Exploring the Landscape of Big Data Analytics Through

Domain-Aware Algorithm Design

Sajal Dash

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Application

Wu-chun Feng, Chair

Christopher L North

Sharath Raghvendra
Scott C Leman

Ramamoorthy Anandakrishnan

June 25, 2020

Blacksburg, Virginia

Keywords: Big data analytics, High-performance computing, Algorithmic machine
learning, Incremental algorithm, Approximate algorithm etc.

Copyright 2020, Sajal Dash

Exploring the Landscape of Big Data Analytics Through
Domain-Aware Algorithm Design
Sajal Dash
(ABSTRACT)

Experimental and observational data emerging from various scientific domains neces-
sitate fast, accurate, and low-cost analysis of the data. While exploring the landscape
of big data analytics, multiple challenges arise from three characteristics of big data:
the volume, the variety, and the velocity. High volume and velocity of the data war-
rant a large amount of storage, memory, and compute power while a large variety
of data demands cognition across domains. Addressing domain-intrinsic properties of
data can help us analyze the data efficiently through the frugal use of high-performance
computing (HPC) resources. In this thesis, we present our exploration of the data an-
alytics landscape with domain-aware approximate and incremental algorithm design.
We propose three guidelines targeting three properties of big data for domain-aware
big data analytics: (1) explore geometric and domain-specific properties of high dimen-
sional data for succinct representation, which addresses the volume property, (2) design
domain-aware algorithms through mapping of domain problems to computational prob-
lems, which addresses the variety property, and (3) leverage incremental arrival of data
through incremental analysis and invention of problem-specific merging methodologies,
which addresses the velocity property. We demonstrate these three guidelines through

the solution approaches of three representative domain problems.

We present Claret, a fast and portable parallel weighted multi-dimensional scaling
(WMDS) tool, to demonstrate the application of the first guideline. It combines al-
gorithmic concepts extended from the stochastic force-based multi-dimensional scaling
(SF-MDS) and Glimmer. Claret computes approximate weighted Euclidean distances

by combining a novel data mapping called stretching and Johnson Lindestrauss’ lemma

to reduce the complexity of WMDS from O(f(n)d) to O(f(n)logd). In demonstrat-
ing the second guideline, we map the problem of identifying multi-hit combinations
of genetic mutations responsible for cancers to weighted set cover (WSC) problem by
leveraging the semantics of cancer genomic data obtained from cancer biology. Solv-
ing the mapped WSC with an approximate algorithm, we identified a set of multi-hit
combinations that differentiate between tumor and normal tissue samples. To identify
three- and four-hits, which require orders of magnitude larger computational power, we
have scaled out the WSC algorithm on a hundred nodes of Summit supercomputer. In
demonstrating the third guideline, we developed a tool iBLAST to perform an incre-
mental sequence similarity search. Developing new statistics to combine search results
over time makes incremental analysis feasible. iBLAST performs (1 +§)/0 times faster
than NCBI BLAST, where § represents the fraction of database growth. We also ex-
plored various approaches to mitigate catastrophic forgetting in incremental training

of deep learning models.

Exploring the Landscape of Big Data Analytics Through
Domain-Aware Algorithm Design
Sajal Dash
(GENERAL AUDIENCE ABSTRACT)

Experimental and observational data emerging from various scientific domains necessi-
tate fast, accurate, and low-cost analysis of the data. While exploring the landscape of
big data analytics, multiple challenges arise from three characteristics of big data: the
volume, the variety, and the velocity. Here volume represents the data’s size, variety
represents various sources and formats of the data, and velocity represents the data
arrival rate. High volume and velocity of the data warrant a large amount of stor-
age, memory, and computational power. In contrast, a large variety of data demands
cognition across domains. Addressing domain-intrinsic properties of data can help
us analyze the data efficiently through the frugal use of high-performance computing
(HPC) resources. This thesis presents our exploration of the data analytics landscape
with domain-aware approximate and incremental algorithm design. We propose three
guidelines targeting three properties of big data for domain-aware big data analytics:
(1) explore geometric (pair-wise distance and distribution-related) and domain-specific
properties of high dimensional data for succinct representation, which addresses the vol-
ume property, (2) design domain-aware algorithms through mapping of domain prob-
lems to computational problems, which addresses the variety property, and (3) leverage
incremental data arrival through incremental analysis and invention of problem-specific

merging methodologies, which addresses the velocity property.

We demonstrate these three guidelines through the solution approaches of three rep-
resentative domain problems. We demonstrate the application of the first guideline
through the design and development of Claret. Claret is a fast and portable paral-

lel weighted multi-dimensional scaling (WMDS) tool that can reduce the dimension of

high-dimensional data points. In demonstrating the second guideline, we identify com-
binations of cancer-causing gene mutations by mapping the problem to a well known
computational problem known as the weighted set cover (WSC) problem. We have
scaled out the WSC algorithm on a hundred nodes of Summit supercomputer to solve
the problem in less than two hours instead of an estimated hundred years. In demon-
strating the third guideline, we developed a tool iBLAST to perform an incremental
sequence similarity search. This analysis was made possible by developing new statistics
to combine search results over time. We also explored various approaches to mitigate
the catastrophic forgetting of deep learning models, where a model forgets to perform

machine learning tasks efficiently on older data in a streaming setting.

Dedication

To my parents for providing me the platform to pursue science

vi

Acknowledgments

Pursuing a PhD in Computer Science was the fulfillment of my childhood dream of
becoming a scientist. It was made possible by the support, guidance, and collaboration

of many individuals. I like to thank them all.

First and foremost, I would like to thank my advisor, Dr. Wu-chun Feng, for his con-
tinuous research guidance. I am grateful to him for allowing me to explore challenging
research avenues over the years. I also like to thank my committee members Drs. Chris
North, Sharath Raghvendra, Scotland Leman, and Ramu Anandakrishnan for their

guidance, suggestions, and support.

My gratitude extends to my research collaborators Sarthok Rasique Rahman, Qais Al
Hajri, and Anshuman Verma. My thanks to Dr. Heather Hines, Dr. Junqi Yin, and
Dr. Mallikarjun Shankar. My research was greatly benefited by their contribution,

data, and mentor-ship.

I like to thank my past and current lab-mates and friends Anshuman Verma, Sharmi
Banerjee, Vignesh Adhinarayanan, Sarunya Pumma, Frank Wanye, and Atharva Gond-

halekar for their companionship, insightful conversations, and mental support.

While the PhD journey was intellectually rewarding, it was also mentally perilous. The
completion of the journey would not have been possible without the mental support
of my friends Bushra Tawfiq Chowdhury, Archi Dasgupta, Rubayet Elahi, Syeed Md
Iskander, Nabil Nowak, Asifur Rahman, Sazzadur Rahaman, Tonmoy Roy, Farin Sid-
diquee, Munawwar M. Sohul, Ipsita Hamid Trisha, and Fahmida Shaheen Tulip. Thank

you for bearing with me, listening to my complaints, and making me feel that I matter.

I like to thank my siblings Prosenjit Dash, Pankaj Dash, and Sampa Dash, for being

vii

there for me from across the globe though I practically disappeared for the last few

years. Thank you for always having faith in me.

I cannot thank my parents enough for all the sacrifices they have made for me. I would
not be here without your unconditional support, love, and care. 1 hope I made you

happy and proud. This dissertation is for you.

Funding Acknowledgment: My research was supported by NSF grant 11S-1447416,
a grant from General Dynamics Mission Systems, a seed grant from the SEEC Center

(supported by ICTAS at Virginia Tech), a grant from Oak Ridge National Laboratory,
a VCOM Bradley Foundation grant, and VCOM REAP grant RA2019.

Declaration of Collaboration: In addition to my advisor Wu-chun Feng, the re-

search presented in this dissertation benefited from several collaborators:

Anshuman Verma (Microsoft), Michelle Dowling (VT), Scotland Leman (VT),

and Chris North (VT) contributed to the work included in Chapter 2.

« Ramu Anandakrishnan (VCOM), Nicholas A. Kinney (VCOM), Robin T. Vargh-
ese (VCOM), Harold R. Garner (VCOM), and Qais Al Hajri (Microsoft) con-

tributed to the work included in Chapter 3.

« Sarthok Rasique Rahman (Penn State) and Heather M. Hines (Penn State) con-

tributed to the work included in Chapter 4.

e Jungi Yin and Mallikarjun Shankar contributed to the work included in Chap-

ter 5.

viii

Contents

List of Figures xvi
List of Tables XXX
1 Introduction 1
1.1 Characteristics of Big Data, 2
1.2 A Case for Domain-Aware Algorithm Design 4
1.3 Three Guidelines for Efficient Big Data Analytics 5
1.4 Representative Applications to Demonstrate Three Guidelines 6

1.4.1 Developing a Parallel and Portable Weighted Multi-Dimensional

Scaling Tool 6

1.4.2 Identifying Carcinogenic Multi-Hit Combinations of Genetic Mu-

tationso 7

1.4.3 Incremental Sequence Similarity Search via Automated E-Value

Correction 7
1.4.4 Mitigating Catastrophic Forgetting Using Historical Summary . 9
1.5 Organization of the Dissertation 9

2 Geometric Optimization for Developing a Weighted Multi-Dimensional

Scaling Tool 11

2.1 Introduction 11

X

2.2

2.3

24

2.5

Background and Related Work
2.2.1 Mathematical Formulation
2.2.2 Force-Directed Multi-Dimensional Scaling

2.2.3 Application of Weighted Multi-Dimensional Scaling (WMDS) in

Visual to Parametric Interaction (V2PI)
Claret: A Fast and Portable Multi-Dimensional Scaling (MDS) Tool . .

2.3.1 Porting Stochastic Force-Based Multi-Dimensional Scaling (SF-
MDS) to GPU Using OpenCL

2.3.2 Performance and Portability of Claret
2.3.3 Quantifying Layout Similarity
Stretched Random Projection
2.4.1 Johnson-Lindenstrauss Lemma for Weighted Euclidean Distance

2.4.2 Computing Weighted Euclidean Distance Using Random Projec-

Accelerated Forward Weighted Multi-Dimensional Scaling for Visual to

Parametric Interaction Tools
2.5.1 Supporting Non-Euclidean Distances
2.5.2 Interface Between Claret and Web Andromeda
2.5.3 Performance Comparison

2.5.4 Case Study: Analyzing TCGA Mutation Data to Discover Cancer-

Causing Genes Through the Incorporation of Domain Knowledge

18

21

22

27

31

32

32

34

35

36

38

39

40

2.6 Optimizing Inverse WMDS for Quantifying Visual to Parametric Inter-

actionso 42
2.6.1 Runtime Analysis L 44
2.6.2 Optimizing Runtime for Algorithm Parameters 45
2.7 Conclusion and Discussion o0 50

Domain-Aware Algorithm Design to Identify Carcinogenic Gene Com-

binations 55
3.1 Introduction 55
3.1.1 Domain-Aware Algorithm Design 57

3.1.2 Parallelization of the Approximate Algorithm to Identify Three-

and Four-Hit Combinations 58
3.1.3 Scaling Out the Algorithm Using Hundreds of GPUs 60
3.2 Mapping the Problem to Weighted Set Cover (WSC) Problem 62

3.2.1 Somatic Mutations Calculated from the Cancer Genome Atlas

TCGA) Data. s, 64
()

3.2.2 Mapping the Problem of Finding Multi-Hit Combinations to a
Weighted Set Cover (WSC) Problem 65

3.2.3 Algorithm for Finding an Approximate Solution to the Weighted
Set Cover Problem 67

3.3 Classification Performance and Quality of Identified Two-Hit Gene Com-

binations 68

Xi

3.4

3.5

3.6

3.3.1

3.3.2

3.3.3

Differentiation Capability Between Tumor and Normal Tissue

Samples With High Accuracy via a Set of Two-Hit Combinations

Robustness of Two-Hit Combinations to Different Training and

Test Sets

Properties of Identified Genes and Combinations

Scaling Up the Approximate Algorithm to Identify Three-Hit Gene Com-

binations
3.4.1 Representation of Gene-Sample Matrix
3.4.2 Mapping to the NVIDIA Tesla V100 PClIe Graphical Processing

Unit (GPU) o
3.4.3 Speedup and Accuracy Calculation

Classification and Runtime Performance of the Parallel Algorithm . . .

3.5.1

3.5.2

3.5.3

3.5.4

3.5.9

Optimization and Parallelization Reduces Runtime for the Two-

Hit Algorithm

Runtime Reduction Permits Identification of Three-Hit Combi-

nationso

Runtime Reduction Permits Identification of Some Four-Hit Com-

binations
Contribution of Optimization Techniques to Overall Speedup

Multi-Hit Combinations Differentiate Between Tumor and Nor-

mal Samples with High Accuracy

Distributing Large Combinatorial Workload Across Many GPUs

3.6.1

Reducing Global Memory Access

Xii

70

70

74

78

79

80

86

87

88

89

90

91

92

94

3.7

3.8

3.6.2 Distributing Workload Across Nodes and GPUs 97

Classification Performance and Scaling Efficiency of the Scaled-Out Al-

gorithm 99
3.7.1 Scaling Out to 100 Nodes 100
3.7.2 Compute Utilization and Analysis of Its Variance Across GPUs 103

3.7.3 Classification Performance of the Identified Four-Hit Combinations105

Conclusion and Discussion 106
3.8.1 Distinguishing Between Driver and Passenger Mutations 109
3.8.2 A Rational Basis for Combination Therapy 111

3.8.3 Identifying Combinations of Gene Mutations From the Identified

Gene Combinations 111

3.8.4 Beyond Four-Hit Gene Combinations 115

4 Incremental Sequence Similarity Search via Automated E-Value Cor-

rection 132
4.1 Introduction 132
4.2 Background and Related Work00 137
4.2.1 Core Concepts of BLAST Result 137
4.2.2 BLAST Statistics for E-Value Computation 137
4.2.3 Existing E-Value Correction Software and Their Features 140
4.3 Methods 142
4.3.1 E-Value Correction in an Incremental Setting 143

xiii

4.3.2 Merging Two Search Results with Correct E-Value Statistics . . 145

4.3.3 iBLAST Implementation 146
4.3.4 Case Studies 149
4.4 Results. 155
4.4.1 iBLAST Program 155
4.4.2 Case Study [: Method Verification 156

4.4.3 Case Study II: High Efficiency of iBLAST for Large Alignment

Search Tasks on Novel Datasets 158
4.4.4 Case Study III: Expedited Informatics via Taxon-Specific Searches160

4.4.5 Identification of Better Scoring Hits by iBLAST Than NCBI

BLAST . . . 161
4.5 Conclusion and Discussion 162
Mitigating Catastrophic Forgetting Using Historical Summary 164
5.1 Introductiono 164
5.2 Background and Related Work 165

5.2.1 State-of-the-Art Approaches for Mitigating Catastrophic Forget-

ting 167
5.3 Mitigating Catastrophic Forgetting Using Historical Summary 168
5.4 Conclusion and Discussion, 171
Conclusion and Future Work 173
6.1 Applications and Artifacts 174

Xiv

6.2 Future Work, 175

Appendices 177

Appendix A Identifying Multi-Hit Combinations 178

A.1 Identifying Somatic Variants Using MuTect2 and VEP: Command Pa-

rameters . . .o e 178

A.2 Algorithm and Data Structure 179
A.3 Robustness of Our Algorithm Across Sets of Partitions 180
A.4 Identified Combinations for 17 Cancer Types 181
A.5 Correlation Between Genes Within Combinations 189
A.6 Coverage of Samples by Identified Combinations 190
A.7 Distinguishing Between Driver and Passenger Mutations 190
Appendix B iBLAST 201
B.1 Existing E-Value Correction Software and Their Features 201
B.2 E-Value Correction 203
B.3 Creating Experimental Databases 204
B.3.1 Databases for Case Study I 204

B.3.2 Databases for Case Study IT 205

B.4 Load-Balancing via Query Partitioning 205
B.5 Explanation for NCBI BLAST Missing Many Top Hits 206
Bibliography 209

XV

List of Figures

1.1

2.1

2.2

2.3

24

2.5

2.6

Organization of the dissertation’s research contributions. The solid line
between a guideline and a chapter indicates this chapter’s primary goal
is to demonstrate the guideline. The dashed line between a guideline
and a chapter indicates that the guideline was also used to solve the

problem addressed in that chapter. 10

V2PI interaction pipeline and pipeline for one of its realization: Web

Andromeda. 19

Embeddings produced by Claret (left) and Glimmer (right). The em-
beddings are visually similar as well as their stresses are within £5% of

each other. 28

Performance comparison between Claret and Glimmer on four different

datasets. L 29
Layout computation time for Claret and Glimmer. 30
Layout computation time in different accelerators. 31
Integration of Claret. WMDS into Andromeda pipeline. 38

XVi

2.7

2.8

3.1

(a) Initial projection on 2D space. All tumor and normal samples are
projected together in a central mass. This projection suggests some
genes might have more of a role than others in separating tumor samples
from normal samples. (b) We moved 20 tumor samples and 20 normal
samples from the center mass in opposite directions to tell Andromeda
that tumor samples are very dissimilar from normal samples. (c) After
moving the two sets of samples further from each other, we pressed
the Update Layout button, which resulted in a conversion of the visual
interaction to parametric interaction using inverse WMDS. The value of
the feature weights changed, and a new visualization was created using

forward WMDS.

Point a is being moved from its original position (solid ball) to a new
position (dashed ball). a is moved away from unmoved point b towards
moved point ¢ (gray ball) and unmoved point d (white ball). This move-
ment can be interpreted in many ways in terms of pairwise similarity

and dissimilarity. oo

Approach for identifying multi-hit combinations. (a) Whole exome se-
quencing data from The Cancer Genome Atlas (TCGA) for tumor sam-
ples and normal tissue samples with matched blood-derived normal sam-
ples were used to identify somatic mutations. Somatic mutations were
calculated using the Mutect2 variant caller and the Variant Effect Pre-
dictor (VEP). (b) The problem of identifying multi-hit combinations is
mapped to the weighted set cover (WSC) problem. An approximate
WSC algorithm was used to identify a set of multi-hit combinations
that was able to differentiate between an independent set of tumor and

normal tissue samples with over 90% sensitivity and specificity.

xXVvii

23

54

63

3.2

3.3

3.4

Weight computation for a combination of two genes (genel, gene2). Tu-
mor samples covered by both genes are true positives (TP), tumor sam-
ples not covered by one or both genes are false negatives (FN), normal
samples covered by both genes are false positives (FP), and normal sam-
ples not covered by one or both genes are true negatives (TN). The scal-
ing factor « is used to balance the relative importance of sensitivity and

specificity.

Algorithm for finding multi-hit combinations, illustrated for two-hit com-
binations. The cells marked with x in the Gene-Sample Mutation matri-
ces represent samples with mutations in the corresponding gene. There
are H = G(G — 1)/2 possible two-hit combinations involving two dif-
ferent genes. The algorithm iterates through three steps. (1) Equation
(3.1) is used to calculate F; for each combination. (2) The combina-
tion (g, and ¢, in this example) with the maximum value of F;, (Fy
in this example) is added to the list of selected multi-hit combinations.
(3) Tumor samples containing mutation in the selected combination of
genes are excluded from consideration in subsequent iterations of the
algorithm. The green shaded columns in the Tumor Gene-Sample Mu-
tation matrix represent excluded samples in the iteration shown. The
algorithm terminates when all tumor samples have been excluded, i.e.

“covered” by the set of multi-hit combinations.

Top three two-hit combinations for 17 cancer types. See Table 3.1 for
abbreviations for cancer types. FEach line in the center of the Circos
plot connects the two genes in a two-hit combination. This plot was

generated using RCircos [192].

xXviii

66

69

3.5 Sensitivity and specificity is robust across three different random training-

3.6

3.7

3.8

test partitions of available samples. The average difference between any
two pairs of partitionings is less than 4.2% for both sensitivity and speci-
ficity across all 17 cancer types. Error bars represent 95% confidence

intervals. The vertical lines represent 95% confidence intervals.

Occurrence of the two-hit combinations identified in tumor samples, for
three representative cancer types. Figure A3 shows the distribution for
all 17 cancer types. The top combination occurs in 65% of tumor sam-
ples, on average, while 42% of the combinations occur in less than 5%
of the samples. Total percentage exceeds 100% because samples can

contain multiple combinations. 0L

Distribution of overlapping combinations for three representative cancer
types. Figure A5 shows the distribution for all 17 cancer types. 64.5%
tumor samples contain multiple combinations, suggesting that the two-

hit combinations might represent subsets of three or more hits.

Chromosomal location of gene combinations. Each connecting line rep-
resents a two-hit combination. Blue lines represent gene combinations
across different chromosomes. Red lines represent gene combinations
within the same chromosome. Circos plot was generated using RCircos

package [192].

Xix

77

3.9

3.10

3.11

Compressed binary representation and bitwise operation for determining
the number of samples with mutations in a combination of two genes.
Left: Compressed binary representation of Gene-Sample Mutation ma-
trices, illustrated for a four-bit unsigned integer. s; represents the normal
or tumor samples shown in Fig. 3.3. Elements with 0 in the matrix in-
dicate that the sample does not contain mutations in the corresponding
gene, while 1 indicates that the sample does contain a mutation in the
corresponding gene. Mutations in four samples can be represented by a
single four-bit unsigned integer. Right: Given any two genes g;, g;, the
number of samples containing mutations in both these genes is deter-
mined by a bitwise AND operation for each of the integers representing
mutations in g; with the corresponding set of integers for g;, and then

counting the number of non-zero bits.

Mapping the multi-hit CPU algorithm to the GPU, illustrated for the
three-hit algorithm with the compressed binary representation (Fig. 3.9).
Each GPU thread computes F? __ for a subset of all possible combina-

max

tions. The results of each thread is stored in GPU global memory. F,q.

across all subsets of combinations is calculated using parallel reduction [76]. 82

Comparison of different implementations of the multi-hit algorithm for
identifying two-hit combinations. (a) runtime for the original matrix
implementation on the CPU ranges from 3-3723 sec compared to 7-
223 sec for the compressed binary CPU implementation and 5-33 sec
for the optimized GPU implementation. (b) Speedup is on average 10-
fold for the compressed binary CPU implementation and 68-fold for the
optimized GPU implementation compared to the original matrix CPU
implementation. Names for the cancer types shown along the x-axis are

listed in Table S1..

XX

3.12

3.13

3.14

Comparison of different implementations of the multi-hit algorithm for
identifying three-hit combinations. (a) runtime for the original matrix
CPU implementation ranges from 110 seconds to an estimated 282 days,
compared to 46 seconds to 10 days for the compressed binary CPU im-
plementation and four seconds to 23 minutes for the optimized GPU
implementation. Runtimes for the original matrix CPU implementation
requiring over 30 days were estimated as described in Methods. (b)
Speedup for the compressed binary CPU implementation ranged from

2x-28x, and from 29x-33,690x for the optimized GPU implementation.

Names for the cancer types shown along the x-axis are listed in Table S1. 90

Average contribution of optimizations and parallelization to speedup.
Breakdown of contributions due to compressed binary representation,
GPU parallelization, removal of branch and bound logic, single two-
gene combination per thread, and mapping of upper triangular (UT)
gene combination to a sequential thread ID. (a) Breakdown of two-hit
speedup. (b) Breakdown of three-hit combinations. Contribution due
to compressed binary representation is 15x for three-hits which is not

visible in the scale of the figure. oL

Accuracy of two- and three-hit combinations. (a) Sensitivity varies from
63-100% for two-hit combinations, and from 50-100% for three-hit com-
binations, excluding KICH for which there were only a total of nine
tumor samples. (b) Specificity varies from 79-100% for two-hit combi-
nations, and from 78-100% for three-hit combinations. Sensitivity and
specificity were calculated on a randomly selected 25% Test data set.
Error bars represent 95% CI. Cancer types with relatively large 95% CI
(CHOL, DLBC, KICH, KIRP, MESO and UCS) are due to small sample

size (total of 44, 43, 9, 88, 69, and 46 samples respectively).

XXi

3.15

3.16

3.17

[lustrative example of BitSplicing for a simplified case of 16 samples (S1-
S16) and five genes (gl-gb), where four samples are grouped together and
represented by a single integer requiring a total of four integers in our
compressed binary representation. Assume, the best combination iden-
tified in an iteration excludes samples S3, S6, S8, and S13. BitSplicing
will splice out these bits and re-compress the gene sample matrix using
only three integers per gene for next iteration. In actual implementation,

we compress 64 samples into a single unsigned long long int variable.

Summit node as a computational unit and its abstraction with a single
MPI process per node. Top: Each Summit node consists of two IBM
Power9 CPUs and six NVIDIA V100 GPUs. Bottom: Each Summit
node is assigned to a single MPI process along with a range of threads

(curved lines) that are in turn assigned to individual processors within

Workload distribution per node (and per GPU) for G = 1000 and four
nodes. The y-axis shows the workload (number of combinations) pro-
cessed by each thread. The vertical solid lines indicate the partitioning
of threads (\) across nodes and vertical dashed lines indicate partition-
ing of threads (\) across GPUs. The area under the curve represents the
workload Wi for each node i. (a) Partitioning for equi-distance schedul-
ing where equal number of threads are assigned to each nodes, and equal
number of threads are assigned to each GPU. (b) Partitioning for equi-
area scheduling where threads are assigned to nodes so that each node

and GPU have equal areas under curve.

xXxii

96

3.18

3.19

3.20

3.21

3.22

3.23

Runtime and speedup for four-hit algorithm. (a) Single GPU and 600
GPU runtimes for the 13 cancer types for which the computation fin-
ished in 15 days. (b) Runtimes for the 18 cancer types for which the
computation did not finish in 15 days. The single GPU runtime was
estimated from the average actual ratio of runtimes for the four-hit al-
gorithm compared to the three-hit algorithm. (c) Actual speedup for
600 GPUs compared to single GPU runtime for the 13 cancer types in
(a). (d) Estimated speedup for the 18 cancer types in (b). Names of the

31 cancer types are listed in the Artifact Description Appendix.

Runtime of different cancer types is highly correlated with sample size
and number of combinations. (a) Correlation coefficient = 0.79 for sam-

ple size. (b) Correlation coefficient = 0.92 for number of combinations.

Strong scaling from 50 nodes (300 GPUs) to 100 nodes (600 GPUs) for
the BRCA dataset. Scaling efficiency is 0.77 for 100 nodes relative to a

baseline of 50 nodes.

Weak scaling from six GPUs (one node) to 600 GPUs (100 nodes). The
scaling efficiency is 80.6%. The runtime starting from 30 nodes remains

almost unchanged. o000

Effect of three memory optimizations on runtime. Tested on the three-
hit algorithm running on a single GPU, for the breast invasive carcinoma

(BRCA) dataset.

(a) Compute utilization is inversely correlated with DRAM read/write
throughput up to GPU #500 (b). Above GPU #500, read /write through-
put increases and the processor transitions from being memory bound
to being compute bound. (c) Low read/write throughput stalls warp

execution while data from memory is accessed.

xxiil

101

121

122

122

123

3.24

3.25

3.26

Top three four-hit combinations for low grade glioma (LGG). Each four-
hit combination is represented by four curves of the same color connect-
ing the four genes in the combination. The outer circle shows individual
chromosomes with corresponding ideograms shown in the inner circle.

Genes that comprise four-hit combinations are labeled inside the circle.

Classification performance of the identified combinations. Four-hit com-
binations were identified using a training dataset consisting of randomly
selected 75% of the available tumor and normal samples. Classification
performance measured by sensitivity (a) and specificity (b) was based
on the remaining 25% test dataset. For the 31 cancer types considered
here, average sensitivity and specificity were 82% and 93% respectively.

Error bars represent 95% confidence interval (CI).

Mutations in normal and lower grade glioma (LGG) tumor samples with
mutations in both IDH1 and MUC6. The difference in mutations be-
tween normal and tumor samples for the same two-hit combination can
be used to further refine the search algorithm. In the above exam-
ples, a missense mutation at R132 in IDHI1 is likely to be carcinogenic,
whereas mutations at F1989 in MUC6 are unlikely to be carcinogenic.
Colored bars represent known functional protein domains. Grey bars
represent regions of unknown function. Green dots represent missense
mutations, black dots represent truncating mutations and purple dots
represent other protein-altering mutations. Figure generated using cBio-

Portal [32, 63].

124

125

3.27

3.28

3.29

Two-hit combinations identified for ovarian serous cystadenocarcinoma
(OV). The outer circle shows individual chromosomes with correspond-
ing ideograms shown in the inner circle. Genes that comprise two-hit
combinations are labeled inside the circle. Each two-hit combination
is identified by differently colored lines connecting two genes. The red
line represents the gene combination discussed in further detail. Images

generated using RCircos [192]. L.

Three-hit combinations identified for ovarian serous cystadenocarcinoma
(OV). The outer circle shows individual chromosomes with correspond-
ing ideograms shown in the inner circle. Genes that comprise three-hit
combinations are labeled inside the circle. Each three-hit combination
is identified by differently colored lines connecting three genes. The red
line represents the gene combination discussed in further detail. Images

were generated using RCircos [192]. L.

Distribution of somatic mutations in TP53 in ovarian tumor samples and
normal samples. The horizontal bar shows amino acid position within
the protein, with labels showing known functional domains. Vertical
lines show the number of samples with protein altering mutations at
each amino acid position. The most frequently mutated sites for each
gene in (a) tumor and (b) normal samples are labeled for comparison.

Image generated using g3viz [73]. L.

XXV

127

128

3.30 Distribution of somatic mutations in KCNB1 in ovarian tumor samples

3.31

4.1

and normal samples. The horizontal bar shows amino acid position
within the protein, with labels showing known functional domains. Ver-
tical lines show the number of samples with protein altering mutations
at each amino acid position. The most frequently mutated sites for each
gene in (a) tumor and (b) normal samples are labeled for comparison.

Image generated using g3viz [73]. L.

Distribution of somatic mutations in TTN in ovarian tumor samples and
normal samples. The horizontal bar shows amino acid position within
the protein, with labels showing known functional domains. Vertical
lines show the number of samples with protein altering mutations at
each amino acid position. The most frequently mutated sites for each
gene in (a) tumor and (b) normal samples are labeled for comparison.

Image generated using g3viz [73]. L.

Increasing GenBank database size (available at https://www.ncbi.nlm.
nih.gov/genbank/statistics/, accessed on September 15, 2018) fol-

lows a decreasing trend in sequencing cost (available at https://github.

com/TransDecoder/TransDecoder/wiki, accessed on September 15, 2018)

130

4.2

4.3

4.4

Incremental addition of new sequences. (a) BLAST search when new
sequences are added to the database. At time ¢, the database is D;. In
next ot interval, new sequences D, 5 — D; are added, and the database
becomes D;,5. With the traditional approach, the existing search re-
sult cannot be reused, and we have to perform an entire BLAST search
against entire D;,s5. (b) BLAST search when several taxon specific
databases are present and we want to get a result against the com-
bined database. For three taxa, A, B, and C, we can perform individual
BLAST searches against the databases D4, Dg, D¢, respectively. If we
want to obtain a search result against the combined database D4y puc,
we need to merge the search results in a way that their E-values reflect

the combined database size.

(a) Incremental search when new sequences get added to the database
over time. We perform a BLAST search against the incremental database
and combine the result with past results after E-value correction. (b) In-
cremental search when search results from different databases are avail-
able. Different search results are corrected for E-value against the com-

bined database size; the corrected results are then merged together.

Software stack of iBLAST. The user can initiate a search using the user
interface. The search parameters are then passed to the “Incremental
Logic” module. After performing an incremental search, the backend of
this module corrects the E-value statistics and merges the result. The
“Incremental Logic” module looks into an external lightweight database
module called the (Record Database) to decide whether and how to per-
form the incremental search. For the actual search and incremental
database creation, we use NCBI BLAST tools such as blastdbemd, blast-

dbalias, blastp, and blastn.

135

142

4.5

4.6

4.7

4.8

Sub-modules of the Incremental Logic module. Whenever the user initi-
ates a BLAST job, the above “Incremental Logic” module first checks if
an existing search result is available. If there is a search result against
an outdated BLAST database, a delta database consisting of the newly
added sequences is constructed. A BLAST search is then performed
against the delta database (i.e., incremental database). In the final
stage, the existing search result and the incremental search result are

merged and the associated E-values corrected.

Experimental design of three case studies. (a) Case study I: Incremental
addition of sequences in the nt database over three time periods. (b)
Case study II: Incremental addition of sequences in the nr database over
two time periods. (c) Case study I1I: Incremental search of taxon-specific

databases. L

Performance for case study I.

Performance for case study II. Time required by NCBI BLAST and
iBLAST. The average time taken is 24862 seconds (6 hours, 54 minutes)
for NCBI BLAST and 8009 seconds (2 hours, 14 minutes) for iBLAST.
Merge time for each of these tasks is 40 seconds on average. Maximum
time for these three are 25835 seconds (7 hours, 11 minutes), 8334 sec-
onds (2 hours, 19 minutes), and 49 seconds. By both accounts, iBLAST
is 3.1 times faster than NCBI BLAST. This speedup complies with our

projected speedup (14 0.48)/0.48 =3.08.

xXxVviii

149

151

157

5.1

5.2

5.3

A streaming model of training Deep Learning (DL) models using less
data. As the data arrives in a stream, we perform a fast summarizing
process on this. We train the model on this summarized data. We
combine this summary with the data in “summary over time” buffer.
This way, we train the model incrementally on newly arrived data along

with a representative set from the past.

Test accuracy while training the models using three paradigms. The left
column shows the performance when the model is incrementally trained
only with SGD. The middle columns shows the performance when EWC
is used. The rightmost columns shows the performance when a historical

summary constructed through random sampling is used in training the

model with SGD.

Test accuracy while training the models using three methods. The left
column shows the performance when the model is incrementally trained
only with SGD. The middle column shows the EWC’s performance. The
rightmost column shows the performance when a historical summary

constructed through random sampling is used in training the model with

XXIX

168

170

List of Tables

2.1

2.2

2.3

3.1

3.2

3.3

The comprehensive list of required memory.

Performance comparison between vanilla Andromeda and Andromeda

with Claret. Using Claret is advantageous for big data.

Sample coverage by combinations for BRCA 48]

Two-hit combinations can differentiate between tumor and normal tissue
samples with over 90% sensitivity and specificity. The combinations
were identified using a randomly selected 75% subset (training set) of
the available matched tumor and blood-derived normal samples for each
cancer type with at least 200 matched samples in TCGA. See Tables A2-
A18 for the list of gene combinations for each cancer type. The resulting

combinations were then tested against the remaining samples (test set).

Genes in the top three most frequently occurring two-hit combinations.
Genes are color coded to identify those that are confirmed cancer genes,
experimentally implicated in cancer, and potentially novel cancer genes.
The numbers in the table (1, 2, and/or 3) indicate which of the top three

two-hit combinations the gene belongs to.

Runtime comparison between two scheduling approaches. Test of four-
hit algorithm for two cancer types breast invasive carcinoma (BRCA)
and esophageal carcinoma (ESCA). The equi-area (EA) scheduler is

three-four times faster than the equi-distance (ED) scheduler.

XXX

39

42

71

76

3.4

3.5

4.1

4.2

4.3

4.4

4.5

The effect of block size on runtime is not significant. Test to identify a
single four-hit combination for BRCA shows that the best runtime was
for a block-size of 128 threads. Average runtime = 1088 with standard

deviation = 14.0.

Comparison of classification performance of the multi-hit algorithm and

the ContrastRank method.

Both Spouge and Karlin-Altschul statistics are used by various NCBI
BLAST programs.

Comparison of three different BLAST tools that explicitly deal with E-
value statistics correction. iBLAST supports E-value correction across
time and space without requiring prior knowledge of the entire database.

The other tools can correct E-values in limited scenarios.
Fidelity of iBLAST in three consecutive time periods.
Fidelity of iBLAST (blastp) in two consecutive time periods.

Potential for taxon-guided searches. Comparison of merged BLAST re-
sults from multiple individual BLAST searches with a separate BLAST
search conducted against a completed nr database, showing that biolog-
ically relevant taxa can be added incrementally to obtain similar results

to nr by searching against much smaller database size.

xxx1

103

List of Abbreviations

DL Deep Learning

GPU Graphics Processing Unit
HPC High-Performance Computing
MDS Multi-Dimensional Scaling
ML Machine Learning

MPI Message Passing Interface

WMDS Weighted Multi-Dimensional Scaling

xxxii

Chapter 1

Introduction

With advancements in scientific equipment development, large-scale experiment design,
and manufacturing of high capability sensors, various scientific domains amass a large
volume of data in a short amount of time. For example, recent multi-national scien-
tific collaborations resulted in several large-scale projects such as the Human Genome
Project (HGP) [39, 41, 177], the Laser Interferometer Gravitational-Wave Observatory
(LIGO) [5], and the Event Horizon Telescope (EHT) [113]. These projects produced
some of the most advanced examples of technological marvels and achievements of re-
cent history, and they gather and generate a large volume of data intending to make
new scientific discoveries. Discovering knowledge from this data requires a tremendous
amount of analytics effort. These data hold keys to many scientific discoveries, under-
standing of a market and economic dynamics, shading light to collective social behavior,
and various other vital aspects of modern life. However, some dynamic systems evolve
rapidly, making collected data obsolete pretty fast, while the knowledge from other
data paves the path for the next level of advancement in knowledge discovery. For data
analytics to be useful, our analysis methodology and computing resources must provide

fast analysis at an affordable cost.

Research efforts in Machine learning and statistics-based analysis improved analytics
methodology significantly. Advancements in deep learning models such as ResNet [78]
and machine learning models such as XGBoost [35] enabled us with unprecedented
classification and regression accuracy. Researchers in the high performance comput-

ing community developed pretty powerful computing platforms and software tools to

leverage these platforms. Oak Ridge National Lab recently developed the fastest su-
percomputer Summit [3] in the world with exascale computing capability and Junqi
et al. [190] deployed state of the art machine learning and deep learning tools across
thousands of compute nodes of Summit. A combination of these methodologies and
computing platforms benefit data analytics a great deal. However, access to state of
the art computing platform is not easy for the majority of the research institutes and
individual researchers because they cost a great deal of money. Another concerning
fact is that we produce data at a an exponential rate [2, 72] which has the potential to

overwhelm our computing resource.

1.1 Characteristics of Big Data

Doug Laney [102] characterized big data using 3 V’s, volume, variety, and velocity.
While the community has proposed several other characteristics in recent times, these
3 Vs are widely used to define big data. For this thesis’s scope, we characterize big
data using volume, variety, and velocity and provide our interpretation of each of these

characteristics.

Volume Volume is the required storage of the data; big data requires large storage.
We define volume using two quantitative metrics, (1) the number of data points, and
(2) the number of features of the data. Any data with a large value for any of these two
metrics can be qualified as big data. Due to our increased observational capacity and
digitization of modern life, we amass a vast number of data points from many applica-
tion sources. With the improvement in various sensor technologies, widespread digital
presence, the innovative marketplace, and increased complexity of social interactions,
the amassed data also exhibits increased complexity. The complexity of the data can

be quantified using the number of features. While many data points can be beneficial

if we can keep up with the compute-, memory-, and communication- requirement, a
large number of features can be problematic. Data with a large number of features can
be presented as points in high-dimensional space, and the curse of dimensionality can

prevent us produce meaningful knowledge from big data.

Variety In most literature, variety is defined as the various formats and structures of
the data. We expand this definition by referring to an observation, different formats,
and structures of data come from different sources. Data can come from various sci-
entific domains, social media, health monitoring, and service industries. Depending on
how well defined the data, and well established the data collection method is, data can
exhibit varying degrees of structures. For example, a weather forecasting entity col-
lects many well-defined metrics, such as airspeed, temperature, and humidity. So, data
compiled by that entity will be well structured. On the other hand, an epidemiologist
trying to predict a developing pandemic’s course has to rely on very unstructured data
such as tweets, news articles, and local medical reports. The data source can present
unique opportunities to organize the data into a structure by a clear interpretation of

the semantic of the data and the underlying process.

Velocity Velocity is the rate at which the data arrives. The fast velocity of the data
can characterize big data. Large scale scientific simulations can produce data at a rapid
pace, which will require online learning. Traffic surveillance data, weather data during
a developing storm, disease spread data during an ongoing pandemic represent varying

velocity, which requires incremental and real-time learning.

1.2 A Case for Domain-Aware Algorithm Design

A closer understanding of data and the problem can reduce the burden on the computing
platform by providing insights into algorithmic innovation. High dimensional space
of the data and its volume reflects the complexity of the data. Data exhibits some
counter-intuitive properties in high-dimensional space, and often projecting the data
onto lower-dimensional space facilitates meaningful statistical analysis at significantly
reduced computation cost. We can reduce the volume of data through the computation
of coresets and geometric transformation at the expense of bounded approximation |7,
60]. Coreset is a summary set of representative points that approximately maintains the
problem-specific properties of the original data points [7]. Feldman et al. [60] computed
coresets for projective clustering through O(%) rank approximation. This succinct

representation helps with the efficient computation of PCA and k-means clustering.

While exploring geometric properties of data can help us with efficient analytics, un-
derstanding the domain background of the data can provide us with unique insights
into how to formulate the problem in the more tractable form. For example, we must
understand the relationship of this data with cancer biology and attribute appropriate
semantics to the data to analyze genomic data obtained from cancer patients. This
process will help us map the problem of cancer biology domain to the framework of rig-
orously studied computational problem families. Many bioinformatics problems such as
constructing genome sequences from overlapping fragments, non-overlapping local align-
ments, and matching three-dimensional molecular structures have been mapped to well
known computational problems Clique-detection by embedding the domain knowledge

of each of these problems into mapping strategies and parameters [28].

These first two approaches can help us with efficient data representation and opti-
mal problem formulation, respectively. Another source of optimization can be insight

through the understanding of the domain-specific analytics process and practices. For

example, in their study of various types of omics, biologists perform sequence similarity
searches against ever-growing publicly available sequence databases at regular inter-
vals. This warrants for reusing of search efforts from the past interval and perform an

incremental search against the additional data.

1.3 Three Guidelines for Efficient Big Data Analyt-
ics

In light of these observations, we propose three guidelines for data analytics and demon-
strate the guidelines through solving approaches of three representative problems from

various domains.

1. [Volume guideline] Explore geometric and domain-specific properties
of high dimensional data for succinct representation Reduce the volume of
data through its dimension reduction or coreset computation appropriate for the
problem by bounded approximations by exploiting geometric properties of high-

dimensional space and transformations across spaces of different dimensions.

2. [Variety guideline] Design domain-aware algorithms through mapping
of domain problems to computational problems We postulate that under-
standing domain originated properties of data, and the underlying process they
represent can provide us with fresh insights for developing streamlined analytics
solutions. Proper semantics can help with a structured representation of the data

and optimal mapping of the problem to a computational framework.

3. [Velocity guideline] Leverage incremental arrival of data through in-
cremental analysis and invention of problem-specific merging method-

ologies data arrives in a stream, and data gets updated over time. The ability to

reuse past analysis and merge the past result with incremental analysis through
new statistics and problem properties can save us a great deal of redundancy in

computing.

1.4 Representative Applications to Demonstrate Three

Guidelines

We choose three problems from various domains to demonstrate these guidelines’ ap-

plications, and we adopt the guidelines into the solving approaches.

