods. Table 1

provides detailed information about the evolving protein database instances as well as

the e-value and hit performance of NCBI BLAST and iBLAST, respectively.

August 28, 2023 22/36

PLOS ONE 2021



Additional details on the creation of the incremental database can be found in

Section “Creating experimental databases.”

Case study II: updating a query re-annotation of a novel transcriptomics

dataset

Our second case study mimics a typical scenario in a transcriptome re-annotation

project where a transcriptome is BLAST-ed after a certain period of time as a part of a

re-annotation pipeline. This case study uses a novel dataset not yet available on the

NCBI BLAST database — a de novo assembled transcriptome of the venom gland of an

Oak gall wasp (see below) — and thus, the identity of the assembled sequence was

unknown, and the sequence was not available to BLAST to itself.

As shown in Fig. 5(B), we conduct a BLAST search for the same query set for

database instances at two time instances:

• Time 0: The database comprises 67.6% of the non-redundant database nr (nr

accessed on August 2018). Both tools perform the search on this same 67.6% of

the database.

• Time 1: The database comprises 100% of the non-redundant database nr. While

NCBI BLAST performs a search on 100% of nr, iBLAST only needs to search

32.4% of nr as it can reuse the search results from time 0. iBLAST merges the

result from time 0 with the incremental search result after e-value correction.

We constructed these two database instances by combining database parts using the

blastdb aliastool utility packaged with BLAST+.

Given the number of queries from the de novo assembled transcriptome, it would

take a few months to complete the search on a single processor core. We ran this

experiment with 640 cores distributed across 20 compute nodes (where each node

contained dual 16-core Intel Xeon processors, i.e., E5-2683 v4), partitioning the 17, 927

queries into 20 query files and assigning each file per node. Given that each node would

run a subset of queries against the same database, there is no need to recompute the

statistics for these results before we merge them.
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Distributing workload across nodes. The workload across all the nodes should be

relatively balanced so that computation for each of the 20 query files finishes roughly

simultaneously. To ensure such load balancing, we partitioned the queries using the

following strategy. We randomize the order of the queries and partition them so that

each partition has roughly the same number of residues. We compare this strategy

against the straightforward approach of partitioning the queries in a linear order by

putting roughly the same number of queries in each partition.

Case study III: Taxon-based incremental approach

Our third case study presents a special case of using a taxon-based incremental

approach to obtain a fast, cost-effective, and biologically relevant results for sequence

similarity. To achieve this goal, we examine the genes contained within an assembled

transcriptome of the venom gland of a gall wasp of oak trees, the hedgehog gall wasp

(Acraspis erinacei), a taxon lacking a closely related species with a genome in the nr

database. Gall wasps are a group of parasitic wasps that inject their eggs into plant

tissues, and through processes yet unknown, they induce changes in plant development

at the injection site. These changes result in constructing a niche for the gall wasp by

inducing predictable modifications of plant tissues that both protect the wasp from the

environment and feed the developing wasp. Genes important for inducing changes in the

plant’s development are thought to be produced in the female venom gland during

oviposition [19]. We performed separate BLAST searches of the hedgehog gall wasp

venom gland against transcriptomes of the closest relatives to gall wasps with curated

genomes including three fairly equidistant taxa [20] — the parasitic wasp Nasonia

vitripennis, the honey bee Apis mellifera , and the ant Harpegnathos saltator , —

as well as the more distant model insect, Drosophila melanogaster , upon which

many insect gene annotations are based. We also performed BLAST searches against

the transcripts of an oak tree, Quercus suber , to determine if some genes belonged to

the host as well as a model plant, the soybean, Glycine max .

Using iBLAST, we performed a blastp search individually against each of the

databases and merged the results using the statistics module from iBLAST. After this

initial search, we then added to this analysis all remaining Hymenopteran species using

iBLAST to assess the impact of adding more taxa on the top BLAST hits and further
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demonstrate the potential of iBLAST to add taxa progressively, as shown in Fig. 5(C).

We performed a blastp search against those seven subsets’ merged database to determine

whether the same hits would have been found from our concatenated incremental

analysis as from a combined single-instance run. These results were further compared

with blastp results obtained by searching the complete nr database, allowing us to

determine how well we captured the full dataset with this taxon sub-sampling approach.

Data collection for case studies II and III

To obtain the venom gland transcriptome, 15 venom glands were dissected from newly

emerged adult females from wild-collected oak (oak spp.) hedgehog galls Acraspis

erinacei and placed in RNAlater stabilization solution. Pooled tissues were homogenized

in lysis buffer using a Bead Ruptor 12 (Omni International) with additional lysis with a

26-gauge syringe. RNA was extracted from the sample using the RNaqueous Micro kit

followed by DNase I treatment as specified by the kit and confirmed to be of good

quality using the Bioanalyzer 2100 (Agilent). The Illumina HiSeq library was prepared

from 200 ng RNA using the TruSeq Stranded mRNA kit and sequenced in 150 bp

single-end reads across two Rapid Run lanes on the Illumina HiSeq 2500 (Penn State

Genomics Core Facility, University Park, USA) along with nine other barcoded wasp

samples.