1.4.1 Developing a Parallel and Portable Weighted Multi-Dimensional

Scaling Tool

Statistical methods for analyzing high-dimensional data points are computationally
expensive, and drawing meaningful statistical inferences in high dimensional space is
often-time problematic. So, it’s advantageous to reduce the data dimension without los-
ing much information required to solve the problem. Multi-dimensional scaling (MDS)
and its extension, weighted MDS (WMDS), are popular approaches for dimension re-

duction.

Many scientific domains use MDS for succinct data representation and data exploration.
Psychologists use MDS to study the relationship between different stimuli[49]; Biologists
use MDS for applications such as sequence alignment, protein substructure search,
and RNA microarray analysis [137]. Many visual analytics programs project high-
dimensional data points onto two- or three-dimensional space, and sometimes, the users
inject their domain knowledge through various interactions that can be implemented

using WMDS.

We demonstrate the first guideline (volume guideline) by exploring geometric properties

of high dimensional data and geometric transformation (Chapter 2).

1.4.2 Identifying Carcinogenic Multi-Hit Combinations of Ge-

netic Mutations

Experimental studies and mathematical models suggest that carcinogenesis is likely due
to different combinations of a small number of carcinogenic mutations (hits) [19, 20,
109, 114, 130, 173, 195]. Current computational approaches focused on identifying indi-
vidual genes that are cancer drivers, cannot find the specific combinations of mutations

responsible for individual instances of cancer.

We want to develop a method for identifying combinations of genetic mutations that
are most likely responsible for individual instances of cancer. It is theoretically possible
to search for combinations of individual mutations, but the problem becomes compu-

tationally intractable since most genes contain hundreds of somatic mutations.

Understanding the biological process behind carcinogenesis can give us insight on how
to formulate this difficult combinatorial problem and so that we can solve it reasonably.
We demonstrate the second guideline (variety guideline) by designing a domain-aware

approximate algorithm to identify carcinogenic gene combinations (Chapter 3).

1.4.3 Incremental Sequence Similarity Search via Automated

E-Value Correction

Many bioinformatics research investigating biological or structural functions of nu-
cleotide or protein sequences utilize some sequence similarity search tool. BLAST,

short for Basic Local Alignment Search Tool [12] is a widely used (75,905 citations,

February 2019) sequence alignment tool that is capable of conducting a sequence sim-
ilarity search for a sequence of interest against a curated sequence database. BLAST
uses a statistical threshold called an expect-value (i.e., e-value) to infer homologous

sequences from a curated database.

Sequencing data stored in the NCBI database has expanded astronomically over the
years, reportedly doubling in the number of bases submitted to GenBank [22] every

year over the last three decades (1982-present).

BLAST is computationally expensive to run, with computational time impacted by the
number of queries and reference database size. Furthermore, genome sequencing and
annotation projects can be reasonably long-term projects that require updates mid-
project, e.g., regular annotation updates [74, 132]. However, for such updates, sequence
similarity search steps have to be executed from scratch as search results from BLAST
use similarity scores and e-values that depend on the size of the database, which con-
tinues to increase. Thus, it is required to discard the results of prior searches and rerun
the entire search, which translates to irredeemable time, money, and computational

resources.

In practice, new sequences get added to the search database(s) of interest in two ways:
temporally and spatially. Temporal addition occurs when new sequences are added to a
database over time (e.g., a regular update to the nr database). Spatial addition happens
when different databases are available for search simultaneously. We need to combine
the search results against these databases as if the result was obtained by searching
against a combination of all these databases. Thus, we must compose search results in
both the temporal and spatial dimensions and answer the following question: Can we
develop statistics to compose temporal and spatial BLAST search results through an e-

value correction?. We answer this question using the third guideline (velocity guideline)

(Chapter 4).

1.4.4 Mitigating Catastrophic Forgetting Using Historical Sum-

mary

With the unprecedented advancement in scientific equipment and adaptation of elec-
tronics in our everyday life, the scientific community and consumer technology produce
large and complex data at a high rate. Making meaningful inferences in a reasonable
amount of time and cost from this big data is difficult for limitation in computing power
and storage. Incrementally trained models increasingly perform poorly on past data;
this phenomenon is known as catastrophic forgetting. There are several approaches
to alleviating this problem with varying degrees of success. We want to answer the
question: Can a small volume of historical summary mitigate catastrophic forgetting

effectively?

We answer this question using the third guideline (velocity guideline) and the first

guideline (volume guideline) in Chapter 5 primarily.

1.5 Organization of the Dissertation

The remainder of this thesis is organized to demonstrate three guidelines through rep-
resentative applications (Figure 1.1). In Chapter 2, we demonstrate the volume guide-
line through the fast computation of dimension reduction technique WMDS through
a geometric transformation and parallel programming. We also demonstrate how the

accelerated dimension reduction tool can be used in fast visual analytics of big data.

Chapter 3 describes an application of the variety guideline through the mapping of
the problem of identifying multi-hit combinations of genetic mutations responsible for
cancers that can be mapped to weighted set cover through transforming cancer biology

knowledge to computing domain. We show scaling up of the WSC algorithm to iden-

10

Chapter 2: Geometric Optimization for Developing
a Weighted Multi-Dimensional Scaling Tool

Volume guideline
Chapter 3: Domain-Aware Algorithm Design to

Identify Carcinogenic Gene Combinations
Variety guideline

Chapter 4: Incremental Sequence Similarity Search
via Automated E-value Correction

Velocity guideline

Chapter 5: Mitigating Catastrophic Forgetting using
Historical Summary

Figure 1.1: Organization of the dissertation’s research contributions. The solid line be-
tween a guideline and a chapter indicates this chapter’s primary goal is to demonstrate
the guideline. The dashed line between a guideline and a chapter indicates that the
guideline was also used to solve the problem addressed in that chapter.

tify three-hit combinations on a GPU using a bit-wise matrix representation of cancer
genomic data (Section 3.4). Next, we show the scaling out of the WSC algorithm on
the Summit supercomputer to identify four-hit combinations through some memory
optimizations and equitable workload distribution (Section 3.6). We also make use of

the volume guideline in scaling the approximate algorithm.

We demonstrate applications of the velocity guideline by solving two problems in Chap-
ter 4 and Chapter 5. Chapter 4 describes our demonstration of the velocity guideline

through the development of an incremental sequence similarity search tool iBLAST.

In Chapter 5, we explore various approaches to mitigate catastrophic forgetting in
training deep learning models in a streaming setting. In Chapter 6, we present the

conclusion, the thesis artifacts, and future work.

Chapter 2

Geometric Optimization for
Developing a Weighted

Multi-Dimensional Scaling Tool

2.1 Introduction

The representation of complex scientific data often materializes into points in high-
dimensional space. Statistical methods for analyzing these high-dimensional data points
are computationally expensive, rendering it unfeasible to draw any statistical inferences
in a reasonable amount of time. Dimension reduction is an essential computational
method for making the data comprehensible. Multi-dimensional scaling (MDS) and its
extension, weighted MDS (WMDS), are popular approaches for dimension reduction.
This chapter demonstrates how exploring geometric properties of data combined with
parallel computation can generate a fast and portable dimension reduction tool (volume

guideline).

MDS in science and visualization MDS is a tool of choice for many applications.
Psychologists use MDS to study the relationship between different stimuli, where each
stimulus is a multi-dimensional data point [49]. Biologists use MDS for many applica-

tions, including sequence alignment, protein substructure search, and RNA microarray

11

12

analysis [137]. For visual analytics, high-dimensional data points are projected onto
two- or three-dimensional space so that scientists can more easily explore these points.
Sometimes, the users inject their domain knowledge through various interactions. This

domain knowledge is then utilized to refine the visualization.

WMDS introduces weights on different dimensions to enable users to explore a space
of projections. For example, Leman et al. [107] used WMDS to create 2D-embedding

by translating visual interactions into dimensional weights.

MDS for real-time visual analytics Inferring meaningful insights from the data is
primarily offloaded to various complex mathematical, statistical, and machine learning
algorithms. Sophisticated machine learning models, in many cases, are black-boxes and
infer knowledge without offering much explanation to the underlying insights. Human
domain experts can be integrated into the process to steer the analytics in a meaningful

and explainable way.

Visual analytics of information plays a vital role in this regard by letting the user
provide input to the visualization tool. It seeks to support sense-making on complex
data through interactive visualizations without having to use complex mathematical
representation. Semantic interaction is one such technique. Information visualization
of high-dimensional data involves projecting complex high dimensional data onto a
two/three dimensional space to work within the constraint of human visual cognition

ability.

For interactive and real-time visual analytics, MDS must run in real-time on available
computing devices. Python Scikit MDS uses the SMACOF [51] method, which requires
computing n?/2 pairwise distances. This approach is problematic because storing n?/2
distances in memory can slow down overall system performance. For a dataset of

size 683 x 9, Scikit-MDSJ1] takes 30 — 50 seconds. So, it is not suitable for real-time

interactive visualization. The same is true for virtually every sequential MDS method.
While parallelized GPU implementations of MDS exist, they require NVIDIA GPU
cards. We aim to develop a fast and portable MDS implementation that can run in
parallel on available parallel hardware, such as multi-core CPUs, MICs, or GPU cards

made by any vendor.

Dimension reduction of big data is a computationally expensive task. The considerable
processing time in the dimension reduction phase makes information visualization of
high-dimensional data and user interactions on big data impractical. We want to explore
if a fast WMDS tool can expedite interactive visualization by integrating it into a family

of visual analytics tool that uses Visual to Parametric Interaction (V2PI).

Chapter outline In Section 2.3.1, we present Claret, a parallelized and portable
force-based WMDS. We ported and extended Chalmer’s stochastic force-based MDS
(SF-MDS)[33] to OpenCL, which runs on various platforms, including multi-core CPUs,
GPUs, and FPGAs. To support the incremental nature of interactive visualization, we
extended Glimmer’s multi-level algorithm to use our OpenCL-based stochastic force
calculation. To enable stable visualizations over time, in Section 2.3.3, we propose a
method to quantify the quality of a layout, compare two embeddings quantitatively,

and align embeddings.

For high-dimensional data points, the weighted FEuclidean distance computation is a
bottleneck even for parallel hardware. In Section 2.4.2, we prove that with a com-
bination of a new mapping of data points (Stretching) and Johnson Lindenstrauss’
lemma [88] that we can preserve weighted Euclidean distances and expedite distance

computation.

In Section 2.5.3 and Section 2.6.2, we present our exploration to make one promi-

nent family of interactive visual analytics tools (V2PI tools) fast through accelerated

13

14

dimension reduction, algebraic optimization, and incremental gradient computation.
In Section 2.5.3), we describe the extensions of Claret to support V2PI interactions
through accelerated forward WMDS and the integration of extended Claret into the
Andromeda software ecosystem to facilitate visual analytics on big data. In Section 2.6,
we show the algebraic optimizations and incremental computations to expedite inverse
WMDS computation. In Section 2.5.4, we present a case study to demonstrate the

usefulness of accelerated V2PI interaction in analyzing big data from cancer biology.

2.2 Background and Related Work

Dimension-reduction tools preserve some essence of the high-dimensional data such
as the pairwise dissimilarity and variance. Popular dimension-reduction techniques
include principal component analysis (PCA), multi-dimensional scaling (MDS), and
linear discriminant analysis (LDA). PCA [124] reduces the dimension of the data by
choosing directions along which the total variance of projected data points is maximized.
MDS [174] preserves pairwise distances, which is a measure of dissimilarity. Weighted
multi-dimensional scaling (WMDS) preserves pairwise weighted distances. LDA [83]
finds a linear combination of features to reduce the dimension, and it preserves the

class discrimination between points.

2.2.1 Mathematical Formulation

Assume there are n points in IR? and they are represented as a collection of n d-
dimensional vectors. W is a d-dimensional weight vector. The projection of these

high-dimensional data points onto 2D space, L is n two dimensional vectors. H, W, L

{h11...h14} wy {li1,li2}
can be written as : , 1 ¢ |,and : . MDS projects data by

{hn,l cee hn,d} Wy {ln,la ln,Q}

minimizing some variant of a stress measure, as depicted in equation 2.1.

Zn: Xn: < Z(hzk — hjr)? = Z(lzk - lj,k)Q) (2.1)

i=1 j=i+1

WMDS, on the other hand, preserves weighted high-dimensional distances between
points in a low-dimensional space. It minimizes a slightly different stress function,
which uses W while computing high-dimensional distances. Stress for WMDS is defined

as follows:

i i (Z(hi,k — hjg)?wy — Z(li:k — lj,k)2) (2.2)

i=1 j=i+1 k=1 k=1

A formal definition of WMDS follows:

Definition 2.1 (WMDS). Given high-dimensional data H, and a dimensional weight

vector W, find a two-dimensional embedding L that minimizes the stress in equation 2.2.

We present the state of the art of MDS tools, focusing mainly on GPU-based tools. We

also briefly discuss random projection and layout matching.

2.2.2 Force-Directed Multi-Dimensional Scaling

We can view the projection of high-dimensional points onto low-dimensional space as
a layout optimization problem. Minimizing the stress function narrows the difference
between the high-dimensional distance and low-dimensional distance for all pairs. If we

start with an initial random layout, i.e. 2D projection, and guide the points to move

15

16

around while lowering the difference between distances in two spaces, it will eventually

converge to the optimal layout.

In the n-body problem, every point exerts forces on all other n — 1 points depending
on some measure such as mass and distance in the gravitational force field and charge
and distance in the electrostatic force field. In layout computation, a given point needs
to move towards or further from any other point in the embedding. The amount of
these movements depends on how closely their distance in the current layout matches
with their high-dimensional counterpart. If we are to attach a force between these two

points, it should be proportional to the difference between these two distances.

Thus, the layout computation problem maps to an n-body problem when we apply a
force between two points ¢ and j proportional to the measure, LD(i,j) — HD(i, j). If
LD(i,j) — HD(i,j) < 0, the force is repulsive, and it will move the two points apart.
If LD(i,7) — HD(i,7) > 0, the force is attractive, and this will move the two points

closer. For the i*" point, the total experienced force is

Fy=> K x (LD(i,j) — HD(i,j))
j#i
Here K is a constant that we can tune for the dataset and simulation environment. Once
we compute force for a point in 2D, we can estimate acceleration, which is proportional
to the force. This acceleration can be used to calculate current velocity, and in turn, the
point’s next position. Velocity is updated using v = vy + a x dt, and the next position
is updated using = = x¢+ v x dt. Here, dt is the simulation step. (vg, xo), and (v, z) are

the velocity and position at the beginning and at the end of the current timestamp.

Force computation at each step is a O(n?) operation since we have to compute O(n?) dis-
tances in 2D. This estimate also assumes that we pre-compute all the high-dimensional

distances; otherwise, this computation becomes O(n? x d) operations.

We can compute forces, velocities, and positions of n points independently. Multiple
implementations use spring-force simulation as a means to perform MDS. Since we
can map MDS to an n-body problem, a well-studied and optimized problem in GPU

computing, we take this approach as the core of Claret.

Stochastic force-based MDS (SF-MDS)

Force-based MDS can be computed in parallel using many cores; however, the compu-
tation workload per thread is still large. Assuming we have n parallel threads at our
disposal, the i* thread will compute F;, which is a summation of forces exerted by
the n — 1 other points. For large n, each thread might take a long time to finish its

computation.

Chalmers et al. [33] made an observation that we can perform force simulation with
much less effort using two small representative sets from the n — 1 points. In their
algorithm, they maintain two sets, a "near set” of size s, and a "random set” of size
s.. The near-set gradually converges to contain the nearest s, points the while ran-
dom set always picks s, new points at every simulation step. The near-set expedites
convergence by providing local structure information, and the random set helps the
embedding by enforcing global structure. The sizes used by Chalmers’ algorithm are 14
and 10, respectively, which were determined empirically. Though Chalmers’ version is
a sequential one, we can leverage the fact that n-body simulation can be performed in
parallel, and reduce the per-thread workload to a constant amount. This observation
also helps us with the stress computation. Instead of adding O(n?) differences, we can

add O(n) distances to approximate the stress.

Several realizations of GPU-based M DS exist. The field of bioinformatics has produced
quite a few GPU-based MDS tools in CUDA, an NVIDIA-specific GPU programming

language. Fester et al. [61] implemented a CUDA version of HiT-MDS by employing

18

reduction to add a large group of numbers and computing multi-dimensional distances
in parallel. CUDA-based fast multi-dimensional scaling (CEFMDS) [137] dynamically
decides whether to run MDS on the entire dataset or divide the data into chunks that

can fit into the global memory of the NVIDIA GPU card depending on the input size.

Multi-level SF: Glimmer Glimmer by Ingram et al. [81] uses stochastic force as the
base algorithm for their force-based MDS, and they implemented this on a GPU using
OpenGL, primarily a graphics programming language. One major contribution of their
work is that they optimize the layout at multiple levels. Glimmer divides the dataset
into logyn levels, data ranges in these levels are [0, max(MIN_SIZE, W#)]’ o (g 3] (3, 1],
where b is a constant called the decimation factor. Glimmer uses three operators at
each level: restrict, relax, and interpolate. The restrict operator samples points for that
range. Relax runs stochastic force to find optimal embedding for all points up to the
previous level. Interpolate uses all relaxed points up to the previous level to sample the

near and random set to run stochastic force on the data at the current level. In the

last level, relaxing all data produces the final embedding.

2.2.3 Application of Weighted Multi-Dimensional Scaling (WMDS)

in Visual to Parametric Interaction (V2PI)

The choice of dimension reduction method largely depends on the type of visual inter-
action in use. Various interactive visual analytics tools use two categories of interac-

tions [107]:

1. Surface level interactions: all interactions performed on visual media and limited
to data manipulation in the visual domain are surface-level interactions. Selecting,
dragging, and highlighting projected points are some examples of surface-level

interactions.

A V >
R ITR

(a) V2PI interaction pipeline. In step 1,
mathematical model M creates a visual-
ization V' using input data D and model
parameter ©. In step 2, V' is displayed to
user. In step 3, the user interacts with the
visualization on surface level (F,) and in
step 4, user interaction is parameterized

high-D data

2D
weights coordinates }
— modified weights
high-D data
[weights cocwdl ates ?

‘modifiec d new 2D
weights coordinates

]

(b) Andromeda pipeline. (a) paramet-
ric interaction, the user directly alters di-
mensional weights (©). (b) V2PI interac-
tion, the user provides feedback through
visual interaction, that feedback is param-
eterized to modify ©. (Reproduced from
[158])

(Fp) to update model parameter ©. The
user can also directly modify the ©. (The
image is redrawn from [107]).

Figure 2.1: V2PI interaction pipeline and pipeline for one of its realization: Web An-
dromeda.

2. Parametric interactions: direct interactions to change the mathematical model
parameters © are parametric interactions. In the case of a visualization created by

WMDS, changing dimension weights directly would be a parametric interaction.

[107] described a typical data visualization pipeline as an iterative process where a
mathematical model summarizes the data through dimension reduction. The user dis-
covers knowledge at the end of this process through observation. This pipeline can miss
some useful visual representations when the predefined model parameters don’t agree
with or reflect expert knowledge. Visual to parametric interaction (V2PI) introduces
a new type of interaction where users’ surface-level interactions are quantified auto-
matically to modify the model parameters (Figure 2.1a). This interaction alters model
parameters on behalf of the user, thereby allowing them to interact with the system

without needing in-depth knowledge of the underlying models themselves.

19

20

Notion of forward and inverse WMDS in the Context of V2PI Tools

Web Andromeda is one realization of V2PI, which supports both parametric interac-
tion and visual to parametric interaction within a weighted multi-dimensional scaled
(WMDS) projection of data onto a lower-dimensional place. In parametric interaction,
the user can up-weight or down-weight every dimension of the data through sliders
associated with them. These weights are WMDS’ parameter ©. In V2PI, the user
moves around projected data points. The data points brought together by the user
are deemed as similar, and the data points moved apart are interpreted as dissimilar.
These interpreted similarities and dissimilarities are then quantified to modify the di-
mension weights ©; this parameter is then used by WMDS to create a 2D projection.
(Figure 2.1b).

In parametric interaction, the user is directly modifying the model parameter ©, and
the V2PI tool needs to use WMDS to project the data onto 2D, we call this WMDS as
forward MDS.

Forward WMDS in Creating a Visualization from Parametric and Visual to

Parametric Interactions

Through parametric interaction, the user provides the input model parameter, © =
W = [wy,ws, ..., wg". The mathematical model used here is WMDS, and WM DS (H, ©)
creates the visualization. When we have the input high dimensional data points H, di-
mensional weights © = W, and we are tasked to create the low dimensional projections

L, WMDS(H,W) is called forward MDS.

Inverse WMDS to quantify V2PI interactions

When a V2PI interaction occurs, the user makes some surface-level interaction to convey
domain knowledge to the visualization. Andromeda interprets the semantics of this
interaction to parameterize the model parameter. The user interactions amount to low
dimensional coordinates of a subset of the points and Andromeda finds the dimensional
weights by minimizing the same stress function as forward WMDS. We call it inverse

WMDS and a formal definition of inverse WMDS follows:

Definition 2.2 (iWMDS). Given high-dimensional data H, and a two-dimensional
embedding L, find the dimensional weight vector W, that minimizes the stress in equa-

tion 2.2.

2.3 Claret: A Fast and Portable Multi-Dimensional

Scaling (MDS) Tool

To develop Claret, we parallelize the sequential MDS algorithm SF-MDS and port the
parallelized version into parallel hardware using OpenCL. Claret also uses Glimmer’s

multi-level approach to obtain faster convergence.

Continuing from sub-section 2.2.2, SF-MDS is a linear approximation of force-based
MDS. Instead of computing force from all n — 1 points, SF-MDS uses two small subsets
to do so. At every iteration, the near set is updated by choosing the s, nearest points
(according to their high dimensional distances from the point under consideration) from
pivot_size = s, + s, pivot points. We summarize SF-MDS in Algorithm 1, where f()

and ¢() are linear functions to allow tuning simulation parameters.

We want to parallelize algorithm 1 for efficient implementation and fast execution

on any OpenCL supported devices. In OpenCL architecture, we have two types of

21

22

Algorithm 1 Force-based MDS.

Require: highD[nxd], lowD[n x 2], velocity[n x 2], force[nx2] , pivots[n][pivot__ size]

1: while converge() # true do

2 fori=0—ndo

3 near__set < pivotsi][0...near__set_size]

4 random_ set <+ randomindices

5: my_ pivots <— near__set U random,__set
6: for 7 =0 — pivot_size do
7
8
9

k < my_pivots|j]
hDistancelk] < dist(highD]|i], highD[k])
[Distance[k| < dist(lowD]i], lowD[k])

10: force+ = f(hDistance[k] — I Distancel[k])
11: sort my_ pivots based on hDistance

12: a g(force)

13: velocity[i] « velocity[i] + at

14: lowDIi] + lowD[i] + velocityli] x t

15: pivotsli] < my_ pivots

computing devices: host and device. The host is usually a CPU which can launch
parallel programs into devices and act as the moderator and controller. The host has
host memory, and the device has a hierarchy of memory consisting of global memory,
constant memory, and local memory. We load the input data into host memory; the
host program then launches parallel programs in SIMD fashion into computing units

of one or more devices.

Given the sequential algorithm as depicted in algorithm 1, the goal is to develop a
parallel program that achieves similar functionalities and can run on any computing

device having the parallel computing architecture specified by the OpenCL standard.

2.3.1 Porting Stochastic Force-Based Multi-Dimensional Scal-
ing (SF-MDS) to GPU Using OpenCL

Any n-body problem can be parallelized across n points. Every point experience force

from all other (or in the case of SF-MDS, a subset of) points which are frozen in time

and space. At the beginning of every iteration, each point sees the same configuration
({position, wvelocity, ...)) of points. In SF-MDS, every point experiences force from
pivot__size = O(1) other points. So, we don’t unroll the loop for iterations over time;
instead, we unroll /parallelize the outer for loop in line 2 as every point can be processed

independently in a given duration of §t.

So, every iteration for every point runs in O(1) = O(n)/n time. The code block
consisting from line 3 through line 15 computes the force and updates the position for a
given point. We can take this block and put it inside a computing unit, namely thread,
to take care of individual points in parallel. Algorithm 2 shows a high-level OpenCL
kernel of Claret. At every iteration, n such kernels are launched to update the positions

of n points in parallel.

There are some implementation/porting challenges which can cripple the performance
on different accelerators in OpenCL programming paradigm. We address some of these

issues in the remaining part of this section.

Memory and data management Solving an n-body problem for large data requires
storing a significant amount of data in memory, efficient access to that memory, and

minimal data transfer between the host and device.

We give an estimate of the in-memory data storage requirement during a single iteration

in table (2.1). For the purpose of demonstration, we set pivot_size to 8.

Buffer Purpose Size Type
highD high dimensional data n x d float
lowD 2D projection n x 2 float

pivot_indices Near and Random index n X 8 unsigned int
hd distances HD distances to pivots nx 8 float
Id distances LD distances to pivots n x 8 float

Table 2.1: The comprehensive list of required memory.

23

24

Algorithm 2 Claret Kernel.

10:
11:
12:
13:
14:
15:
16:
17:
18:

1
2
3
4
5:
6
7
8
9

. gid < get__global__id(0)

. //copy data from global memory

. near__set < pivots[i][0. .. near__set__size]
random__set < randomindices

: my__prvots < near__set U random,__set

. vg velocity[gid)

. xg < lowD][gid]

//compute force using pivot points
for j =0 — pivot_size do
k < my_ pivots[j]
hDistancelj| < dist(highD|gid], highD[k])
[Distance[j] < dist(lowD]gid], lowD[k])
dv < vy — velocity[k]
force+ = f(hDistance[k] — [Distance[k], 6v)

sort my_ pivots based on hDistance
globalSynchronization()

19:

20:
21:
22:
23:
24:
25:
26:
27:
28:

//update velocity and position

a <+ g(force)

vV 4— v+ at

T To+v Xt

//copy data back to global memory
velocity[gid] < v

lowD|[gid] < x

pivots|gid] < my_ pivots
globalSynchronization()

29:

30:
31:
32:
33:

//Compute low dimensional distances
for j = 0 — pivot__size do
k < my_ pivots[j]
[Distance[j] < dist(lowD]gid], lowD[k])

We have to store around (22 + d) x n floating point numbers in device memory. So,
even for an input data as big as 10° x 100, the required memory is around 500M B,

which can easily fit in the device memory of modern hardware accelerators.

Since pre-computing O(n?) distances requires a large amount of device memory, we
compute distances on the fly. That also helps avoid moving a great deal of data between

the host and device.

Low latency in memory access We coalesced memory access so that whenever
possible, the compiler can resort to vector operation. Before the first iteration, we
pre-compute n X pivot__size/2 pivot indices in the range [0,n) and offload the whole
data into device’s global memory. At every iteration, for every point we generate a ran-
dom starting point as si = f(global_id, iteration) and access pivot_indices[si . .. si+

pivot__size/2] as new random points.

Moving data back and forth between the host and device is a time-consuming task. So,
we move almost the entirety of the data at the beginning of the first iteration to device
global memory, and then between iterations, we only fetch a constant sized data from

the device to host.

Global Synchronization and Kernel Fusion At any given iteration of force sim-
ulation, every point sees the same configuration, the same high and low-dimensional

positions. We want to ensure consistent access to global memory shared by all threads.

In algorithm 2, during a given iteration (same time window), all threads access lowD 4
times in lines 9, 14, 26, and 33. Except for the third access, all other accesses are read
accesses. These accesses have a deterministic order, let’s call them R1, R2, W1, and
R3. W1 is a write access that can create a data race between threads if the threads

do not synchronize before and after this step. So, we put two global synchronization

25

26

points in the kernel.

Unfortunately, OpenCL does not directly support global synchronization. Further-
more, the global synchronization mechanism offered by Xiao et al. [187] is not viable
because OpenCL cannot globally synchronize across workgroups. Instead, we break
the workflow of a single thread across three kernels at the points of required global
synchronization. Between two kernel calls, control returns to the host, and thus, all

threads get a chance to synchronize globally.

While this approach ensures the correctness of our parallelization, the overhead of
coming back to CPU is non-trivial. So, we seam the kernels back together using kernel
fusion through double buffering. We maintain two buffers for one array, and at any given
step, all threads read from the same buffer and write to the other buffer. This method

ensures W1 does not create any inconsistency in values read by different threads.

Computing distance in parallel Every thread needs to compute pivot_size pair-
wise distances, each of them is an O(d) task if computed sequentially within the thread.
Ideally, each pairwise distance computation comes down to reducing d values into 1
value. Each main thread is launching (pivot_size x d) threads to reduce pivot_size
values. This mechanism is known as dynamic parallelism, and only a handful of GPU
cards support this. Since we do not want to restrict Claret to run on only a selected

few accelerators, we solve this in software.

We can break the kernel into three segments for three tasks. Each thread will run in
parallel to compute pivot indices and then they will sync. After that, we combine all
threads’ reduction jobs into one big reduction job. Here (n x pivot_size x d) values

will be reduced to (n x pivot__size) values by (n X pivot_size x d) reduction threads.

Once the reduction threads finish, all distances for all regular threads are completed

and available. Now, each regular thread can resume computing forces and positions for

27

the points for which they are responsible.

Stress computation and convergence At every iteration, after every point’s po-
sition is updated, we compute stress by a reduction in the accelerator. We smooth
the stress curve by taking moving average, and we use Cauchy Convergence test for
deciding termination. In each level, the stress starts from a high point and eventually

plateaus.

2.3.2 Performance and Portability of Claret

The two main foci of this undertaking of implementing WMDS in OpenCL are:

1. to be able to run this on multiple accelerator types.

2. make the runtime fast enough for interactive visual analytics.

In this section, we will first start with demonstrating the correctness of our implementa-
tion by comparing the embedding for several datasets produced by Claret against that
of Scikit-MDS and Glimmer. Next, we will show the runtime performance on various

accelerators with different configurations.

We use a range of datasets from different sources.

1. Cancer: This dataset contains information regarding breast cancer patients.

There are 683 patients each with 9 features.

2. Shuttle: This dataset is collected from NASA. It contains 43500 data points

about shuttle turn correlation, and each data point has 9 features.

3. Supreme Court Ruling: We constructed two datasets of size 14000 x 20 and

14000 x 100 by running topic analysis on supreme court rulings.

28

4. Artificial Data: We generate artificial data from 10 20-variate normal distribu-

tions. These datasets will have 10 clusters with 20 dimensions.

Layout validation We get a similar output irrespective of our choice of the acceler-
ator for running Claret. We compute embeddings for the same datasets using Claret
on GPU, Scikit-MDS on CPU and Glimmer on GPU. As we can see in figure 2.2,
the Claret’s embedding is comparable with the Glimmer and Scikit-MDS’s embedding.
Though the later was only able to compute embedding for the smallest dataset. These
embeddings are visually similar. We also compared stress of the embeddings, and the

stresses are within +5% of each other.

Figure 2.2: Embeddings produced by Claret (left) and Glimmer (right). The embed-
dings are visually similar as well as their stresses are within £5% of each other.

Comparison against Other GPU-based MDS Tools We want to compare Claret’s
performance against a sequential MDS tool such as Scikit-MDS. As anticipated in ear-
lier sections, Scikit-MDS can not compute embeddings for larger datasets. It ran out
of memory for Shuttle and SC Ruling data even in a system with 8 GB of memory. So,

we compare Claret’s performance against that of Scikit-MDS’s on the Cancer dataset.

We could run Scikit-MDS only on Cancer dataset (683 x 9); it took 15s even with 4

parallel threads. Claret took 310ms. We ran both tools in Xeon-E5 with 4 CPU cores.

There are several GPU-based MDS tools; CFMDS and Hit-MDS are implemented in
CUDA and Glimmer are implemented in OpenGL. CEFMDS has a dependency on CULA
which is discontinued, and Hit-MDS is implemented using very old version of CUDA.
Osipyan et al. [133] reported that Glimmer is faster than CFMDS and Hit-MDS. So,
we compare Claret’s performance against Glimmer’s performance on NVIDIA Titan X

GPU card. From Figure 2.3, we see that Claret is (3 — 9).X faster than Glimmer.

4000 16
3500 s 13.45 14
3000 12
“» 2500 10 o
£ 859 S
o 2000 ' 8 8
S o
— 1500 6 U
1000 44n6 4
2.90
500 l 2
0 - . 0
Cancer Shuttle SCRuling (20 SCRuling (100
topics) topics)
Dataset

M Claret Glimmer & Speedup

Figure 2.3: Performance comparison between Claret and Glimmer on four different
datasets.

We also experimented with artificial data to see whether the performance is dependent
on the values of n. Figure 2.4 shows the result. Claret’s speedup compared to Glimmer

is in the range 6.28 X — 1.45X. As the data size increases, the speedup decreases.

29

30

8000
__. 7000
(7))

£ 6000
W 5000
= 4000
3000
S 2000
%

— 1000

Speedup

O R N W & U1 OO

0 20000 40000 60000 80000 100000

Number of Points
——Claret ——Glimmer -+ Speedup

Figure 2.4: Layout computation time for Claret and Glimmer.

Running on various accelerators The crux of our motivation is portability — the
ability to run on many different kinds of hardware. We show that Claret runs on 4

different accelerators including:

1. 22-core Xeon E5-2637 CPU @3.50GHz by Intel

2. Tesla K80(Kepler) GPU by NVIDIA with 2496 cores

3. Hawaii GPU by AMD

4. Xeon Phi accelerator by Intel with 61 cores

From Figure 2.5, CPU, and GPU performances are comparable because we have used
a powerful CPU with 22 cores. The poorer performance on Xeon Phi in contrast to
GPUs suggests that we should take individual core’s parallelizability and computing

power into consideration when designing parallel tasks.

5000
4500
— 4000
(%)
£ 3500
v 3000
£ 2500
|_
5 2000
S 1500
O
— 1000 I I
I
;]
Cancer Shuttle SC Ruling (20 SCRuling (100
Topics) Topics)
Dataset

W Xeon E5 TeslaK80 MW AMD Hawaii H Xeon Phi

Figure 2.5: Layout computation time in different accelerators.

2.3.3 Quantifying Layout Similarity

Embeddings created by different MDS implementations or the same implementation
in different phases might appear dissimilar. We want to investigate similarity between

such embeddings.

To quantify the similarity between embeddings, we propose a method based on geo-
metric shape matching. Let point set P consist of n points in d-dimensional space. Let
Ly, Ly be two projections created by MDS. We want to quantify the similarity between

these two.

If two embeddings are similar under rotation and translation, we align them using center
of mass and principal components. First, we compute centers of mass C,Cy of Ly, Lo
respectively. Then, we apply Cy — C translation to L; so that their centers coincide.
L) = L] + Cy — Cy. We compute their first principal components v1, v for L), Lo and

the angle 6 between v1,v5. Finally, we apply € rotation to L} so that 271 and vy are

31

32

aligned.

To compute similarity between the layouts Ly, Lo, we then pick n corresponding point
pairs (p;,q;) where p; € L} and ¢; € Ly. We then compute n Euclidean distances

between points in each pair, and take their average to get the final score. Formally,

similarity(Lq, Ly) = Z dist(p;, q;) (2.3)

i:llﬁn
pi € Ly,q; € L2

The alignment procedure can be used to stabilize 2D projections in different phases of

interactive visualization.

2.4 Stretched Random Projection

In WMDS, we have to compute O(n?) weighted Euclidean distances in IR® which re-

quires O(n?d) operations. We propose a way to cut this computation.

2.4.1 Johnson-Lindenstrauss Lemma for Weighted Euclidean

Distance

The compute kernels compute pairwise distances on the fly To reduce global memory
usage. Each distance computation is a O(d) task which can slow down the program for

large d(d ~ n).

We solve this problem using a result from geometry. Johnson—Lindenstrauss lemma [88]
states that if we project a high dimensional dataset onto a randomly chosen subspace
of much smaller dimensions, it preserves the Euclidean distances approximately. Since
WMDS requires retaining weighted Euclidean distances, we extend JL lemma to prove

that similar result can be achieved for weighted Euclidean distance as well.

33

Definition 2.3. Given a set of n points in IR%, and a parameter € > 0, a projection of

P onto a random k-dimensional linear subspace, a distance ||p — q||o is e-preserved if

(1= llp —allz < Va/kl f(p) = f@)ll2 < (1 +€)llp —all>-

Theorem 2.4. Johnson-Lindenstrauss Lemma Let P be a set of n points in IR?,
let € > 0 be a parameter, and let k = (1/e*)logn. Let Q be the projection of P onto a
random k-dimensional linear subspace. Then all pairwise Fuclidean distances in P are

e-preserved by the corresponding pairwise Euclidean distances in Q) with probability at

least 1/2.

Definition 2.5. Given a point set P in IR? and a dimensional weight vector W, the

1/2
weighted Euclidean distance between two points p, ¢ in P is ||p—q||w2 = (Zle w;(zy; — :z:ql-)2>)

Definition 2.6. Stretching p = [z,1, Zp2, - . - Tpa)T by W = [wy, wa, ..., wg]T is scaling p
by w; along i*" dimension for i € {1,2,...,d} so that p' = [\/w; X Zp1, ..., /Wa X Tpa)® -
Formally, p’ = p@ W = [(Jw1 X Tp1,...,/Wa X Tpa)" . A point set P is stretched by

W if every point p € P is stretched by W.

Theorem 2.7. Johnson-Lindenstrauss Lemma for weighted Fuclidean dis-
tance Let P be a set of n points in R, W is d-dimensional weight vector, let € > 0 be
a parameter, and let k = (1/€*)logn. Let Q be the projection of P& W onto a random
k-dimension linear subspace. Then, all pairwise weighted Fuclidean distances in P are
e-preserved by the corresponding pairwise Euclidean distances in) with probability at

least 1/2.

Proof Let,) =p@& W and ¢ = ¢ & W. Both, p’ and ¢ are points in IR? and they
can be mapped to their objects p and ¢q. By Theorem 2.4, ||p’ — ¢'||2 is e-preserved after

projecting P & W onto k-dimensional linear subspace.

34

1 =dll=lpEW —-¢B W]
k

= (X Vit — vag)?)

i=1
k L\ 1/2

= <Zwi(mpi — gi))
i=1

= [lp — dllu2

1/2

(2.4)

According to Theorem 2.4, (1—€)|lp' —¢'lla < \/d/kIf(') = f(@)ll2 < L +e)|[p =l
We know from equation 2.4, ||p' — ¢'||2 = ||p — ¢l|we-

So, (1=6)|[p—qllwz < V/AJE|f ()~ F()]2 < (14€)||[p—q||we- Hence, the weighted Eu-
clidean distance between two points in P are preserved by the corresponding Euclidean

distance in) with probability at least 1/2.

2.4.2 Computing Weighted Euclidean Distance Using Random

Projection

To compute pairwise weighted Euclidean distances in P, we first compute PEW. This
can be accomplished by multiplying (n X d)- matrix P with a (d x d) diagonal matrix
WD, where WD[Z,Z] = Ww;. P = P@W =P x WD.

Then, we will project P’ onto k-dimensional linear subspace by multiplying P’ with
a d X k dimensional random matrix R. So, the projected point set Q = P’ x R =

P xWp x R.

Once we have computed (), we will compute pairwise Euclidean distances in (), and

they will be e-approximation of the weighted Euclidean distances in P.

Pre-processing time Construction of Wp takes O(d) time. P & W takes O(nd)
time since Wp is a sparse matrix. R can be a sparse matrix [6] with only 1/3 non-zero

entries. So, the overall runtime for this pre-processing step is O(n?+nlogn+n? x logn)

= O(n*logn).

For large d, we use this result to create H' € RY1™ and then run MDS on H'.
The saved computation in MDS for the reduced dimension is enough to pay for this

pre-processing step.

35

2.5 Accelerated Forward Weighted Multi-Dimensional

Scaling for Visual to Parametric Interaction Tools

In our prior work [45], we developed a portable parallel tool called Claret to compute
MDS/WMDS projections fast using parallel computing on available hardware acceler-
ators. WMDS from Claret can project large volumes of high-dimensional data in less
than a second while its sequential counterpart can take minutes. Integrating WMDS
from Claret into V2PI analytics tools can make interactive visual analytics fast and

provide a better user experience.

Claret MDS/WMDS implementation works with Euclidean distances only. A geometric
transformation called Stretched Random Projection reduces high-dimensional (when
d ~ n) data into an intermediate low (logn) dimensional space as a pre-processing step
when Euclidean and weighted Euclidean distance is concerned. However, in the current
implementation of Claret, MDS/WMDS for non-Euclidean distance is not supported.
Tools facilitating V2PI interactions need to be able to use non-Euclidean distances such
as Jaccard similarity index, Cosine similarity, and Mahalanobis distance. For Claret to
be beneficial for V2PI interactions, we need to extend Claret’s functionalities to support

these distances.

36

Claret was implemented in OpenCL to provide portability across accelerators. How-
ever, implementation in the vendor-specific language can speed up the computation
significantly. In this work, extend Claret in two additional GPU programming lan-
guages: CUDA for NVIDIA GPUs and HIP for AMD GPUs. Claret runs an iterative
force-based algorithm to optimize lower-dimensional projection by minimizing the stress

as a measure of force between two points.

2.5.1 Supporting Non-Euclidean Distances

There are various types of non-Euclidean distances that V2PI tools can use to quantify
the similarity between data points, depending on the context. We primarily consider

three distances:

1. Jaccard index [148] is a measure of similarity between two sample sets. For data
with binary features, a single data point can be considered as a set of features.

If two data points are represented as A and B, the similarity between them is
ANB
AUB’
then computed as dap = 1 — J;(A, B).

computed using J;(A, B) = The distance between these two points is

2. Cosine similarity [162] measures similarity between two points by quantifying
similarity between two representing non-zero vectors in high-dimensional space.
This similarity is measured by taking the cosine of the angle between the two

vectors. For two data points A = [Ay, As,..., Ag) and B = [By, By, ..., By is:
>y AiBs

VL, AL B

dap = 1 — similarity(A, B).

similarity(A, B) = . Distance between these two points,

3. Manhattan distance [98] between two points is the sum of the absolute dif-

ferences of their feature values. Manhattan distance between two data points

A= [Al,AQ,. .. ,Ad] and B = [BhBQ,. . .7Bd], dAB = Z?:l |Az - Bz|

In the claret::wmds kernel (Algorithm 3), we first compute weighted Euclidean distances

between the current point and points in its near- and random- sets (Line 13).

We have modified the distance function (dist) to take one additional parameter (dis-
tance_type), and based on its value, this function now can compute three additional

types of distances.

Algorithm 3 claret::wmds kernel.

gid < get__global_id(0)

//copy data from global memory
near__set < pivotsi][0...near__set_size]
random__set < randomindices

my_ pivots <— near__set U random,__set

vo velocity[gid]

xg < lowD][gid]

,_.
@

//compute force using pivot points

: for j =0 — pivot_size do

k < my_ pivots[j]

hDistance[j] < dist(highD|gid], highD|k], W)
[Distance[j] < dist(lowD]gid], lowD[k])

dv < vy — velocity|k]

force+ = f(hDistance[k] — I Distancelk], dv)

: sort my_ pivots based on hDistance
: globalSynchronization()

e e e e
S Ut W N

N = = =
S © o =3

: //update velocity and position
R g(force)

Vv +at

X Tog+vXT

: //copy data back to global memory
. velocity[gid] < v

: lowD|gid] < x

. pivots|gid] < my_ pivots

: globalSynchronization()

WD NN NN NN N
S © ® IS AW

: //Compute low dimensional distances

: for j =0 — pivot_size do

k < my_ pivots[j]

[Distance[j] < dist(lowD]gid], lowD[k])

W W W
W o

38

2.5.2 Interface Between Claret and Web Andromeda

We developed Claret as a portable and parallel tool that can facilitate fast MDS and
WMDS computation using various hardware accelerators. We implemented Claret using
OpenCL [126] (C++ extension), and through our distribution, we provide a Python

package for the end-users (developers). There is a C++ version, as well.

Claret. WMDS

+ support for non-
Euclidean distances

z I | 5

Python backend ‘
PyOpenCL

A

Scipy.MDS Inverse MDS

Figure 2.6: Integration of Claret. WMDS into Andromeda pipeline.

Web Andromeda has a Python backend, and it currently uses scipy [179]. MDS to
project data onto 2D. It first computes all pairwise weighted Euclidean distances and
then passes these metric distances to scipy’s MDS routine. Claret MDS/WMDS has
a host-side code in C++ and device-side code in OpenCL. We implemented a python
host code using PyOpenCL [96] that can invoke the OpenCL device code (kernels).
Then the Python backend of Andromeda can call Claret MDS/WMDS routines. In
this implementation, we developed a Python distribution of Claret (claret) that has a

module named wmds using PyOpenCL to interface between OpenCL and Python.

39

Dataset size claret::wmds time scipy wmds time
Crescent tfidf.csv 41x275 0.29 0.11
Crescent topics 41x10 0.22 0.11
UK health 41x874 0.43 0.26
Animal data paper 13x13 0.25 0.06
Animal data square 13x13 0.22 0.06
Animal data study 49x72 0.24 0.21
Animal data transpose 72x49 0.26 0.25
STAT2004 subset noname 50x28 0.28 0.17
Patient data 22x91 0.25 0.07

Table 2.2: Performance comparison between vanilla Andromeda and Andromeda with
Claret. Using Claret is advantageous for big data.

2.5.3 Performance Comparison

Table 2.2 shows the performance comparison between Web Andromeda with scipy’s
MDS and Claret-embedded Andromeda. For small datasets, Claret does not help much
with the speedup. For large datasets, Claret produces visualization within seconds

while the sequential MDS cannot finish the computation in minutes to hours.

40

2.5.4 Case Study: Analyzing TCGA Mutation Data to Dis-
cover Cancer-Causing Genes Through the Incorporation

of Domain Knowledge

The Cancer Genome Atlas (TCGA) [184] collects and hosts DNA sequence and gene
expression data from tumor tissues and blood-derived normal tissues of thousands of
cancer patients. By comparing the data from tumor samples against the normal sam-

ples, we can have insight into cancer-causing gene mutations and expression levels.

For this case study, we are particularly interested in DNA sequence data for breast
cancer patients. The human genome has around 20000 genes, and any of these genes
can host many mutations in its hundreds of locations. We choose each gene as a binary
feature of the data, where a 0-value indicates this sample does not have a significant
mutation in that gene, an 1-value indicates it does. For simplicity, we chose the top 1007
genes to use as features based on their ability to separate between tumor and normal
samples. Previous studies have applied various mathematical, statistical, and machine
learning models to discover these driver genes. Here, we use the Claret-enabled V2PI
tool Andromeda to visually explore this 944 x 1007 (703 tumor samples, 241 normal

samples) dataset to discover potential cancer-causing genes.

Visual to parametric interaction on breast cancer data from TCGA Multi-
hit theory of carcinogenesis ([17, 19, 20, 109, 114, 173] suggests that combinations of
two — eight gene mutations cause cancer in humans. We want to exploit our knowledge
of the samples regarding them being tumor or normal to discover the cancer-causing
genes or the gene combinations. We name the tumor samples with a T-prefix and
the normal samples with an N-prefix. We first project all the samples by assigning
equal weights to all genes (Figure 2.7a). Different genes have different roles in various

biological processes, so a central mass of projected data with no distinguishable pattern

is expected when all the genes are equally weighted.

Since we know which samples are tumor samples and which samples are normal, we
can feed this knowledge to Andromeda through surface-level interaction. We separated
20 tumor samples and 20 normal samples from the concentrated mass randomly and
moved these two groups far from each other (Figure 2.7b). Then we pressed the Up-
date Layout button to request a V2PI interaction. Andromeda performed an inverse
WMDS operation to parameterize the surface level visual interaction and then change
the model parameters (i.e., weights of the features). As a result, we see that two genes
(ENSG00000149531, ENSG00000211896) were significantly up-weighted compared to
all other genes. This change in parameters also resulted in an updated visualization
with 4 separate clusters, as seen in Figure 2.7c. Further examinations of these clusters

might result in more insights.

Focusing on the two genes that got up-weighted simultaneously, we cross-referenced
the role of these two genes and their combinations in causing breast cancer using the
paper by [48]. This paper identified two-hit combinations of genes responsible for 17
cancer types. They reported eight two-hit combinations (Table 2.3) for breast cancer,
and the combination (ENSG00000149531, ENSG00000211896) was reported as the
second most frequent combination in tumor samples which is present in 38% of the
tumor samples. This co-occurrence of the same combination in a more traditional
cancer biology research and, in this case-study through V2PI interaction, suggests V2PI

interactions have the potential in expediting scientific discoveries in various domains.

Time required for V2PI interactions Moving 40 points to two corners (Fig-
ure 2.7a) through visual interactions (dragging with mouse) was instantaneous and took
nearly the time to decide on the data points to move. Parameterizing these interactions
to update the feature weights and then creating the new visualization (Figure 2.7¢) took

5 — 10 seconds.

41

42

Rank Gene 1 Gene 2 %Coverage
1 ENSG00000205277 ENSG00000184956 86%
2 ENSG00000149531 ENSGO00000211896 38%
3 ENSG00000219481 ENSGO00000173213 33%
4 ENSG00000185567 ENSG00000090512 9%
5 ENSG00000170471 ENSG00000205869 9%
6 ENSG00000178104 ENSGO00000275113 5%
7 ENSG00000149531 ENSG00000084731 3%
8 ENSG00000137210 ENSGO00000198888 1%

Table 2.3: Sample coverage by combinations for BRCA [48] .

2.6 Optimizing Inverse WMDS for Quantifying Vi-

sual to Parametric Interactions

Figure 2.1a shows the iterative process of V2PI. In step 1, the application creates a
visualization using a mathematical model, M that depends on data D and model pa-
rameters ©. The actual implementation uses weighted MDS as the dimension reduction
method. A wrapper class on top of a readily available java implementation of MDS to
facilitate the weighted version of MDS The tool presents visualization V' to the user
for interaction in step 2. The user interacts with the visualization in step 3 using
standard interaction methods such as dragging the points further or closer, highlight-
ing some points, etc. In step 4, user interaction is parameterized and fed back to the

mathematical model.

We are interested in step 4 since it is the most time-consuming part. Converting visual
interaction to update the parameters of the model requires solving an optimization
problem in an ample search space From Section 2.6.2 we need to find a combination of
weights for all the dimensions that minimize the stress function. We elaborate on the

stress equation to give a comprehensive description of the inverse problem.

When the user interacts with the displayed visualization V' and provides visual feedback
in terms of a new visualization V', the application needs to convert the input into the
parametric form. We can formulate this problem as, given high-dimensional data points
H and corresponding 2D projection, we need to find a d-dimensional weight vector that

minimizes the stress described by equation 2.2.

Since H and L are given, searching for an optimal w that minimizes stress necessitates
searching in a d-dimensional search-space. In its simplistic version, the tool runs the
optimization for a predefined number of iterations. At every iteration, the current W
is perturbed along one dimension after another. If the perturbed W yields lower stress,
the perturbation is used in the next iteration. Otherwise, the original W is restored.
At the end of the predefined number of iterations, the W that minimizes the stress

function is retained and is fed back to the model.

Algorithm 5 describes the process of searching an optimal parameter to specify the

user’s visual interaction best.

Algorithm 5 Optimizing stress function.
1: Input: H, L
2: for i =1 — maxzlteration do
3: for j=1—ddo
currentStress = computeStress(W)
W' = changeW eight(j)
newStress = computeStress(W")
if newStress < currentStress then
accept the change
W =w
10: else
11: reject the change

Changing the weight of a particular dimension is tricky. Just choosing a random value
is not enough, other dimensions’ weights also need to be normalized. For the weight
vector [wl, Wy, . . . ,wp]T, we maintain that the vector is normalized at any phase of the

algorithm, that is ZZ:1 wy, = 1 To maintain this invariant, whenever k'th dimension’s

43

44

value is changed to wj from wy, the weight vector is normalized by dividing each

dimension’s weight by a normalizing factor N = wy +wy + - - - + wj, + - - - + wy, thereby
T

changing W to W’ = |[wy/N,ws/N,...,wg/N, ..., we/N

With the help of this formula, the algorithm for changing a particular dimension weight

is stated below:

Algorithm 6 Changing a dimension’s weight.
: Input: W, k
W’ W
w!y < rand()
normalizationFactor <— 0
fort:=1—ddo

normalizationFactor+ = w;
for:=1—ddo

W'[i] <= W'[i]/normalizationFactor

From equation 2.2, computing stress is supposedly the most time-consuming step of

this optimization process. The following algorithm shows how stress is computed.

Algorithm 7 Computing Stress.
Input: H, L, W
stress < (
fori=1—ndo
for j=i+1—ndo
wetghtedHighDistance < 0
for k=1—ddo
weightedHighDistance+ = (hix — hjx)? X wg

return stress

2.6.1 Runtime Analysis

To analyze the runtime performance of backward computation, we need to identify the
parameters determining the performance. Let, maxlteration = I. From algorithm 5,
the outermost loop runs I times, and the inner loop runs p times To fully account for

the runtime, now we need to look into algorithm 7 and algorithm 6, which is a step in

algorithm 1 There are three nested loops they run in n, O(n), and d times respectively.

So, the three parameters that determine the runtime are I, n, and d.

First we determine the runtime of algorithm 7 that computes stress. Outer loop runs
n times and the inner loop runs O(n) times. Innermost loop runs d times So, the
total runtime for algorithm 7 comes to O(n x n x d) = O(n?d). Changing weight in
algorithm 5 is performed by algorithm 6. This algorithm runs in O(d) time. Since we
know the runtime for computeStress algorithm of algorithm 5, and change Weight in line
4, we can complete our analysis for algorithm 5. The outermost loop runs I times. The
inner loop starting at line 2 runs p times. Line 3 and 6-11 takes O(1) time. Line 4
takes O(d) time. Line 5 takes O(n?d) times. So, the total runtime for algorithm 1 is

O(I x px (O(1) + O(d) + O(n*d)) = O(In*d?).

So, the runtime performance of this algorithm is linear in the number of iterations and
quadratic in both n and d. By keeping the number of iterations fixed, we concentrate

on time complexity in terms of n and d.

2.6.2 Optimizing Runtime for Algorithm Parameters

Three algorithm parameters determine the runtime, the number of iterations I, the
number of data points n, and the dimension of data points d. The baseline implemen-
tation deals with a fixed value for I, and its typical value is 500 to 1000. We don’t focus
on this parameter since our goal is not to come up with a different algorithm. Rather
we want to produce the same result as the original implementation much faster. So,
we focus on reducing runtime’s dependency on parameters n and d by bringing it down

from quadratic to linear.

Optimization for d The bottleneck for algorithm 1 is its stress computation part.

Computing stress is a O(n?d) operation. Computing stress is essentially a three-step

45

46

operation.

1. Compute pairwise distances between n points in 2D.

2. Compute the pairwise weighted distance between n points in high dimensional

space with the changed weight vector.

3. For each pair, take the absolute difference between their distances in high dimen-

sional space and 2D space. The summation of these differences is stress.

For a given H, L pairwise distances between points in 2D is the same for all the iteration.
So, this can be done just once, even before entering the outermost loop of algorithm 1
However, step 2 needs to be done in each iteration of the inner loop since the weight
of a particular dimension is changing, and the normalization step effectively changes
all the weights. Thus, this step affects all the pairwise distances. We can compute the

weighted distance between two points in high dimensional space using equation 2.5

HD(Z,]) = \/(H@l — Hj71)2 Xwy+ -+ (Hi,d — Hj,d>2 X Wq (25)

For each of these I x d iterations, we have to recompute n? pairwise weighted dis-
tance, and computing one distance takes O(d). Distance computation makes stress
computation a O(n?) operation. Since a change in one dimension’s weight affects all
n? distances, we cannot do anything here in terms of n. We observed that though the
weighted distances between two points in two successive iterations are different, they
only differ in only one component, as seen in equation 2.5 To strengthen the case, we

do some algebraic re-arrangement.

Let, weighted distance between points ¢ and j in high dimensional space is HD(i,) at

the end of current iteration. In the next iteration d’* dimension’s weight is changed from

wy, to wy,. This changes W = [wl,wQ,...,wk,...,wd}Tto W' = |wy/N,ws/N,...;,wg/N,...,wg/N

T

Changing weight is essentially picking a random weight for a given dimension. The rate
at which a change in a dimension takes us to convergence determines how fast we need
to change its value. we observed we could recompute the weighted distance between
two points in constant time instead of O(d) time if the value for the previous iteration
is known. If we maintain a 2D n x n array of the weighted distances between points
in high dimensional space, the sequential nature of two outermost loops guarantees

that for every iteration, the value from the previous iteration is known. With this

47

48

observation, we claim that step 2 can be performed in O(n?) time instead of O(n?d)
time. We can perform step 3 in O(n?) time; this step can also be merged with step 2 As
soon as one pairwise distance is recomputed, the difference from its lower dimensional

counterpart can be computed and added to the stress.

The modified version of algorithm 5 will require computeStress to be replaced by up-
dateStress. Algorithm 3 will provide the changed weight for the current dimension to
be perturbed. The new updateStress algorithm will take the dimension index, and it’s
changed weight to compute new stress using the pairwise weighted distance between

points in high dimensional space.

Algorithm 8 Updating stress.
Input: HD, LD, k, wy, W’
stress < 0
normFactor < 0
fori=1—ddo

normFactor+ = w;
normFactor+ = (w), — wy,)

fori=1—ndo
for j=i+1—ndo
newContribution < (H;j — H;;)* X w),
oldContribution < (H;r — H;x)* X wy,
currentValue < HD?J-

= currentV alue—oldContribution+newContribution
HDZ’J = \/ normFactor

stress+ = |HDZ'J' - LDZ'7j|

return stress

Optimization for n Equation 2.2 dictates that computing stress requires O(n?)
operations, so there is no way reducing runtime for n while computing stress, so we

should try to reduce the number of times we need to compute stress.

The purpose of this application is to help users to discover knowledge by transferring
their domain-knowledge through visual interaction. We can consider two extremes. In

one extreme, the user knows inter-relation between all the data points. In that case, the

user can move all data points in the 2D projection in one single pass. The application
does not need to recompute the visualization since all the projected points are already
in the correct place. In another extreme, the user knows nothing about the dataset.
So, there is no way she can give any meaningful feedback to the initial visualization.
It’s safe to assume, user’s knowledge would not be in any of these extremes, rather
her expertise regarding the dataset would be partial, so at any pass, the user will only
move a fraction of the data points. Besides, in the case of big data, it’s not practical

to interact will all the points.

As we have seen, moving a fraction of data points is inherently confusing. While the
relative positions between moved points transfer user’s knowledge about similarity /dis-
similarity between those points, it does not say these points’ relation with unmoved
points. For example, in Figure 2.8, when point a is moved away from unmoved point
b and close to another moved point ¢ and unmoved point d. We can construe this

movement in any of the following ways.

1. a is similar to ¢
2. a is similar to ¢ and dissimilar to b
3. a is similar to ¢ and similar to d

4. a is similar to ¢ and d, and dissimilar to b

Each of these options offers a different kind of knowledge, and V2PI does not have a way
to decide conclusively which one of them the user intended. To address this problem,
Semantic Interaction paper introduces highlighting options. That means, if the user
wants to convey any knowledge about the unmoved points, she needs to highlight those
points. With this highlighting options, now we know with certainty which points to
consider for translating user knowledge into model parameters. Let f be the fraction

of the points the user touches (moves and/or highlights). Only the touched points are

49

50

This process can be illustrated using following diagram.

Let, X be an element-wise binary operator that multiplies elements from two matrices
at the same index and then collects the nonzero elements into a result matrix. The

final stress is the summation of the components of that result matrix.

2.7 Conclusion and Discussion

In this chapter, we presented Claret, a tool for weighted MDS implemented in OpenCL,
which outperforms Glimmer, the previously best performing method designed for GPUs.
We show that Claret is indeed a write-once-run-anywhere tool and can run on a plethora
of devices. We also presented a geometric result claiming that weighted Fuclidean dis-
tances can be preserved through stretched-random projection. The proposed quantifica-
tion of the quality of an embedding has the potential to make visual analytics consistent.

We have successfully demonstrated Claret’s portability across various accelerators.

Interactive visualization on big data is challenging due to limited computational re-

sources and a lack of parallel implementations of dimension reduction algorithms. We
have extended a portable MDS/WMDS tool to be useful for dimension reduction and
integrated it with a V2PI tool, Web Andromeda. The resulting speedup enables users
to use Andromeda interactively without prohibitive computational latency. Through
algebraic optimization and reusing incremental computation, we reduce the optimiza-
tion task of parameterizing the visual interaction from O(n%d?) to O(nd). With the
Python distribution, the extended Claret can be useful in other interactive visualization

tools too.

Through the case study, we demonstrated that V2PI interactions, along with domain
knowledge, can make scientific discoveries in various domains such as cancer biology.
By separating a small number of tumor samples from a small number of normal samples
through V2PI interaction, we could detect two potential carcinogenic genes that can
be validated through other existing literature. The computational speed to make these
interactions are significantly faster to enable a user to discover knowledge through visual

interactions.

However, despite the computation speed, analyzing big data using the Andromeda
interface presents a new problem: projecting thousand or more data points on a small
screen makes it hard to differentiate between the data points. To reduce the user’s
cognitive overhead and create a tidier visualization, we can choose to show a smaller
number of representative data points through various summarization techniques such

as micro-clustering, coreset computation, and sampling.

Integration of accelerated forward WMDS from extended Claret, algebraic optimiza-
tion, and incremental gradient computation in inverse WMDS into the Andromeda
software ecosystem enabled the faster performance of V2PI interactions on big data,
thereby facilitating scientific discoveries from various domain problems. By further

modifying the visual interface and incorporating domain knowledge, this accelerated

51

52

V2PI interactions can play a vital role in knowledge discovery from a big and complex

dataset.

ANDROMEDA andromeda7 ~ Update Layout Reset

OBSERVATIONS

@329
@T403

.N«i&? N205
47

362 Cmee ON220

85 N201
T528 L4

@ T L L

ON23 N196

O ®'™ OG

OBSERVATIONS

1201

O;WTS'I

on237
.N‘OS

Q N208

Ao @®n206 ®
ON19%

OBSERVATIONS

Q

Q

Figure 2.7: (a) Initial projection on 2D space. All tumor and normal samples are pro-
jected together in a central mass. This projection suggests some genes might have more
of a role than others in separating tumor samples from normal samples. (b) We moved
20 tumor samples and 20 normal samples from the center mass in opposite directions
to tell Andromeda that tumor samples are very dissimilar from normal samples. (c)
After moving the two sets of samples further from each other, we pressed the Update
Layout button, which resulted in a conversion of the visual interaction to parametric
interaction using inverse WMDS. The value of the feature weights changed, and a new

visualization was created using forward WMDS.

ATTRIBUTES

(O ENSG00000002834
(O ENSG00000003056
(O ENSG00000006042
(O ENSG00000006468
(O ENSG00000006747
(O ENSG00000007952
() ENSG00000008323
(O ENSG00000011422
(O ENSG00000012504
(O ENSG00000021645
(O ENSG00000022355
(O ENSG00000025770
(O ENSG00000036530
(O ENSG00000039068
(O ENSG00000047056
(O ENSG00000047346

ATTRIBUTES

(© ENSG00000002834
(® ENSGO00000003056
(O ENSG00000006042
(®) ENSG00000006468
(®) ENSG00000006747
(®) ENSG00000007952
(® ENSG00000008323
(®) ENSG00000011422
() ENSG00000012504
(®) ENSG00000021645
(® ENSG00000022355
(® ENSG00000025770
() ENSG00000036530
(®) ENSG00000039068
(®) ENSG00000047056
(©) ENSG00000047346

ATTRIBUTES

| (©) ENSG00000149531

|+ ENSG00000211896
(©) ENSG00000008747
(O ENSG00000275113
(O ENSG00000183475
(O ENSG00000188112
(O ENSG00000244462
() ENSG00000204195
() ENSG00000236761
() ENSG00000232070
(O ENSG00000172340
() ENSG00000196867
() ENSG00000187773
() ENSG00000205277
() ENSG00000196166
() ENSG00000134245

I

53

54

Figure 2.8: Point a is being moved from its original position (solid ball) to a new
position (dashed ball). a is moved away from unmoved point b towards moved point
¢ (gray ball) and unmoved point d (white ball). This movement can be interpreted in
many ways in terms of pairwise similarity and dissimilarity.

Chapter 3

Domain-Aware Algorithm Design to
Identify Carcinogenic Gene

Combinations

3.1 Introduction

In this chapter, we demonstrate the second guideline related to variety through the
solving process of a problem from the domain of cancer biology. Experimental stud-
ies and mathematical models suggest that carcinogenesis is likely a result of different
combinations of a small number of carcinogenic mutations (hits) [19, 20, 109, 114, 130,
173, 195]. Mathematical models estimate that the number of such hits varies from
two to eight [15, 19, 20, 109, 114, 130, 173, 195]. Yet, our collective computational
and experimental efforts and the accumulation of cancer genomic data have failed to
identify, for most cancers, the specific combinations of mutations triggering carcino-

genesis. There are a large number of genes (20000) and hundreds of mutations in each

20000

b) candidate combinations

of these genes. This presents us with a solution space of (
and 2(20200) candidate collections of combinations. Since, h € [2,9], these numbers rise

exponentially with increasing value of h.

Current computational efforts to find carcinogenic mutations generally focus on iden-

tifying individual “driver mutations”, based on mutational frequency and signatures

25

56

[52, 100, 168, 172]. These driver mutations have been shown to be associated with an
increased risk of cancer. However, they can not generally cause cancer by themselves.
For example, 72% of women with an inherited BRCA1 mutation are likely to get cancer
by age 80. However, even for women with the BRCA1 mutation, none are likely to get
cancer before age 20, and 28% of them may never get cancer [99]. The Li Fraumeni
syndrome is another example where germline P53 mutations is associated with early
onset cancer predisposition (e.g. soft tissue and bone sarcomas). However, cancer pen-
etrance is less than 20% for children while approaching 80% by age 70, indicating that

multiple hits are required for carcinogenesis [13, 71, 117, 136].

The relationship between most other known genetic markers and increased cancer risk
is far weaker [70, 94]. The limited early cancer incidence in individuals with germline
mutations suggests that additional genetic defects acquired over an individual’s lifetime
are necessary for carcinogenesis. Therefore, current computational approaches focused
on identifying individual genes that are cancer drivers, cannot find the specific combina-
tions of mutations responsible for individual instances of cancer. Several factors, other
than genetic mutations, have also been implicated in carcinogenesis, such as epigenetic
modifications [167], tumor environment[157], and adaptive evolution [11]. However,

carcinogenesis is primarily a result of genetic mutations [180].

The goal of this work is to develop a method for identifying combinations of genetic
mutations that are most likely responsible for individual instances of cancer. This goal
is fundamentally different from identifying the most frequent driver mutations, and

represents the first computational study to specifically identify multi-hit combinations.

Our approach consists of first identifying likely combinations of genes with carcino-
genic mutations. We then present a method, based on the mutational profile of these
genes, for identifying likely carcinogenic mutations within these genes. Although it

is theoretically possible to search for combinations of individual mutations using our

method, the problem becomes computationally intractable, since most genes contain
hundreds of somatic mutations. In addition, in the much larger set of somatic muta-
tion combinations many carcinogenic combinations will be rarely represented, further
increasing the challenge of identifying these combinations. Therefore, we chose to first
identify combinations of genes with somatic mutations, and then present an approach
for identifying likely carcinogenic mutations within these genes. We also scale up and

scale out our approach to identify combinations of length more than two.

3.1.1 Domain-Aware Algorithm Design

We mapped the problem of finding these combinations to the extensively studied
weighted set cover (WSC) problem [37]. Finding the optimal solution to the corre-
sponding WSC problem is computationally intractable due to the exponentially large
number of possible sets of multi-hit combinations. However, there exist approximation
algorithms for finding near-optimal solutions [37, 59]. We adapted one such algorithm
to find a set multi-hit combinations that maximize the number of tumor samples that
contain one of the multi-hit combinations while minimizing the number of normal sam-
ples that contain any of the combinations. The number of candidate set covers is an

exponentially large quantity due to the large number of combinations.

We applied the above algorithm to find a set of two-hit combinations using somatic
mutation data from the cancer genome atlas (TCGA). For the 17 cancer types with at
least 200 matched tumor and blood-derived normal samples in TCGA, the algorithm
identified a set of 197 2-hit combinations. For a separate set of Test samples, these
combinations were able to differentiate between tumor and normal samples with 91%
sensitivity (95% Confidence Interval (CI)=89-92%) and 93% specificity (95% CI=91-
94%) on average, for the 17 cancer types. The results are consistent across different

randomly selected Training and Test sets. Despite this high accuracy, our analysis

57

58

of the results shows that many of the two-hit combinations are likely to be two-gene
subsets of three or more-gene combinations. So, the need for identifying combinations

of higher length motivates us in finding a scalable solution to this problem.

Identifying gene combinations is important for two reasons. First, it brings us closer
to the understanding of carcinogenesis and the complexity of cancer biology. Second,
the identification of the specific combination responsible for a given instance of cancer
can help us design more effective combination therapies for treating the disease. Com-
bination therapies can be more effective than single target treatments; however, most
current therapeutic combinations have been based on trial and error [10, 105]. Identi-
fying the precise combination of genomic anomalies responsible for individual instances

of cancer provides a more rational basis for designing combination therapies.

3.1.2 Parallelization of the Approximate Algorithm to Identify

Three- and Four-Hit Combinations

The computational complexity of the approximate algorithm has a runtime complexity
of O(G" x C x (N; + N,)), which limits the combinations that can be practically
identified to two-hit (h = 2) combinations, where G ~ 20000 is the number of genes
with mutations in the input data, C is the number of combinations identified by the
algorithm, /V,; is the number of input tumor samples, N,, is the number of input normal
samples, and h is the number of hits. For example, it took 39 minutes to calculate a
set of two-hit combinations for breast cancer (BRCA) using 911 tumor samples from
the cancer genome atlas (TCGA).! We estimate (as described in Section 3.5) that it
will take 253 days to calculate a set of three-hit (h = 3) combinations for BRCA,

without any additional optimization or parallelization. We aim to optimize the multi-

! Algorithm was run on an Intel Xeon E5-2630 2.1 GHz central processing unit (CPU) with 256 GB
memory.

hit algorithm to identify combinations of more than two hits in a practical time frame

(< 1 month).

Achieving this level of speedup requires parallel execution across a large number of pro-
cessors. Graphical processing units (GPUs) with thousands of processors are a natural
choice for massively parallel processing [4]. However, GPUs have three key limitations
that must be addressed to achieve significant speedup. (1) Speed of memory access is
significantly slower on GPUs compared to CPUs, e.g. on the Intel Xeon E5-2630 CPU
L1 and L2 cache access require 4 and 11 cycles respectively [84], compared to 28 and
193 cycles for the NVIDIA V100 GPU [86]. Therefore, speedup from parallelization will
be offset by slower memory access for algorithms that require access to a large amount
of data from memory. (2) GPUs have limited amount of accessible memory, e.g. 32GB
for the NVIDIA V100, compared to 1.5TB for Intel Xeon E5-2630 [82]. (3) On NVIDIA
GPUs, divergent branching during execution will result in unbalanced processor load,
which also limits the achievable speedup from parallelization [16, 131, 153, 154, 156].
To address these GPU limitations, we employed two general strategies. (1) We used a
compressed binary representation for the Gene-Sample Mutation matrix (described in
Methods), which reduced memory requirement by 16-fold and resulted in an average
10 fold speedup (see Results). (2) We restructured and optimized the algorithm for
parallel execution on a NVIDIA Tesla V100 PCle graphical processing unit by mini-
mizing divergent branching in addition to other optimizations described in the Methods

section.

The compressed binary representation alone resulted in a 0.4-18 fold speedup for the
two-hit algorithm, compared to the original integer matrix, depending on cancer type.
This additional speedup, and the associated increase in software complexity, was not
necessary for the identification of two-hit combinations, and insufficient by itself for the
identification of three-hit combinations on the CPU. However, the optimized GPU im-

plementation combined with the compressed binary representation was 0.7-224 times

59

60

faster than the original CPU based integer matrix implementation, for the two-hit algo-
rithm, depending on cancer type. The three-hit algorithm was an estimated 29-33,690
times faster for the optimized GPU implementation compared to the original CPU im-
plementation. For the breast cancer samples mentioned above, we were able to compute
a set of three-hit combinations in 23 minutes with the optimized GPU implementation

compared to the estimated 253 days for the original CPU implementation.

The set of three-hit combinations identified using a randomly partitioned training set
was able to differentiate between tumor and normal samples in separate test data
with overall sensitivity of 90% (95% confidence interval (CI) = 88-91%) and overall
specificity of 93% (95% CI = 92-94%). Despite this relatively high accuracy, the multi-
hit gene combinations identified by our algorithm may not represent cancer genes (see
Discussion). Further experimental validation will be required to determine if mutations

within these genes may play a role in cancer genesis or progression.

3.1.3 Scaling Out the Algorithm Using Hundreds of GPUs

The computational complexity of the algorithm scales exponentially with the number
of hits, i.e. G", where G ~ 20000 is the number of genes and A is the number of hits.
This exponential scaling limits the number of hits that can be practically identified to
three-hit combinations, for sample size greater than 200, even with parallelization across
thousands of processors on an NVIDIA V100 graphical processing unit (GPU) [9]. For
example, the identification of two-hit combinations for breast cancer with 911 tumor
samples, took 143 seconds on a single Intel Xeon E5-2630 CPU and 21 seconds on
a single NVIDIA V100 GPU. The identification of three-hit combinations took 13860
minutes on a single CPU and 23 minutes on a single GPU [9]. We estimate that the
identification of four-hit combinations would require over 500 years on a single CPU

and over 40 days on a single GPU.

Previous studies have shown that most cancers require an estimated four — nine hits [17,
19, 20, 109, 114]. Therefore, two- and three-hit combinations will not be able to identify
the specific combination of gene mutations responsible for individual instances of some
cancers, which is the ultimate goal of this approach. Pathways affected by these specific
genes can then be targeted by combination therapy for a more effective treatment.
An added benefit is that, the additional genes in the combination offer additional

therapeutic targets in cases where therapies do not exist for one or more of the genes.

To be able to identify combinations of more than three-hits, we restructured and opti-
mized the algorithm for parallel execution across multiple GPUs on multiple nodes of

the Summit supercomputer at the Oak Ridge National Laboratory.

Efficiently scaling the algorithm for parallel execution across hundreds of nodes and
GPUs presented three key challenges: balancing the load across tens of thousands of
processors, minimizing the use of slow global memory, and inter-processor and inter-

node communication.

Outline of This Chapter

In what follows we present our approach for finding genes with mutations responsible
for cancer. In Section 3.2 we describe the mapping of the problem to the weighted
set cover (WSC) problem and the WSC approximation algorithm used to identify the
multi-hit combinations. In Section 3.3, we show that our approach can identify a set of
multi-hit combinations that can differentiate between tumor tissue and normal tissue
samples with over 90% sensitivity and specificity. This result is robust to different
randomly selected training and test sets. We discuss how these combinations can be
used to distinguish carcinogenic and non-carcinogenic mutations within genes and to

design targeted combination therapies.

61

62

Next, in Section 3.4, we describe the parallelization of the approximate algorithm, the
compressed binary representation of the input matrix, the mapping of the algorithm
to the GPU, and its optimization for parallel execution. In Section 3.5, we describe
the speedup achieved by the optimized parallel implementation, the breakdown of the
contribution of different optimizations, and the accuracy of the multi-hit combinations

identified.

In Section 3.6, we describe our approaches for addressing challenges related to load-
balancing across hundreds of GPUs and global memory access latency. This approach
resulted in an average 455-fold speedup using 600 V100 GPUs (100 nodes), compared
to the execution on a single GPU, for identifying four-hit combinations. We present

our result on scaling efficiency and classification performance in Section 3.7.

In Section 3.8, we discuss how carcinogenic and non-carcinogenic mutations within the
gene combinations can be distinguished. We also discuss how the multi-hit combina-
tions can be used to develop targeted combination therapy. We also discuss various
approaches to scale our algorithm further to identify multi-hit combinations beyond

four-hits.

3.2 Mapping the Problem to Weighted Set Cover

(WSC) Problem

Our approach for identifying sets of multi-hit combinations consists of two steps. (Fig-
ure 3.1). First, we identified somatic mutations from whole exome sequencing data
for tumor and normal tissues with matched blood-derived normal samples from The
Cancer Genome Atlas (TCGA). Somatic variants called from matched tumor tissue
and blood-derived normal samples can detect low-frequency variants, which would not

be detected when using tumor samples alone. Second, we use a weighted set cover

Tumor(/Normal) Tissue Samples Blood-derived Normal Samples

[Flr[efefefrfe]e] [cfrfeafefelr]e

[elrfefefafrfe]e] [F]rfcfafefe]r]e]

ELlelelee=Te] Glilel=lele] T

MuTect2

Clrlefefelrfefe]

lef rfafefafvlc]¢]

b » [o]e[c fefalc]

aaaaaaa

a) Somatic variant calling for tumor and
normal samples using blood derived normal

Set of 2-hit
Combinations

o o[}
= = J8R
G3 ‘ G4 | S8

EIC I EIg—
« = [} -
ala}

Tumor Samples

o [[

2-hit Combinations Normal Samples

a) Approximate weighted set cover algorithm
to find a set of carcinogenic combinations.

samples.

Figure 3.1: Approach for identifying multi-hit combinations. (a) Whole exome sequenc-
ing data from The Cancer Genome Atlas (TCGA) for tumor samples and normal tissue
samples with matched blood-derived normal samples were used to identify somatic mu-
tations. Somatic mutations were calculated using the Mutect2 variant caller and the
Variant Effect Predictor (VEP). (b) The problem of identifying multi-hit combinations
is mapped to the weighted set cover (WSC) problem. An approximate WSC algorithm
was used to identify a set of multi-hit combinations that was able to differentiate be-
tween an independent set of tumor and normal tissue samples with over 90% sensitivity
and specificity.

algorithm to identify multi-hit combinations that can differentiate between tumor and
normal samples with high sensitivity and specificity. The problem of identifying a set of
multi-hit combinations is computationally intractable; however, there exist algorithms
for finding a near-optimal approximate solution. We used a variant of one such algo-
rithm to identify a set of multi-hit combinations for each cancer type, using a randomly
selected subset of the available tumor and normal tissue samples (the Training set).
The accuracy (sensitivity and specificity) of the resulting multi-hit combinations was

evaluated using the remaining tumor and normal tissue samples (the Test set).

63

64

3.2.1 Somatic Mutations Calculated from the Cancer Genome

Atlas (TCGA) Data

The primary input to our algorithm is somatic mutation data for tumor and normal tis-
sue samples. TCGA contains a set of such data for tumor tissue samples with matched
blood-derived normal samples, in mutation annotation format (MAF) datasets [185].
These somatic mutations were identified using the commonly used and well documented
Mutect2 software. For normal tissue samples we identified a set of 333 normal tissue
samples with matched blood-derived normal samples. We calculated somatic mutations
for these normal tissue samples using the same Mutect2 protocol used for the tumor
tissue samples. We use the Variant Effect Predictor (VEP) to determine the loca-
tion (intron, exon, UTR) and effect of these variants (synonymous, non-synonymous,
missense, nonsense). The specific commands and parameters used are included in Sup-
porting Information (SI). In our analysis we only consider protein-altering variants
(non-synonymous, nonsense, and insertion/deletions in exons), as predicted by VEP.
We found 6733 tumor samples with ~ 107 pre-calculated protein-altering somatic vari-
ants in the MAF files for the 17 cancer types with at least 200 matched tumor and
blood-derived normal samples. In addition, we found 333 matched normal tissue sam-

ples in TCGA, in which we identified ~ 10° protein-altering somatic mutations using

the Mutect2/VEP protocol detailed in SI.

The algorithm presented below is based on the somatic mutation data described above,
which does not include possible germline mutations that may contribute to carcino-
genesis. However, carcinogenic germline mutations are in general relatively rare. For
example, BRCA1 is one such rare exception where it occurs as a germline mutation
in 5 — 10% of breast and ovarian cancer patients with a BRCA1 mutation [23, 42].
However, the other 90 — 95% of cases with the BRCA1 mutations are somatic variants.

Therefore, the following algorithm should still be able to identify mutations in such

genes as carcinogenic, although the possible presence of germline mutations may limit

the accuracy of the algorithm.

3.2.2 Mapping the Problem of Finding Multi-Hit Combina-

tions to a Weighted Set Cover (WSC) Problem

Our goal is to identify a set of multi-hit combinations of gene mutations, such that at
least one combination occurs in each tumor sample while minimizing the number of
normal samples containing any of the combinations. Identifying this set of carcinogenic
multi-hit combinations can be mapped to the extensively studied weighted set cover
(WSC) problem. The WSC problem can be described as follows. For a universal set
of elements and a collection of weighted subsets of this universal set, find a minimum
weight collection of subsets such that all elements of the universal set are covered.
The problem of identifying a set of multi-hit combinations that optimally differentiates

between tumor and normal samples can be mapped to the WSC problem as follows.

1. Let, T'= {t1,ta,...,tn,} be aset of Ny tumor samples, and N = {ny,ns,...,ny,}
be a set of N,, normal samples. We consider T" as the universal set in the WSC

problem. N will be used in computing weights.

2. Let C = {c1,¢9,...,cp} be a set of M possible combinations. We construct a
subset for each of these combinations by taking the tumor samples containing
that combination. 7' represents the subset associated with combination ¢;, i.e.
T = {t7',t5', ...}, where all tumor samples in 7 contain the combination c¢;.

Union of all the subsets 7% constructs the universal set T.

3. Assign a weight w; to each combination ¢; (subset 7% in the WSC problem)

such that the weight represents the inverse likelihood of the combination being

65

66

~~ genel~"
- gene2~

-1
) alP +TN
weight =
N, +N,

0<a<1

Tumor Samples(N,) Normal Samples(N)

Figure 3.2: Weight computation for a combination of two genes (genel, gene2). Tumor
samples covered by both genes are true positives (TP), tumor samples not covered
by one or both genes are false negatives (FN), normal samples covered by both genes
are false positives (FP), and normal samples not covered by one or both genes are
true negatives (TN). The scaling factor « is used to balance the relative importance of
sensitivity and specificity.

carcinogenic. w; is described below. Combinations with lower weights have higher

likelihood to be carcinogenic.

4. Find a set of combinations C* = {¢f, ¢, ...} such that all the samples in T" are

covered and the total weight W =) w} is minimized .

The goal of the algorithm is to maximize sensitivity T'P/N; and specificity TN /N,
where TP is the number of true positives, T'N is the number of true negatives, N;
is the number of tumor samples, N, is the number of normal samples (Fig. 3.2).

Therefore, we assign a weight to each combination as the inverse of the accuracy metric,

w; = (aTP+TN

-1
NN) , where 0 < a < 1 is a scaling factor. The scaling factor is used

to balance the optimization of sensitivity and specificity simultaneously. We use the
scaling factor 0.1 to reflect the fact that the WSC solution for the Training set always
has a true positive rate of 1.0, i.e. every tumor sample in the Training set contains at

least one combination.

3.2.3 Algorithm for Finding an Approximate Solution to the

Weighted Set Cover Problem

The computational complexity for finding an optimal solution to the WSC problem
scales exponentially with problem size, making it computationally intractable. For the
problem of finding a set of multi-hit combinations, let G = 20000 be the number of
genes and h = 8 be the maximum number of hits. Then, the number of possible
combinations M = 3", (%) ~ 6 x 10%. The number of possible subsets of these
combinations is 2". The optimal solution would be a subset of combinations with the
minimum weight. Though a brute-force search could find the optimal solution, the
size of the search-space makes the task computationally impossible. However, many
approximate algorithms have been developed and analyzed for solving set cover and

weighted set cover problems. The algorithm iterates through the following three steps

until all tumor samples have been excluded, as illustrated in Fig. 3.3.

1. Compute a weighted accuracy metric F; for all i = [1, H] possible h-hit combina-
tions, where H is the number of possible combinations. F; is a combined measure
of the specificity and sensitivity with which each combination can differentiate

between tumor and normal samples in a training set.

aTP; + TN,
Fr=—"2t 1 3.1
N, TN, (3.1)

where, for a given combination i, T'P; is the number of true positives (tumor
samples with mutations in the gene combination ¢), T'N; is the number of true
negatives (normal samples without mutations in the gene combination), IV; is
the total number of tumor samples, NN, is the total number of normal samples

and o = 0.1 is a weighting factor to balance the contribution of sensitivity and

specificity to the metric.

67

68

2. Select the combination of hits with the maximum F; value, and add it to the list

of selected multi-hit combinations.

3. Exclude all tumor samples that contain mutations in this combination of genes,

from further consideration.

The computational complexity of the approximate algorithm is O(G" x C x (N; + N,,))
where G is the number of genes and C' is the number of combinations selected. The
input to the algorithm are two Gene-Sample Mutation matrices, a tumor mutation
matrix (M};) € {0,1}°*™ and a normal mutation matrix (M) € {0,1}“*". Non
zero values in these binary matrices represent mutations in gene g;, i = [1, G] within
sample s;, j = [1, N;] for tumor samples and j = [1, N,,| for normal samples (Fig. 3.3).
In addition, these are sparse matrices with only 2% of the elements having a non-zero
values. To take advantage of these characteristics of the input matrices, we considered
two possible alternatives to the matrix representation: indexed array and compressed

binary representations, as described below.

3.3 Classification Performance and Quality of Iden-

tified Two-Hit Gene Combinations

We implemented a weighted set cover algorithm to identify 2-hit combinations of cancer
causing genes with mutations using a randomly selected Training set of tumor and
normal tissue samples (see Methods). The set of combinations distinguish between
tumor and normal tissue samples with over 90% sensitivity and specificity. This result
is robust to different Training and Test set partitions of the available tumor and normal
tissue samples. Although the identified combinations contain many genes previously

implicated in cancer, our approach has also identified several potentially novel cancer

Normal samples

S1| ISNn All possible combinations
g1 Cq|..-|Ck|---| CH
0
o X X g1 9a 9G-1
X [J) 1
= o X X g2 db gG
©
= F1 Fk FH
S 9G X | X Selected
= multi-hit
5 combinations
= F
Q@ Tumor samples V(max)
= ({9a9p} | |
% Sl || ao- ..+ SNt
0
4 g1| X X
= .
o
§ 9a X | X X v
G) -
U X XX Excluded tumor samples
9db X X X with selected
D x| x combinations
gG . .