Raw sequence data (30596191 reads, available at NCBI SRA achieve under

Accession ID XXXXXXXXX) quality was assessed using FastQC v0.10.0 (available at

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and appropriate

trimming for Illumina single-end reads was conducted using Trimmomatic v0.35 [21] to

remove adapters and low quality bases (ILLUMINACLIP:TruSeq3-SE:2:30:10

LEADING:20 TRAILING:20 MINLEN:50 AVGQUAL:20), which removed 0.12% of the

total reads and de novo transcriptome assembly from these QC-passed trimmed

reads(30, 559, 248 in total) was performed on the Trinity RNA-Seq de novo Assembler

(version: trinityrnaseq r20140717) [22]. The transcriptome assembly consists of 44, 440

transcripts with the contig N50 of 865 bases. Transdecoder v5.3.0 (available at

https://github.com/TransDecoder/TransDecoder/wiki) was used to predict 17, 927

protein sequences which were used as queries for Case studies II and III.
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Discussion

In this paper, we have introduced iBLAST, an intelligent and incremental

local-alignment tool that delivers identical results to NCBI BLAST (along with

additional better hits missed by NCBI BLAST) and does so with much better

performance than NCBI BLAST. The development of novel statistical methods of

e-value correction enables our approach to combine multiple search results performed at

different times or with different groups (e.g., taxa). Our statistical correction facilitates

novel ways of performing sequence alignment tasks and incorporating domain knowledge.

For a δ fraction increase in the database size, iBLAST can perform (1 + δ)/δ times

faster than NCBI BLAST (i.e., 10% growth in database size will yield an 11-fold

speedup for iBLAST over NCBI BLAST). We should note that for a small increase in

the database size (which is the most likely scenario between two searches), iBLAST

delivers a large speedup factor. Furthermore, iBLAST discovers better hits than NCBI

BLAST. While iBLAST finds 100% of the hits that NCBI BLAST reports in the same

order, iBLAST also reports many additional high-scoring hits that NCBI BLAST misses

due to an early approximation used by the heuristic search algorithm in NCBI BLAST.

With the expansion of genetic (sequencing) data available in NCBI, the

computational time for large-scale analyses becomes increasingly burdensome, resulting

in analyses that take months to complete with a substantial cost, both financially and

with respect to “time to solution.” This problem is aggravated by cheaper sequencing

technology leading to ever-larger genome assembly/transcriptomics projects with

substantially more samples to analyze. Our iBLAST tool can help relieve this cost

burden. Utilization of iBLAST can enable frequent iterative updates for re-annotation

of genome and transcriptome assemblies at a much lower cost (with respect to

computational time and financial cost), which is useful given the rapid changes in the nr

databases across the duration of a project or its aftermaths. We can add specific

datasets of interest to previous searches, such as scenarios involving the availability of

new genome releases or conducting large phylogenetic studies. As demonstrated in the

final case study, we can use the program in transcriptomic or metagenomics projects by

merging the results of knowledge-guided BLAST searches only on biologically relevant

groups. The approach used in that case study enables iterative exploration by taxon
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and facilitates BLAST results’ curation.

Our iBLAST software can work as a wrapper around other fast BLAST

implementations and provide multiplicative speedup on the wrapped applications’

speedup. A similar approach can benefit other sequence similarity tools and their

various implementations if the statistics for correcting the respective statistical

significance values (analog to e-value) of the results are available. We aim to develop a

standard pipeline for other popular sequence-similarity search tools to combine results

through a framework for automated statistical correction in future work. Through its

statistical correction formulas and software stack, iBLAST presents the potential to

make other sequence similarity-search tools faster by utilizing past search results and

incorporating domain knowledge in a period when sequence database is growing

exponentially.
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Supporting information

Growth of Sequence Data

Fig S1. Growth of sequence database size compared to the sequencing cost.
Increasing GenBank database size available at
https://www.ncbi.nlm.nih.gov/genbank/statistics/, accessed on September 15,
2018) follows a decreasing trend in sequencing cost (available at
https://github.com/TransDecoder/TransDecoder/wiki, accessed on September 15,
2018) .

Existing e-value correction software and their features

mpiBLAST

mpiBLAST [9] is a parallel implementation of NCBI BLAST on the cluster. It segments

the database, ports the segments into different nodes of a cluster, and runs parallel

BLAST search jobs against database segments on different nodes. Once the parallel

search jobs return, it aggregates the search result. It has two important contributions.