A A

Figure 3.3: Algorithm for finding multi-hit combinations, illustrated for two-hit com-
binations. The cells marked with x in the Gene-Sample Mutation matrices represent
samples with mutations in the corresponding gene. There are H = G(G —1)/2 possible
two-hit combinations involving two different genes. The algorithm iterates through
three steps. (1) Equation (3.1) is used to calculate F; for each combination. (2) The
combination (g, and g, in this example) with the maximum value of Fj, (Fj in this
example) is added to the list of selected multi-hit combinations. (3) Tumor samples
containing mutation in the selected combination of genes are excluded from considera-
tion in subsequent iterations of the algorithm. The green shaded columns in the Tumor
Gene-Sample Mutation matrix represent excluded samples in the iteration shown. The
algorithm terminates when all tumor samples have been excluded, i.e. “covered” by
the set of multi-hit combinations.

genes. Our results suggest that some of the combinations identified are 2-hit subsets of

3+ hit combinations.

69

70

3.3.1 Differentiation Capability Between Tumor and Normal
Tissue Samples With High Accuracy via a Set of Two-Hit

Combinations

We implemented the weighted set cover algorithm described in Methods, for identifying
a set of 2-hit combinations with the goal of maximizing accuracy (sensitivity and speci-
ficity) in differentiating between tumor and normal samples. Using a randomly selected
Training set (see Methods), we identified a set of two-hit combinations for each of the
seventeen cancer types with at least two hundred matched tumor and blood-derived

normal samples.

When tested against a separate randomly selected Test set, the identified set of com-
binations were able to differentiate between tumor tissue samples and normal tissue
samples, for their respective cancer types, with greater than 90% specificity and sensi-
tivity on average. Table 3.1 shows the sample sizes, sensitivity, and specificity for the
Training and Test sets for each of the seventeen cancer types. Sensitivity varies from

83% to 100% and specificity varies from 86% to 100%, depending on cancer type.

The number of combinations identified varies from 8-20 for the 17 cancer types (Table
3.1). In total, 197 combinations were identified (Tables S2 - S18). The top three 2-hit
combinations are summarized in Fig. 3.4. The combinations include 256 unique genes

with 138 genes occurring in more than one combination.

3.3.2 Robustness of Two-Hit Combinations to Different Train-

ing and Test Sets

To test the robustness of the above results, we randomly re-partitioned the available

samples into two more alternative Training and Test sets. Figure 3.5 shows specificity

Validation Set

‘ Discovery Set

Tumor Samples ‘ Normal Samples ‘ Tumor Samples Normal Samples

] 7 z z 7 P Z z 7
g § 8 E = 9’) i > 2 § = 2 g’) =
= = = E 2 = = 2 = =] 2 — = = Z —
& S 2 % E = S E = 3 z % 7 g O 5 7 = 3 o

E| Z o = = S 3 = z &0 = 5 - o z = = -
5] 2| & S 3 5 S & 3 g & S = N Y S 3 X
: Sl 5 F 2 T ¢ % £ 2 5 f 2.8 7 g F 2 %7
S 3 £ 3 55] S) E 2 55] S - [57)
© | F £ a8 = HE 2 = =
Bladder Urothelial 18 | 267 0 267 100% 245 2 247 99% 89 12 101 8% 80-93% 74 12 8 8% 76-92%
Carcinoma (BLCA)
Breast invasive carci- 8 | 703 0 703 100% 236 11 247 96% 207 1 208 100% 97-99% 82 4 86 95% 88-98%
noma (BRCA)
Cervical squamous 9 217 0 217 100% 247 0 247 100% 52 5 57 91% 80-97% 84 2 86 98% 91-99%

cell carcinoma and
endocervical adeno-
carcinoma (CESC)
Colon adenocarci- 9 291 0 291 100% 245 2 247 99% 85 9 94 90% 82-95% 83 3 86 97% 90-99%
noma (COAD)
Glioblastoma multi- 10 | 2563 0 253 100% 247 0 247 100% T2 6 78 92% 84-97% 78 8 86 91% 82-95%
forme (GBM)
Head and Neck squa- 13 | 347 0 347 100% 245 2 247 99% 102 21 123 83% 75-89% 81
mous cell carcinoma
(HNSC)

Kidney renal papillary 11 | 175 0 175 100% 246 1 247 100% 50 3 53 94% 84-98% 86 0 86 100% 95-100%
cell carcinoma (KIRP)
Brain Lower Grade 9 356 0 356 100% 245 2 247 99% 111 12 123 90% 83-94% 80 6 86 93% 85-97%
Glioma (LGG)
Liver hepatocellular 9 | 233 0 233 100% 246 1 247 100% 78 1 79 99% 93-99% 79 7 86 92% 83-96%
carcinoma (LIHC)
Lung adenocarcinoma 13 | 318 0 318 100% 245 2 247 99% 83 8 91 91% 83-96% 79 7 86 92% 83-96%
(LUAD)
Lung squamous cell 12 | 224 0 224 100% 246 1 247 100% 68 13 81 84% 74-91% 82 4 86 95% 88-98%
carcinoma (LUSC)
Ovarian serous cys- 8 | 235 0 235 100% 246 1 247 100% 75 7 82 91% 83-96% 83 3 8 97% 90-99%
tadenocarcinoma
(0V)

Prostate adenocarci- 20 | 327 0 327 100% 245 2 247 99% 83 11 94 88% 80-94% 68 18 86 9% 68-87%
noma (PRAD)

Sarcoma (SARC) 6 167 0 167 100% 247 0 247 100% 47 5 52 90% 78-96% 86 0 86 1.00 95-100%

86 94% 86-98%

o

Stomach adenocarci- 19 | 306 0 306 100% 247 0 247 100% 72 10 82 8% 7893% 717 9 86 90% 81-95%
noma (STAD)

Thyroid carcinoma 13 | 314 0 314 100% 245 2 247 99% 94 13 107 8% 80-93% 78 8 86 91% 82-95%
(THCA)

Uterine Corpus En- 10 | 368 0 368 100% 247 0 247 100% 121 6 127 95% 90-98% 81 5 86 94% 86-98%
dometrial Carcinoma

(UCEC)
Total 197 | 5101 0 5101 100% 4170 20 4199 99% 1489 143 1632 91% 89-92% 1361 101 1462 93% 91-94%

Table 3.1: Two-hit combinations can differentiate between tumor and normal tissue
samples with over 90% sensitivity and specificity. The combinations were identified
using a randomly selected 75% subset (training set) of the available matched tumor
and blood-derived normal samples for each cancer type with at least 200 matched
samples in TCGA. See Tables A2-A18 for the list of gene combinations for each cancer
type. The resulting combinations were then tested against the remaining samples (test
set).

and sensitivity of the algorithm across the seventeen cancer types considered here,
for three different sets of partitions. The average difference in sensitivity between

any two pairs of train-test partitions is less than 4.2% and the average difference in

72

= gsRe
LGABLY
< GOLGA6L10
15 — DISP2
—— GOLGA6LL

— OV LUAD — GBM —— UCEC — LGG —— LIHC
—— HNSC PRAD BLCA — SARC — CESC — LUSC
BRCA THCA COAD — KIRP —— STAD

Figure 3.4: Top three two-hit combinations for 17 cancer types. See Table 3.1 for
abbreviations for cancer types. Each line in the center of the Circos plot connects the
two genes in a two-hit combination. This plot was generated using RCircos [192].

specificity is less than 4.1%. The largest difference in sensitivity is 12% (BLCA) and
the largest difference in specificity is 13% (KIRP). In addition, the most frequently
occurring combinations in the tumor samples were the same between any two train-
test partitions for 14 of 17 cancer types, representing 65% of tumor samples (Fig.
3.6). However, there were significant differences between the less frequently occurring

combinations with only 39 common combinations, out of 197 total combinations, across

100%

90%

80%

70%

Specificity

60%
X Partition 1

50% Partition 2
m Partition 3

40%
? STAD LUSC LIHC KIRP LUAD UCEC BRCA LGG OV PRAD HNSC GBM THCA SARC CESC BLCA COAD

Cancer Type

100%

2 80%
2
E=
a2 70%
[
%)
60%
X Partition 1
50% Partition 2

m Partition3

STAD LUSC LIHC KIRP LUAD UCEC BRCA LGG OV PRAD HNSC GBM THCA SARC CESC BLCA COAD
Cancer Type

Figure 3.5: Sensitivity and specificity is robust across three different random training-
test partitions of available samples. The average difference between any two pairs of
partitionings is less than 4.2% for both sensitivity and specificity across all 17 cancer
types. Error bars represent 95% confidence intervals. The vertical lines represent 95%
confidence intervals.

the three sets of combinations for the three train-test partitions (Figure A2). Clearly,
the samples included in the Training set affect the set of combinations identified. This
is to be expected since 42% of the combinations occur in less than 5% of the samples for
each cancer type (Figure A4). Different partitions of the tumor samples will result in
different sets of these rare combinations being included in the Training set, resulting in
different combinations being identified. In addition, since the approximation algorithm
used here identifies a near-optimal solution, changes in the Training set can result in

different near-optimal combinations being selected by the algorithm.

73

74

BRCA STAD LUAD

60

©

o 8 50

o

>

3 60 40 20

2 40 30

= 20 20

£ 20

8 10

o

s 07 2 a 6 g %0 5 10 15 %% 5 10

Combination Number

Figure 3.6: Occurrence of the two-hit combinations identified in tumor samples, for
three representative cancer types. Figure A3 shows the distribution for all 17 cancer
types. The top combination occurs in 65% of tumor samples, on average, while 42% of
the combinations occur in less than 5% of the samples. Total percentage exceeds 100%
because samples can contain multiple combinations.

3.3.3 Properties of Identified Genes and Combinations

The combinations identified include novel cancer genes The genes comprising
the two-hit combinations identified above fall into three categories. (1) Confirmed can-
cer genes based on the Catalog of Somatic Mutations in Cancer (COSMIC) database
[144]. (2) Non-COSMIC genes that have been implicated in cancer based on experi-
mental evidence. (3) Genes that have not been experimentally implicated in cancer.
Table 3.2 summarizes, from Tables S2 - S18, the 31 genes that comprise the top three
most frequently occurring two-hit combinations for each of the cancer types studied.
Of these genes, nine are confirmed cancer genes (e.g. APC, IDH1, KRAS, PTEN,
RB1, and TP53), thirteen have been experimentally implicated in cancer (e.g. HLA-C,
IGHG1, and KCNB1), and nine have not previously been implicated in cancer (e.g.
TUBBP12).

The genes in the last category have not been extensively studied, and represent po-
tentially novel cancer genes. For example, TUBB8P12 (Tubulin Beta 8 Pseudogene
12) occurs in the top three two-hit combinations in 15 of the 17 cancer types. How-

ever, TUBB8P12 has not been previously identified as frequently mutated in cancers.

There are two possible reasons why we have identified TUBB8P12 as a potential can-
cer gene while previous bioinformatics studies have not. The first reason is that,
we considered low frequency somatic mutations, identified using matched tumor and
blood derived normal samples, that were not included in many of the previous stud-
ies [100, 166, 172, 186]. Biopsy specimens contain a mix of tumor and normal tissue cells,
tumor infiltrating lymphocytes, and stromal cells. In addition, tumor cells themselves
can be genetically diverse. Therefore many somatic mutations are likely to be present
at very low frequencies [152, 166]. Studies that use masked open-access TCGA data will
exclude many such low-frequency mutations. The second reason is that, those studies
that do use controlled-access TCGA data that include these low-frequency mutations,
do not use matched normal tissue and blood-derived normal samples to quantify the
differential mutation frequency between tumor and normal samples[52; 100, 168, 172].
By comparing somatic mutation frequency in matched tumor tissue samples to muta-
tion frequency in matched normal tissue samples, we are able to identify genes that
are significantly more frequently mutated in tumor samples relative to normal samples,

while excluding genes that may be highly mutated in both tumor and normal samples.

The two-hit combinations may represent subsets of a larger number of hits
Due to practical limitations of computational resources, it is not practical to search for
more than two-hit combinations using the current version of the algorithm presented
(see Methods). The computer run times for identifying two-hit combinations were & two
hours, compared to estimated run times of over one year for three-hit combinations.
Mathematical models predict that the likely number of hits required for carcinogenesis
ranges from two to eight. Therefore, it is likely that the two-hit combinations identified
here are different subsets of three or more hits In fact, we find that 65% of the samples
contain multiple combinations (Fig. 3.7), and 138 of the 256 genes in these combinations

occur in more than one combination, suggesting that the genes in the different two-hit

75

76

Table 3.2: Genes in the top three most frequently occurring two-hit combinations.
Genes are color coded to identify those that are confirmed cancer genes, experimentally
implicated in cancer, and potentially novel cancer genes. The numbers in the table (1,
2, and/or 3) indicate which of the top three two-hit combinations the gene belongs to.

_ Confirmed Cancer Gene 1 = Gene is part of the most frequent comb
Experimentally implicated in cancer 2 = Gene is part of the 2nd most frequent comb
Potentially novel cancer gene 3 = Gene is part of the 3rd most frequent comb
Cancer Type
2| 5|8 |8 |G |28 |5 |8|2|3|&|5|8|E |8
ALOX15[116] 3
ALPP[21] 3 3 3
1
CACNA1E[127] 3
CCDC30[149] 3
CCDC43 3
2 2 2
DPP6[169] 3
FHOD3[140] 2 1,3
FRG1BP[14] 2 2 2 1,31 23| 3 | 2 3 1 2 2 2 | 2,3 1 23|23 |1
GOLGAG6L10 3
GOLGAG6L9 3
HLA-C[177] 3 2
HLA-DRB1[125] 3
HRNR [62] 3
1
IGHG1[135] 2 2 2 2
KCNB1[40] 1
3
3
1 2,3 1,3 1
1|13 1 2 1 1] 1,2 2 1 1 1 1 2 1 1 2
NBPF1[147] 3
OR2T7) 2
ORS8U1 1
PRAMF15 3
3
3
3
| 2 23 | 2
TUBB8P12 1 1 2 1 1 1 2 1 1 3 1 2 1 1 2

combinations within a sample may instead represent a single combination consisting
of more than two-hits. Therefore, the two hit combinations may produce some false
positives in normal samples containing mutations in only two genes of a three+-hit
combination. Therefore, searching for three or more hits may further improve the

accuracy of our results.

Genes within combinations are not correlated Analysis of genes within each

combination shows that they are not correlated. For each of the genes in a combination

BRCA STAD LUAD

40 40 35

35 30

30 30 2

25
20
20 20
15

%Samples

15

10
10 10

0 1 2 3 4 o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
#Combinations (N)

Figure 3.7: Distribution of overlapping combinations for three representative cancer
types. Figure A5 shows the distribution for all 17 cancer types. 64.5% tumor sam-
ples contain multiple combinations, suggesting that the two-hit combinations might
represent subsets of three or more hits.

we construct a vector of 0’s and 1’s. The length of the vector is equal to the number
of normal samples, and the value in the *" position of that vector represents whether
the " normal sample has a protein-altering mutation (as determined my VEP) in
that location or not. Then we computed Pearson’s correlation coefficient[141] using
stats.pearsonr routine from python module scipy.stats between two vectors representing
two different genes. The Pearson correlation coefficient is less than 0.25 for the gene
pairs within each combination (Figure Al). If the genes within a combination were
correlated it would have suggested that the combination is a result of some common
underlying cause, such as being a passenger mutation or due to structural chromosomal
modification, and unlikely to be causative. We also examined the chromosomal location
of genes within each combination (Fig. 3.8). Only two of the 197 combinations contain
genes within the same chromosome, suggesting that the genes within combinations
are not due to a chromosomal abnormality that may affect multiple genes within a

chromosome.

7

78

Figure 3.8: Chromosomal location of gene combinations. Each connecting line repre-
sents a two-hit combination. Blue lines represent gene combinations across different
chromosomes. Red lines represent gene combinations within the same chromosome.
Circos plot was generated using RCircos package [192].

3.4 Scaling Up the Approximate Algorithm to Iden-

tify Three-Hit Gene Combinations

The multi-hit algorithm presented in Section 3.2.3 for identifying combinations of genes

with mutations that may represent the potential cause for individual instances of cancer.

Due to its computational complexity the algorithm was limited to identifying combi-
nations of two hits. To identify combinations of more than two hits, the algorithm
was restructured and optimized for parallel execution through some data-structure op-

timizations and algorithmic re-structuring.

3.4.1 Representation of Gene-Sample Matrix

Indexed array data structure One option for speeding up the above algorithm, by
reducing the number of arithmetic operations, is to replace the Gene-Sample Mutation
matrices with an indexed array data structure. The data structure consists of two
arrays. One is a samples array where samples with mutations within each gene are listed
sequentially. The second is a gene index array, which contains the starting index into
the samples array for each gene. With the indexed array representation, the algorithm
would only examine samples with mutations in the genes being considered, instead of all
samples. It is more efficient than the original matrix representation since samples that
do not contain mutations in a gene are not evaluated. On average only 2% of samples
have mutations for a given gene, therefore, we expected a significant speedup with an
indexed list representation However, due to an increase in the number of instructions
and divergent branches, the speedup using this data structure was less than what was

achieved using the compressed binary representation described below.

Compressed binary representation The binary values in the Gene-Sample Mu-
tation matrices permits a reduction in memory requirement using a compressed binary
representation. In addition, bitwise operations can be used with the compressed bi-
nary representation to reduce computational cost and divergent branching (discussed
in section 5.5.2). Figure 3.9 illustrates how mutations in a group of four samples can

be compressed into four bits. In the original implementation, each Gene-Sample value

80

was represented as a single 16-bit short integer [48]. For this implementation, we rep-
resent groups of 64 samples as a single 64-bit unsigned integer, which requires 4-fold
fewer vector operations compared to the 16-bit unsigned integer representation. The
resulting speedup was confirmed experimentally (results not shown). The compressed
binary representation also results in 16-fold reduction in memory since each word of
memory stores data for 16 samples, compared to one sample per word in the original

integer matrix representation.

The number of samples with mutations in a combination of genes can then be efficiently
determined by a bitwise AND operation followed by a count of the non-zero bits, as
illustrated in Fig. 3.9. To count the number of non-zero bits for the CPU code,
we implemented Brian Kernighan’s algorithm [92]. For the GPU implementation, we
used the built-in popcll() function to count the number of bits set to 1 in the 64
bit unsigned integer. This function was faster than our own implementation of Brian
Kernighan’s algorithm (e.g. runtime for optimized GPU implementation for the three-
hit algorithm for BRCA using popcll(), is 451 sec faster than the runtime using

Kernighan’s algorithm).

For the computation of two-hit combinations for breast cancer (BRCA), the compressed
binary representation resulted in a 16-fold speedup on the CPU compared to the original
matrix representation, as shown in the Results. Since this speedup was considerably
larger than the corresponding four-fold speedup for the indexed array representation

described above, we did not consider the indexed array structure any further.

3.4.2 Mapping to the NVIDIA Tesla V100 PCle Graphical

Processing Unit (GPU)

To further speed up the multi-hit algorithm, we restructured the CPU code for parallel
execution on one GPU, specifically the NVIDIA Tesla V100 PCle GPU [4]. The V100

Bitwise AND operation

Gene-Sample mutation matrix for the gene combinaton g3 and g>
S1/S2/53 S4 55‘56 57‘53 S1 S2 S3/S4(S5 Se S7 /S8
g110|/1 /1 0Oof1/0 0 1 910 1/1/0|{1 0 01
dg2|11/1/0 1|1 0/ 1 1 g2(1 1 0/1]1 0 1 1
I €10 1 O 1 0 01
h 1 1
b b
! 2 1 2
g1 6 9
g> 13 11 Number of samples with mutations

in g1 and go in each group of four samples
Compressed binary representation

Figure 3.9: Compressed binary representation and bitwise operation for determining
the number of samples with mutations in a combination of two genes. Left: Compressed
binary representation of Gene-Sample Mutation matrices, illustrated for a four-bit un-
signed integer. s; represents the normal or tumor samples shown in Fig. 3.3. Elements
with 0 in the matrix indicate that the sample does not contain mutations in the cor-
responding gene, while 1 indicates that the sample does contain a mutation in the
corresponding gene. Mutations in four samples can be represented by a single four-bit
unsigned integer. Right: Given any two genes g;, g;, the number of samples containing
mutations in both these genes is determined by a bitwise AND operation for each of the
integers representing mutations in g; with the corresponding set of integers for g;, and
then counting the number of non-zero bits.

consists of 5376 32-bit floating point cores, 5376 32-bit integer cores, 2688 64-bit floating
point cores, 672 tensor cores and 336 texture units. The cores are partitioned into 84
streaming multiprocessors (SM) with 128 KB of shared memory per SM, 6 MB of
L2 cache and 32 GB of global memory for the GPU. Each SM is further partitioned
into four single instruction multiple thread (SIMT) warps, i.e. the same instruction
is executed on all cores within a warp, with each core running a different thread [4].
For parallel execution of the algorithm, we partition the computation of F,,,, across
multiple threads, where each thread computes the maximum value of F' for a subset of
combinations (F?,,.) where i € [1, G(G — 1)/2]. For two-hit combinations, each thread
processes a single combination, therefore F, = F" for the combination i, say g, and
g» where a < b < G. For three-hit combinations F? is the maximum value for all

three-hit combinations with two of the hits corresponding to two-hit combination i, i.e.

Ja, gp and g. where a < b < ¢ < G, as illustrated in Fig. 3.10. The maximum value

81

82

F,. across all F?

" o 1s then calculated using parallel reduction [76].

Compressed binary Gene-Sample mutation matrix

by | .. | by
9
9N
GPU Calculate Fax Calculate F[S(¢22
Thread for combinations | » = = | for combinations
reads {g'lngng}l k>2 Wlth {gG_zrgg.ng}

GPU parallel reduction /
Fmax {ga Igblgc}

Figure 3.10: Mapping the multi-hit CPU algorithm to the GPU, illustrated for the
three-hit algorithm with the compressed binary representation (Fig. 3.9). Each GPU

thread computes F!, . for a subset of all possible combinations. The results of each

thread is stored in GPU global memory. F,,,, across all subsets of combinations is
calculated using parallel reduction [76].

The sequential implementation of the above algorithm for three-hit combinations is
illustrated in Algorithm 9. The for loops in lines 7, 8, and 9, in the sequential algorithm
iterates through all possible (g) three-hit combinations. Lines 10-14 compute F' for one
such combination. Lines 16-18 compute overall best combination along with it’s F},..

value. The remaining part of the algorithm updates excluded samples.

To run on parallel compute units of a GPU, we modified the above sequential algorithm
as illustrated in Algorithm 10. We combined the two outer for loops into a single one,
which iterates (g) times (Line 7). Each iteration of this combined for loop can run
in parallel on a different GPU compute units. For each of these parallel tasks, indexed
by A, there is a sequential for loop (Line 11) which computes the best combination
among the three-hit combinations that start with ¢, j corresponding to the A (3.2). The

mapping of A to 7 and 7 in lines 7 and 8 is described below under "Minimizing divergent

83

Algorithm 9 Sequential algorithm to compute three-hit combinations.

Require: tumor-sets, normal-sets, tumor-samples, normal-samples, a

1: covered-samples <— P

2: combinations < ®

3: Ny |tum0r—samples‘

4: N, < }normal—samples‘

5. while covered-samples # tumor-samples do

6: Fue < 0.0

7: fori=1— G do

8: for j=i+1— G do

9: fork=j3+1—Gdo
10: TP « |tumor-sets[i]) N tumor-sets[j]) N tumor-sets[k])|
11: FP « |normal-setsli]) N normal-sets[j]) N normal-sets[k])|
12: TN+ N, — FP

13: FN <« N, —-TP

. oo [axTP+TN

14: — N, + N,

15:

16: if I > F,,.. then

17: Frwe + F

18: best-combination < (i, j, k)

19:
20: combinations.add(best-combination)
21: i, J, k < best-combination.extract()
22: covered-samples.add(tumor-sets|i]) N tumor-sets[j| N tumor-sets[k])

23: return combinations

branches”. At the end of this outer for loop, our parallel algorithm performs a parallel
reduction (Line 22) to compute the best combination [76]. Then the tumor samples

covered by this best combination are added to the covered samples.

This parallelization allows us to run (§) parallel tasks with load O(G(N;+N,)) instead
of (g) sequential tasks with load O(Nt + Nn).
GPU optimization

The differences between the CPU and GPU architectures make certain coding tech-

niques, that may be appropriate for serial execution on a CPU, sub-optimal or even

84

incorrect for parallel execution on a GPU. Three critical considerations for minimiz-
ing processor latency are: synchronizing update access to memory locations shared by
multiple processors, divergent branching in a single instruction multiple thread (SIMT)

architecture, and relative speed of shared memory vs. global memory.

Minimizing GPU synchronization A straightforward implementation would have
a single global memory location for F),,, which could be updated by all thread. How-
ever, such an implementation would require a synchronization or locking protocol to
maintain cache coherence [161]. Synchronization of GPU threads to ensure correct re-
sults introduced significant processor latency and resulted in the GPU implementation
running slower than the CPU version. We therefore allocate a separate memory location
for each thread i to store its F,, . value (Fig. 3.10), avoiding the need for synchronized

memory access. We then use parallel reduction to efficiently calculate the global F,.,

value [76].

Minimizing divergent branches In the SIMT warps used by the GPU within
streaming multiprocessors (SM), divergent branches introduce significant processor la-
tency [16, 131, 153, 154, 156]. Divergent branches are IF-ELSE and LOOP control
statements that cause execution along different paths depending on conditional val-
ues. Within a warp, all possible execution paths are serialized and evaluated [4, 154,
156]. Thus, significant latency is introduced due to the execution of instruction within
branches that are not used. In the original integer matrix CPU implementation, condi-
tional statements are required to count the number of samples with mutations in a gene
combination. In the compressed binary implementation, these conditional statements
are replaced by a set of bitwise operations, as described above (Fig. 3.9). In addition,
the CPU implementation calculates a bound on the maximum possible value for F*

for a given combination ¢. If this value is less than the intermediate value for F), ..

(Equation (3.1), subsequent processing for the combination is skipped. Although this
strategy improved performance on the CPU, eliminating this branch and bound logic
on the GPU resulted in an additional 6% average speedup for the two-hit algorithm

and three-hit algorithm (Supplementary Tables S3 and S5).

The multi-hit algorithm only considers combinations represented by the upper trian-
gular matrix, i.e. combinations of g; and g; where ¢ < j. In the CPU implementation,
processing is limited to the upper triangular matrix by loop control conditions. To
eliminate these conditional branches, using the formulation from Ref [128], modified
for upper triangular matrix instead of lower triangular matrix, we map the thread

index A to the upper triangular matrix ¢ < j as follows:

ViiF A+ 12|

i=A—=j(—1)/2

J
(3.2)

Using shared memory for parallel reduction The F! _ values calculated by
each GPU thread i is stored in global memory (Fig. 3.10). The maximum value F},,,
across all these threads can be calculated using parallel reduction, directly in global
memory. However, accessing global memory is significantly slower than accessing shared
memory [86]. Therefore, we divide global memory data into blocks which are copied into
shared memory. Parallel reduction is performed within each block using shared memory
to compute the F? __ for block j. The result is copied back to a new allocation in global
memory. This new allocation is 1024 (the number of virtual threads per block) times
smaller than the original allocation. This process is repeated with the newly allocated
values until the single F,,. values has been calculated. The above approach reduced

the total global memory used by approximately 50%, e.g. 2.87 GB for BRCA compared

to 5.75 GB without this approach.

85

86

3.4.3 Speedup and Accuracy Calculation

Speedup was calculated as t,.f/t,c, Where ¢, and t,.; are the runtimes for the new
code and the baseline reference, respectively. runtime was determined using the Linux
time command, with runtime = sys time + user time. For identifying two-hit com-
binations, the runtime for the original CPU implementation [48] was used as the base-
line reference ¢,.s. However, this was not practical for three-hit combinations for cancer
types where the runtime using the original matrix code was over 30 days. Therefore
we estimated the runtime for cancer types taking over 30 days, based on the actual
runtimes for cancer types requiring less than 30 days. We assumed that the average
ratio of two-hit vs. three-hit speedup for the compressed binary CPU implementation
compared to the original matrix CPU implementation is the same for both categories
(runtime < 30 days and runtime > 30 days). For cancer types with runtime < 30 days,
we calculated the average ratio R = Avg(S;/Ss), where S; is the three-hit speedup and
Sy is the two-hit speedup, for the CPU compressed binary implementation compared
to the CPU original matrix implementation. For cancer types with three-hit runtime
> 30 days, we estimated the runtime as R - S - t34, Where t3. is the three-hit runtime
for the compressed binary CPU implementation. See Supplementary Table S4 for a list

of actual and estimated three-hit runtimes.

All available mutation data was randomly partitioned into two subsets, with 75% of
the data (Training set) used to identify the multi-hit combination using the above algo-
rithm. The remaining data (Test set) was used to calculate the sensitivity, specificity
and 95% confidence interval for the identified set of combinations’ ability to differen-
tiate between tumor and normal samples. Sensitivity was calculated as T'P/N;, where
TP is the number of true positives (number of tumor samples containing one of the
identified combinations) and N is the number of tumor samples. Specificity was calcu-

lated as TN /N,,, where T'N is the number of true negatives (number of normal samples

without any of the identified combinations) and N, is the number of normal samples.
95% confidence interval was calculated using the “exact” Clopper-Pearson method [38].
Overall sensitivity and specificity is calculated from the total count of true positives,
true negatives, tumor samples and normal samples for all cancer types, using the ran-
domly selected 25% test data set. However, it is important to keep in mind that these
multi-hit gene combinations may not represent cancer genes. Additional experimental
validation is required to determine if mutations within these genes may play role in

cancer.

3.5 Classification and Runtime Performance of the

Parallel Algorithm

Cancer is estimated to be caused by a combinations of a small number of (two to
eight) genetic mutations (hits) [17, 19, 20, 109, 114, 130, 173, 195]. We had previously
developed an algorithm for identifying a set of two-hit combinations of genes with
mutations, that was able to differentiate between tumor and normal samples with high
sensitivity and specificity [48]. Due to its computational complexity the algorithm is

impractical for identifying more than two hits [48].

To identify combinations of more than two hits, we restructured and optimized the
algorithm for parallel execution on a GPU, as described in the Methods section. These
modifications can be grouped into two broad categories: compressed binary matrix

representation and GPU parallelization.

The compressed binary matrix optimization and GPU parallelization resulted in an
average speedup of 12,144x for the three-hit algorithm, relative to the original integer
matrix based CPU implementation. With this speedup, we were able to identify three-

hit combinations for the 32 cancer types for which data was available in TCGA. In

87

88

addition, we were able to identify four-hit combinations for 14 cancer types for which

the runtime was less than 15 days. The accuracy of the three-hit combinations was

found to be comparable to the two-hit combinations, with overall sensitivity of 90%

(95% CI = 88-91%) and average specificity of 93% (95% CI = 92-94%).

3.5.1 Optimization and Parallelization Reduces Runtime for

Speedup relative to original

the Two-Hit Algorithm

Run time (sec)

matrix CPU implementation

—_
o
S
u

—_
o
w

—_
o
N

_
o

—_
o
o

Il CPU Original Matrix
[cPU Compressed Binary

Ty

ACC
BLCA
BRCA
CESC
CHOL
COAD
DLBC
ESCA
GBM
HNSC
KICH
KIRC
KIRP
LGG
LIHC
LUAD
LUSC
MESO

(b

~

ov
PAAD
PCPG
PRAD
READ
SARC
SKCM
STAD
TGCT

[_1GPU Optimized

THCA
THYM
UCEC
ucs
UVM

ACC
BLCA
BRCA
CESC
CHOL
COAD
DLBC
ESCA
GBM
HNSC
KICH
KIRC
KIRP
LIHC
LUAD
LUSC
MESO

oV
PAAD
PCPG
PRAD
READ
SARC
SKCM
STAD
TGCT

I CPU Compressed Binary
[1GPU Optimized

THCA
THYM
UCEC
ucs
UVM

Figure 3.11: Comparison of different implementations of the multi-hit algorithm for
identifying two-hit combinations. (a) runtime for the original matrix implementation
on the CPU ranges from 3-3723 sec compared to 7-223 sec for the compressed binary
CPU implementation and 5-33 sec for the optimized GPU implementation. (b) Speedup
is on average 10-fold for the compressed binary CPU implementation and 68-fold for the
optimized GPU implementation compared to the original matrix CPU implementation.
Names for the cancer types shown along the x-axis are listed in Table S1.

Figure 3.11(a) shows that the runtime for identifying two-hit combinations ranges from
5-33 sec for the optimized GPU implementation compared to 7—223 sec for the com-
pressed binary CPU implementation and 3-3,723 sec for the original matrix CPU imple-
mentation. The optimized GPU implementation of the two-hit algorithm is on average
68 times faster than the original CPU implementation, with the speedup ranging from
0.7-224x (Fig. 3.11(b)). However, due to the relatively large fixed data load time,
these speedup numbers understate the effect of the optimization and parallelization
described in the Methods. On average, the data load time for the two-hit optimized
GPU implementation is 85% of the total runtime. The speedup values for the three-hit
algorithm, where the above average data load times are 14% of total runtime for the
optimized GPU implementation, is more closely representative of the effect of optimiza-
tion and parallelization. Detailed runtimes for each cancer type, with a breakdown for
data load time, for different implementations of the two-hit algorithm are shown in

Supplementary Table S2.

3.5.2 Runtime Reduction Permits Identification of Three-Hit

Combinations

Figure 3.12(a) shows that the runtime for identifying three-hit combinations ranges
from 4 sec to 23 min for the optimized GPU implementation compared to 46 sec to
10 days for the compressed binary CPU implementation. For the original integer ma-
trix CPU implementation the runtime ranges from 110 sec to an estimated 282 days.
The optimized three-hit algorithm on the GPU results in an estimated 29 —-33,690 fold
speedup compared to the estimated time for the original matrix based CPU imple-
mentation (Fig. 3.12(b)), with an average 12,144 fold estimated speedup. Detailed
runtimes and speedup for each cancer type for different implementations of the three-

hit algorithm are shown in Supplementary Information Tables S4 and S5.

89

90

Il CPU Original Matrix
(a) [cPU Compressed Binary
[1GPU Optimized

_
o
©

—_
o
[=2]

Run time (sec)
2

102 '
| | | |
100 I il
O <O 00 << OIT 0L ECOUO00>00000S0OE<LSO0OR S
030 pC a8 828EECE22332 523202802885
o oz
BpgoooowfPfExxx¥xx~"d338 FPacTovsdrEEFRED
(b) Il CPU Compressed Binary
_ T T T T T T T T T T 1T T T 17 1T T T 17 17 T T T][__]GPUOptimized
T O L
£ =
o I
= C
c o
o E
;9
o}
>
= E
= £
o]
a s
3 x
O =
o}
o £
P70
O <O 200 < O T O 0oao >0 0aano akF < O 0
§C B Ho2 803 0EE8EI833283 3802882883
o OR==
DpxooobwPFEXXX - a3 s ifaThes®PEERED >

Figure 3.12: Comparison of different implementations of the multi-hit algorithm for
identifying three-hit combinations. (a) runtime for the original matrix CPU implemen-
tation ranges from 110 seconds to an estimated 282 days, compared to 46 seconds to 10
days for the compressed binary CPU implementation and four seconds to 23 minutes
for the optimized GPU implementation. Runtimes for the original matrix CPU imple-
mentation requiring over 30 days were estimated as described in Methods. (b) Speedup
for the compressed binary CPU implementation ranged from 2x—28x, and from 29x—
33,690x for the optimized GPU implementation. Names for the cancer types shown
along the x-axis are listed in Table S1.

3.5.3 Runtime Reduction Permits Identification of Some Four-

Hit Combinations

With the reduction in runtime resulting from the optimization and parallelization de-
scribed in the Methods section below, we were able to identify four-hit combinations

for some cancer types. For cancer types where the number of genes with mutations

91

G < 19000 it takes less than 15 days to identify four-hit combinations. Detailed run-
times for these cancer types are shown in Supplementary Information Table S6. To
identify four-hit combinations for all cancer types will required additional optimiza-
tion and parallelization across multiple GPUs, which will be presented in a separate

forthcoming study.

3.5.4 Contribution of Optimization Techniques to Overall Speedup

(a) 2-hit algorithm

(b) 3-hit algorithm

80 14000
—

701 e 12000 f
59 S 10000
g g
2501 2
= £ 8000r
8 40 8
g | 2 6000
g% 3
& 20t G 40007

2000
0

o 3

Comp. bin. CPUh
Parallel GPU |
Remove bounds
One comb./thread |
UT mapping [

Optimized GPU

Comp. bin. CPU|
Parallel GPU |
Remove bounds
N comb./thread |
UT mapping 1
Optimized GPU

Figure 3.13: Average contribution of optimizations and parallelization to speedup.
Breakdown of contributions due to compressed binary representation, GPU paralleliza-
tion, removal of branch and bound logic, single two-gene combination per thread, and
mapping of upper triangular (UT) gene combination to a sequential thread ID. (a)
Breakdown of two-hit speedup. (b) Breakdown of three-hit combinations. Contribu-
tion due to compressed binary representation is 15x for three-hits which is not visible
in the scale of the figure.

The speedup reported above results from five key enhancements: compressed binary
representation of the Gene-Sample Mutation matrices, parallel execution across multi-
ple GPU cores, removal of branch and bound logic, computation of a single two-gene
combination per thread, and mapping upper triangular matrix of two-gene combina-

tions to thread index. See Methods section below. The breakdown of the contribution

92

due to each of these enhancements is shown in Fig. 3.13. The speedup contribution of
each enhancement is calculated as the difference in average speedup for the implemen-
tation of each enhancement compared to the original matrix CPU implementation See
Supplementary Tables S3 and S5. On, average, the largest contribution to speedup for
the two-hit algorithm is due to GPU parallelization (Fig.3.13(a)). The largest contribu-
tion for the three-hit algorithm is due to mapping GPU threads to the upper triangular
matrix of two-gene combinations (Fig. 3.13(b)). The contribution due to the first three
factors — compressed binary representation, GPU parallelization and removal of branch
and bound logic — is roughly consistent between the two-hit and three-hit algorithms.
However, the enhancements for a single two-gene combination per thread and upper
triangular thread mapping slow down the two-hit algorithm. This is because, for the
two-hit algorithm, speedup due to higher processor utilization from these enhancements
are offset by the additional operations and global memory access required to implement

these modifications.

3.5.5 Multi-Hit Combinations Differentiate Between Tumor

and Normal Samples with High Accuracy

The three-hit combinations identified using a 75% randomly selected Training set iden-
tified an average of seven combinations per cancer type with a total of 335 unique
genes, compared to eight combinations per cancer type with a total of 310 unique genes
for the two-hit combinations. The identified combinations are listed in Supplementary
Tables S7-S9. The three-hit combinations were able to differentiate between tumor
and normal samples in a separate Test set with overall sensitivity of 90% (95% CI = 88
— 91%) and overall specificity of 93% (95% Cl= 92 — 94%), as shown in Fig. 3.14(b).
This was comparable to the overall sensitivity and specificity for two-hit combinations

with sensitivity = 90% (95% CI = 89 — 92%) and specificity = 94% (95% CI = 93 —

100

93

® il ﬁl.n
>
= 50
3
c
[0
[9p]
0
O <O 24 00< O I O o O o o > 00000k < =00
838402208882 822838328 82820828¢852
v —
Dgocodw? XXX - 33s o @xXo»rFFERFE>D
I 2-hit []3-ht
100 |
— y
S ' |
>
S s0f E
S
(0]
Q.
(9p]
0
O <O 4 00< O T O O Qo o > 00000k <=0 v
830 A02 08 8EE822233323322808280¢85
DrgoocobowWPE¥¥Xx "33 T orrFED "
I 2-hit [13-ht

Figure 3.14: Accuracy of two- and three-hit combinations. (a) Sensitivity varies from
63-100% for two-hit combinations, and from 50-100% for three-hit combinations, ex-
cluding KICH for which there were only a total of nine tumor samples. (b) Specificity
varies from 79-100% for two-hit combinations, and from 78-100% for three-hit combi-
nations. Sensitivity and specificity were calculated on a randomly selected 25% Test
data set. Error bars represent 95% CI. Cancer types with relatively large 95% CI
(CHOL, DLBC, KICH, KIRP, MESO and UCS) are due to small sample size (total of
44, 43, 9, 88, 69, and 46 samples respectively).

95%), as shown in Fig. 3.14(a). The difference in average sensitivity and specificity
between 2- and three-hit combinations was -6% (95% CI = -13.5 — +1.5%) and -1%
(95% CI = -3.6 — +1.6%) respectively, with corresponding p-values of 0.12 and 0.44
respectively. Accuracy values are listed in Supplementary Tables S10 and S11. Since
we did not see any improvement in accuracy for three-hit combinations compared to
two-hit combinations, we speculate that additional accuracy improvement will require

examining individual mutations within genes, as discussed below.

94

3.6 Distributing Large Combinatorial Workload Across
Many GPUs

The approximate algorithm for identifying h-hit combinations iterates over all possible
((,f) combinations to find the best combination (the combination with the maximum
value of F'). To compute F for (f) gene combinations, the sequential algorithm iterates
through A nested for loops (Algorithm 11). Computing F-value for each of these
combinations is embarrassingly parallel, and in principle we can flatten these nested
loops of depth h into a single for loop and compute the value of F' for each combination
in parallel, i.e. we can launch (f) parallel threads to compute F-values. Then, the
combination with the maximum value for I’ can be calculated by a parallel reduction
in log (f) steps. However, the memory required to store the results from each of the
(f) threads for h > 2, exceeds the available memory on the V100 GPU. We address
this issue by flattening only the top two for loops and launch (g) threads, and assign
O((hi)) workload to each thread (Algorithm 12). This implementation is described in
detail in Ref [9].

Despite the above optimizations, four-hit combinations for most cancer types could not
be identified in a practical time-frame (< 15 days), on a single GPU. Therefore, in this
work we scaled out the approximate algorithm by restructuring and optimizing com-
putational steps of the algorithm and by developing a scheduler for balanced workload

distribution across GPUs and nodes of the Summit supercomputer at the Oak Ridge
National Laboratory (ORNL).

3.6.1 Reducing Global Memory Access

In Algorithm 12, 4, j, k,l correspond to genes in the gene-sample matrices, which re-

side in global memory. Reading data for these genes from global memory can stall

the threads while waiting for data transfer. To reduce the number of global memory

accesses, we implemented three different memory optimizations:

1. MemOptl: prefetch memories corresponding to genes ¢
2. MemOpt2: prefetch memories corresponding to genes j

3. BitSplicing: splice out covered samples from the tumor gene-sample matrix,

after every iteration of the algorithm

Each thread in Algorithm 12 corresponds to a single unique value of A which corresponds
to a single unique combination of ¢ and j (Algorithm 10). Although the values of k
and [vary within a thread, with ¢« < 7 < k < [< G, the values for 7 and j are fixed
for a thread. So, instead of repeatedly accessing matrix rows corresponding to genes
¢ and 7 within the loop from slower global memory, we prefetch those rows into the
thread’s faster local memory. Pre-fetching data for ¢ and j (MemOptl and MemOpt2)
reduces the global memory access during computation, and the potential for processor

stall while waiting for data to be retrieved from global memory.

In each iteration of the algorithm (while loop in line 4 of Algorithm 12), covered
tumor samples (samples that contain the combination with maximum value for F') are
excluded from further consideration (line 13 of Algorithm 12). These tumor samples
can be spliced out of the gene-sample matrix, reducing the size of the matrix and
eliminating unnecessary memory accesses (Fig. 3.15). Combinations identified in earlier
iterations tend to exclude a large number of tumor samples, so, BitSplicing can reduce
the number of columns in the gene sample matrix. With every 64 samples excluded,
the number of bitwise AND operations are reduced by three. Reduced column width of
gene sample matrix effectively reduces the number of bitwise AND operations linearly.
In the later iterations, when only a handful of samples gets excluded by each iteration’s

best combination, BitSplicing reduces the matrix size at a slower rate.

95

96

ﬁmaﬂﬂiumm

| /I

ﬂﬂﬁlﬂﬂmmmmm@

g2

G (o (0§ |0
v s | w|N

g3
gl

8> A

Figure 3.15: Illustrative example of BitSplicing for a simplified case of 16 samples (S1-
S16) and five genes (gl-gh), where four samples are grouped together and represented by
a single integer requiring a total of four integers in our compressed binary representation.
Assume, the best combination identified in an iteration excludes samples S3, S6, S8,
and S13. BitSplicing will splice out these bits and re-compress the gene sample matrix
using only three integers per gene for next iteration. In actual implementation, we
compress 64 samples into a single unsigned long long int variable.

3.6.2 Distributing Workload Across Nodes and GPUs

Each Summit node has two IBM Power9 CPUs and six NVIDIA V100 GPUs. For

simplicity, we abstract each node as having one CPU core that uses six V100 GPU
devices, and each GPU device can serve thousands of threads (Figure 3.16). The

entire workload ((g) threads) is distributed across hundreds of Summit nodes using the

message passing interface (MPI) where each node serves one MPI process.

Summit Node (2 CPUs + 6 Volta V100 GPUs)

256 GB DDR4 256 GB DDR4
S 135 GB/s % 135 GB/s
64 GB/s
CPUO < > CPU1
/ T 50 GB/s—\! / T 50 GB/s_\!
—> GPUO GPU1 l&| GPU2 [T’ GPUO GPU1 |@ GPU2 [+
v ¥ 900 GB/s ¢ v v 900GB/s §
16 GB 16 GB 16 GB 16 GB 16 GB 16 GB
HBM2 HBM2 HBM2 HBM2 HBM2 HBM2
MPI Abstraction
MPI
Process
GPUO GPU1 GPU2 GPU3 GPU4 GPU5

Figure 3.16: Summit node as a computational unit and its abstraction with a single
MPI process per node. Top: Each Summit node consists of two IBM Power9 CPUs
and six NVIDIA V100 GPUs. Bottom: Each Summit node is assigned to a single
MPI process along with a range of threads (curved lines) that are in turn assigned to
individual processors within the GPUs.

97

98

In Algorithm 12, different threads () have different amounts of workload, e.g. the

G—-2

5) combinations while the thread for ¢ =

thread for ¢ = 1, 5 = 2 will process (
G — 3, 7 = G — 2 will process only 1 combination. A naive implementation assigns
equal number of threads to each node (and each GPU), which we refer to as equi-

G—j

distance (ED) scheduling. A close inspection of the workload ((“]

)) vs A shows an
exponential curve with reducing amount of workload with increasing global thread id
A (Figure 3.17(a)). The area under this curve for each partition shows the total work

per node. From Figure 3.17(a), we can see that areas under these different curves are

very different. This will create significant load imbalance among the MPI processes.

To balance the workload we developed an alternate scheduling approach, which we refer
to as equi-area (EA) scheduling. We partition the workload across the MPI processes
and their GPUs based on the area under each partition’s curve (Figure 3.17(b)). As-
suming the workload function represented by the curve is continuous, a definite integral
of the function in the domain determined by a GPU’s partition will approximate the

total workload assigned to that GPU.

Using the equi-area scheduler, we assign threads in the interval A3, \¢"4] to node
n. Each GPU across the nodes is assigned roughly same amount of workload. Each
MPI process computes F-values for their assigned combinations and then perform a
local parallel reduction to find out the combination with highest F-value. Each MPI
process then sends their local best combination to the MPI process with rank 0. MPI
process with rank 0 identifies the global best combination for the current iteration from
the received local best combinations, then it broadcasts the global best combination to
all MPI processes so that all MPI processes can apply BitSplicing to the gene sample

matrices before next iteration starts.

(a)
400000
§ w1
~
S 200000 ‘/ W2
= / w3 Wa
0 ‘ I '/ : »/
0 100000 200000 300000 400000 500000
A (thread id)
(b)
w1
400000 /
,‘g W2
K / w3
S 200000 /
= W4
0 ‘ | /

0 100000 200000 300000 400000 500000
A (thread id)

Figure 3.17: Workload distribution per node (and per GPU) for G = 1000 and four
nodes. The y-axis shows the workload (number of combinations) processed by each
thread. The vertical solid lines indicate the partitioning of threads (\) across nodes
and vertical dashed lines indicate partitioning of threads (A) across GPUs. The area
under the curve represents the workload Wi for each node i. (a) Partitioning for equi-
distance scheduling where equal number of threads are assigned to each nodes, and equal
number of threads are assigned to each GPU. (b) Partitioning for equi-area scheduling
where threads are assigned to nodes so that each node and GPU have equal areas under
curve.

3.7 Classification Performance and Scaling Efficiency

of the Scaled-Out Algorithm

We ran the multi-hit algorithm on 100 Summit nodes (600 GPUs) to identify four-hit
combinations for the 31 cancer types considered here. With the optimizations described
above, we achieve an average 455-fold speedup on 600 GPUs compared to the runtime on
a single GPU. The four-hit combinations were identified using a training set consisting
of 75% of the sample set. See Artifact Description Appendix for details of the data used.

The four-hit combinations identified by the algorithm were able to differentiate between

99

100

tumor and normal samples in the remaining 25% test set with 82% sensitivity (95%
Confidence Interval (CI) = 66 — 91%) and 93% specificity (95% Confidence Interval
(CI) = 85— 97%) on average. The overall sensitivity is 84% (95% Confidence Interval
(CI) = 83 — 86%) and the overall specificity is 93% (95% Confidence Interval (CI) =

92 — 94%) for all cancer types.

3.7.1 Scaling Out to 100 Nodes

The runtimes for 31 cancer types on 100 nodes are shown in Fig. 3.18(a). With 100
nodes, we can compute four-hit combinations for each of the 31 cancer types in less
than two hours. These runtimes represent an average 455-fold speedup compared to
single GPU runtimes (Fig. 3.18(b)). We calculated speedup using the single GPU
runtime from the results reported in Ref. [9] as the baseline. However for 18 of the 31
cancer types, the single GPU computation was estimated to take more than 15 days.
In these 18 cases we estimated the single GPU runtime using the average ratio, R,
of actual runtimes for the four-hit algorithm versus the three-hit algorithm for the 13
cancer types that did complete in less than 15 days. This average ratio was then used to
estimate runtimes for the four-hit algorithm from the corresponding three-hit algorithm
runtime for the 18 cancer types that did not complete in 15 days, as T, = R x T3, where

T, and T3 are four-hit and three-hit runtimes.

For a given number of hits, the run time varies by cancer type (Fig. 3.18(a)). This dif-
ference in runtime between cancer types is determined by two main factors: the number
of tumor samples and the number of multi-hit combinations identified. To calculate
the value of F' in Equation 3.1, the algorithm must read each of the samples to deter-
mine the number of samples that contain the combination (TP, True Positives). The
Pearson correlation coefficient between runtime and the number of samples is 0.79 (Fig.

3.19(a)). The number of combinations required to cover the set of samples determines

(a) (b)

- (I Single GPU 1600 GPUs | - [single GPU (Est) 1600 GPUs |

© Y

£ 10°] 1 £ 10°]

> >

) H H |ﬂ i

10° ONOTOO0Q0IAI 9D 10° CODOR PO ONQQ

FIPTECSLLSTOSES T FELTLSLLFTLELS O TS
TFFE@EEILFIOL I FELYLIOFEVIFY &

1000 1000

500

Actual Speedup
o
o
o o
Estimated Speedup
o

ONOFTEOLLIESDS T FOODOR OVQ 099099
OPISEGTITSOEL~ES FOGTD DL TL XD ORI L
TEYGELT LSRRI FFELOFTEINIY EESFERLS

Figure 3.18: Runtime and speedup for four-hit algorithm. (a) Single GPU and 600 GPU
runtimes for the 13 cancer types for which the computation finished in 15 days. (b)
Runtimes for the 18 cancer types for which the computation did not finish in 15 days.
The single GPU runtime was estimated from the average actual ratio of runtimes for
the four-hit algorithm compared to the three-hit algorithm. (c) Actual speedup for 600
GPUs compared to single GPU runtime for the 13 cancer types in (a). (d) Estimated
speedup for the 18 cancer types in (b). Names of the 31 cancer types are listed in the
Artifact Description Appendix.

the number of iterations of the while loop in line 4 of Algorithm 12. Therefore, run-
time can be longer in some cases even if the number of samples is smaller. For example,
BRCA has the largest dataset (911 samples), however BLCA with 368 samples has a
longer runtime (Fig. 3.18(a)). The Pearson correlation coefficient between runtime and

the number of combinations is 0.92 (Fig. 3.19(b)).

Strong scaling from 50 to 100 nodes for breast invasive carcinoma (BRCA)

To minimize the effect of fixed costs on scaling efficiency calculation, we chose the cancer
type with a long runtime, BRCA, for this analysis. The Summit resource allocation
system limits the maximum runtime to two hours when less than 100 nodes are used.
Therefore, we were restricted to a minimum of 50 nodes to complete the execution of
the algorithm, which we used as the baseline for calculating scaling efficiency. With

less than 50 nodes, the runtime exceeded 2 hours. We collected runtimes from 50 to 100

101

102

nodes at 10 node increments. The Scaling efficiency is 77% for 100 nodes compared to
the runtime for 50 nodes (Fig. 3.20). The reason for this relatively low scaling efficiency

is analyzed in Section 3.7.2 below.

Weak scaling

The strong scaling described above represents the effect of increasing the number of
resources (GPUs), on runtime, for a fixed total workload. Here, we show the effect
of increasing the number of GPUs, on runtime, for a fixed workload per processor.
The equi-area scheduler assigns an equal amount of work to each processor. However,
to ensure a fixed workload per processor we limited the runs to the first iteration
(Algorithm 12), since depending on the number of nodes used, the later iterations
produce varying amount of workload. The average weak scaling efficiency for BRCA is

80.6% for 1 to 100 nodes (Figure 3.21).

Effect of memory optimization on runtime

We evaluated the effect of the three memory optimization strategies, described in Sec-
tion 3.6.1, using the BRCA dataset for the three-hit algorithm running on a single GPU.
Together, prefetching data for samples associated with gene i (MemOpt1), prefetching
data for samples associated with gene j (MemOpt2) and splicing out data for sam-
ples associated with covered gene combinations (BitSplicing), result in a 3-fold speedup

(Fig. 3.22).

Comparison between runtimes of two schedulers

Based on a test of the four-hit algorithm for two cancer types, breast invasive carcinoma

(BRCA) and esophageal carcinoma (ESCA), equi-area scheduler (EA) achieves a 3-4x

speedup over equi-distance scheduler (ED) (Table 3.3), by virtue of its more balanced
workload, as described in Section 3.6.2.

Table 3.3: Runtime comparison between two scheduling approaches. Test of four-
hit algorithm for two cancer types breast invasive carcinoma (BRCA) and esophageal
carcinoma (ESCA). The equi-area (EA) scheduler is three-four times faster than the
equi-distance (ED) scheduler.

Cancer Type ED Time EA Time Speedup
BRCA 13942.7 4606.71 3.02
ESCA 1573.06 448.82 3.50

Effect of different block-sizes

To test the effect of block-size on runtime, we varied the block-size from 64 to 512
threads, for identifying a single four-hit combination for BRCA. The best runtime was
obtained for a block-size of 128 threads, however the block-size did not significantly

effect the runtime (Table 3.4).

Table 3.4: The effect of block size on runtime is not significant. Test to identify a single
four-hit combination for BRCA shows that the best runtime was for a block-size of 128
threads. Average runtime = 1088 with standard deviation = 14.0.

Block-size (threads) 64 128 256 512
Runtime (seconds) 1092.24 1072.48 1082.99 1106.14

3.7.2 Compute Utilization and Analysis of Its Variance Across

GPUs

The equi-area scheduler distributes approximately the same amount of workload, as
measured by the number of combinations processed, across MPI processes, which are
served by different nodes. The workload distributed among GPUs within each node for
different MPI processes is also approximately the same. However, individual threads

within a GPU and across GPUs will have different workloads. This combined with

103

104

different memory access patterns for different GPUs can result in a less than ideal

strong scaling efficiency (77% for 100 nodes compared to 50 nodes, Fig. 3.20).

We analyzed compute utilization for the 600 GPUs in a 100-node run for the cancer
type Adenoid cystic carcinoma (ACC) (Fig. 3.23), to identify the reason for lower
utilization. Choosing ACC enabled us collecting performance metrics within the time-
limit constraint. We used metrics on DRAM read/write throughput and instruction
issue efficiency to analyze the variance of compute utilization cross GPUs. In general,
utilization decreases with the increasing GPU index, with spikes in utilization around
GPU #372, #504, and #560. GPUs with lower utilization represent processors that
have completed their assigned work faster and are idle while the first GPU, with 100%
utilization, is still running. Our analysis shows that compute utilization primarily

depends on memory read/write throughput.

DRAM read/write throughput

Figures 3.23(a) and (b) show that Compute utilization up to GPU #500 is inversely
correlated with DRAM read/write throughput. Although each GPU is assigned ap-
proximately the same workload, the range of memory accessed by threads within those
GPUs decreases exponentially. For example, the thread with thread-id A = 0 accesses
G =~ 20000 different memory locations, while the thread with A = (g) — 2 accesses only
three memory locations. DRAM read/write thoughput is an indication of the number of
cycles required for successful memory accesses. Above GPU #500 read /write through-
put continues to increase without a corresponding decrease in utilization, indicating a
transition of processor bottleneck from being memory bound to being compute bound.
During this transition read/write throughput still affects utilization but to a smaller
extent. This is reflected in the smaller spikes in utilization corresponding to spikes in

read/write throughput for GPU index > 500.

Instruction issue efficiency

To further understand how DRAM read/write throughput affects compute utilization,
we analyzed instruction issue efficiency. Thread blocks assigned to a GPU are assigned
to its streaming multiprocessors (SM) and their execution is scheduled in groups of 32
threads (warp). The execution of these warps can be stalled if all necessary resources
are not available or if all dependencies have not been satisfied. A breakdown of the
stalled cycles shows three major contributors: memory dependency, memory throttle,
and execution dependency (Fig. 3.23(c)). Stalls due to memory dependency indicate
that resources required for load/store from memory are not available. Stalls due to
memory throttle indicate that excessive pending memory operations are preventing
further execution. Stalls due to execution dependency indicate that input data required
for the instruction is not yet available. DRAM read/write throughput affects all three

of these factors resulting in reduced compute utilization.

105

3.7.3 Classification Performance of the Identified Four-Hit Com-

binations

We identified 314 four-hit combinations for 31 cancer types, using a 75% training
dataset. THCA had the largest number of combinations (20) and THYM, PAAD,
and ESCA had the smallest (3). Figure 3.24 shows the top three four-hit combinations
identified for low grade glioma (LGG) by our algorithm. The figure shows the location
of each gene within the chromosome in which it is located, with each four-hit combina-
tion connected by curved lines of the same color. Names of the 31 cancer types and all

of the four-hit combinations identified are listed in the Artifact Description Appendix.

To evaluate the quality of the identified four-hit combinations, we built a classifier

per cancer type. The classifier measures the accuracy (sensitivity and specificity) with

106

which the four-hit combinations for each cancer type can differentiate between tumor
and normal samples. For a given cancer type, let the set of combinations be ¢y, ca, .. ., ¢p.
The classifier will classify a sample as a tumor sample if that sample has mutations in
all the genes of any one of the combinations ¢; (1 < i < p). If there is no such com-
bination, the sample will be classified as a normal sample. Using these per-cancer
classifiers, we evaluate the classifiers’ performance on the test dataset for each of the
31 cancer types. These classifiers achieve 82% sensitivity (95% Confidence Interval
(CI) = 66 — 91%) and 93% specificity (95% Confidence Interval (CI) = 85 — 97%) on
average (Fig. 3.25). Most existing approaches do not report comparable classification
performance, since the focus is generally on discovery and characterization of cancer
genes and driver mutations. We did find one study (ContrastRank) that reported clas-
sification performance for three cancer types [172], which are summarized in Table 3.5.
However, ContrastRank identifies individual driver genes, but not the combinations.
Table 3.5 also lists corresponding sensitivity and specificity for four-hit, three-hit and

two-hit combinations from this study and Refs [48] and [9], respectively.

Table 3.5: Comparison of classification performance of the multi-hit algorithm and the
ContrastRank method.

Sensitivity /Specificity (%)

Cancer Four-hit Three-hit Two-hit Contrast
Type Comb Comb Comb Rank
COAD 96/91 95/91 90/97 86/97
LUAD 83/91 83/86 91/92 96/97
PRAD 77/86 83/78 88/79 91/92

3.8 Conclusion and Discussion

Cancer is many different diseases, although the symptoms may be similar. These differ-

ent diseases are a result of different combinations of genetic defects (hits). In this study

we have developed a method for identifying combinations of genes with mutations that
may be responsible for different instances of cancer. Our method is fundamentally dif-
ferent from current approaches which identify individual genes, instead of combinations

of genes, in which mutations increase the likelihood of carcinogenesis.

The problem of identifying a set of multi-hit combinations that can differentiate between
tumor and normal samples was mapped to the extensively studied weighted set cover
(WSC) problem. We adapted a WSC algorithm to the problem of identifying multi-hit
combinations. The algorithm was applied to a training set of somatic mutation data
from the cancer genome atlas (TCGA) to identify a set of two-hit combinations for
the 17 cancer types with at least 200 matched tumor tissue and blood-derived normal

samples.

The resulting two-hit combinations were able to differentiate between tumor and normal
tissue samples in a separate test set with over 90% sensitivity and specificity on average.
Accuracy of the results were robust to different random partitionings of the available
data between training and test sets. The resulting set of combinations include potential

novel cancer genes, not previously implicated in cancer.

Next, we presented optimization and parallelization techniques that allowed us to ex-
tend the algorithm to identify three-hit combinations, and some four-hit combinations.
The three-hit combinations are able to differentiate between tumor and normal sam-
ples with overall 90% sensitivity (95% CI = 88-91%) and 93% specificity (95% CI =
92-94%). We illustrate how the distribution of somatic mutations in these genes can
be used to identify potential driver mutations for further investigation. For example,
we identified two protein-altering somatic mutations in the KCNB1 gene which occur
significantly more frequently in TCGA ovarian cancer samples compared to normal
samples (p-value<0.0001), suggesting that these mutations may be positively selected

for in ovarian cancer. However, further experimental validation is required to deter-

107

108

mine if these mutations represent novel cancer driver mutations, or are simply passenger

mutations.

Most cancers however require an estimated four — nine hits. To be able to identify
combinations of more than three hits, we restructured and optimized the algorithm
for parallel execution across multiple GPUs on multiple nodes of the Summit super-
computer at the Oak Ridge National Laboratory. Parallel execution of the optimized
algorithm across 100 Summit nodes (600 GPUs) resulted in an average 455-fold speedup
compared to the runtime on a single GPU, allowing us to identify four-hit combinations

for the 31 cancer types considered here.

The declining scaling efficiency with the number of nodes indicates that extending the
algorithm beyond four-hit combinations will require further restructuring and optimiza-
tion. In addition, analysis of the multi-hit combinations identified, shows that many of
the genes contain passenger mutations rather than driver mutations, indicating a need
for reexamining some details of the algorithm design. Specifically, the algorithm should
be modified to search for combinations of individual mutations within genes, instead

of combinations of genes with mutations.

With twenty times as many protein-altering mutations as there are genes, and the
exponential computational complexity of the algorithm, significant additional scaling up
of the algorithm will be required. Despite these limitations, the multi-hit combinations
identified do include known cancer genes, suggesting that with further refinement, the

algorithm has the potential for identifying combinations of cancer causing mutations.

Here we discuss how the multi-hit combinations identified can be used to identify car-
cinogenic (driver) and non-carcinogenic (passenger) mutations within genes. We also
illustrate how these combinations may be used to design a combination therapy target-

ing the specific genetic mutations responsible for individual instances of cancer.

3.8.1 Distinguishing Between Driver and Passenger Mutations

The method used to identify multi-hit combinations uses a mutation frequency based
approach to preferentially select driver genes instead of passenger genes, since the se-
lected genes have a significantly higher mutation frequency in tumor samples compared
to normal samples. For each gene, the mutation frequency in normal samples is con-
sidered to be approximately representative of the background mutation frequency for

the gene. However, within these genes not all mutations are carcinogenic.

The two-, three-, and four-hit combinations found provide a starting point for exam-
ining a smaller subset of genes more closely to identify specific carcinogenic mutations
within these genes. In identifying the multi-hit combinations, we did not take into
consideration the location of mutations within genes. Clearly there are locations within
a gene where certain mutations are unlikely to affect the function of the gene product.
Such mutations can result in false positives and contribute to the large number (65%)
of tumor samples containing multiple combinations (Fig. 3.7). Consider for example,
the two-hit combination of IDH1 and MUCS6 in brain lower grade glioma (LGG) tumor

samples.

Of the 479 LGG tumor samples, 134 (28%) contain mutations in both IDH1 and MUCS,
while 5 (1.5%) of 333 normal tissue samples contain a mutation in both these genes
(Fig. 3.26). Comparing the mutations within these genes for normal and tumor samples
may reveal which are carcinogenic and which are not. In this example, every one of the
tumor samples contains a missense mutation at R132 in IDH1 and no other mutations,
while the normal samples do not contain any mutations at this position (Fig. 3.26).

Mutations at R132 in IDH1 have previously been implicated in cancer [111].

On the other hand, the IDH1 mutations seen in the normal samples are unlikely to be
carcinogenic. Similarly, mutations at F1989 of MUCG6, which occur most frequently in

both tumor and normal samples are unlikely to be carcinogenic (Fig. 3.26). Excluding

109

110

such non-carcinogenic mutations can reduce the number of false positives and further
increase accuracy of our algorithm. In our future work we will develop an automated
method to compare and contrast the individual gene loci, so that all of these mutations
within genes can be identified. To further improve accuracy of our algorithm, variants
that are likely to be carcinogenic can be weighted higher than those that are unlikely

to be carcinogenic.

Some of the genes identified by our approach may not be causative (passenger muta-
tions) even though they may be correlated to cancer incidence. Functional analysis
can be used to identify genes in the above set of combinations that are unlikely to
be driver genes, even though they may be frequently mutated in tumors.[24, 52, 122]
For example, the affect of specific mutations on gene expression levels can be ana-
lyzed to determine if the mutation is likely to have a functional effect. In addition
we can analyze the pathways affected by the gene combinations (Table A.7). Studies
show that combinations of driver gene mutations generally affect mutually exclusive
pathways.[106] One of the genes in a multi-hit combination affecting the same pathway
may include passenger mutations. Although in most cases multiple different pathways
are affected by the gene combinations, Table A.7 shows that in some cases (e.g. MUC6
and MUC12) the same pathway is affected by both genes in the combination. Further
analysis would be required to determine if the mutations within one of these genes are

passenger mutations.

The search algorithm can be run iteratively to incrementally refine the list of multi-hit
combinations by excluding these passenger mutations. The input to our algorithm is
a list of genes with mutations for each sample. Genes with only passenger mutations
can be excluded from this list to minimize the inclusion of passenger mutations in the

resulting multi-hit combinations.

3.8.2 A Rational Basis for Combination Therapy

The two-, three-, and four-hit combinations identified, with further refinement and clin-
ical validation, may represent a more rational basis for targeted combination therapy,
instead of the current “marriages of convenience” [105] with limited biological ratio-
nale [10]. A more rational strategy may also reduce the risk of expensive failures such
as the phase III trial of imfinzi plus tremelimumab. The combination of therapies for
a given patient could be designed to target specific carcinogenic combinations of gene
mutations found in the patient. Although only 30 of the 256 genes in the combinations
identified above were formally identified as “cancer genes” in the catalog of somatic
mutations in cancer (COSMIC), many of the other genes were previously implicated in

cancer (Table 3.2).

Therapies that target many of the genes in both these categories may be available or un-
der development. For example, the combination of mutations in TP53 and IGHG1 occur
in 41% of HNSC tumor samples in TCGA. Therapies targeting TP53 (Styrylquinazo-
line) Several drugs that can restore TP53 function, deplete mutant TP53 or affect
downstream targets are currently in pre-clinical development [139]. siRNA targeted si-
lencing of IGHG1 has been shown to inhibit cell viability and promote apoptosis, which
might therefore act as a potential target in cancer gene therapy [135, 188]. For patients
with this combination of mutations, a combination therapy targeting both these genes

may be more effective in combination, than separately.

3.8.3 Identifying Combinations of Gene Mutations From the

Identified Gene Combinations

Not all mutations within a cancer gene are oncogenic [36, 100, 122, 146]. However

to make the problem of identifying multi-hit combinations tractable, the algorithm

111

112

searched through all possible gene combinations, instead of all possible combinations
of mutations. In the tumor sample data used, there were over 400,000 unique so-
matic mutations across ~20,000 genes. It is theoretically possible to search all possible
combinations of 400,000 protein altering somatic mutations instead of combinations of
20,000 genes with somatic mutations. However, searching all possible combinations of
400,000 mutations would increase the computational complexity for identifying three-
hit combinations by over six orders of magnitude, making the problem computationally
intractable. In addition, since there can be multiple different carcinogenic mutations
within a gene, combinations of individual mutations will occur less frequently than
combinations of genes with mutations, further increasing the challenge of identifying
carcinogenic combinations within this much larger set of possible combinations. There-
fore, we chose to first focus on combinations of genes with mutations. Mutations within
these gene combinations can then be examined to identify potential driver mutations

for further investigation, as illustrated below.

Consider for example, the two- and three-hit combinations identified for ovarian serous
cystadenocarcinoma (OV) (Figs. 3.27 and 3.28). The most commonly occurring two-
and three-hit combination are TP534+KCNB1 and TP534+KCNB1+TTN respectively.
Mutations in TP53 and KCNB1 occur in 279 of 317 OV tumor samples and mutations
in TP53, KCNB1 and TTN occur in 271 of 317 OV tumor samples. The distribution of
protein altering somatic mutations in TP53, KCNB1 and TTN for the 271 OV tumor
samples containing mutations in all three genes are shown in Figs. 3.29(a), 3.30(a),
and 3.31(a), respectively. The distribution of protein altering somatic mutations in
TP53, KCNBI1 and TTN for 333 normal samples are shown in Figs. 3.29(b), 3.30(b)
and 3.31(b), respectively. The difference in the frequency of individual mutations be-
tween tumor and normal samples may suggest potential driver mutations for further

investigation.

The TP53 gene codes for the Tumor Protein P53. Mutations in TP53, a tumor suppres-

sor gene, have been extensively implicated in many cancers, including OV [8, 56, 57, 66,
75, 155]. In the 271 OV tumor samples containing the TP53+KCNBI14+TTN three-hit
combination, TP53 contains on average 1.8 protein altering somatic mutations per sam-
ple, compared to 0.15 mutations per sample in normal samples, with clear differences
in the distribution of these mutations (Fig. 3.29). The three most frequently occur-
ring mutations in the tumor samples (amino acid positions R248, R273, and R175)
are potential driver mutations, since they rarely occur in normal tissue (Fig. 3.29).
The mutation frequency at R248, R273 and R175 are 0.08, 0.07 and 0.06 per tumor
sample, compared to 0.00 per normal sample (p-value < 0.0001 for the difference in
proportions). In fact, previous studies have shown that the R248W, R273H and R175H
mutations not only cause a loss of P53-based tumor suppressor activity, but also result
in genomic instability causing gain of oncogenic activity [34, 110, 164]. On the other
hand the two most frequently mutated amino acid positions in normal samples, T377
and T378, are likely to be passenger mutations. Normal tissue mutation frequencies of
0.07 and 0.05 per normal sample are comparable to tumor tissue mutation frequencies

of 0.04 and 0.05 per tumor sample for T377 and T378, respectively (Fig. 3.29).

The KBNBI1 gene codes for the Potassium Voltage-Gated Channel Subfamily B Mem-
ber 1 protein. KCNB1 has been previously identified as a prognostic factor in gliomas
due to its tumor suppressor function [181]. It contains on average 2.14 protein al-
tering somatic mutations per tumor sample in the 271 OV samples containing the
TP53+KCNB14+TTN three-hit combination, compared to 0.03 mutations per normal
sample (p-value < 0.0001) (Fig. 3.30). The two most frequently occurring mutations
at K776 and R736 are potential driver mutations worthy of further investigation. The
mutation frequencies at these positions are 1.37 and 0.41 per tumor sample compared to
0.00 and 0.003 per normal sample, respectively (Fig. 3.30). Although KCNB1 has been
extensively studied, primarily in the context of epilepsy [29, 103, 118, 123, 151, 171],

these studies do not include either of the two mutations identified here. These two

113

114

mutations occur in the unstructured C-terminus cytoplasmic tail region of this trans-
membrane potassium channel protein [118, 151]. Further in vitro investigation will be
required to understand how these mutations may affect the expression, structure or

function of this protein, to determine if these could be driver mutations.

The TTN gene codes for the Titin protein of striated muscle. TTN expression level
has been previously identified as prognostic marker for Ewing’s sarcoma [53], and TTN
mutations have been associated with several myopathies [43, 85, 90, 93, 191]. Titin is a
large protein consisting of 34,350 amino acids, with a correspondingly large number of
mutations, 15.37 protein altering somatic mutations per tumor sample and 3.98 muta-
tions per normal sample, on average (Fig. 3.31). Three of the most frequent mutations
in TTN in tumor samples, C21862G, E1656G and T2963P, occur more frequently in
tumor samples compared to normal samples, suggesting that these may be potential
driver mutations that should be investigated further. The mutation frequencies at these
amino acid positions are 0.17, 0.20 and 0.20 per tumor sample, compared to 0.06, 0.003,
and 0.03 per normal tissue sample, respectively (Fig. 3.31). Although TTN mutations
have been extensively studied, primarily in the context of myopathies [43, 85, 90, 191],

these studies do not include any of the three mutations identified here.

The above only provide a starting point for further investigation. The positive selec-
tion implied by the higher mutation frequencies seen above are confounded by several
factors, including tumor microenvironment, tissue and cell type, epigenetic modifica-
tions, gene expression and co-expression, etc. [11, 104, 119, 120, 157, 167, 180]. A more
detailed analysis of the potential driver mutations identified above using available lit-
erature, gene expression data, copy number variation, associated pathways, functional
annotation, protein localization, etc., could provide additional evidence to either sup-
port or reject the mutation as a driver mutation. This information can be iteratively
incorporated into the search algorithm described in Methods. We expect that exclud-

ing likely passenger mutations will reduce the number of false positives and prioritizing

likely driver mutations will reduce false negatives, improving the accuracy of the com-
binations identified. However, this could also potentially limit the discovery of novel

genes.

Note that these somatic mutations were calculated using protected whole exome se-
quencing data from tumor samples with matched blood-derived normal samples. For
tumor samples, protected somatic mutation data (MAF files) were downloaded from
the cancer genome atlas (TCGA) with permission. Somatic mutations for normal tis-
sue samples with matched blood-derived normal samples were called using the same
protocol used by TCGA, as described in the methods. Variants called using matched
blood-derived normal data identifies significantly more mutations than the number of
variants called without matched blood-derived normal samples, for the following rea-
sons [152, 166]. Biopsy specimens contain a mix of tumor and normal tissue cells,
tumor-infiltrating lymphocytes, and stromal cells. In addition, tumor cells themselves
can be genetically diverse. As a result, mutations in a subset of the cell population
will present at a relatively low frequency. Using blood derived normal samples as a
reference allows for the identification of such low frequency variants. Variants that
could potentially lead to de-identification of donors (~80 million variants) are consid-
ered “protected” data in TCGA, and are not accessible by tools such as cBioPortal
and TCGA queries that are based on “open” access data (~3 million variants). For
example, the protected TCGA MAF files contain 617 protein-altering somatic muta-
tions in TP53 in 317 OV samples, compared to the 276 somatic mutations reported by

cBioPortal using open access data [32].

3.8.4 Beyond Four-Hit Gene Combinations

Although our algorithm may be able to identify mutations that contribute to cancer

progression, many of the mutations in the gene combinations identified are likely to be

115

116

passenger mutations. To identify combinations of true oncogenic mutations will require
searching for specific combinations of mutations within genes instead of combinations

of genes with mutations.

Based on the computational complexity of the multi-hit algorithm , extending the
four-hit algorithm from combinations of ~ 2 x 10* genes to combinations of ~ 4 x 10°
protein-altering mutations will require a computational speedup of ~ 10° relative to the
estimated single GPU runtime for the optimized code presented above. In addition,
identifying combination of each additional number of hits will require an additional
speedup of ~ 4 x 10°, e.g. going from four-hit combinations to 5-hit combinations.
An additional challenge presented by mutation level combinations is that the input
mutation-sample matrices are 20 times larger than gene-sample matrices, represent-
ing increased latency due to additional global memory access requirements. Following
are four of many possible strategies that can help address these challenges. (1) Par-
allelize execution across the 27,648 GPUs on the Summit supercomputer. (2) Reduce
workload imbalance by linear mapping of threads to the upper tetrahedral domain of
mutation combinations. (3) Balance compute utilization through an on-demand sched-
uler addressing memory accesses (4) Minimize memory latency by distributing only the
required subset of mutation-sample matrices to each GPU. (5) Limit combinations to
the most probable oncogenic mutations. Following is a brief description of each of these

strategies

(1) Scaling of the current implementation has been evaluated for up to 100 Summit
nodes (600 GPUs). The following additional optimizations should also be tested on a
limited number of nodes, to ensure that scaling efficiency does not drop off to the point
where additional nodes do not provide significant additional speedup. The goal would

be to ensure high scaling efficiency up to the 27,648 available GPUs on Summit.

(2) When computing the value of the objective function F, the multi-hit algorithm

only needs to consider mutation combinations {m;, m;,...,mp},1 <i<j<--- <N,
where m; is mutation i, h is the number of hits and N is the number of all possible
mutations. In Algorithm 10 each thread was uniquely mapped to combinations of
two genes. Although this mapping is near-optimal for two-hit combinations, it is not
optimal for three or more hits. Navarro et al. [129] derived a mapping of the tetrahedral
domain, where i < j < k£ < N, to a linear thread index. This mapping can improve

processor utilization.

(3) The variability in memory access patterns across nodes limits node utilization.
By breaking the total work into finer grained workloads by considering the memory
access patterns, and assigning them to idle nodes, we can balance the compute utiliza-
tion across nodes and improve scaling efficiency. Memory coalescing and tiling while
breaking down the total work into fine-grained workloads can benefit this on-demand

scheduler in achieving high processor utilization.

(4) A range of threads (\) process a limited range of combination, as seen in Algorithm
10. Therefore, only this limited subset of the mutation-sample matrix is need by these
threads. The subset corresponding to the range of threads associated with each GPU
can be calculated and only that subset of data copied to GPU global memory. The

reduced input matrix size can reducing memory latency.

(5) Mutations in many genes are unlikely to be oncogenic, e.g. pseudogenes, genes not
expressed in the cell of origin, known olfactory receptor genes, etc. Such domain knowl-
edge can be used to limit the number of mutations N. However, orders of magnitude
larger reductions in the number of mutations will be required with increasing number of
hits. Bayesian variable selection can be used to filter out genes that are highly unlikely
to be carcinogenic. Weghorn and Sunyaev have previously developed a hierarchical
Bayesian framework for identifying likely cancer genes from germline mutation data

[183]. Their software can be adapted to rank and limit mutations to the ones most

117

118

likely to be oncogenic.

The speedup from these optimizations can allow the identification of combinations of

four or more oncogenic mutations.

Additional Information Additional information is available in Appendix A and the

companion file DashgsupplementaryTablesS1 — S112020.xlsx.

119

Algorithm 10 Parallel algorithm to compute three-hit combinations.

Require: tumor-sets, normal-sets, tumor-samples, normal-samples, «

1: covered-samples <— P

2: combinations < ®

3: Ny |tumor—samples‘

4: N, <+ }normal—samples‘

5. while covered-samples # tumor-samples do

6: Fra[l... (§)] ¢ [~o0-++ — o0

7 for parallel: A =1 — (g) do

8: Frae [)\] — —00

0: je{ 1/4+2/\+1/2J

10: i—A—j3(G—-1)/2

11: fork=j+4+1— G do

12: TP « |tumor-sets[i]) N tumor-sets[j]) N tumor-sets[k])|

13: FP « |normal-sets[i]) N normal-sets[j]) N normal-sets[k])|
14: TN <« N, — FP

15: FN < N, —TP

. P axTP+TN

16: < N, + N,

17:

18: if F > F,0.[A\] then

19: Fraz[A] < F
20: best-combinations[A] < (i, j, k)
21:
22: best-combination, Fp,q, < parallel-reduction(best-combinations[1 . .. (
23: combinations.add(best-combination)
24: i, J, k < best-combination.extract()
25: covered-samples.add(tumor-sets|i]) N tumor-sets[j| N tumor-sets[k])

26: return combinations

G
2

)], Frnas[1 ...

120

Algorithm 11 Computing four-hit combinations with depth-4 nested for loops.

Require: tumor-samples, normal-samples, a

1:
2:
3:
: while covered-samples # tumor-samples do

4
5
6
7
8
9

10:

11:
12:
13:

14:

covered-samples < P
answer <— ®

combinations < @
fori=1— G do
for j=i+1— G do
fork=j3+1—Gdo
foril=k+1— Gdo
combinations.add(Combination(i, j, k,1))

answer.add(best(combination))
covered-samples.update(tumor-samples, best(Combination))

return answer

Algorithm 12 Computing four-hit combinations with depth-3 nested for loops.

Require: tumor-samples, normal-samples, a

1:
2:
3:

10:
11:
12:
13:
14:

covered-samples < P
answer < ¢

while covered-samples # tumor-samples do
combinations < ®

for)\:1—>(§) do
i, 7 < unpack(\)
fork=7+4+1— G do
fori=k+1— G do

combinations.add(Combination(i, j, k, 1))

answer.add(best(combinations)
covered-samples.update(tumor-samples, best(combinations))

return answer

8000 1 -
@ 6000 X
) ///// X
._g 4000 B 3K /X/>Z/ X
c X7 X
> X~
0C 2000 F x X.~g X
jo
O —§—X<X % 1 1 1 1]
0 200 400 600 800 1000
Sample size
b
8000 1 (b)
% 6000 | XXX
) X T
£ 4000 | XX T
= X K
T 2000 | P
- X
0 X o X x X | |
0 5 10 15 20

Number of combinations

Figure 3.19: Runtime of different cancer types is highly correlated with sample size
and number of combinations. (a) Correlation coefficient = 0.79 for sample size. (b)

Correlation coefficient = 0.92 for number of combinations.

121

122

10000
1 8000

>
(&)
C
0 -
2 16000 £
. £
Q: =}
> C
§ 14000 &£
& 05 | —— |deal Speedup

' —<— Actual Speedup 1 2000

Strong Scaling Efficiency
—>%— Runtime
0 ' ' 0
300 400 500 600
Number of GPUs

Figure 3.20: Strong scaling from 50 nodes (300 GPUs) to 100 nodes (600 GPUs) for
the BRCA dataset. Scaling efficiency is 0.77 for 100 nodes relative to a baseline of 50
nodes.

,S¢—

1000 1
o 800 1
(O}
£ 600 |
5
T 400 deal Runtime

200 t| —¢ Actual Runtime

Weak Scaling Efficiency
O 1 1
0 200 400 600

Number of GPUs

Figure 3.21: Weak scaling from six GPUs (one node) to 600 GPUs (100 nodes). The
scaling efficiency is 80.6%. The runtime starting from 30 nodes remains almost un-
changed.

» 600
©
c
(@)
O
g400
()
£
2200
-]
o
Baseline MemOptl MemOptl + MemOptl +
MemOpt2 MemOpt2 +

Bitsplicing
Implementations

Figure 3.22: Effect of three memory optimizations on runtime. Tested on the three-hit
algorithm running on a single GPU, for the breast invasive carcinoma (BRCA) dataset.

100%
Node 61 to 62 Node 83 to 84
(a)

U
o
X

% Compute
Utilization

0%+

600

w
o
o

0 100 200 300 400

400] —— dram_read_throughput
—— dram_write_throughput

=3 —

(b)

30—

Throughput
(KB/s)

0 100 200 300 400 500 600
w
c c 100% ') ! !) TR . " '
o o b b UTRIT A SRR T B E R fibd 1 ik At i A Ay e A DA Al
I [
o9
(© 5% s50% | i
58
on I
0\0“6 0%, 5 "
0 100 200 300 400 500 600
GPU Index
B stall_memory_dependency B stall_exec_dependency W stall_not_selected stall_other
- stall_memory_throttle mm stall_inst_fetch mm stall_pipe_busy

Figure 3.23: (a) Compute utilization is inversely correlated with DRAM read/write
throughput up to GPU #500 (b). Above GPU #500, read/write throughput increases
and the processor transitions from being memory bound to being compute bound. (c)
Low read/write throughput stalls warp execution while data from memory is accessed.

123

124

S

[
o ~
(=)

CTNNDZ -

=

Figure 3.24: Top three four-hit combinations for low grade glioma (LGG). Each four-hit
combination is represented by four curves of the same color connecting the four genes in
the combination. The outer circle shows individual chromosomes with corresponding
ideograms shown in the inner circle. Genes that comprise four-hit combinations are
labeled inside the circle.

___100 T T 1 T T T T 1 T T T T T

2

>

2 50 .y

@

c

[

wo
O TELANOL TNV OVOR VL9V OR9 099998092
SOV IO VI ITLTLIIOIITITIFTOITAIITEIORLHLDOS U OIS
TFESTST@OFTEEVIIIY TELESSFSOIIE IS

(b)

100 g A A

S

=

S 50 |

o

[}

Q.

wo
O T TN OTNOLOO0R L9V O0OXAQ 09909802
OO VISP ILTLTTIITO 9 O TRXFTLTOTSLELSNLOI]
THSETSTGITEEIIIFTE " FEEESFELLLY S

Figure 3.25: Classification performance of the identified combinations. Four-hit com-
binations were identified using a training dataset consisting of randomly selected 75%
of the available tumor and normal samples. Classification performance measured by
sensitivity (a) and specificity (b) was based on the remaining 25% test dataset. For the
31 cancer types considered here, average sensitivity and specificity were 82% and 93%
respectively. Error bars represent 95% confidence interval (CI).