First, it achieves super-linear speedup by reducing IO overhead (time spent in reading

and writing hard-disk storage). Second, it is the first parallel BLAST tool to provide

exact e-value statistics in contrast to approximate e-value statistics of other

contemporary parallel implementations of NCBI BLAST.

mpiBLAST’s exact e-value statistics requires two steps. First, it collects the

necessary statistical parameters for the entire database by performing a pseudo-run of

the BLAST engine against the global database. Once it has the global parameters, it

passes the global parameters (such as whole database length n, the total number of

sequences N) to the parallel search jobs against segmented databases. mpiBLAST

modifies some functionalities of NCBI BLAST (blast.c, blastdef.h, blastkar.c, and

blastutl.c) so that global parameters can be fed externally and that information can be
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used to calculate exact e-values.

For accurate e-value correction, mpiBLAST requires prior knowledge of the entire

database.

NOBLAST

NOBLAST [18] provides new options for NCBI BLAST. It offers a way to correct

e-values when split databases are used and the results need to be aggregated. E-value

computation requires knowledge about the entire database size, the number of

sequences in the whole database N and the total length of the database n. Using the

values N , n and Karlin-Altschul statistical parameters which are independent of

database size, the e-value can be computed using Karlin-Altschul statistics. First,

NOBLAST computes the length adjustment using the knowledge about the complete

original database, then, it computes effective search space using length adjustment, and

finally, it computes the e-value using effective search space.

In principle, NOBLAST takes a similar approach to mpiBLAST, as both provide

global statistical parameters to the search jobs against a segmented database so that

that exact e-value can be computed. While mpiBLAST’s main contribution is a parallel

implementation and e-value correction comes from the need of producing the same

output as the sequential counterpart, NOBLAST’s main contribution is an e-value

correction. Both tools require prior knowledge about the entire database. Both tools

were developed before Spouge’s e-value statistics were introduced, so they didn’t address

e-value corrections for the BLAST programs that use Spouge’s statistics.

e-value correction

We use algorithm 2 to recompute e-values for BLAST programs using Karlin-Altschul

statistics. We first aggregate database sizes from two input results and use the

aggregated sizeN to compute length adjustment l. Using N and l, we recompute

e-values for both results.
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Algorithm 2 Recomputing e-values for Karlin-Altschul Statistics

1: Input: result1, result2

2: n← result1.n+ result2.n

3: m← result1.m

4: N ← result1.N + result2.N

5: l← recompute length adjustment(n,m,N)

6: recompute evalues(result1, l, N)

7: recompute evalues(result2, l, N)

We use algorithm 3 to re-scale e-values for BLAST programs using Spouge statistics.

First we aggregate the database sizes for two input results, and scale the e-values by a

factor of the ratio between aggregated database size and the individual database size.

Algorithm 3 Re-scale e-values for Spouge statistics

1: Input: result1, result2

2: db length1← result1.db length

3: db length2← result2.db length

4: db length← db length1 + db length2

5: re-scale evalues(result1,
db length

db length1
)

6: re-scale evalues(result2,
db length

db length2
)

Creating experimental databases

Pre-formatted BLAST databases such nt and nr come in incremental parts. With

progression of time, new sequences are packaged in parts and added to the databases.

Databases for case study I

For case study I, we consider three time steps when the nt and nr databases had 30, 40,

and 50 parts. For these three time periods, we construct three databases as instances of

nt and nr by combining 30, 40, and 50 parts using BLAST tool blastdb aliastool. The

incremental databases between two periods are also constructed. Table S1 shows

different instances of nt databases in three different periods.

Table S2 shows different instances of nr databases in three different periods.
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Table S1. Incremental nt Databases for case study I.

Time
Period

Database
parts

Number of
sequences

Number of
bases

Longest sequence
length (bases)

T0 0-29 25,117,275 80,740,533,243 774,434,471

T0 → T1 30-39 8,389,596 33,008,962,097 275,920,749

T1 0-39 33,506,871 113,749,495,340 774,434,471

T1 → T2 40-59 8,891,258 38,722,333,261 129,927,919

T2 0-49 42,398,129 152,471,828,601 774,434,471

Table S2. Incremental nr databases for case study I

Time
Period

Database
parts

Number of
sequences

Number of
residues

Longest sequence
length (residues)

T0 0-29 49,468,463 17,686,779,866 36,507

T0 → T1 30-39 15,878,318 6,065,300,773 35,523

T1 0-39 65,346,781 23,752,080,639 36,507

T1 → T2 40-49 16,448,075 6,278,067,810 38,105

T2 0-49 81,794,856 30,030,148,449 38,105

Databases for case study II

We construct nr database instances for time 0 and 1 by combining 64 and 90 parts

respectively. We combine these parts using blastdb aliastool.