125

126

IDH1 Normal Samples
5

w
[=
i=l
S
m
8
=
=
* - L] L] L]
0
IDH1 Tumor Samples R132C/G/H/S
133 .
w
[=
R=l
S
m
8
=
=
3
0
T T T T T T T 1
0 100 200 300 414 aa
MUC6 Normal Samples F1989I/L/5
5 .
g . . e
= om e w®
; .. e o ® ew
4 . L X] * e L 1] L1] -e ®oew e enee
0
e J]
MUC6 Tumor Samples F1989I/L/S
183 .
v
=
.2
g L3
5 - s't
=]
.
S* .? .‘ " .
.
Y iy 14 ‘u‘& N

0

T T T T T 1
1200 1600 2060 2439 aa

. L] Ld "
ol Ko fesl TR o B
[T T T

0 400 800

Figure 3.26: Mutations in normal and lower grade glioma (LGG) tumor samples with
mutations in both IDH1 and MUCG6. The difference in mutations between normal
and tumor samples for the same two-hit combination can be used to further refine
the search algorithm. In the above examples, a missense mutation at R132 in IDH1
is likely to be carcinogenic, whereas mutations at F1989 in MUCG6 are unlikely to be
carcinogenic. Colored bars represent known functional protein domains. Grey bars
represent regions of unknown function. Green dots represent missense mutations, black
dots represent truncating mutations and purple dots represent other protein-altering
mutations. Figure generated using cBioPortal [32, 63].

O

i’/
[¢)]

i
2

Vo4
%

Figure 3.27: Two-hit combinations identified for ovarian serous cystadenocarcinoma
(OV). The outer circle shows individual chromosomes with corresponding ideograms
shown in the inner circle. Genes that comprise two-hit combinations are labeled inside
the circle. Each two-hit combination is identified by differently colored lines connecting

two genes. The red line represents the gene combination discussed in further detail.
Images generated using RCircos [192].

e L

EGF —
14
?Q\Q\NI’ 5
- q
» &
~
'\Q'\\ 6

Figure 3.28: Three-hit combinations identified for ovarian serous cystadenocarcinoma

(OV). The outer circle shows individual chromosomes with corresponding ideograms
shown in the inner circle. Genes that comprise three-hit combinations are labeled
inside the circle. Each three-hit combination is identified by differently colored lines
connecting three genes.

The red line represents the gene combination discussed in
further detail. Images were generated using RCircos [192].

128

129

(a)
30 TP53 Mutations in N=271 OV Samples
£
25 97(9@
°
20
@,)%
)
15))’o

of mutations

[&]

0 9?9%9”?9}9 %T I Mi 9?%%% bl

P53_TAD P53 P53_tetramer
0 50 100 150 200 250 300 350 393 a:

Mutation Type © Truncating (173)® Missense (307)® Inframe (11)
(b)
TP53 Mutations in N=333 Normal Tissue Samples

30
25
(@)
» 20
S 5
©
5 15
1S
©
10
5
0 Pee ¢ * ® *
P53 _TAD P53 P53 tetramer
0 50 100 150 200 250 300 350 393 a:

Mutation Type © Missense (46)® Truncating (4)

Figure 3.29: Distribution of somatic mutations in TP53 in ovarian tumor samples and
normal samples. The horizontal bar shows amino acid position within the protein, with
labels showing known functional domains. Vertical lines show the number of samples
with protein altering mutations at each amino acid position. The most frequently mu-
tated sites for each gene in (a) tumor and (b) normal samples are labeled for comparison.
Image generated using g3viz [73].

130

(a)
KCNB1 Mutations in N=271 OV Samples
500
400
1) (@)
c
Re]
© 300
=
1S
ks
¢‘:200
100
00 OOC® (» ®C® 00 O OO eCO@®® © e @ €) @ OCe© O
BTB_2 lon_trans Kv2channel Kv2channel
0 100 200 300 400 500 600 700 800 858 at

Mutation_Class © Truncating (543)® Missense (23) ® Inframe (15)

(b)
500 KCNB1 Mutations in N=333 Normal Tissue Samples
400
[2]
§300
kS
)
E
45200
+H*
100
%@
0 o ® O o @0 e o]
BTB_2 lon_trans Kv2channel Kv2channel
0 100 200 300 400 500 600 700 800 858 a:

Mutation Type © Missense (5) ® Truncating (4)

Figure 3.30: Distribution of somatic mutations in KCNB1 in ovarian tumor samples
and normal samples. The horizontal bar shows amino acid position within the pro-
tein, with labels showing known functional domains. Vertical lines show the number
of samples with protein altering mutations at each amino acid position. The most fre-
quently mutated sites for each gene in (a) tumor and (b) normal samples are labeled

for comparison. Image generated using g3viz [73].

131

(a)
180 TTN Mutations in N=271 OV Samples
160
140
» 120
S
s
g
©
H*

0 5000 10000 15000 20000 25000 30000 34350 ¢

Mutation_Class © Missense (1577)® Inframe (528) Truncating (2061)

(b)
TTN Mutations in N=333 Normal Tissue Samples

160

140

—
N
o

—
o
o

80

of mutations

0 5000 10000 15000 20000 25000 30000 34350 ¢

Mutation Type © Truncating (436)® Missense (785)® Inframe (106)

Figure 3.31: Distribution of somatic mutations in TTN in ovarian tumor samples and
normal samples. The horizontal bar shows amino acid position within the protein, with
labels showing known functional domains. Vertical lines show the number of samples
with protein altering mutations at each amino acid position. The most frequently mu-
tated sites for each gene in (a) tumor and (b) normal samples are labeled for comparison.

Image generated using g3viz [73].

Chapter 4

Incremental Sequence Similarity
Search via Automated E-Value

Correction

4.1 Introduction

Utilization of a sequence similarity search tool is a central step in most bioinformatics re-
search investigating biological or structural functions of nucleotide or protein sequences.
BLAST, short for Basic Local Alignment Search Tool [12] is a widely used (75,905
citations, February 2019) sequence alignment tool that is capable of conducting a se-
quence similarity search for a sequence of interest against a curated sequence database.
BLAST relies on a heuristic approach for searching and provides results based on the
identification of regions through seed-and-extend based local alignment, which can either
be implemented using a web interface [87] or a set of standalone command-line tools
maintained by the National Center for Biotechnology (NCBI) [30]. It uses a statistical
threshold called an expect value (i.e., E-value) to infer homologous sequences from a cu-
rated database. BLAST is extensively used for the identification of unknown sequences,
the detection of candidate genes, and during the annotation of assembled genomes and

transcriptomes.

Sequencing data stored in the NCBI database has expanded astronomically over the

132

years, reportedly doubling in the number of bases submitted to GenBank [22] every year
over the last three decades (1982-present), as shown in Figure 4.1. Cheaper sequenc-
ing technology [68], as shown in Figure 4.1, the democratization of high-performance
computing (HPC) through commercial cloud platforms [134], availability of efficient
genomic/transcriptomic assemblers (e.q., StringTie [142], Trinity [69], ABySS [160],
SOAPdenovo2 [115]), and annotation pipelines (e.g., NCBI prokaryotic genome anno-
tation pipeline [170], MAKER [31]) and efforts to sequence many new taza (e.g., Earth
BioGenome Project [108], The i5k Initiative [80], BAT 1K [163], and The Genome 10K
Project [97]) are some of the major reasons facilitating this growth. Fast-accumulating
sequences in NCBI-curated databases have a profound impact on the computational

efforts required to perform sequence similarity search.

lell

\ = Total bases in GenBank 0
4 2.5 \‘ == Cost($) of sequencing 1 Mb 5000 8
C \ ~
© —
D 20 \ - 4000 ¥
[} AN o
(O] \ ~—h
£ 15 N 3000 @
g R E
® 1.0 ‘\ t2000 B
o \\ o,
— S
8 S~<o L1000 @
o 05 =
'—
Il =
0.0 ||I|I|I|I|I|I|I|IIIIIIIIIIIIIIIIIII[IIII 0 o
2002 2004 2006 2008 2010 2012 2014 2016 2018
Figure 4.1: Increasing GenBank database size (available at https://www.ncbi.

nlm.nih.gov/genbank/statistics/, accessed on September 15, 2018) follows a de-
creasing trend in sequencing cost (available at https://github.com/TransDecoder/
TransDecoder/wiki, accessed on September 15, 2018) .

Providing fast and biologically valuable sequence alignment tools has been an active
area of bioinformatics research, particularly in the context of ever-growing databases.
Some sequence alignment programs have attempted to make algorithmic improvements
(HMMER [55], DIAMOND [27]) while others have focused on improving parallelization
and taking advantage of new HPC' platforms and programming paradigms, including

cuBLASTP [193], muBLASTP [194], mpiBLAST [44], and SparkBLAST [50] BLAST

133

https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://github.com/TransDecoder/TransDecoder/wiki
https://github.com/TransDecoder/TransDecoder/wiki

134

tools. All of these tools provide similar output to NCBI BLAST at an improved compu-
tational speed. Other BLAST tools provide convenience factors of BLAST usage such as
NOBLAST [101], which offers new options to limit the number of sequences to search,
and JAMBLAST [101], which provides visualization tools for NOBLAST output.

BLAST is computationally expensive to run, with computational time impacted by the
number of queries and reference database size. Furthermore, genome sequencing and
annotation projects can be fairly long-term projects that require updates mid-project, e.q.,
reqular annotation updates [74, 132]. However, for such updates, sequence similarity
search steps have to be executed from scratch as search results from BLAST use similarity
scores and E-values that depend on the size of the database, which continues to increase.
For this reason, it is required to discard the results of prior searches and to rerun
the entire search, which translates to irredeemable time, money, and computational

resources, as shown in Figure 4.2(A).

135

(a) Adding new sequences over time

Queries
Queries Search
Search Result
BLAST [~ Results, D5, -D, BST ™ s,
Time =t Time =t + 6t

(b) Adding taxon-specific sequences

Queries J_
Search Result
- BLAST S —
A

Search Result Search Result
- BLAST S — Merge s
B AUBUC
Search Result
- BLAST S —
C

Figure 4.2: Incremental addition of new sequences.

(a) BLAST search when new sequences are added to the database. At time ¢, the
database is D;. In next dt interval, new sequences D, s — D; are added, and the
database becomes D;.5. With the traditional approach, the existing search result
cannot be reused, and we have to perform an entire BLAST search against entire Dy g;.
(b) BLAST search when several taxon specific databases are present and we want to get
a result against the combined database. For three taxa, A, B, and C, we can perform
individual BLAST searches against the databases D4, Dg, D¢, respectively. If we want
to obtain a search result against the combined database D 4,50, We need to merge the
search results in a way that their E-values reflect the combined database size.

For bioinformatics projects requiring large-scale sequence alignment, such as those in-
volving many transcriptomes from many tazxa, the computational burden can be es-
pecially prohibitive. While this problem could be solved through performing iterative
taxon-specific searches rather than conducting BLAST on the entire non-redundant

database, such an approach has been historically difficult as one would need to stan-

136

dardize E-values when iteratively adding new databases to find the optimal identity of

each query (Figure 4.2(B)).

In practice, new sequences get added to the search database(s) of interest in two ways:
temporally and spatially. Temporal addition occurs when new sequences are added
to a database over time (e.g., a reqular update to the nr database). Spatial addition
occurs when different databases are available for search simultaneously, and we need
to combine the search results against these databases as if the result was obtained by
searching against a combination of all these databases. Thus, we must be able to
compose search results in both the temporal and spatial dimensions and answer the
following question: Can we develop statistics to compose temporal and spatial BLAST

search results through E-value correction?.

The short answer is yes, which we prove mathematically and then realize in software via
our tool called iBLAST, short for incremental BLAST. iBLAST provides an efficient
solution to E-value correction and allows the merging of results from two or more sepa-
rate databases, thus allowing recycling of previous results, which subsequently saves both
time and money. It also enables taxon-specific BLAST search, including incremental
addition of specific biologically-relevant taxa to BLAST databases with subsequent merg-
ing. Thus, our approach will save significant time in large-scale projects that require
pairwise sequence search; it will also better facilitate the sorting of hits by taxzon. The
iBLAST tool consists of the extension of NCBI BLAST program and a few key Python
modules and supports the different versions of the NCBI BLAST command-line tools.
We demonstrate application of gquideline 3 through the design and implementation of

this tool.

137

4.2 Background and Related Work

In this section, we present the core concepts that underlie BLAST, including the statistics
for E-value computation and existing methods for correcting E-value computation when

the size of the database is perceived to have changed.

4.2.1 Core Concepts of BLAST Result

When we perform a BLAST search against a sequence database with a query sequence,
the BLAST program returns the best matching sequences from the target database. These
best matching sequences are called hits. Between the query and a hit sequence, there
exist many pairwise local matches, which are called high scoring pairs or HSPs. One
hit could consist of many HSPs. HSPs are scored using some statistical metrics by
comparing aligned symbols. The score for a hit is the score of the highest scoring HSP
that belongs to that hit. The E-value for an HSP is computed using the score, the
database size, and other statistical parameters. The reported E-value of a hit is the

FE-value of the HSP with the lowest E-value.

4.2.2 BLAST Statistics for E-Value Computation

BLAST programs use two different kinds of statistics for E-value computation: Karlin-

Altschul statistics and Spouge statistics.

Karlin- Altschul statistics

Gumbel extreme value distribution (EVD) is often used to approximate the distributions
of the maxima of long sequences of random variables, in this case, the distributions

of the HSPs. The Gumbel EVD states that the probability of a score x greater than

138

or equal to S is p(x > S) = 1 — e 5 Here \ is the scale parameter, and u is
the location parameter. Karlin and Altschul established a statistical theory about local

alignment statistics using Gumbel EVD under certain assumptions to derive the formula

for E-value (E),

E =250 = KmneS (4.1)

which is the renowned Karlin-Altschul equation [12].

Edge effect Karlin-Altschul derives E-value statistics under the assumption that the
sequence lengths are infinite, which does not hold with the introduction of the new
length parameters m and n. The parameters m and n are called the effective length
of the query and the database, respectively. They are introduced to compensate for
the edge effect of alignments, which occurs at the end of the query sequence or the
database sequence, where there may not be enough sequence space to construct an optimal
alignment. So, the effective lengths are computed using a length adjustment [. Here
m=mg—1l,n=mn,—N X1, and |l = In(K xm xn)/H while N is the number of
sequences in the database, m, is the actual length of the query, n, is the actual length
of the database, and H is the entropy of the scoring system.The length adjustment |

satisfies Equation (4.2).

I = %m (K (ma — 1)(na — NI)) + 3 (4.2)

Here, «, B, \ are Karlin-Altschul parameters.

Spouge statistics

Spouge statistics [138] is developed on the Karlin-Altschul formula. Instead of computing
the length adjustment | and then using it to compute the effective length of the database

and query, this statistics applies a finite-size correction (FSC).

Finite-size correction [138] was introduced in command-line BLAST wversion 2.2.26.

Instead of estimating [, FSC estimates
area = Elm — Li(y)]T[n — L;(y)]*" (4.3)

as a measure of (m—1)(n— NI). Here I and J are two sequences to be compared. L;(y)
is the distribution of the length required to attain a score of y or more. Equation (4.3)

is practically computed by approximating the distribution of (L;(y), L;(y)).

There exists a range of statistical parameters that are used to compute the area. These
parameters do not depend on the length of the database or the query. However, in actual
BLAST implementations using Spouge statistics, the formula is modified to include a

database scale factor. The database scale factor is calculated using the following formula:

db__scale__factor = 2 (4.4)
m

For a given HSP with score S, the F-value E is calculated as

E =area x Ke ™ x db_scale_ factor (4.5)

Different statistics used by BLAST programs

Table 4.1 summarizes the statistics used by various BLAST programs.

139

140

BLAST Pro- Function E-value Statis-

gram tics

blastn Search nucleotide sequences with a nu- Karlin-Altschul
cleotide query

blastp Search protein database with a protein Spouge
query

blastx Search protein database with a nu- Spouge
cleotide query translated to protein

tblastx Search a translated nucleotide database Karlin-Altschul
with a translated nucleotide query

tblastn Search a translated nucleotide database Spouge

with a protein sequence

Table 4.1: Both Spouge and Karlin-Altschul statistics are used by various NCBI BLAST
programs.

4.2.3 Existing E-Value Correction Software and Their Fea-

tures

Here we discuss the different approaches for correcting E-value scores when the search

database is partitioned.

mpiBLAST

mpiBLAST [}4] is a parallel implementation of NCBI BLAST on a cluster. It partitions
the database and performs BLAST searches against these partitions in parallel. For

accurate E-value correction, mpiBLAST requires prior knowledge of the entire database.

We provide a detailed explanation of mpiBLAST in Section B.1.

NOBLAST

NOBLAST [101] provides new options for NCBI BLAST. It offers a way to correct

FE-values when split databases are in use and results need to be aggregated. FE-value

computation requires knowledge about the entire database size, the number of sequences
in the whole database N, and the total length of the database n. This tool does not

address E-value corrections for the BLAST programs that use Spouge statistics.

We provide a detailed explanation of NOBLAST in Section B.1.

Comparison of mpiBLAST and NOBLAST to iBLAST

While the two aforementioned BLAST tools can provide exact E-value statistics for
Karlin-Altschul statistics when the knowledge about the entire database is available a pri-
ori, they are not useful when the database keeps changing or two different search results

against two different instances of similar databases needs to be aggregated. Table 4.2

provides a high-level comparison between mpiBLAST, NOBLAST, and our iBLAST.

Feature mpiBLAST NOBLAST iBLAST
E-value correction for v v v
Karlin-Altschul statistics

E-value correction for X X v
Spouge statistics

Aggregate search re- v v v

sults against pre-planned
database segments

Aggregate search results X X v
against arbitrary database

instances

Reuse existing search re- X X v
sults

Table 4.2: Comparison of three different BLAST tools that explicitly deal with E-
value statistics correction. iBLAST supports E-value correction across time and space
without requiring prior knowledge of the entire database. The other tools can correct
E-values in limited scenarios.

141

142

4.3 Methods

To perform an incremental BLAST search temporally as shown in Figure 4.3(A), we
only consider the newly arrived sequences in the interval 6t and perform a BLAST
search against these to get the result Ss;. We correct E-values for the incremental result
Sst and the past result S; by using the size of the database Dyysy = Dy+ Ds;. To perform
an incremental search spatially, as shown in Figure 4.3(B), we go through the search
results from different databases and correct their E-values using the size of the combined
database D au,puc = Do U DgU De. Then, we merge these search results with corrected

F-values to obtain the final search result Sa,puc-

(a) Incremental search when sequences are added over time
Time=t+ &t

Queries Search

BLAST Result ——| e-value
St correction Search
e Result
Search S
Result e-value t+ 5t
—

S, from correction
time t

(b) Incremental search when sequences are added from different databases

Search Result e-value
—_—

Sa correction
Search Result e-value Search Result
— . Merge [—— S
Sp correction AUBUC

Search Result e-value
— '
Se correction

Figure 4.3: (a) Incremental search when new sequences get added to the database over
time. We perform a BLAST search against the incremental database and combine the
result with past results after E-value correction. (b) Incremental search when search
results from different databases are available. Different search results are corrected
for E-value against the combined database size; the corrected results are then merged
together.

In the remaining part of this section, we present our E-value correction methods in

detail, the implementation details of iBLAST, and the fidelity and efficacy of iBLAST

143

over NCBI BLAST wvia three case studies.

4.3.1 E-Value Correction in an Incremental Setting

Correct E-value computation requires the actual database length (total number of bases/residues)
in both Spouge statistics and Karlin-Altschul statistics. While database-partitioning par-
allel BLAST applications like mpiBLAST and NOBLAST have prior knowledge about
the total database length, iBLAST leverages the partial knowledge from a previous
BLAST search and combines it with the new incremental additions to the database to
infer the total database length and compute the proper E-value. The mpiBLAST and
NOBLAST tools pass the actual database length to each of their parallel jobs, thus
forcing the statistics module to compute correct F-values from the beginning. For the
incremental iBLAST search, whenever new data arrives in the database, the pairwise
sequence search is automatically refined in two steps. First, the search is only run on
the new sequences that have been added to the database. Second, the results generated
from searching the new sequences in the database are then merged with the saved results
from the previous BLAST search. This merging requires a re-evaluation of the E-values
for all hits and their corresponding high scoring pairs (HSPs) using the new total length

of the database.

E-value correction for Karlin-Altschul statistics

Let n. represent the current database length and ng represent the length of the newly
arrived sequences for the database. Also let N, be the number of sequences in the current
database and N, be the number of sequences in the newly arrived part of the database.

Then, we have

Actual length of the updated database: ny = n. + ng.

144

Total number of sequences in updated database: Ny = N.+ Ng.

The actual query length m does not change with the change in database. However, we
do need to recompute the effective length | by solving the fixed-point equation for the

new database length using Equation (4.6).

[= %m (K(m — D)((ne +n4) — (No+ Ng) x 1)) + 8 (4.6)

Now, with the updated length adjustment I, we can either recompute the E-values for
all the matches or correct the E-values. To recompute all the E-values from scratch, we

use Equation (4.7).

E =5 = K(m —1)((ne +ng) — e (4.7)

Alternatively, we can correct the E-values from the current values. First, we use | to
recompute the value of the effective search space. We then use the newly computed
effective search space to re-calibrate the E-values for all the reported HSPs from the
current and delta search results. Assuming that Dy. s the partial effective search
space and that Dy is the total effective search space, then the corrected E-value is
given by

Eiotat = Epart + Ke ™% x (Diotat — Dpart) (4.8)

While both approaches require a constant number of arithmetic operations, the former
approach, i.e., recomputing all the E-values from scratch, requires fewer arithmetic

operations.

E-value correction for Spouge statistics

For Spouge statistics, the value of area (i.e., Equation (4.3) described in Section 4.2.2)
does not change since it is a function of the query length, sequence length, and Gumbel
parameters. However, the database scale factor does change, and thus, we need to
account for it. If the actual database lengths for the newly added part of the database

and the total database are npere and Nyoqr, Tespectively, then

_ Npart
Bt = area x e ™ x 24 (4.9)
P m
and
_ Ntotal
FEiopa = area x e M x —24 (4.10)
m
So,
Ntotal
Etotal = Epart X (411)
part

Therefore, based on this derivation, we only have to re-scale the FE-values instead of

using Spouge’s E-value computational methods.*

4.3.2 Merging Two Search Results with Correct E-Value Statis-

tics

The hits reported by both searches are statistically significant. Once we correct E-values
for both current search result and the new search result, we merge the hits into a single
sorted list. Because iBLAST reports some better scoring hits which NCBI BLAST
misses, reporting only max__target__seqs hits will result in missing some of the lower

scoring hits from NCBI BLAST. So, we store and report 2 X max__target__seqs hits.

LCaveat for re-scaling E-values that have been previously (and imprecisely) rounded to 0.0 by NCBI
BLAST: Re-scaling an E-value that was previously (and imprecisely) rounded to 0.0 by NCBI BLAST
obviously results in an incorrect 0.0 value. Thus, in the less than 0.1% occurrences of an extremely
small but non-zero E-value, we ensure that this imprecise rounding does not occur.

145

146

Algorithm 13 documents the procedure to merge the hits from two results for the same
query. All the statistical parameters dependent on total database size is recomputed to
recompute or re-scale the E-values. The hits are selected in the ascending order of their

E-values (descending order of their scores).

Algorithm 13 Merging results for Karlin-Altschul/Spouge statistics.
1: Input: resultl, result2

2: merged_ result < ®
3: recompute/re-scale E-values
4: m,n <+ 0

5. for t =1 — num_of hits do

6: e-valuel, scorel «— min(resultl.alignment|m|.hsps)

7: e-value2, score2 < min(result2.alignment[n].hsps)

8: if (e-valuel < e-value2) or e-valuel == e-value2 and scorel > score2) then
9: merged_result.add(resultl.alignments[m])

10: increment m

11: else

12: merged_result.add(result2.alignments|n))

13: increment n

14: return merged_ result

Additional details on recomputing and re-scaling E-values is provided in Section B.2.

4.3.3 iBLAST Implementation

We develop iBLAST for performing incremental BLAST search as an extension to the
NCBI BLAST code. It consists of Python wrapper scripts around the extended BLAST

code and uses NCBI BLAST programs as black-box routines. Figure /.4 shows the

software stack of iBLAST. The software stack consists of three major components: user
interface, incremental logic, and record database. These modules interact with BLAST

databases through the BLAST+ programs.

-
> blastn —query g.fa —db nt —out o0.xml —| BLAST+ Programs BLAST
Database

User Interface

0 4)

Incremental
Search

Database Search
Instance Result

Statistics Query

Existing Search

)

/ o /

Incremental Logic Record Database

Figure 4.4: Software stack of iBLAST. The user can initiate a search using the user
interface. The search parameters are then passed to the “Incremental Logic” module.
After performing an incremental search, the backend of this module corrects the E-value
statistics and merges the result. The “Incremental Logic” module looks into an external
lightweight database module called the (Record Database) to decide whether and how
to perform the incremental search. For the actual search and incremental database
creation, we use NCBI BLAST tools such as blastdbcmd, blastdbalias, blastp, and
blastn.

Command-Line User Interface In our current version, we provide a command-

line interface for iBLAST, which provides NCBI BLAST-like search options.

Incremental Logic This module decides whether to perform a new BLAST search
based on existing results. Whenever the user requests a new BLAST search, this module
checks for any pre-existing search result. If it does not find any pre-existing result, it

performs a reqular NCBI BLAST; but if there is a pre-existing result, the module first

147

148

compares the database instance from the time of the past search with that of the present
search. If there is any difference in the database size, this module builds a delta database
that consists of the difference of these two database instances. It then performs a new
BLAST search only against the delta database and merges the previous result with the
new incremental result after statistical correction for E-values. Figure 4.5 shows the
different components of this module. This module allows multiple updates to current
searches with little extra time investment. The “Incremental logic” module contains

three sub-modules: Existing Search, Incremental Search, and Merge.

1. Existing Search. This sub-module looks for an existing search result with the

help of the record database.

2. Incremental Search. This sub-module constructs an incremental database by
comparing with the past instance of the database and performs a BLAST search

on the incremental database.

3. Statistics. This sub-module reads the past search result and the new incremental
search result, re-evaluates the E-values in both, and merges them according to

their recomputed/re-scaled E-values.

The details of these three sub-modules are illustrated in Figure 4.5.

Record Database for storing incremental search results FEvery time a BLAST
search is performed, we save the instance of the database along with the search result in a
lightweight SQLite database. We save a minimalist index structure and size information
that requires only a few bytes of storage. We keep the search parameters along with the

search results as well.

p

E-value
Correction

Incremental BLAST
Database

Incremental Search

— Merge

|

BLAST Evale ||
Correction

Existing Search \\ Statistics J

Existing Database

Figure 4.5: Sub-modules of the Incremental Logic module. Whenever the user initiates
a BLAST job, the above “Incremental Logic” module first checks if an existing search
result is available. If there is a search result against an outdated BLAST database,
a delta database consisting of the newly added sequences is constructed. A BLAST
search is then performed against the delta database (i.e., incremental database). In the
final stage, the existing search result and the incremental search result are merged and
the associated E-values corrected.

4.3.4 Case Studies

To demonstrate the efficiency and benefits of using the iBLAST program over standard
NCBI BLAST, we analyze different actual nucleotide and protein sequence datasets as

case studies.

Case study I: method verification

We explore the scenario where hits from a collection of 100 query sequences are updated
to account for the growth of NCBI sequence databases across the duration of the project.
To demonstrate the application’s use for BLAST programs that use Karlin-Altschul
statistics, we ran blastn against a nucleotide database (growing subsets of NCBI nt) for
100 nucleotide sequences from Bombus impatiens available at ftp://ftp.ncbi.nlm.

nih.gov/genomes/Bombus_impatiens/CHR_Un/bim_ref BIMP 2.1_chrUn. fa.gz. To

149

150

demonstrate its utility on BLAST programs that use Spouge statistics, we ran blastp
against a non-redundant protein database (growing subset of NCBI nr) for 100 protein
sequences from Bombus impatiens assembly available at ftp://ftp.ncbi.nlm.nih.

gouv/genomes/Bombus_impatiens/protein/protein. fa.gz.

We demonstrate iBLAST’s fidelity and performance over three time periods (F'ig-

ure 4.6(A)). The instances for nucleotide database changes through time as following:

e Time 0: the nucleotide database comprises 44.5% of the full nt database. Both

tool conduct search on the same database.

o Time 1: the nucleotide database comprises 62.7% of nt. While NCBI BLAST
searches 62.7% of nt, iBLAST performs search only on 18.2% of nt. The database
grew by 40.8% (= (62.7 — 44.5)/44.5) from time 0.

o Time 2: the nucleotide database comprises 84.1% of nt. While NCBI BLAST
searches 84.1% of nt, iBLAST performs search only on 21.4% of nt. The database

grew by 34.1% (= (84.1 — 62.7)/62.7) from time 1.

The instances for protein database changes through time as it comprises 35.4%, 47.5%,
and 60.0% of nr. The protein database grew by 34.1% (= (47.5—35.4)/35.4) and 26.3%
(= (67.5 — 35.4)/48) in time 1 and 2 respectively from the earlier time periods. The
performances of NCBI BLAST and iBLAST for each of these time periods were then

compared.

More details on incremental database creation is provided in B.S3.

151

(a) Case study 1 (b) Case study 2

0, Dz = D
34.1% 1 D1 - D0

} 21.4% nt 48%

! l (32.4% nr)

s08% D; - Dy
[

18.2% nt

Time =1 Time =2 Time=0 Time =1
(c) Case Study 3
— BLAST —
— BLAST —
Cork Oak
BLAST Soybean
Jewel Wasp
Jerdon’s
Jumping Ant
— BLAST —
Rest of
Hymenoptera
— BLAST —
BLAST —
Queries I
I
Step 1 Step 2

Figure 4.6: Experimental design of three case studies. (a) Case study I: Incremental
addition of sequences in the nt database over three time periods. (b) Case study II:
Incremental addition of sequences in the nr database over two time periods. (c) Case
study III: Incremental search of taxon-specific databases.

152

Case study II: updating a query re-annotation of a novel transcriptomics

dataset

Our second case study mimics a typical scenario in a transcriptome re-annotation project
where a transcriptome is BLAST-ed after a certain period as a part of a re-annotation
pipeline. This case study uses a novel dataset not yet available on NCBI BLAST
database - a de novo assembled transcriptome of the venom gland of an Oak gall wasp
(see below) - and thus the identity of the assembled sequence was unknown, and the

sequence was not available to BLAST to itself.

We conduct a BLAST search for the same query set for database instances in two time

periods (Figure 4.6(B)):

e Time 0: the database comprises 67.6% of the non-redundant database nr (nr
accessed on August 2018). Both tools perform the search on this same 67.6% of

the database.

o Time 1: the database comprises 100% of the non-redundant database nr. While
NCBI BLAST performs a search on 100% of nr, iBLAST performs a search on
only 32.4% and reuses search result from time 0. iBLAST merges the result from

time 0 with the incremental search result after E-value correction.

We constructed these two database instances by combining database parts using blastdb__aliastool

utility packaged with BLAST+.

Given that the number of queries from the de novo assembled transcriptome, it would
take few months to complete the search on a single core. We ran this experiment with
640 cores distributed across 20 compute nodes (each node has 2 Intel Xeon Processor
E5-2683 v4), partitioning the 17927 queries into 20 query files and assigning each file

per node. Given that each node will run a subset of queries against the same database,

there is mo need to recompute the statistics for these results before we merge them. The

time investment and results for traditional and incremental approaches were compared.

It is essential that workload across all the nodes are balanced so that computation for
each of the 20 query files finishes roughly at the same time. To ensure such load
balancing, we partitioned the queries using the following strategy. We randomize the
order of the queries and partition them so that each partition has roughly the same
number of residues. We compare this strateqy against the straightforward approach of
partitioning the queries in a linear order by putting roughly the same number of queries

in each partition.

Case study III: taxon-based incremental approach

Our third case study presents a special case of using a taxon-based incremental approach
to obtain a fast, cost-effective and biologically relevant sequence similarity results. To
achieve this goal, we examine the genes contained within an assembled transcriptome
of the venom gland of a gall wasp of oak trees, the hedgehog gall wasp (Acraspis
erinacei), a taxon lacking a closely related species with a genome. Gall wasps are a
group of parasitic wasps that inject their eggs into plant tissues and through processes
yet unknown, induce changes in plant development at the site of injection. These
changes result in the construction of a niche for the gall wasp by inducing predictable
modifications of plant tissues that both protect the wasp from the environment and feed
the developing wasp. Genes important for inducing changes in the plant’s development
are thought to be produced in the female venom gland during oviposition ([176]). We
performed separate BLAST searches of the hedgehog gall wasp venom gland against
transcriptomes of the closest relatives to gall wasps with curated genomes including
three fairly equidistant taxa ([143]) - the parasitic wasp Nasonia vitripennis, the

honey bee Apis mellifera, and the ant Harpegnathos saltator, - as well as the

153

154

more distant model insect, Drosophila melanogaster, upon which many insect gene
annotations are based. We also perform BLAST searches the transcripts to an oak tree,
Quercus suber, to determine if some genes belonged to the host, and a model plant

the soybean, Glycine mazx.

A blastp search was conducted individually against each of the databases and results
were merged using the statistics module of the iBLAST. After this initial search, we
then added to this analysis all remaining Hymenopteran species using iBLAST, to assess
the impact of adding more taxa on the top BLAST hits and further demonstrate the
potential of iBLAST to add taza progressively (Figure 4.6(C)). We performed a blastp
search against the merged database of those seven subsets to determine whether the
same hits would have been found from our concatenated incremental analysis as from a
combined single-instance run. These results were further compared with blastp results
obtained by searching the complete nr database, thus allowing us to determine how well

we captured of the full dataset with this taxon sub-sampling approach.

Data collection for case studies II and III

To obtain the venom gland transcriptome, 15 venom glands were dissected from newly
emerged adult females from wild collected oak (oak spp.) hedgehog galls of Acraspis
erinacei and placed in RNAlater. Pooled tissues were homogenized in lysis buffer using
a Bead Ruptor 12 (Omni International) with additional lysis with a 26-gauge syringe.
RNA was extracted from the sample using the RNaqueous Micro kit followed by DNase [
treatment as specified by the kit and confirmed to be of good quality using the Bioanalyzer
2100 (Agilent). The Illumina HiSeq library was prepared from 200 ng RNA using the
TruSeq Stranded mRNA kit and sequenced in 150 bp single-end reads across two Rapid
Run lanes on the Illumina HiSeq 2500 (Penn State Genomics Core Facility, University

Park, USA) along with nine other barcoded wasp samples.

Raw sequence data (30.6 million reads, available at NCBI SRA achieve under Ac-
cession ID XXXXXXXXX) quality was assessed using FastQC v0.10.0 (available at
http://www.bioinformatics.babraham. ac.uk/projects/fastqc/), and appropri-
ate trimming was conducted using Trimmomatic v0.35 [26] with following parameters:
ILLUMINACLIP:TruSeq3- PE.fa:2:30:10 LEADING:20 TRAILING:20 MINLEN:50

AVGQUAL:20. This procedure removed 0.12% of total reads. de novo transcriptome
assembly from these QQC-passed trimmed reads was performed on the Trinity RNA- Seq
de novo Assembler (version: trinityrnaseq r20140717)([69]). The transcriptome assem-
bly consists of 44,440 transcripts with the contig N50 of 865 bases. Transdecoder v5.3.0
(available at https://github.com/TransDecoder/TransDecoder/wiki) was used to

predict 17927 protein sequences which were used as queries for case Study II and II1.

4.4 Results

In this section, we present iBLAST software and its efficacy in sequence similarity

search tasks through three case studies.

4.4.1 iBLAST Program

The iBLAST program vl1.0 includes a collection of python scripts which can be down-
loaded at https://bitbucket.org/sajal000/incremental-blast. The user needs

to copy the source folder and run the following command from this directory to install

iBLAST:

./Incremental BLAST-installer. sh

The python scripts are:

155

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/TransDecoder/TransDecoder/wiki
https://bitbucket.org/sajal000/incremental-blast

156

Main program: iBLAST.py This program provides incremental BLAST search
options. It takes in a reqular BLAST search command and performs incremental search.

An example usage of the script is:

python iBLAST.py "blastp -db nr -query Trinity-tz.fasta -outlfmt 5 -out result.w

Merge scripts These scripts are used to merge two BLAST search results in xzml

format and produce an xml output with corrected E-values.

1. BlastpMergerModule.py: This is used to merge results obtained using Karlin-

Altschul statistics (e.g., blastn results)

2. BlastnMergerModule.py: This is used to merge results obtained using Spouge

statistics (e.g., blastp results)

3. BlastpMegerModuleX.py These scripts merge more than two BLAST results.

They require number of results to merge, the input results and output.

python BlastpMergerModule.py inputl.zml input2.zml output.zml
python BlastnMergerModule.py inputl.zml inputl.zml output.zml

python BlastpMergerModuleX.py 3 inputl.zml inputl2.zml input3.zml output.zml

4.4.2 Case Study I: Method Verification

In case study I, we validate whether we can get the same results from a single NCBI
BLAST search as from the iBLAST (Table 4.3). In all three time periods, we find all
the hits reported by NCBI BLAST for blastn were recovered by iBLAST in the same
order, including 3964 hits at time 0, 4150 hits at time 1, and 4924 hits at time 2, thus
validates iIBLAST for Karlin-Altschul statistics. We observe similar results for blastp

as well. For each of these three time periods, iBLAST reports the exact same hits in the

157

exact same order as NCBI BLAST. The numbers of reported hits in these three time
periods for blastp are 45154, 46,356, and 46869. Reporting the same results for blastp

validates iBLAST for Spouge statistics.

Database Size
Period| Database E-value Matichlit Match
Current Incremental
nt 80,740,533,243 80,740,533,243 100% 100%
nr 17,686,779,866 17,686,779,866 100% 100%
nt 113,749,495,340 | 33,008,962,097 100% 100%
nr 23,752,080,639 6,065,300,773 100% 100%
nt 152,471,828,601 | 38,722,333,261 100% 100%
nr 30,030,148,449 6,278,067,810 100% 100%

Table 4.3: Fidelity of iBLAST in three consecutive time periods.

mmm NCBI BLAST
500 | ™ Incremental BLAST

EEm Incremental Search Time
HEEE Merge Time

400 ’

Execution Time (seconds)
&
o

0 1 2
Time Period

(a) Performance comparison between reg-
ular blastn and incremental blastn at
three periods when nt database is growing
over time, using 100 nucleotide queries.
For 40.8% and 34.0% increase in the
database size, iBLAST performs 2.93 and
3.03 times faster respectively.

For ¢ increase in database size iBLAST performs (1 + §)/(0) times faster than NCBI
BLAST. Figure 4.7 shows the time saved for both blastp and blastn using iBLAST.

mmm NCBI BLAST
4000 wum Incremental BLAST

{- Incremental Search Time

30001 |HEE Merge Time

Execution Time (seconds)
N
o
o
o

1000

0 1 2
Time Period

(b) Performance comparison between reg-
ular blastp and incremental blastp at
three periods when nr database is growing
over time, using 100 protein queries. For
34.1% and 26.3% increase in the database
size, iBLAST performs 4.33 and 4.98 times
faster respectively.

Figure 4.7: Performance for case study I.

158

4.4.3 Case Study II: High Efficiency of iBLAST for Large

Alignment Search Tasks on Novel Datasets

We performed searches using iBLAST and NCBI BLAST where a gall wasp transcrip-

tome dataset were utilized as queries in two time periods, applying a 48% increase in

the nr database in between. In both time periods, iBLAST reports the same hits in the

same order as NCBI BLAST.

Database Size
Period E-value Match Hit Match
Current Incremental
0 40,077,622,077 40,077,622,077 100% 100%
1 162,267,258 19,192,851,238 100% 100%

Table 4.4: Fidelity of iBLAST (blastp) in two consecutive time periods.

Figure 4.8 shows the time comparison between NCBI BLAST and iBLAST. We see that

for 48% increase in the database size, iBLAST is 3.1 times faster than the NCBI BLAST

in achieving the new result.

results is minimal (less than a minute using only 20 cores).

The time needed for E-value correction and merging the

40000
[NCBI BLAST
35000/ N BLAST

HEl Incremental Search Time
Hl Merge Time

Average Execution Time (seconds)
- = N N w
o w1 o w o
o o o o o
o o o o o
o o o o o

5000

1
Time Period

Figure 4.8: Performance for case study II. Time required by NCBI BLAST and iBLAST.
The average time taken is 24862 seconds (6 hours, 54 minutes) for NCBI BLAST
and 8009 seconds (2 hours, 14 minutes) for iBLAST. Merge time for each of these
tasks is 40 seconds on average. Maximum time for these three are 25835 seconds (7
hours, 11 minutes), 8334 seconds (2 hours, 19 minutes), and 49 seconds. By both
accounts, iBLAST is 3.1 times faster than NCBI BLAST. This speedup complies with
our projected speedup (14 0.48)/0.48 = 3.08.

We observe the effect of load balancing. When we partition the queries based on number
of queries without disrupting the original order, incremental search time ranges from
3777 seconds to 12351 seconds with a standard deviation of 2787 seconds. With the
same strateqy, NCBI BLAST search time ranges from 11626 seconds to 39247 seconds

with a standard deviation of 8727 seconds.

In contrast, when we partition the queries after reordering the queries and partition them
based on number of residues the standard deviation becomes 150 seconds and 487 seconds
respectively. It clearly demonstrates the superior load balancing of our adopted strategy

over the straight forward partitioning. We demonstrate this further in Section B.4.

159

160

4.4.4 Case Study III: Expedited Informatics via Taxon-Specific

Searches

To examine the fidelity of iBLAST when merging multiple (tazon-specific) databases,
first, we compared the iBLAST merged results from multiple individual BLAST (blastp)
searches on seven biologically relevant taza to results obtained when a BLAST search
was performed against a database combining all the sequences belonging to these taza.
The result exhibits 100% fidelity. Then, we compared (presented in Table 4.5) the
merged BLAST results of individual taxon-level database search with the BLAST re-
sults obtained in case-study II (time period 1) where the same queries were searched
against the entire nr database to better understand relative time savings vs. accuracy of
taxon-guided approaches. The taxon-specific approach is much more time-efficient and
computationally inexpensive as it searched much smaller databases. With our initial
set of 6 taxa we sampled only 0.35% of the nr database and retrieved 8.124% of the
top hits obtained when searching nr. Although this number is low, the identity of top
hits is likely to be similar even if the best taxonomic hit to that gene was not retrieved,
as gall wasps do not have any close relatives sequenced but rather many equidistant
relatives. Given this, we then added in the rest of Hymenoptera to see if this improves
the number of shared top hits. With this analysis we BLAST-ed only 1.17% of the total
nr yet obtained 87.75% similarity in top hits to a full nr BLAST. This demonstrates the
potential of performing more taxon-guided approaches to save on the costs of large-scale
BLAST searching jobs. Performing the analysis in this way has also enabled improved

curation of hits by tazon which facilitates better biological interpretation of these results.

161

NCBI Species % nr se- | Number of nr | % nr top hits
taxon id quences top hits cov- | covered
covered ered

7425 Nasonia wvitripennis (jewel | 0.02% 853 4.84%
wasp)

7460 Apis mellifera (honey bee) | 0.02% 207 1.17%

10380 Harpegnathos saltator (Jer- | 0.03% 347 1.96%
don’s jumping ant)

7227 Drosophila melanogaster | 0.08% 6 0.034%
(fruit fly)

58331 Quercus suber (cork oak) 0.09% 0 0.00%

3847 Glycine maz (soybean) 0.11% 22 0.12%

7399 Rest of Hymenoptera 0.83% 14281 80.98%

Total multiple 1.17% 15476 87.75%

Table 4.5: Potential for taxon-guided searches. Comparison of merged BLAST results
from multiple individual BLAST searches with a separate BLAST search conducted
against a completed nr database, showing that biologically relevant taxa can be added
incrementally to obtain similar results to nr by searching against much smaller database
size.