Load-balancing via query partitioning

For case study II and III, we have partitioned 17927 queries into 20 query files based on

number of residues after randomizing the order instead of a more straightforward
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Table S3. Incremental nr databases for case study II

Time
Period

Database Number of
sequences

Total residues Longest sequence
length (residues)

T0 0-63 109,407,071 40,077,622,077 38,105

T0 → T1 64-90 52,860,187 19,192,851,238 74,488

T1 0-90 162,267,258 59,270,473,315 74,488
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Fig S2. Load imbalance resulted from a naive query partitioning. Execution
time when a straightforward query partitioning scheme is adopted, which results in
significant lack of load balancing. The standard deviation for the execution times for
both incremental and NCBI BLAST searches are large (2748 and 8727 seconds
respectively).

partitioning based on number of queries while keeping the original order.

If we partition the queries by making sure each partition has roughly same number

of queries without disrupting their order, we get a range of execution times

demonstrating lack of proper load balancing. The standard deviation in iBLAST search

times is 2748 seconds and standard deviation in NCBI BLAST search times is 8727

seconds. This means the compute nodes have to wait idly for 1− 3 hours on average.

Fig S2 demonstrates the lack of load balancing.

In contrast, when we first randomize the order of the queries and then partition the

queries by making sure that all partitions have the roughly same number of residues,

the standard deviations fall to 150 and 487 seconds respectively (Fig S3).
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Fig S3. Load balance demonstrated by our proposed strategy. Execution
time when our improvised query partitioning scheme is adopted which results in better
load balancing. The standard deviation for the execution times for both incremental
and NCBI BLAST searches are minimal compared to the naive strategy (150 and 487
seconds respectively).

Explanation for NCBI BLAST missing many top hits

Due to the early cutoff of max target sequence used by its heuristic algorithm. NCBI

BLAST performs search in two phases. In earlier phase (ungapped extension), it starts

with matching a seed sub-string between target and query sequence and then extends

the matching pair in both direction without allowing any gap. In this phase, BLAST

algorithm assigns some scores to these matching pairs and keeps only the very high

scoring pairs using a cutoff determined by e-value cutoff or number of maximum hits. In

the gapped phase, these selected high scoring pairs are further extended in both

directions while allowing gaps and these evolved pairs get changed scores. Some of the

pairs that did not make the cut during the ungapped extension, can become high

scoring pairs. For a larger database, these missed opportunities are higher in number

because there are more potential pairs in the ungapped phase. Since iBLAST is

combining results from smaller databases, it misses relatively smaller number of those

high scoring hits compared to NCBI BLAST.

Computing delta database

A formatted NCBI database consists of several index files and actual sequences are

partitioned into several 1GB partitions. For example non redundant protein database

nr has 100 1GB partitions named as nr.00, nr.01, . . . , nr.99. While saving an instance of

the database, AdaBLAST saves a list of these file names. Let, at time t1, database db
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had Pt1 parts, so the Record Database will save the instance by saving the list

L1 = db.00, db.01, . . . , db.(Pt1 − 1). At time t2, nr got updated and now it has Pt2 data

files. The instance of db at time t2 is the list L2 = db.00, db.01, . . . , db.(Pt2 − 1). To

compute delta database between times t1, t2, the Incremental Logic module will first

compute the difference between the two lists saved as the two instances. The difference

is δL = L2 − L1 = db.(Pt1), . . . , db.(Pt2 − 1). We then use blastdb aliastool distributed

with command-line BLAST to make the delta database using the files in δL.

There is one caveat, the last file (db.(Pt1 − 1)) in the instance at t1 might have been

updated with new sequences and by not including them, we might miss some of the

potential hits. To mitigate this effect, we include db.(Pt1 − 1) in the delta database.

When recomputing or re-scaling the e-values, we use the correct previous and current

database sizes (Fig S4).

It takes few milliseconds to compute the delta database from two instances.

db.(Pt1 - 1)

…

db.03

db.02

db.01

db.00

db.(Pt1 - 1)’

…

db.03

db.02

db.01

db.00

db.(Pt2 - 1)

…

…

db.(Pt1 - 1)’

db.(Pt2 - 1)

…

…

a) db instance at time = t1 b) db instance at time = t2 c) delta of two instances 

Fig S4. Delta database computation from two instances of the same
database db. At time t1, the instance has Pt1 parts. At time t2, the instance has Pt2
parts. In both of these instances, the part db.(Pt1) is common. However this part is
potentially updated. So, we take all the parts from db.(Pt1) to db.(Pt2) to compute the
delta database.
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