4.4.5 Identification of Better Scoring Hits by iBLAST Than

NCBI BLAST

While tBLAST finds all the hits reported by NCBI BLAST in the same relative or-
der, iBLAST reports some better scoring hits that NCBI BLAST misses for all the
case studies. Since case study II covers the most number of hits, we quantified these
missed hits for this case study. NCBI BLAST misses 1.57% (13171 out of 837942

top hits) of the better scoring hits. Command line NCBI BLAST uses a search pa-

162

rameter max_ target seqs in an unintended way where instead of reporting all the
best max_ target_seqs hits, it has a bias toward first max_target_seqs hits. A com-
prehensive discussion about this issue was carried out by Sujai Kumar (https://
gist.github. com/sujaikumar/504b3b7024eaf3a04ef5/) and two other teams of re-
searchers [67, 159]. In this process, it misses some of the better scoring hits that is
discovered in a later phase of the search (Details can be found in Section B.5). This is
an extra advantage of iBLAST over NCBI BLAST. Since the former works on smaller
databases and then combines the results instead of searching a single large database, it

has more candidate hits to choose from for reporting final hits.

4.5 Conclusion and Discussion

In this paper, we have introduced iBLAST, an incremental local alignment tool that
delivers identical results to NCBI BLAST (along with additional better hits that are
missed by NCBI BLAST) and does so with much better performance than NCBI BLAST.

Our approach is enabled by the development of novel statistical methods of E-value
correction. This approach can be used to combine multiple search results performed
at different times or with different groups (e.g., taza), thus facilitating novel ways of
performing sequence alignment tasks and incorporating domain knowledge. For a ¢
fraction increase in the database size, iBLAST can perform (14 6)/0 times faster than
NCBI BLAST (i.e., 10% growth in database size will yield 11 times speedup for iBLAST
over NCBI BLAST). It should be noted that for a small increase in the database size
(which is the most likely scenario between two searches), iBLAST provides a large

speedup factor.

1BLAST is more successful than NCBI BLAST in discovering better hits. While iBLAST

finds 100% of the hits that NCBI BLAST reports in the same order, it reports many

https://gist.github.com/sujaikumar/504b3b7024eaf3a04ef5/
https://gist.github.com/sujaikumar/504b3b7024eaf3a04ef5/

additional high scoring hits that NCBI BLAST misses due to an early approrimation
used by the heuristic search algorithm in NCBI BLAST.

With the expansion of genetic data available in NCBI, computational time is becom-
ing ever more burdensome, resulting in analyses that take months to complete with
substantial financial cost. This problem is aggravated by cheaper sequencing technology
leading to ever-larger genome assembly/transcriptomics projects with substantially more
samples to analyze. Our program can help relieve the cost burden. It enables itera-
tive updates for re-annotation of genome and transcriptome assemblies, useful given
rapid changes in the nr databases across the duration of a project. Specific datasets
of interest can be added to previous searches, such as scenarios involving availability
of new genome releases or conducting large phylogenetic studies. As demonstrated in
Case Study III, the program can be applied to transcriptomic or metagenomics projects
by merging the results of knowledge-guided BLAST searches only on groups that are
biologically relevant. This enables iterative exploration by taxon and facilitates curation

of BLAST results.

163

Chapter 5

Mitigating Catastrophic Forgetting

Using Historical Summary

5.1 Introduction

In many real-life and scientific applications, observational data arrives in a stream with
a need to discover knowledge gradually with the arrival of the data. For example, we
need to make instantaneous routing decisions from real-time traffic surveillance images
from traffic cameras. In the case of a developing storm, weather scientists need to
make a live predictive map of the storm’s path from streaming meteorological data. In
scientific simulations where outcomes of previous steps determine the next steps and

their parameters, a decision has to be made online from the simulation’s streaming data.

Training Machine Learning and Deep Learning models in streaming settings can be
useful in scenarios like the ones mentioned above. Besides naturally occurring streaming
data sources, analytics of exceptionally large data can also benefit from learning in a
streaming setting. If the data is too large so that learning from it at once overwhelms
system memory and compute capability, we can break down the data into manageable
chunks and emulate a streaming setting. Incremental learning from a streaming data
source can be beneficial when we have access to the streaming data only for a limited
amount of time, and we cannot store the entire dataset due to memory constraints, or

we cannot analyze the whole dataset due to memory and compute constraint.

164

Like other machine learning models, incrementally trained deep neural networks suffer
from the changing nature of the data in a stream. From related literature [6]], we see

few challenges that arise in training machine learning models in streaming settings.

1. Online model parameter adaptation. How to update the model parameters with

the new data?

2. Concept drift. How to deal with data when the data distribution changes over

time?

3. The stability-plasticity dilemma. If the model is too stable, it can’t learn from the
new data. When the model is too plastic, it forgets knowledge learned from the

old data. How to balance between these two?

4. Adaptive model complexity and meta-parameters. In the presence of concept drift
or the introduction of a new class of data might necessitate updating and increasing

model complexity against limited system resources.

The primary focus of our work is identifying the challenges associated with catastrophic
forgetting. Catastrophic forgetting is a special case of stability-plasticity problem, where
the model becomes too plastic and forgets about the tasks learned earlier in the stream.
In Section 2, we will present our survey on various state of the art approaches to tackle

these challenges in training deep learning models in a streaming setting.

5.2 Background and Related Work

Different body of research addresses various aspects of these challenges. The following

two frameworks/algorithms address various challenges.

ADAIN framework [77] describes an adaptive learning method in a streaming setting

that learns a distribution of the current data based on its classification performance

165

166

on the past model and then adjusts the past model using the current distribution. The
distribution assigns higher weights to the data points that are heard to learn and lower
weights to the data points, which are easier to learn. At any given time t, this framework
assumes there is a known distribution P,_1 of the data from the earlier arrival at time
t — 1 and a hypothesis (model) hy_1. It learns current distribution by first mapping the
past distribution P;_q to current data and then by assessing the error when this mapped

distribution is tested against the past distribution, hy_q.

ADAIN is tested on simple datasets comprising up to 6 classes and several models,
including Multi-layer Perceptron (MLP). While ADAIN shows comparable performance,
its usability for more compler data such as ImageNet (1000 classes) and Deep learning

models is unknown. ADAIN addresses concept drift.

SCIL algorithm [89] deals with streaming data by maintaining a set of meurons per
class and by occasionally merging the neurons to keep the network size under control.
Versatile Elliptic Basis Function (VEBF) is used to combine the neurons. The set of
neurons form a set of hyper-ellipsoids to capture clusters of data in the same class.
VEBF is used to define the boundary of the discarded data from earlier arrivals, and

with the arrival of new data and new class, these boundaries are updated.

SCIL was tested on the dataset with the number of classes up to 26, and data points up
to 581K, and it outperformed other reported streaming algorithms in the classification
task. One obvious limitation of this work is it was not tested on a dataset with a large

number of classes. SCIL addresses concept drift and adaptive model complezity.

Sahoo et al. [150] proposed an online training model to address adaptive model com-
plexity. It uses Hedge Backpropagation, which dynamically decides on the depth of
the training model. Since too shallow model converges too fast and performs poorly on
new data, and too deep model converges very slowly to achieve a reasonable amount of

learning, this training model maintains the range of layers. With time, the number of

layers required converges.

Besedin et al. [25] designed an evolutive deep model to allow training in an online
streaming setting. This model addresses concept drift and catastrophic forgetting. Their
model learns on the available data, and to forward the current data, they construct a
Generative Adversarial Network (GAN) on the current data and forward this GAN to
the next time step. Every time new data arrives, this approach trains the model on that

data and the data generated by the GAN from the previous step.

5.2.1 State-of-the-Art Approaches for Mitigating Catastrophic

Forgetting

Kemker et al. [91] categorized approaches to mitigate catastrophic forgetting in the

following classes.

1. Regularization methods. FElastic Weight Consolidation (EWC) [95] adds a regu-
larization term to the loss function to preserve weights contributing to learning

past tasks.

2. Ensemble methods. Learn++ [145] learns a new model per episode with the help

of the distribution of the data and ensembles these models.

3. Rehearsal methods. There are a few rehearsal methods that reuse past data;
one such method GeppNet preserves past data and incorporates these to current

episode’s training through a Self Organizing Map (SOM).

4. Dual-memory methods. GeppNet+STM [65] maintains a short term memory for

new uncertain predictions and consolidates these with more long-term memory.

167

168

5.3 Mitigating Catastrophic Forgetting Using His-

torical Summary

We propose to train the model on historical data as well as current data without stressing
the storage requirement. In every episode, we train our model on the currently arrived
data and the summary of historical data. Figure 5.1 illustrates the proposed pipeline.
First, the arriving data unit will go through a data-reduction tool (clustering, dimension
reduction using PCA /auto-encoder, core-set approximation, sampling, etc.). We will
train the model with the summary data and feed the summary data to a summary-over-

time module, which will be used to train the model.

Y.

)) Data Reduction

Streaming Data

Deposit

Deep Learning Model

Historical
Summary

Figure 5.1: A streaming model of training Deep Learning (DL) models using less data.
As the data arrives in a stream, we perform a fast summarizing process on this. We
train the model on this summarized data. We combine this summary with the data
in “summary over time” buffer. This way, we train the model incrementally on newly
arrived data along with a representative set from the past.

Summarizing data We can summarize data using coreset computation methods,

clustering, random sampling, or dimension reduction techniques.

Saving summarized history A summary of data from the previous episodes would
be saved into a buffer, and we will train the model using the current data along with the

saved summary.

Effectiveness of historical summary in mitigating catastrophic forgetting
Catastrophic forgetting prevents effective learning while training deep learning models
i a streaming setting. There are various efforts to mitigate this phenomenon with
varying degrees of success. We propose historical summary construction as a means to
counteract this. Several summarization techniques such as k-means clustering, random

sampling, autoencoder, and PCA can be useful for constructing historical summary.

We investigated the conditions under which catastrophic forgetting occurs. When data
arrives uniformly in all episodes, catastrophic forgetting is less likely. When a subset

of classes arrives in each episode, we observe catastrophic forgetting to take place.

To investigate the potential of historical summary in mitigating catastrophic forgetting,
we compare a simple summary method (i.e., random sampling) against the EWC method

on two different types of tasks.

1. Task type I: In the first type of task, we use the MNIST dataset, but in each
episode, the images of the MNIST are permuted in a certain way. So, the classifier
model is incrementally trained to learn a new task (classify newly permuted images

into their correct classes) while retaining knowledge on previously learned tasks.

2. Task type II: In this setting, MNIST images are not permuted, but at any
episode, only a subset of classes of the images are available. We simulated the
arrival of images from six randomly chosen classes from a total of ten classes at

any episode.

On the first type of task, the historical summary is as good as the EWC when recovering

169

170

from catastrophic forgetting for up to three episodes. During the fourth episode, the

EWC becomes unstable, but historical summary performs consistently through all four

episodes (Figure 5.2).

Test Accuracy
s o o o &
5 2 =@ ® o

=4
o

0.8

=4
o

o
IS

Test Accuracy

0.2

Test Accuracy
s o o
= o =

o
~

o
o

Vanilla SGD

—— TaskA
—— TaskB

0 100 200 300 400 500 600 700 800
Iterations

(a) SGD

Vanilla SGD

0 100 200 300 400 500 600 700 800
Iterations

(d) SGD

Vanilla SGD

N, M
— Taska

—— TaskB

— TaskC

TaskD

0 100 200 300 400 500 600 700 800
Iterations

(g) SGD

Test Accuracy
°© o o o &
5 2 =@ ® o

o
o

0.8

Test Accuracy
o o
= o

o
~

o
o

Test Accuracy
o o o &
5 o © o

o
~

=4
)

—— TaskA
—— TaskB

EWC

0 100 200 300 400 500 600 700 800
Iterations

(b) EWC

—— TaskA
—— TaskB
—— TaskC

EWC

0 100 200 300 400 500 600 700 800
Iterations

(e) EWC

EWC

— TaskB
| —— TaskC
| TaskD

| — TaskA
|

0 100 200 300 400 500 600 700 800
Iterations

(b) EWC

Test Accuracy

Test Accuracy

Test Accuracy

=
)

e
®

14
o

o
IS

e
N

=4
o

g
)

e
®

14
o

o
IS

e
o

o
°

=
)

o
@

o
o

o
IS

e
~

=4
°

Vanilla SGD + Summary

—— TaskA
—— TaskB

0

100 200 300 400 500 600 700 800
Iterations

(c) SGD + Summary

Vanilla SGD + Summary

—— TaskA
—— TaskB
—— TaskC

0

100 200 300 400 500 600 700 800
Iterations

(f) SGD + Summary

Vanilla SGD + Summary

—— TaskA
—— TaskB
—— TaskC

TaskD

0

100 200 300 400 500 600 700 800
Iterations

(i) SGD + Summary

Figure 5.2: Test accuracy while training the models using three paradigms. The left
column shows the performance when the model is incrementally trained only with SGD.
The middle columns shows the performance when EWC is used. The rightmost columns
shows the performance when a historical summary constructed through random sam-
pling is used in training the model with SGD.

On the second type of task, EWC suffers in recovering from catastrophic forgetting even

though it performs better than vanilla stochastic gradient descent (SGD). The historical

summary outperforms both of these methods (Figure 5.3) by a margin.

Vanilla SGD EWC Vanilla SGD + Summary

-
o
-
o
-
o

o
@
I3
@
4
@

e
o
e
o

—— TaskA
—— TaskB

—— TaskA
—— TaskB

e
IS
14
IS

Test Accuracy
Test Accuracy
Test Accuracy

0.2 0.2 0.2
0.0 0.0 0.0
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Iterations Iterations Iterations
(a) SGD (b) EWC (c) SGD + Summary
Vanilla SGD EWC Vanilla SGD + Summary
1.0 10 1.0

o
®
o
@

LMW

A
— TaskA 06 — TaskA
—— TaskB

o
o
e
o

—— TaskA
—— TaskB —— TaskB

Test Accuracy
Test Accuracy
Test Accuracy

04 — TaskC 04 —— TaskC 04 —— TaskC
0.2 0.2 0.2
0.0 0.0 0.0
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Iterations Iterations Iterations
(d) SGD (e) EWC (f) SGD + Summary
Vanilla SGD EWC Vanilla SGD + Summary
1.0 10 1.0
\\—\M\ l S
)
0.8 0.8 0.8
o 3 ~ o
806 —— TaskA 806 — TaskA 806 —— TaskA
2 —— TaskB] — TaskB 2 —— TaskB
< —— TaskC < — TaskC < — TaskC
704 TaskD 704 TaskD 704 TaskD
S = S
0.2 0.2 0.2
0.0 0.0 0.0
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Iterations Iterations Iterations
(g) SGD (h) EWC (i) SGD + Summary

Figure 5.3: Test accuracy while training the models using three methods. The left
column shows the performance when the model is incrementally trained only with SGD.
The middle column shows the EWC’s performance. The rightmost column shows the
performance when a historical summary constructed through random sampling is used
in training the model with SGD.

5.4 Conclusion and Discussion

In this chapter, we have proposed a training paradigm which uses historical summary
to mitigate catastrophic forgetting. There are many choices for summary construction,
either through dimension reduction, or through choosing a smaller number of samples.
To illustrate a simple summarization technique such as random sampling can be effective
in mitigating catastrophic forgetting, we designed experiments with two types of tasks
and compared our method against a state of the art method, EWC. Our experiments on

both types of tasks show that historical summary performs better than EWC' and vanilla

171

172

stochastic gradient descent (SGD).

The findings of this work show promise in solving a long-standing problem in streaming
learning. It might be useful to experiment with more summarization methods and more

complex task learning to develop effective training methodologies to discover knowledge

from high velocity big data.

Chapter 6

Conclusion and Future Work

Standard practices in exploring the landscape of big data analytics involve choosing
or designing an appropriate statistical or machine learning method, distributing the
parallel workload of the selected method across parallel processing units through efficient
scheduling and software design methodologies, developing high performance computing
(HPC) platforms through software or hardware innovation. Using HPC' platforms for
big data analytics can be expensive, so this thesis proposes frugality in resource usage by
investigating three properties of the big data: volume, variety, and velocity. This thesis

proposes three quidelines, each targeting one property of the big data.

1. Guideline targeting volume: Ezplore geometric properties of high dimensional

data for succinct representation

2. Guideline targeting variety: Design domain-aware algorithms through map-

ping of domain problems to computation problems

3. Guideline targeting velocity: Leverage incremental arrival of data through

incremental analysis and invention of problem-specific merging methodologies

Throughout this thesis, we demonstrated applications of these guidelines through the
solution approaches of representative problems. To demonstrate Guideline 1, we chose
the problem of developing a portable parallel dimension reduction tool (WMDS). To
demonstrate the application of Guideline 2, we chose the problem of identifying multi-hit

combinations of carcinogenic gene mutations. Guideline 3 was demonstrated through two

173

174

problems: (1) incremental sequence similarity search, and (2) mitigating catastrophic
forgetting while training deep learning models in a streaming setting. The solution
approaches show that multiple guidelines can be useful in solving a big data problem

since challenges might arise from any of its three characteristics.

6.1 Applications and Artifacts

1. The Claret [45] offers a portable and parallel dimension reduction tool (WMDS)
that leverages geometric properties of high-dimensional data (preservation of
pairwise distances after random projection) and portable parallel programming

paradigm offered by OpenCL that can run on available single accelerator systems.

(Guideline 1)

2. Claret enabled Web Andromeda shows through the use of geometric properties of
high dimensional data, parallelization on consumer accelerator, and incremental
gradient computation, visual analytics on domain problems relying on WMDS can

be run in real-time without significant delay. (Guideline 1, Guideline 3)

3. Identification of multi-hit combinations of carcinogenic genes [48] by mapping a
domain problem to a well-known NP-Complete problem weighted set cover problem
demonstrates the effectiveness of incorporating domain knowledge in designing

approzimate algorithms to solve domain problems. (Guideline 2)

4. Scaling up weighted set cover algorithm to identify 3-hit combinations of carcino-
genic genes [46] by representing cancer genomics data using a compressed binary
matriz demonstrates that the application of domain guided data representation

and domain-aware algorithm design can help us discover scientific knowledge.

(Guideline 1, Guideline 2)

5. Scaling out the combinatorial workload of a weighted set cover algorithm on Sum-
mit supercomputer to identify 4-hit combinations of carcinogenic genes through
various memory optimizations and equitable scheduling demonstrates how the

guidelines can be used to co-design effective solution for domain problems. (Guide-

line 1, Guideline 2)

6. iBLAST [47] performs incremental sequence similarity search against gradually
growing sequence databases through the design of nmowvel statistical formulas to
correct e-values. iIBLAST merges two partial results by re-computing or re-scaling

e-values through these novel formulas. (Guideline 3)

7. A comparative study into various approaches to mitigate catastrophic forgetting in
training deep learning models in a streaming setting demonstrates the efficacy of
using data summary. This work also sheds light on the challenges of incremental

training of deep learning models. (Guideline 1, Guideline 3)

6.2 Future Work

There are several future research directions concerning the applications solved in this
thesis. Like weighted multi-dimensional scaling (WMDS) solved in Claret [45], parallel
and portable tools to perform other dimension reduction techniques that use metric

distances can be designed and developed.

In identifying carcinogenic gene combinations, more precise domain knowledge needs to
be incorporated to make the identified combinations more biologically meaningful. Many
of the identified combinations consist of passenger mutations, removing the passenger
mutations and their combinations from the search space can be beneficial in two ways:
(1) the identified combinations will more likely consist cancer-specific driver mutations,

(2) fewer candidate genes means fewer candidate combinations, this will result in less

175

176

computation. After refining the combinations through passenger mutation elimination,
validation of these combinations as bio-markers of cancers needs to be done through
bio-chemical experiments. After refinement and validation, these combinations can be

used to design precision medicine and diagnostic tools.

The incremental analysis of iBLAST can be extended to other sequence similarity search
tools such as DIAMOND by developing appropriate statistics. There are a number of
workflows in bioinformatic research that use BLAST tool as one part of the pipeline.

Replacing traditional BLAST with iBLAST can expedite those workflows significantly.

We have identified a few challenges and approaches to mitigate catastrophic forgetting
while training a deep learning model in a streaming setting. Similar studies can be

conducted to address other problems in streaming learning (e.g., concept drift).

Additional Information Additional information is available in Appendix B.

Appendices

177

Appendix A

Identifying Multi-Hit Combinations

A.1 Identifying Somatic Variants Using MuTect2

and VEP: Command Parameters

Preliminary step of our approach is to identify meaningful somatic variations. We
identify somatic variations by comparing tumor and normal tissue samples with blood-

derived normal samples using MuTect?2.

We use the following command for germline variant calling.

java -jar GenomeAnalysisTK. jar
-T MuTect2 -R GRCh38.d1.vdl.fa
-I:tumor tissue.bam -I:normal blood-normal.bam -o output.vcf
--disable_auto_index_creation_and_locking when_reading rods
--max_alt alleles _in normal count 2
--contamination_fraction_to_filter 0.02 --dbsnp dbsnp.vct

—-cosmic cosmic.vcf 279

Once the variants are identified, we compute the effect of these variants using Variant

FEffect Predictor(VEP). We used the following VEP command for effect prediction:

178

perl variant_effect_predictor.pl

-i input.vcf -o output.vep -—-fasta GRCh38-directory --nostats

A.2 Algorithm and Data Structure

Input and Data Structure We first prepare the following data structures from the

tumor tissue samples and normal tissue samples.

Data Description

Gaelected a list of selected genes. List < Gene >.

TumorCoverage a dictionary object mapping any gene to a set of
tumor samples it covers. Dict < Gene,Set <

TumorSample >>.

NormalCoverage a dictionary object mapping any gene to a set of
normal samples it covers. Dict < Gene,Set <

NormalSample >>.

TumorSamples a set of all tumor tissue samples. Set <

TumorSamples >

NormalSamples a set of all normal tissue samples. Set <

NormalSamples >

CandidateCombination | Geected X Gselected, @ Set of all candidate Combinations.

179

180

Algorithm 14 Identifying two-hit combinations.

Require: Gggected, TumorCoverage, NormalCoverage, TumorSamples,
NormalSamples, CandidateCombinations

1: Initialize C' < ¢

2: CoveredT'umorSamples < ¢

3: CoveredNormalSamples < ¢

4: C

5. while |coveredTumorSamples| # |TumorSamples| do

6: weights < ¢

7: for combination € CandidateCombinations do

8: g1, g2 < extract(combination)

9: Covr(g1) < TumorCoverage.getSamples(gy)

10: Covr(ga) < TumorCoverage.getSamples(gs)

11: Covr(combination) <— Covp(g1) N Covr(ge) — CoveredTumorSamples
12:

13: Covn(g1) < NormalCoverage.getSamples(gy)

14: Coun(ga) < NormalCoverage.getSamples(g)

15: Covy (combination) <— Covy(g1) N Covy(ga) — CoveredNormalSamples
16: weight(combination) < f(Covy(combination), Covr(combination))
17: weights[combination] < weight(combination)

18:

19: bestCombination < argmin{weights}
20: Update CoveredTumorSamples and CoveredNormalSamples using

bestC'ombination

21: C < C U {bestCombination}
22: CandidateCombinations < CandidateCombinations — bestCombination
23:

24: return C

A.3 Robustness of Our Algorithm Across Sets of

Partitions

We partitioned the data in three different ways, and the average classification perfor-
mance in each case is comparable. Table A1 shows the result when we run our algorithm

on the second partition.

181

Discovery Set Validation Set
Tumor Samples ‘ Normal Samples ‘ Tumor Samples ‘ Normal Samples

g £

A s @ » @ . @ 2 @ 0 2

s 21228 3 28§ <2 &5 g 2 s & f ¢
: S| g 3 A s 4 & E 3 SO & 3
“ x| F & £ = & = © & = ©
2 2

BLCA 2 17 | 283 0 283 1.00 239 1 240 1.00 78 7 85 092 8396% 78 15 93 084 74-90%
BRCA 2 7 | 674 674 1.00 234 6 240 097 235 2 237 099 96-99% 82 11 93 0.88 79-93%
CESC 2 9 | 209 209 1.00 240 0 240 1.00 57 8 65 088 77-94% 82 11 93 0.88 79-93%
COAD 2 10 | 287 0 287 1.00 239 1 240 1.00 93 5 98 0.95 88-98% 89 4 93 0.96 89-98%
GBM 2 10 | 252 0 252 100 240 0O 240 1.00 71 8 79 090 81-95% 88 5 93 0.95 87-98%
HNSC 2 12360 0 360 1.00 238 2 240 099 101 9 110 0.92 8596% 87 6 93 0.94 86-97%
KIRP 2 10 | 18 0 181 1.00 239 1 240 1.00 44 3 47 094 82-98% 84 9 93 090 82-95%
LGG 2 11 | 360 0 360 1.00 236 4 240 098 112 7 119 0.94 8397% 85 8 93 091 83-96%
LIHC 2 8 | 223 0 223 1.00 239 1 240 1.00 83 6 89 093 85-97% 85 8 93 091 83-96%
LUAD 2 12 | 310 O 310 100 239 1 240 1.00 93 6 99 094 87-97% 8 8 93 091 83-96%
LUSC 2 11 | 228 0 228 1.00 239 1 240 1.00 65 12 77 084 7491% 89 4 93 096 89-98%
oV 2 9 |23 0 23 100 240 0 240 1.00 83 3 86 0.97 90-99% 90 3 93 0.97 90-99%
PRAD 2 21| 321 0 321 100 239 1 240 100 87 13 100 0.87 7892% 72 21 93 0.77 67-85%
SARC 2 5 | 151 0 151 1.00 240 0 240 1.00 66 2 68 097 89-99% 93 0 93 1.00 96-100%
STAD 2 17 | 297 0O 297 1.00 239 1 240 1.00 &4 7 91 092 84-96% 77 16 93 083 73-89%
THCA 2 16 | 323 0 323 1.00 239 1 240 1.00 92 6 98 094 87-97% 8 10 93 0.89 81-94%
UCEC 2 6 |30 0 360 100 23 6 240 097 135 0 135 1.00 97-100% 87 6 93 094 86-97%
Total 2 1191|5050 0 5050 1.00 4053 27 4080 0.99 1579 104 1683 0.94 92-94% 1436 145 1581 0.91 89-92%

Table Al: Result for two-hit combinations.

A.4 Identified Combinations for 17 Cancer Types

Table A2-A18 show identified 2-hit combinations for 17 cancer types using the first

partition.

Combination Genel Gene2 #Samples Covered Fraction Coverage
1 ENSG00000205277 ENSG00000184956 781 0.857299670692
2 ENSG00000149531 ENSG00000211896 347 0.380900109769
3 ENSG00000219481 ENSG00000173213 305 0.334796926454
4 ENSG00000185567 ENSG00000090512 81 0.0889132821076
5 ENSG00000170471 ENSG00000205869 79 0.0867178924259
6 ENSG00000178104 ENSG00000275113 47 0.0515916575192
7 ENSG00000149531 ENSG00000084731 29 0.0318331503842
8 ENSG00000137210 ENSG00000198888 8 0.00878155872667

Table A2: Sample coverage by combinations for BRCA.

182

Combination Genel Gene2 #Samples Covered Fraction Coverage
1 ENSG00000172199 ENSG00000173213 214 0.646525679758
2 ENSG00000149531 ENSG00000211896 116 0.350453172205
3 ENSG00000149531 ENSG00000161905 109 0.329305135952
4 ENSG00000127481 ENSG00000158445 103 0.311178247734
5 ENSG00000237541 ENSG00000171862 91 0.274924471299
6 ENSG00000177731 ENSG00000124092 88 0.26586102719
7 ENSG00000198601 ENSG00000100151 41 0.123867069486
8 ENSG00000149531 ENSG00000050438 41 0.123867069486
9 ENSG00000125498 ENSG00000166272 18 0.0543806646526
10 ENSG00000241322 ENSG00000176302 6 0.0181268882175

Table A3: Sample coverage by combinations for GBM.

Combination Genel Gene2 #Samples Covered Fraction Coverage
1 ENSG00000205277 ENSG00000149531 334 0.674747474747
2 ENSG00000184956 ENSG00000173213 282 0.569696969697
3 ENSG00000196126 ENSG00000171862 224 0.452525252525
4 ENSG00000205277 ENSG00000278662 188 0.379797979798
5 ENSG00000171862 ENSG00000211896 172 0.347474747475
6 ENSG00000141510 ENSG00000174501 159 0.321212121212
7 ENSG00000079841 ENSG00000205277 79 0.159595959596
8 ENSG00000198128 ENSG00000102890 22 0.0444444444444
9 ENSG00000197887 ENSG00000161031 19 0.0383838383838
10 ENSG00000243073 ENSG00000196460 10 0.020202020202

Table A4: Sample coverage by combinations for UCEC.

183

Combination Genel Gene2 #Samples Covered Fraction Coverage
1 ENSG00000184956 ENSG00000173213 192 0.521739130435
2 ENSG00000169862 ENSG00000149531 175 0.475543478261
3 ENSG00000186409 ENSG00000139687 35 0.0951086956522
4 ENSG00000213928 ENSG00000163435 24 0.0652173913043
5 ENSG00000204479 ENSG00000124762 24 0.0652173913043
6 ENSG00000169862 ENSG00000119720 24 0.0652173913043
7 ENSG00000141510 ENSG00000171502 23 0.0625
8 ENSG00000109758 ENSG00000171936 21 0.0570652173913
9 ENSG00000099917 ENSG00000116044 16 0.0434782608696

10 ENSG00000147050 ENSG00000108840 15 0.0407608695652
11 ENSG00000240864 ENSG00000196498 13 0.0353260869565
12 ENSG00000171680 ENSG00000071626 11 0.0298913043478
13 ENSG00000153933 ENSG00000244482 11 0.0298913043478
14 ENSG00000158290 ENSG00000089041 9 0.0244565217391
15 ENSG00000156650 ENSG00000139910 9 0.0244565217391
16 ENSG00000163959 ENSG00000153815 6 0.0163043478261
17 ENSG00000205356 ENSG00000125810 5 0.0135869565217
18 ENSG00000126262 ENSG00000166736 5 0.0135869565217

Table A5: Sample coverage by combinations for BLCA.

Combination Genel Gene2 #Samples Covered Fraction Coverage
1 ENSG00000184956 ENSG00000173213 129 0.565789473684
2 ENSG00000134775 ENSG00000149531 112 0.491228070175
3 ENSG00000197915 ENSG00000227152 68 0.298245614035
4 ENSG00000149531 ENSG00000204525 66 0.289473684211
5 ENSG00000169174 ENSG00000145920 37 0.162280701754
6 ENSG00000197915 ENSG00000204661 26 0.114035087719
7 ENSG00000213516 ENSG00000175193 5 0.0219298245614
8 ENSG00000159409 ENSG00000137337 4 0.0175438596491
9 ENSG00000142798 ENSG00000180767 4 0.0175438596491

10 ENSG00000070413 ENSG00000140795 4 0.0175438596491
11 ENSG00000004866 ENSGO00000178188 3 0.0131578947368

Table A6: Sample coverage by combinations for KIRP.

184

Combination Genel Gene2 #Samples Covered Fraction Coverage
1 ENSG00000184956 ENSG00000173213 176 0.577049180328
2 ENSG00000141510 ENSG00000149531 145 0.475409836066
3 ENSG00000141510 ENSG00000130226 37 0.12131147541
4 ENSG00000141510 ENSG00000221900 32 0.104918032787
5 ENSG00000141510 ENSG00000170959 31 0.101639344262
6 ENSG00000155657 ENSG00000205246 29 0.0950819672131
7 ENSG00000133863 ENSG00000141510 29 0.0950819672131
8 ENSG00000187537 ENSG00000179603 11 0.0360655737705
9 ENSG00000127507 ENSG00000121898 8 0.0262295081967
10 ENSG00000170382 ENSG00000173531 7 0.0229508196721
11 ENSG00000143882 ENSG00000167822 5 0.016393442623
12 ENSG00000007923 ENSG00000197841 3 0.00983606557377

Table A7: Sample coverage by combinations for LUSC.

Combination Genel Gene2 #Samples Covered Fraction Coverage
1 ENSG00000205277 ENSG00000149531 153 0.698630136986
2 ENSG00000184956 ENSG00000173213 137 0.625570776256
3 ENSG00000205277 ENSG00000197978 87 0.397260273973
4 ENSG00000145506 ENSG00000205277 68 0.310502283105
5 ENSG00000169047 ENSG00000273976 26 0.118721461187
6 ENSG00000173662 ENSG00000006377 11 0.0502283105023

Table A8: Sample coverage by combinations for SARC.

Combination Genel Gene2 #Samples Covered Fraction Coverage
1 ENSG00000184956 ENSG00000173213 188 0.686131386861
2 ENSG00000205277 ENSG00000149531 168 0.613138686131
3 ENSG00000205277 ENSG00000278662 128 0.467153284672
4 ENSG00000204525 ENSG00000149531 7 0.28102189781
5 ENSG00000205277 ENSG00000157423 62 0.226277372263
6 ENSG00000197915 ENSG00000227152 46 0.167883211679
7 ENSG00000279804 ENSG00000131951 12 0.043795620438
8 ENSG00000004455 ENSG00000178199 7 0.0255474452555
9 ENSG00000237541 ENSG00000153391 6 0.021897810219

Table A9: Sample coverage by combinations for CESC.

185

Combination Genel Gene2 #Samples Covered Fraction Coverage

1 ENSG00000149531 ENSG00000134775 197 0.63141025641

2 ENSG00000227152 ENSG00000184956 137 0.439102564103
3 ENSG00000186844 ENSG00000134775 125 0.400641025641
4 ENSGO00000177212 ENSG00000173213 120 0.384615384615
5 ENSG00000149531 ENSG00000188162 92 0.294871794872
6 ENSG00000147234 ENSG00000145920 7 0.246794871795
7 ENSG00000141510 ENSG00000130558 34 0.108974358974
8 ENSG00000198128 ENSG00000171368 13 0.0416666666667
9 ENSGO00000171680 ENSG00000204310 5 0.0160256410256

Table A10: Sample coverage by combinations for LIHC.

Combination Genel Gene2 #Samples Covered Fraction Coverage
1 ENSG00000184956 ENSG00000173213 252 0.616136919315
2 ENSG00000169862 ENSG00000149531 205 0.501222493888
3 ENSG00000198216 ENSG00000133703 81 0.19804400978
4 ENSG00000227152 ENSG00000010438 70 0.171149144254
5 ENSG00000116147 ENSG00000141510 63 0.154034229829
6 ENSG00000172765 ENSG00000118046 36 0.0880195599022
7 ENSG00000187741 ENSG00000081842 21 0.0513447432763
8 ENSG00000146648 ENSG00000140323 17 0.041564792176
9 ENSG00000204479 ENSG00000179593 16 0.039119804401
10 ENSG00000181396 ENSG00000156650 15 0.0366748166259
11 ENSG00000171680 ENSG00000185640 10 0.0244498777506
12 ENSG00000184677 ENSG00000165370 9 0.0220048899756
13 ENSG00000146830 ENSG00000272514 7 0.0171149144254

Table A11: Sample coverage by combinations for LUAD.

Combination Genel Gene2 #Samples Covered Fraction Coverage
1 ENSG00000138413 ENSG00000184956 375 0.782881002088
2 ENSG00000184956 ENSG00000173213 294 0.613778705637
3 ENSG00000149531 ENSG00000158865 115 0.240083507307
4 ENSG00000179912 ENSG00000149531 101 0.210855949896
5 ENSG00000173826 ENSG00000177468 7 0.0146137787056
6 ENSG00000167395 ENSG00000144791 6 0.0125260960334
7 ENSG00000130244 ENSG00000112984 6 0.0125260960334
8 ENSG00000144381 ENSG00000204516 5 0.0104384133612
9 ENSG00000134184 ENSG00000122257 5 0.0104384133612

Table A12: Sample coverage by combinations for LGG.

186

Combination Genel Gene2 #Samples Covered Fraction Coverage
1 ENSG00000184956 ENSG00000173213 308 0.655319148936
2 ENSG00000141510 ENSG00000211896 195 0.414893617021
3 ENSG00000149531 ENSG00000204525 92 0.195744680851
4 ENSG00000214324 ENSG00000055609 83 0.176595744681
5 ENSG00000146555 ENSG00000149531 64 0.136170212766
6 ENSG00000276644 ENSG00000141510 21 0.0446808510638
7 ENSG00000154222 ENSG00000099957 18 0.0382978723404
8 ENSG00000204442 ENSG00000063169 16 0.0340425531915
9 ENSG00000065526 ENSG00000021645 15 0.031914893617
10 ENSGO00000146112 ENSG00000166343 12 0.0255319148936
11 ENSG00000197429 ENSG00000154175 11 0.0234042553191
12 ENSGO00000198793 ENSGO00000179588 4 0.00851063829787
13 ENSG00000117148 ENSG00000211967 4 0.00851063829787

Table A13: Sample coverage by combinations for HNSC.

Combination Genel Gene2 #Samples Covered Fraction Coverage
1 ENSG00000184956 ENSG00000173213 221 0.569587628866
2 ENSG00000149531 ENSG00000204525 89 0.229381443299
3 ENSG00000163283 ENSG00000149531 84 0.216494845361
4 ENSGO00000141510 ENSGO00000177548 39 0.100515463918
5 ENSG00000110046 ENSG00000171936 39 0.100515463918
6 ENSG00000162927 ENSG00000141510 36 0.0927835051546
7 ENSG00000116251 ENSG00000198216 36 0.0927835051546
8 ENSG00000163629 ENSG00000141510 32 0.0824742268041
9 ENSG00000234745 ENSG00000039068 29 0.0747422680412
10 ENSG00000116251 ENSG00000198929 24 0.0618556701031
11 ENSG00000168702 ENSG00000120963 20 0.0515463917526
12 ENSG00000159650 ENSG00000211896 15 0.0386597938144
13 ENSG00000153201 ENSGO00000100151 14 0.0360824742268
14 ENSG00000196126 ENSG00000158488 12 0.0309278350515
15 ENSG00000124466 ENSGO00000185177 11 0.0283505154639
16 ENSG00000167548 ENSG00000131203 8 0.020618556701
17 ENSG00000211721 ENSG00000203933 7 0.0180412371134
18 ENSG00000184677 ENSG00000184814 3 0.00773195876289
19 ENSG00000116350 ENSG00000197245 3 0.00773195876289

Table A14: Sample coverage by combinations for STAD.

187

Combination Genel Gene2 #Samples Covered Fraction Coverage
1 ENSG00000133056 ENSG00000158445 209 0.659305993691
2 ENSG00000141510 ENSG00000149531 173 0.545741324921
3 ENSG00000204501 ENSG00000173213 128 0.403785488959
4 ENSG00000141510 ENSG00000065534 90 0.283911671924
5 ENSG00000153820 ENSG00000141510 72 0.227129337539
6 ENSGO00000155657 ENSG00000133193 71 0.223974763407
7 ENSG00000141298 ENSG00000133112 45 0.141955835962
8 ENSG00000080031 ENSG00000077782 32 0.10094637224

Table A15: Sample coverage by combinations for OV.

Combination Genel Gene2 #Samples Covered Fraction Coverage
1 ENSG00000184956 ENSG00000173213 256 0.608076009501
2 ENSG00000169862 ENSG00000149531 185 0.439429928741
3 ENSG00000163283 ENSG00000149531 102 0.242280285036
4 ENSG00000038358 ENSG00000157764 92 0.218527315914
5 ENSGO00000157764 ENSG00000100290 70 0.166270783848
6 ENSGO00000157764 ENSG00000170369 68 0.161520190024
7 ENSG00000157764 ENSG00000186818 33 0.0783847980998
8 ENSG00000104974 ENSG00000213281 27 0.0641330166271
9 ENSG00000175216 ENSG00000211896 23 0.0546318289786
10 ENSG00000204479 ENSG00000205246 16 0.0380047505938
11 ENSGO00000118777 ENSG00000100626 11 0.0261282660333
12 ENSG00000113649 ENSG00000186395 8 0.0190023752969
13 ENSG00000137492 ENSG00000155034 3 0.00712589073634

Table A16: Sample coverage by combinations for THCA.

188

Combination Genel Gene2 #Samples Covered Fraction Coverage
1 ENSG00000184956 ENSG00000173213 247 0.586698337292
2 ENSG00000169862 ENSG00000149531 203 0.482185273159
3 ENSG00000163283 ENSG00000149531 90 0.21377672209
4 ENSG00000211896 ENSG00000168096 37 0.0878859857482
5 ENSG00000213516 ENSG00000121067 31 0.0736342042755
6 ENSG00000211896 ENSG00000135341 26 0.061757719715
7 ENSG00000100401 ENSG00000008988 25 0.0593824228029
8 ENSG00000154358 ENSG00000112559 19 0.0451306413302
9 ENSG00000187545 ENSG00000227152 17 0.0403800475059

10 ENSG00000196498 ENSG00000159625 14 0.0332541567696
11 ENSG00000204442 ENSG00000221923 12 0.0285035629454
12 ENSG00000196539 ENSG00000205445 12 0.0285035629454
13 ENSG00000198502 ENSG00000197595 11 0.0261282660333
14 ENSG00000177548 ENSG00000180104 8 0.0190023752969
15 ENSG00000152661 ENSG00000043355 8 0.0190023752969
16 ENSG00000196187 ENSG00000152086 7 0.0166270783848
17 ENSG00000198128 ENSG00000162009 6 0.0142517814727
18 ENSG00000134545 ENSG00000185519 6 0.0142517814727
19 ENSG00000116721 ENSG00000142546 4 0.00950118764846
20 ENSG00000143226 ENSG00000099889 2 0.00475059382423

Table A17: Sample coverage by combinations for PRAD.

Combination Genel Gene2 #Samples Covered Fraction Coverage
1 ENSG00000134982 ENSG00000149531 281 0.72987012987
2 ENSG00000184956 ENSG00000173213 214 0.555844155844
3 ENSG00000149531 ENSG00000180329 158 0.41038961039
4 ENSG00000120314 ENSG00000157423 60 0.155844155844
5 ENSG00000184634 ENSG00000198786 42 0.109090909091
6 ENSG00000176542 ENSG00000100151 39 0.101298701299
7 ENSG00000204130 ENSGO00000188766 24 0.0623376623377
8 ENSG00000154330 ENSG00000000971 20 0.0519480519481
9 ENSG00000162620 ENSG00000110074 10 0.025974025974

Table A18: Sample coverage by combinations for COAD.

A.5 Correlation Between Genes Within Combina-

tions

We investigate whether the sample coverages of genes within a combination are correlated
in normal samples to determine if we may be identifying passenger mutations as part of
the combinations. Figure Al shows —log,,p against Pearson’s correlation coefficients,
where p is the p-value. We find no evidence of the genes within combinations being

significantly correlated.

BLCA
BRCA
CESC
COAD
GBM
HNSC
KIRP
LGG
LIHC
LUAD
LUSC

X X X X X

-log10(p)

PRAD
1 SARC
& % STAD
' % THCA
% % UCEC
3:(

O_

—-1.00 —-0.75 —-0.50 —-0.25 0.00 0.25 0.50 0.75 1.00
Pearson's Correlation Coefficient

Figure Al: —log,,p vs Pearson correlation coefficient plot for all pairs of genes in
all combinations identified by our method using the normal samples, where p is the
p-value. Since no pair has a p-value < 0.005 (or —log,;,p > 2.301) and absolute
Pearson correlation coefficient greater than 0.50, none of the combinations appear to
have correlated genes.

189

190

Bl Partition 1 combinations -
"""" B Partition 2 combinations
B Common combinations

HHEREHEN

ONPOWONMOI®O

Identified combinations

STAD LUSC LIHC KIRP LUAD UCEC BRCA LGG OV PRAD HNSC GBM THCA SARC CESC BLCA COAD
Cancer type

I Partition 1 genes [
mmm Partition 2 genes
B Common genes

STAD LUSC LIHC KIRP LUAD UCEC BRCA LGG OV PRAD HNSC GBM THCA SARC CESC BLCA COAD
Cancer type

Figure A2: Identified genes and combinations shared between two sets of partitions.
(1—5) combinations are shared between two sets and (4 —10) genes are shared between
two sets.

A.6 Coverage of Samples by Identified Combina-

tions

Figure A3 shows fractions of tumor samples covered by identified combinations. Most
samples are covered by the top combinations, while a very small number of samples
require a large number of combinations. Figure A4 shows that this distribution is

similar for different ways of partitioning data.

Figure A5 shows that many samples can be covered by more than one combinations.

These overlapping combinations might constitute more than two hits.

A.7 Distinguishing Between Driver and Passenger

Mutations

191

6 BLCA BRCA 7 CESC
: 2
o 29
30
%g {“‘W 20
o I 1 0 0 0 o e e e i Il v S 19 =
123456 7 8 9101112131415161718 1 2 3 4 5 8 1 3 4 5 6 7 8 9

=3
Q
o
>
o
~
=)
@
@
=
~
T
=
wn
g}

e
+I

i

I

I

I

J

o o

I

i
-
-
Y
.

I

588583
N
oI
0
ie

]

J

|

WS UIoNG
OOS00000
ENWsG
[SYstst=Ye)

o e
7 8 9 10 11 12 13 1

%Samples Covered
588883
S
=
ol
of]
i
~d
wil]
=
ot
-l
~d
!
5888833 8
] . -
. I
]
]
i
]
]
!

1 3 8 9 10 11 12 3 5 6 7

6 PRAD 70 SARC . STAD

50f gg 50f

40 40,

30 49 30

20 30 20

10 ﬂ 10} 104

0 e o — 120 I I O e -
12345678 01011121314151617181920 1 4 5 6 12345678 010111213141516171819

; THCA 70 UCEC

60 60

50 50

40, 40

%WH 2 im

18 ’_‘ ’_‘ ’_‘ ’_‘ [T o e e 18 e
1 2 3 4 5 6 7 8 9 1011 12 13 T 3 4 5 6 7 8 9 10

Combinations

Figure A3: Occurrence of two-hit combinations identified in tumor samples, for the
seventeen cancer types considered. The top combination occurs in 65% of tumor sam-
ples, on average, while 42% of the combinations occur in less than 5% of the samples.
Total percentage exceeds 100% because samples can contain multiple combinations.

70

mmm Partition 1
mmm Partition 2

60

w & a
= =] =]

% Combinations

N
=]

10

STAD LUSC LIHC KIRP LUAD UCEC BRCA LGG OV PRAD HNSC GBM THCA SARC CESC BLCA COAD
Cancer type

Figure A4: Percentage of identified combinations covering the last 5% of samples for
the 17 cancer types. On average, the last 42% of the combinations occur in 5% of the
tumor samples.

192

5 BLCA BRCA 5 CESC
40 0 39
30 0 20
20 o 15
10 o 0 19
0 0
0 T 2 3 4 5 0 1 2 3 7 5 0 T 2 3 2 5
u COAD 0 GBM . HNSC
35 25
39 20 0
2 15 5
1 10 }E
S 7 5
" 0 T 2 3 4 5 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
5 . KIRP . LGG 3 LIHC
© 2 0 30 —
g B : R -
£ it i 1
5l : L
z 0 1 2 3 7 5 0 1 2 3 7 5 0 1 2 3 4 5 6 7
>
- LUAD . LUSC ov
kel %5 50} T 30
;g . -
> 15 20 13
3 10 10 5
k] 0 1 2 3 4 5 6 7 %5 00 05 10 15 20 25 30 35 40 0 1 2 3 4 5 6 7
Q
g 5 PRAD 19 SARC . STAD
3 30
g2 % g
2 15 2
g 10 ;
0 T 2 3 4 5 6 0 T 2 3 Z 5 0 1 2 3 4 5 6 7
3 THCA " UCEC
;g :
: L
15 1
10 “ g
=% T 2 3 4 5 =1 2z 35 4 5 6 7

Number of combinations (N)

Figure A5: Distribution of overlapping combinations for 17 cancer types. 64.5% of the
tumor samples contain multiple combinations, suggesting that the two-hit combinations
represent subsets of three or more hits.

Table A19: Reactome superpathways associated with genes in the top three two-hit combinations identified [58].

Reactome Superpathways

U0INPOLAIY

201D UDLPLOLY)

uonvoNday YN

UOWDILUNULULOD 1]2,)-]19))

YI0I(T 119) PRULUDADOL]

UOLIIDLIUOD IJISTLIA]

U0 DZIUDBLO UDULOLY))

QQS\BN@:\B@KO TILIDW SD]N]]IIDLITH

40day YN

Swoshg pUOININ

20uDUUIDUL PUD $ASIUIDOLY]]oUDDL()

§59435 07 sUOdSaL ADIN]]3,)

S1SDISOUWLO T

2121 1190

740dSUDL] PIIDIPIUL-9]D1SI/

25DISY(T 8
fibojorgy oyuuLdoona (T
su1a304d o ws1oqnIa py o
U01§594ALI] JUIE)
wayshg aunwu]
ws10qnI2 P
UOWINPSUDL], |DUbLG
A X A,
Q0 Q
Sl 8 =z 2
v N =0
RS 5 &
= & O K

422UD))

VOT14

193

CCDC30

RB1

BRCA

MUC12

MUC6

FRG1BP

IGHG1

AHNAK?2

FETUB

CESC

MUC6

TUBBSP#

MUC12

GOLGAé’kZO

MUC12

FRG1BP

V6]

COAD

APC
FRG1BP
MUC6
TUBBSP
FRG1BP

CCDCY3

GBM

ORS8U1

TUBBSP

FRG1BP

ALOX15

UBR4

KCNB1

HNSC

MUC6

TUBBSP*

TP53 X

G61

IGHG1

FRG1BP

HLA-C

KIRP

MUC6

TUBB(S’P* 2

FHODS

FRG1BP

HRNR

OR2T7

LGG

IDHI

MUC6

MUC6

TUBB(S)P*Q

R3HDM?2

96

FRG1BP

LIHC

FRG1BP

FHODS

OR2T7

MUC6

OR2T33

X

TUBBSP*Q

LUAD

MUC6

TUBBSP*

CTNND2

FRG1BP

OR2T7

PRSS3

LUSC

MUC6

TUBBSP*Q

L6T

TP53

FRG1BP

TP53

DPP6

ov

PIK3C2B

KCNB1

TP53

FRG1BP

TP53

MYLK

PRAD

MUC6

TUBBSP*?

CTNND2

FRG1BP

861

RBMXL1

SPOP X

SARC

MUC12

FRG1BP

MUC6

TUBBSP*

MUC12

GOLGA 6#9

STAD

MUC6

TUBBSP*?

ALPP

FRG1BP

ATG2A

OR10H3 | X

THCA

MUC6

661

TUBBSP
CTNND2
FRG1BP
EDCY

BRAF

UCEC

MUC12

FRG1BP

MUC6

TUBBSP

HLA-
DRB1

PTEN

00¢

Appendix B

iBLAST

B.1 Existing E-Value Correction Software and Their

Features

Several sequence similarity tools such as mpiBLAST and NOBLAST require E-value
correction. A close inspection of the approaches used by these tools will help understand

the challenges in E-value correction.

mpiBLAST mpiBLAST [44] is a parallel implementation of NCBI BLAST on the
cluster. It segments the database, ports the segments into different nodes of a cluster, and
runs parallel BLAST search jobs against database segments on different nodes. Once
the parallel search jobs return, it aggregates the search result. It has two important
contributions. First, it achieves super-linear speedup by reducing 10 overhead (time
spent in reading and writing hard-disk storage). Second, it is the first parallel BLAST
tool to provide exact E-value statistics in contrast to approximate E-value statistics of

other contemporary parallel implementations of NCBI BLAST.

mpiBLAST s exact E-value statistics requires two steps. First, it collects the necessary
statistical parameters for the entire database by performing a pseudo-run of the BLAST
engine against the global database. Once it has the global parameters, it passes the
global parameters (such as whole database length n, the total number of sequences N)

to the parallel search jobs against segmented databases. mpiBLAST modifies some

201

202

functionalities of NCBI BLAST (blast.c, blastdef.h, blastkar.c, and blastutl.c) so that
global parameters can be fed externally and that information can be used to calculate

exact E-values.

For accurate E-value correction, mpiBLAST requires prior knowledge of the entire

database.

NOBLAST NOBLAST [101] provides new options for NCBI BLAST. It offers a way
to correct E-values when split databases are used and the results need to be aggregated.
E-value computation requires knowledge about the entire database size, the number
of sequences in the whole database N and the total length of the database m. Using
the values N, n and Karlin-Altschul statistical parameters which are independent of
database size, the E-value can be computed using Karlin-Altschul statistics. First,
NOBLAST computes the length adjustment using the knowledge about the complete
original database, then, it computes effective search space using length adjustment, and

finally, it computes the E-value using effective search space.

In principle, NOBLAST takes a similar approach to mpiBLAST, as both provide global
statistical parameters to the search jobs against a segmented database so that that exact
FE-value can be computed. While mpiBLAST s main contribution is a parallel implemen-
tation and E-value correction comes from the need of producing the same output as the
sequential counterpart, NOBLAST’s main contribution is an E-value correction. Both
tools require prior knowledge about the entire database. Both tools were developed before
Spouge’s E-value statistics were introduced, so they didn’t address FE-value corrections

for the BLAST programs that use Spouge’s statistics.

B.2 E-Value Correction

We use algorithm 15 to recompute E-values for BLAST programs using Karlin-Altschul

statistics. We first aggregate database sizes from two input results and use the aggregated

sizeN to compute length adjustment l. Using N and I, we recompute E-values for both

results.

Algorithm 15 Recomputing E-values for Karlin-Altschul statistics.

1:

2:

3:

Input: resultl, result2
n < resultl.n + result2.n

m < resultl.m

: N < resultl.N + result2.N
. | < recompute__length__adjustment(n,m, N)

. recompute__evalues(resultl, [, N)

recompute__evalues(result2,l, N)

We use algorithm 16 to re-scale E-values for BLAST programs using Spouge statistics.

First we aggregate the database sizes for two input results, and scale the E-values by a

factor of the ratio between aggregated database size and the individual database size.

Algorithm 16 Re-scale E-values for Spouge statistics.

1:

2:

3:

. re-scale__evalues(resultl,

. re-scale__evalues(result2,

Input: resultl, result2
db_lengthl < resultl.db_length

db_length2 <« result2.db_length

. db_length < db_lengthl + db_length?2

db_length

db_lengthl
db_length

db_length2

)
)

203

B.3 Creating Experimental Databases

Pre-formatted BLAST databases such nt and nr come in incremental parts.

204

With

progression of time, new sequences are packaged in parts and added to the databases.

B.3.1 Databases for Case Study 1

For case study I, we consider three time steps when the nt and nr databases had 30, 40,

and 50 parts. For these three time periods, we construct three databases as instances

of nt and nr by combining 30, 40, and 50 parts using BLAST tool blastdb aliastool.

The incremental databases between two periods are also constructed. Table B1 shows

different instances of nt databases in three different periods.

Period | Database parts | Number of sequences | Number of bases | Longest sequence length
0 0-29 25,117,275 80,740,533,243 774,434,471 bases
0-1 30-39 8,389,596 33,008,962,097 275,920,749 bases
1 0-39 33,506,871 113,749,495,340 | 774,434,471 bases
1-2 40-59 8,891,258 38,722,333,261 129,927,919 bases
2 0-49 42,398,129 152,471,828,601 | 774,434,471 bases

Table B1:

Incremental nt databases for case study I.

Table B2 shows different instances of nr databases in three different periods.

205

Period | Database parts | Number of sequences | Number of residues | Longest sequence length
0 0-29 49,468,463 17,686,779,866 36,507 residues
0-1 30-39 15,878,318 6,065,300,773 35,523 residues
1 0-39 65,346,781 23,752,080,639 36,507 residues
1-2 40-49 16,448,075 6,278,067,810 38,105 residues
2 0-49 81,794,856 30,030,148,449 38,105 residues

Table B2: Incremental nr databases for case study I.

B.3.2 Databases for Case Study II

We construct nr database instances for time 0 and 1 by combining 64 and 90 parts

respectively. We combine these parts using blastdb_aliastool.

Period | Database | Number of sequences | Total residues | Longest sequence length
0 0-63 109,407,071 40,077,622,077 | 38,105 residues
0-1 64-90 52,860,187 19,192,851,238 | 74,488 residues
2 0-90 162,267,258 sequences | 59,270,473,315 | 74,488 residues

Table B3: Incremental nr databases for case study II.

B.4 Load-Balancing via Query Partitioning

For case study II and III, we have partitioned 17927 queries into 20 query files based

on number of residues after randomizing the order instead of a more straightforward

partitioning based on number of queries while keeping the original order.

206

50000 mmmmm NCBI BLAST BN Incremental Search Time
mmmm iBLAST HEE Merge Time
m
T 40000
o
o
8
» 30000
£
=
c
£ 20000
=1
o
(7]
X
w
10000

7 8 9 10 11 12 13 14 15 16 17 18 19 20
Query Partition

Figure B1l: Execution time when a straightforward query partitioning scheme is
adopted, which results in significant lack of load balancing. The standard deviation
for the execution times for both iBLAST and NCBI BLAST searches are large (2748
and 8727 seconds, respectively).

If we partition the queries by making sure each partition has roughly same number of
queries without disrupting their order, we get a range of execution times demonstrating
lack of proper load balancing. The standard deviation in iBLAST search times is 2748
seconds and standard deviation in NCBI BLAST search times is 8727 seconds. This
means the compute nodes have to wait idly for 1 — 3 hours on average. Figure B1

demonstrates the lack of load balancing.

In contrast, when we first randomize the order of the queries and then partition the
queries by making sure that all partitions have the roughly same number of residues,

the standard deviations fall to 150 and 487 seconds respectively (Figure B2).

B.5 Explanation for NCBI BLAST Missing Many

Top Hits

Due to the early cutoff of max target sequence used by its heuristic algorithm. NCBI

BLAST performs search in two phases. In earlier phase (ungapped extension), it starts

207

40000

35000, HEEE NCBIBLAST HEl Incremental Search Time
H BLAST HEEE Merge Time

30000

Execution Time (seconds)
= N N
u o u
o © O
o o o
o o o

10000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Query Partition

Figure B2: Execution time when our improvised query partitioning scheme is adopted,
which results in better load balancing. The standard deviation for the execution times
for both incremental and NCBI BLAST searches are minimal compared to the naive
strategy (150 and 487 seconds, respectively).

208

with matching a seed sub-string between target and query sequence and then extends
the matching pair in both direction without allowing any gap. In this phase, BLAST
algorithm assigns some scores to these matching pairs and keeps only the very high
scoring pairs using a cutoff determined by FE-value cutoff or number of mazximum hits.
In the gapped phase, these selected high scoring pairs are further extended in both
directions while allowing gaps and these evolved pairs get changed scores. Some of the
pairs that did not make the cut during the ungapped extension, can become high scoring
pairs. For a larger database, these missed opportunities are higher in number because
there are more potential pairs in the ungapped phase. Since iBLAST is combining results

from smaller databases, it misses relatively smaller number of those high scoring hits

compared to NCBI BLAST.

Bibliography

[1] Manifold learning. http://scikit-learn.org/stable/modules/generated/

sklearn.mantfold.MDS.html.

[2] Volume of data/information created worldwide from 2010 to 2024
(in zettabytes). https://www.statista.com/statistics/871513/

worldwide-data—created/.

[3] Summit: America’s newest and smartest supercomputer. https://www.olcf.

ornl.gov/summit/.

[4] NVIDIA Tesla V100 GPU Architecture: The world’s most advanced dat-
acenter GPU. Technical report, NVIDIA, 08 2017. Also available
at hitps://images.nvidia.com/content/volta-architecture /pdf/volta-architecture-

whitepaper. pdf.

[5] Alex Abramovici, William E Althouse, Ronald WP Drever, Yekta Giirsel, Seiji
Kawamura, Frederick J Raab, David Shoemaker, Lisa Sievers, Robert E Spero,

Kip S Thorne, et al. Ligo: The laser interferometer gravitational-wave observa-

tory. science, 256(5055):325-333, 1992.

[6] Dimitris Achlioptas. Database-friendly random projections: Johnson-

lindenstrauss with binary coins. Journal of computer and System Sciences, 66

(4):671-687, 2003.

[7] Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Geometric
approximation via coresets. Combinatorial and computational geometry, 52:1-

30, 2000.

209

http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/summit/

210

[8] Ahmed Ashour Ahmed, Dariush Etemadmoghadam, Jillian Temple, Andy G
Lynch, Mohamed Riad, Raghwa Sharma, Colin Stewart, Sian Fereday, Carlos
Caldas, Anna DeFazio, et al. Driver mutations in TP53 are ubiquitous in high

grade serous carcinoma of the ovary. The Journal of Pathology, 221(1):49-56,
2010.

[9] Qais Al Hajri, Sajal Dash, Wu-chun Feng, Harold R Garner, and Ramu Anan-
dakrishnan. Identifying multi-hit carcinogenic gene combinations: Scaling up a
weighted set cover algorithm using compressed binary matriz representation on a

gpu. Scientific Reports, 10(1):1-18, 2020.

[10] Bissan Al-Lazikani, Udai Banerji, and Paul Workman. Combinatorial drug ther-

apy for cancer in the post-genomic era. Nature biotechnology, 30(7):679, 2012.

[11] Luay Almassalha, Greta Bauer, John Chandler, Scott Gladstein, Igal Szleifer,
Hemant Roy, and Vadim Backman. The greater genomic landscape: The hetero-

geneous rvolution of cancer. Cancer Res, 76(19):5605-9, 2016.

[12] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J
Lipman. Basic local alignment search tool. Journal of molecular biology, 215(3):

403410, 1990.

[13] Amina Amadou, Maria I Waddington Achatz, and Pierre Hainaut. Revisiting
tumor patterns and penetrance in germline tpb3 mutation carriers: temporal

phases of li-fraumeni syndrome. Current opinion in oncology, 30(1):23-29, 2018.

[14] Qian An, Sarah L Wright, Anthony V Moorman, Helen Parker, Mike Griffiths,
Fiona M Ross, Teresa Davies, Christine J Harrison, and Jon C Strefford. Het-
erogeneous breakpoints in patients with acute lymphoblastic leukemia and the dic
(9; 20)(p11~ 13; q11) show recurrent involvement of genes at 20q11. 21. Haema-
tologica, 94(8):1164—-1169, 2009.

[15] Ramu Anandakrishnan. Estimating the number of genetic mutations (hits) re-

quired for carcinogenesis based on the distribution of somatic mutations. PLOS

Comp Bio, In Review, 2018.

[16] Ramu Anandakrishnan, Tom RW Scogland, Andrew T Fenley, John C Gordon,
Wu-chun Feng, and Alexey V Onufriev. Accelerating electrostatic surface potential

calculation with multi-scale approximation on graphics processing units. Journal

of Molecular Graphics and Modelling, 28(8):904-910, 2010.

[17] Ramu Anandakrishnan, Robin T Varghese, Nicholas A Kinney, and Harold R
Garner. Estimating the number of genetic mutations (hits) required for car-

cinogenesis based on the distribution of somatic mutations. PLoS computational

biology, 15(3):e1006881, 2019.

[18] Yoshimi Arima, Yasumichi Inoue, Tatsuhiro Shibata, Hidemi Hayashi, Osamu
Nagano, Hideyuki Saya, and Yoichi Taya. Rb depletion results in deregulation
of e-cadherin and induction of cellular phenotypic changes that are characteristic
of the epithelial-to-mesenchymal transition. Cancer research, 68(13):5104-5112,

2008.

[19] Peter Armitage and Richard Doll. The age distribution of cancer and a multi-stage

theory of carcinogenesis. Br J Cancer, 8(1):1, 1954.

[20] DJ Ashley. The two” hit” and multiple” hit” theories of carcinogenesis. British
journal of cancer, 23(2):313, 1969.

[21] Alon Ben-Arie, Zion Hagay, Herzel Ben-Hur, and Ram Dgani. Elevated serum al-
kaline phosphatase may enable early diagnosis of ovarian cancer. Furopean Jour-

nal of Obstetrics & Gynecology and Reproductive Biology, 86(1):69-71, 1999.

[22] Dennis A Benson, Mark Cavanaugh, Karen Clark, Ilene Karsch-Mizrachi, James

211

212

Ostell, Kim D Pruitt, and Eric W Sayers. GenBank. Nucleic Acids Research, 46
(D1):D41-DJ7, 11 2017. ISSN 0305-1048. doi: 10.1093/nar/gkz109,.

[23] Andrew Berchuck, Kerrie-Ann Heron, Michael E Carney, Johnathan M Lan-
caster, Elisa G Fraser, Vickie L Vinson, Amie M Deffenbaugh, Alexander Miron,
Jeffrey R Marks, P Andrew Futreal, et al. Frequency of germline and somatic

brcal mutations in ovarian cancer. Clinical Cancer Research, 4(10):2433-2437,

1998.

[24] Alice H Berger, Angela N Brooks, Xiaoyun Wu, Yashaswi Shrestha, Candace
Chouinard, Federica Piccioni, Mukta Bagul, Atanas Kamburov, Marcin Imielin-

ski, Larson Hogstrom, et al. High-throughput phenotyping of lung cancer somatic
mutations. Cancer cell, 30(2):21/-228, 2016.

[25] Andrey Besedin, Pierre Blanchart, Michel Crucianu, and Marin Ferecatu. Evolu-
tive deep models for online learning on data streams with no storage. In Workshop

on Large-scale Learning from Data Streams in Evolving Environments, 2017.

[26] Anthony M Bolger, Marc Lohse, and Bjoern Usadel. Trimmomatic: a flexible

trimmer for illumina sequence data. Bioinformatics, 30(15):211/-2120, 2014.

[27] Benjamin Buchfink, Chao Xie, and Daniel H Huson. Fast and sensitive protein

alignment using diamond. Nature methods, 12(1):59, 2014.

[28] Sergiy Butenko and Wilbert E Wilhelm. Clique-detection models in computational
biochemistry and genomics. European Journal of Operational Research, 173(1):

1-17, 2006.

[29] Jeffrey D Calhoun, Carlos G Vanoye, Fernando Kok, Alfred L George, and Jen-
nifer A Kearney. Characterization of a KCNBI1 variant associated with autism,

intellectual disability, and epilepsy. Neurology Genetics, 3(6):e198, 2017.

[30] Christiam Camacho, George Coulouris, Vahram Avagyan, Ning Ma, Jason Pa-
padopoulos, Kevin Bealer, and Thomas L Madden. Blast+: architecture and
applications. BMC bioinformatics, 10(1):421, 2009.

[31] Brandi L Cantarel, Ian Korf, Sofia MC Robb, Genis Parra, Eric Ross, Barry
Moore, Carson Holt, Alejandro Sinchez Alvarado, and Mark Yandell. Maker: an
easy-to-use annotation pipeline designed for emerging model organism genomes.

Genome research, 18(1):188-196, 2008.

[32] Ethan Cerami, Jianjiong Gao, Ugur Dogrusoz, Benjamin E. Gross, Selcuk Onur
Sumer, Bilent Arman Aksoy, Anders Jacobsen, Caitlin J. Byrne, Michael L.
Heuer, Erik Larsson, Yevgeniy Antipin, Boris Reva, Arthur P. Goldberg, Chris
Sander, and Nikolaus Schultz. The cbio cancer genomics portal: An open platform

for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5):

401-404, 2012.

[33] Matthew Chalmers. A linear iteration time layout algorithm for visualising high-

dimensional data. In Visualization’96. Proceedings., pages 127-131. IEEE, 1996.

[34] Sisi Chen, Hao Yu, Michihiro Kobayashi, Rui Gao, H Scott Boswell, and Yan
Liu. Gain-of-function mutant p53 enhances hematopoietic stem cell self-renewal.

Blood, 12/:260, 201/.

[35] Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining, pages 785-794. ACM, 2016.

[36] Feiziong Cheng, Junfei Zhao, and Zhongming Zhao. Advances in computational
approaches for prioritizing driver mutations and significantly mutated genes in

cancer genomes. Briefings in Bioinformatics, 17(4):642-656, 2015.

213

214

[37] Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of
Operations Research, /(3):235-235, 1979.

[38] Charles J Clopper and Egon S Pearson. The use of confidence or fiducial limits

tllustrated in the case of the binomial. Biometrika, pages 40/—413, 1934.

[39] Francis S Collins, Michael Morgan, and Aristides Patrinos. The human genome
project: lessons from large-scale biology. Science, 300(5617):286-290, 2003.

[40] Mireia Coma, Rubén Vicente, Silvia Busquets, Neus Carbé, Michael M Tamkun,
Francisco J Lopez-Soriano, Josep M Argilés, and Antonio Felipe. Impaired

voltage-gated k+ channel expression in brain during experimental cancer cachexia.

FEBS letters, 536(1-3):45-50, 2003.

[41] ENCODE Project Consortium et al. Identification and analysis of functional

elements in 1% of the human genome by the encode pilot project. Nature, 447
(7146):799, 2007.

[42] Ellen R Copson, Tom C Maishman, Will J Tapper, Ramsey I Cutress, Stephanie
Greville-Heygate, Douglas G Altman, Bryony Eccles, Sue Gerty, Lorraine T
Durcan, Louise Jones, et al. Germline brca mutation and outcome in young-

onset breast cancer (posh): a prospective cohort study. The lancet oncology, 19

(2):169-180, 2018.

[43] Ben Corden, Julian Jarman, Nicola Whiffin, Upasana Tayal, Rachel Buchan,
Joban Sehmi, Andrew Harper, William Midwinter, Karen Lascelles, Vias
Markides, et al. Association of Titin-truncating genetic variants with life-

threatening cardiac arrhythmias in patients with dilated cardiomyopathy and im-

planted defibrillators. JAMA Network Open, 2(6):¢196520-e196520, 2019.

[44] Aaron E Darling, Lucas Carey, and Wu-chun Feng. The design, implementation,

and evaluation of mpiblast. Technical report, Los Alamos National Laboratory,

2003.

[45] Sajal Dash, Anshuman Verma, Chris North, and Wu-chun Feng. Portable par-
allel design of weighted multi-dimensional scaling for real-time data analysis. In
2017 IEEE 19th International Conference on High Performance Computing and
Communications; IEEE 15th International Conference on Smart City; IEEE 3rd
International Conference on Data Science and Systems (HPCC/SmartCity/DSS),

pages 10-17. IEEE, 2017.

[46] Sajal Dash, Nick Kinney, Robin Varghese, Harold Garner, Wu-chun Feng, and
Ramu Anandakrishnan. Identifying carcinogenic multi-hit combinations using

weighted set cover algorithm. ICPP PhD Forum, 2018.

[47] Sajal Dash, Sarthok Rahman, Heather M Hines, and Wu-chun Feng. Incremental
blast: incremental addition of new sequence databases through e-value correction.

bioRxiv, page 476218, 2018.

[48] Sajal Dash, Nicholas A Kinney, Robin T Varghese, Harold R Garner, Wu-chun
Feng, and Ramu Anandakrishnan. Differentiating between cancer and normal tis-

sue samples using multi-hit combinations of genetic mutations. Scientific reports,

9(1):1005, 2019.

[49] Mark L Davison. Introduction to multidimensional scaling and its applications.

Applied Psychological Measurement, 7(4):373-379, 1983.

[50] Marcelo Rodrigo de Castro, Catherine dos Santos Tostes, Alberto MR Daduvila,
Hermes Senger, and Fabricio AB da Silva. Sparkblast: scalable blast processing

using in-memory operations. BMC bioinformatics, 18(1):318, 2017.

[51] Jan De Leeuw and Patrick Mair. Multidimensional scaling using majorization:

Smacof in r. Department of Statistics, UCLA, 2011.

215

216

[52] Nathan D. Dees, Qunyuan Zhang, Cyriac Kandoth, Michael C. Wendl, William
Schierding, Daniel C. Koboldt, Thomas B. Mooney, Matthew B. Callaway, David
Dooling, Elaine R. Mardis, Richard K. Wilson, and Li Ding. Music: identifying

mutational significance in cancer genomes. Genome Res, 22(8):1589-1598, 2012.

[58] Yajun Deng, Qiqi Xie, Guangzhi Zhang, Shaoping Li, Zuolong Wu, Zhanjun
Ma, Xuegang He, Yicheng Gao, Yonggang Wang, Xuewen Kang, et al. Slow
skeletal muscle troponin t, titin and myosin light chain 3 are candidate prognostic

biomarkers for Ewing’s sarcoma. Oncology Letters, 18(6):6431-6442, 2019.
[54] Sohita Dhillon. Ivosidenib: first global approval. Drugs, 78(14):1509-1516, 2018.

[55] Sean R. Eddy. Profile hidden markov models. Bioinformatics (Oxford, England),
14(9):755-763, 1998.

[56] Alaa A Elbendary, Frank D Cirisano, AC Evans, Penelope L Davis, JD Iglehart,
Jeffrey R Marks, and Andrew Berchuck. Relationship between p21 expression
and mutation of the p53 tumor suppressor gene in normal and malignant ovarian

epithelial cells. Clinical Cancer Research, 2(9):1571-1575, 1996.

[57] Aristides G Eliopoulos, David J Kerr, Jonathan Herod, Liz Hodgkins, Stanislaw
Krajewski, John C Reed, and Lawrence S Young. The control of apoptosis and

drug resistance in ovarian cancer: influence of p53 and Bcl-2. Oncogene, 11(7):

1217-1228, 1995.

[58] Antonio Fabregat, Konstantinos Sidiropoulos, Phani Garapati, Marc Gillespie,
Kerstin Hausmann, Robin Haw, Bijay Jassal, Steven Jupe, Florian Korninger,
Sheldon McKay, Lisa Matthews, Bruce May, Marija Milacic, Karen Rothfels,
Veronica Shamouvsky, Marissa Webber, Joel Weiser, Mark Williams, Guanming
Wu, Lincoln Stein, Henning Hermgjakob, and Peter D’Fustachio. The reactome

pathway knowledgebase. Nucleic Acids Research, 44 (D1):D481-D487, 2016.

[59] Uriel Feige. A threshold of In n for approximating set cover. Journal of the ACM
(JACM), 45(4):634—652, 1998.

[60] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny
data: Constant-size coresets for k-means, pca and projective clustering. In Pro-

ceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algo-

rithms, pages 1434-1453. Society for Industrial and Applied Mathematics, 20135.

[61] Thilo Fester, Falk Schreiber, Marc Strickert, and IPK Gatersleben. Cuda-based
multi-core implementation of mds-based bioinformatics algorithms. In GCB, pages

67-79. Cliteseer, 20009.

[62] Jodie M Fleming, Erika Ginsburg, Shannon D Oliver, Paul Goldsmith, and Bar-
bara K Vonderhaar. Hornerin, an s100 family protein, is functional in breast

cells and aberrantly expressed in breast cancer. BMC cancer, 12(1):266, 2012.

[63] Jianjiong Gao, Biilent Arman Aksoy, Ugur Dogrusoz, Gideon Dresdner, Benjamin
Gross, S Onur Sumer, Yichao Sun, Anders Jacobsen, Rileen Sinha, Erik Larsson,
et al. Integrative analysis of complex cancer genomics and clinical profiles using

the cbioportal. Sci. Signal., 6(269):pl1-pll, 20185.

[64] Alezander Gepperth and Barbara Hammer. Incremental learning algorithms and
applications. In ESANN 2016 proceedings, European Symposium on Artificial

Neural Networks, Computational Intelligence and Machine Learning, 2016.

[65] Alexander Gepperth and Cem Karaoguz. A bio-inspired incremental learning
architecture for applied perceptual problems. Cognitive Computation, 8(5):924—
934, 2016.

[66] BA Goff, K Shy, BE Greer, HG Muntz, M Skelly, and AM Gown. Overexpression

and relationships of her-2/neu, epidermal growth factor receptor, p53, ki-67, and

217

218

tumor necrosis factor alpha in epithelial ovarian cancer. European journal of

gynaecological oncology, 17(6):487, 1996.

[67] Rail A Gonzdlez-Pech, Timothy G Stephens, and Cheong Xin Chan. Commonly
misunderstood parameters of ncbi blast and important considerations for users.

Bioinformatics, 35(15):2697-2698, 2019.

[68] Sara Goodwin, John D McPherson, and W Richard McCombie. Coming of age:
ten years of next-generation sequencing technologies. Nature Reviews Genetics,

17(6):833, 2016.

[69] Manfred G Grabherr, Brian J Haas, Moran Yassour, Joshua Z Levin, Dawn A
Thompson, Ido Amit, Xian Adiconis, Lin Fan, Raktima Raychowdhury, Qiandong
Zeng, et al. Full-length transcriptome assembly from rna-seq data without a

reference genome. Nature biotechnology, 29(7):644, 2011.

[70] Robert C Grant, Iris Selander, Ashton A Connor, Shamini Selvarajah, Ayelet
Borgida, Laurent Briollais, Gloria M Petersen, Jordan Lerner-Ellis, Spring
Holter, and Steven Gallinger. Prevalence of germline mutations in cancer pre-

disposition genes in patients with pancreatic cancer. Gastroenterology, 148(3):

556-564, 2015.

[71] Tanya Guha and David Malkin. Inherited tp53 mutations and the li—fraumeni

syndrome. Cold Spring Harbor Perspectives in Medicine, 7(4):a026187, 2017.

[72] Huadong Guo, Lizhe Wang, Fang Chen, and Dong Liang. Scientific big data and
digital earth. Chinese science bulletin, 59(85):5066-5073, 2014.

[73] Xin Guo. g3viz: Interactively Visualize Genetic Mutation Data using a Lollipop-

Diagram. https://qithub.com/G3viz/g3viz, 2019. Accessed 2019-12-27.

[74] Daniel H Haft, Michael DiCuccio, Azat Badretdin, Vyacheslav Brover, Vyacheslav
Chetvernin, Kathleen O’Neill, Wenjun Li, Farideh Chitsaz, Myra K Derbyshire,

https://github.com/G3viz/g3viz

Noreen R Gonzales, et al. Refseq: an update on prokaryotic genome annotation

and curation. Nucleic acids research, 46(D1):D851-D860, 2017.

[75] Antonina Hartioziniska and Julia K Bar. Relationship between p53 and c-erbB-
2 overexpression in tissue sections and cyst fluid cells of patients with ovarian

cancer. Tumor Biology, 15(4):225-229, 199j.

[76] Mark Harris. Optimizing parallel reduction in CUDA. https://developer.
download.nvidia.com/assets/cuda/files/reduction.pdf, 2019. Accessed

2019-12-27.

[77] Haibo He, Sheng Chen, Kang Li, and Xin Xu. Incremental learning from stream
data. TEEE Transactions on Neural Networks, 22(12):1901-191/, 2011.

[78] Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770-778, 2016.

[79] Vannini I, Zoli W, Tesei A, Rosetti M, Sansone P, Storci G, Passardi A, Massa
I, Ricci M, Gusolfino D, Fabbri F, Ulivi P, Brigliadori G, Amadori D, and Bonafe
M. Role of p53 codon 72 arginine allele in cell survival in vitro and in the clinical

outcome of patients with advanced breast cancer. Tumour Biol, 29(3):145-51,

2008.

[80] i5K Consortium. The 5k initiative: advancing arthropod genomics for knowledge,

human health, agriculture, and the environment. Journal of Heredity, 104(5):

595-600, 20135.

[81] Stephen Ingram, Tamara Munzner, and Marc Olano. Glimmer: Multilevel mds
on the gpu. IEEE Transactions on Visualization and Computer Graphics, 15(2):
249-261, 2009.

219

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

220

[82] Intel. Product specifications: Intel Xeon Processor FE5-2630 v4.
https://ark.intel.com/content/www/us/en/ark/products/92981/
intel-zeon-processor-e5-2630-v4-25m-cache-2-20-ghz.html, 2017.

Accessed 2019-12-30.

[83] Alan Julian Izenman. Linear discriminant analysis. In Modern multivariate

statistical techniques, pages 237-280. Springer, 2013.

[84] Tarush Jain and Tanmay Agrawal. The haswell microarchitecture-4th generation

processor. International Journal of Computer Science and Information Technolo-

gies, 4(3):477-480, 2013.

[85] Joon Young Jang, Yulhyun Park, Dae-Hyun Jang, Ja-Hyun Jang, and Ju Seok
Ryu. Two novel mutations in TTN of a patient with congenital myopathy: A case

report. Molecular Genetics & Genomic Medicine, 2019.

[86] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. Dis-
secting the nvidia volta gpu architecture via microbenchmarking. arXiv preprint

arXiv:1804.06826, 2018.

[87] Mark Johnson, Irena Zaretskaya, Yan Raytselis, Yuri Merezhuk, Scott McGinnis,
and Thomas L Madden. Ncbi blast: a better web interface. Nucleic acids research,

36(suppl_2):W5-W9, 2008.

[88] William B Johnson and Joram Lindenstrauss. Ezxtensions of lipschitz mappings

into a hilbert space. Contemporary mathematics, 26(189-206):1, 198/.

[89] Prem Junsawang, Suphakant Phimoltares, and Chidchanok Lursinsap. Stream-
ing chunk incremental learning for class-wise data stream classification with fast

learning speed and low structural complexity. PloS one, 14(9):0220624, 2019.

https://ark.intel.com/content/www/us/en/ark/products/92981/intel-xeon-processor-e5-2630-v4-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/92981/intel-xeon-processor-e5-2630-v4-25m-cache-2-20-ghz.html

[90] Dalma Kellermayer, John E Smith, and Henk Granzier. Titin mutations and
muscle disease. Pfliigers Archiv-European Journal of Physiology, 471(5):673-
682, 2019.

[91] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L Hayes, and Christo-
pher Kanan. Measuring catastrophic forgetting in neural networks. In Thirty-

second AAAIT conference on artificial intelligence, 2018.

[92] Brian Kernighan and Dennis M Ritchie. The C programming language. Prentice
hall, 2017.

[93] Amjad Khan, Rongrong Wang, Shirui Han, Muhammad Umair, Safdar Abbas,
Muhammad Ismail Khan, Mohammad A Alshabeeb, Majid Alfadhel, and Xue
Zhang. Homozygous missense variant in the TTN gene causing autosomal reces-
sive limb-girdle muscular dystrophy type 10. BMC Medical Genetics, 20(1):166,

2019.

[94] Kenneth W Kinzler and Bert Vogelstein. Lessons from hereditary colorectal cancer.

Cell, 87(2):159-170, 1996.

[95] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks.

Proceedings of the national academy of sciences, 114(13):3521-3526, 2017.

[96] Andreas Klockner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov,
and Ahmed Fasih. Pycuda and pyopencl: A scripting-based approach to gpu

run-time code generation. Parallel Computing, 38(3):157-174, 2012.

[97] Klaus-Peter Koepfli, Benedict Paten, Genome 10K Community of Scientists, and
Stephen J O’Brien. The genome 10k project: a way forward. Annu. Rev. Anim.
Biosci., 3(1):57-111, 2015.

221

222

[98] Eugene F Krause. Taxicab geometry. The Mathematics Teacher, 66(8):695-706,
19735.

[99] Karoline B Kuchenbaecker, John L Hopper, Daniel R Barnes, Kelly-Anne
Phillips, Thea M Mooij, Marie-José Roos-Blom, Sarah Jervis, Flora E
Van Leeuwen, Roger L Milne, Nadine Andrieu, et al. Risks of breast, ovar-

ian, and contralateral breast cancer for BRCA1 and BRCAZ2 mutation carriers.

JAMA, 317(23):2402-2416, 2017,

[100] Runjun D Kumar, S Joshua Swamidass, and Ron Bose. Unsupervised detection

of cancer driver mutations with parsimony-guided learning. Nature genetics, 48

(10):1288-129/, 2016.

[101] Jacques Lagnel, Costas S Tsigenopoulos, and loannis Iliopoulos. Noblast and
jamblast: New options for blast and a java application manager for blast results.

Bioinformatics, 25(6):824-826, 2009.

[102] Doug Laney. 3d data management: Controlling data volume, velocity and variety.
META group research note, 6(70):1, 2001.

[108] Xénia Latypova, Naomichi Matsumoto, Cécile Vinceslas-Muller, Stéphane
Bézieau, Bertrand Isidor, and Noriko Miyake. Novel kenbl mutation associ-

ated with non-syndromic intellectual disability. Journal of Human Genetics, 62

(5):569, 2017,

[104] Michael S Lawrence, Petar Stojanov, Paz Polak, Gregory V Kryukov, Kristian
Cibulskis, Andrey Sivachenko, Scott L Carter, Chip Stewart, Craig H Mermel,

Steven A Roberts, et al. Mutational heterogeneity in cancer and the search for

new cancer-associated genes. Nature, 499(7457):214, 2013.

[105] Heidi Ledford. Cocktails for cancer with a measure of immunotherapy. Nature,

532(7598):162-164, 2016.

[106] Mark DM Leiserson, Matthew A Reyna, and Benjamin J Raphael. A weighted
exact test for mutually exclusive mutations in cancer. Bioinformatics, 32(17):

i736-i745, 2016.

[107] Scotland C Leman, Leanna House, Dipayan Maiti, Alex Endert, and Chris North.

Visual to parametric interaction (v2pi). PloS one, 8(3):¢50474, 2013.

[108] Harris A Lewin, Gene E Robinson, W John Kress, William J Baker, Jonathan
Coddington, Keith A Crandall, Richard Durbin, Scott V Edwards, Félix Forest,
M Thomas P Gilbert, et al. Farth biogenome project: Sequencing life for the
future of life. Proceedings of the National Academy of Sciences, 115(17):4325-
4333, 2018.

[109] MP Little and EG Wright. A stochastic carcinogenesis model incorporating ge-
nomic instability fitted to colon cancer data. Mathematical biosciences, 183(2):

111-134, 2003.

[110] DP Liu, Hoseok Song, and Yang Xu. A common gain of function of p53 cancer

mutants in inducing genetic instability. Oncogene, 29(7):949, 2010.

[111] Xiang Liu and Zhi-Qiang Ling. Role of isocitrate dehydrogenase 1/2 (IDH 1/2)
gene mutations in human tumors. Histology and Histopathology, 30(10):1155-
1160, 2015.

[112] Xiuli Liu, Maureen Jakubowski, and Jennifer L Hunt. Kras gene mutation in col-
orectal cancer is correlated with increased proliferation and spontaneous apoptosis.

American journal of clinical pathology, 135(2):245-252, 2011.

[113] Ru-Sen Lu, Avery E Broderick, Fabien Baron, John D Monnier, Vincent L Fish,
Sheperd S Doeleman, and Victor Pankratius. Imaging the supermassive black hole
shadow and jet base of m87 with the event horizon telescope. The Astrophysical

Journal, 788(2):120, 2014.

223

[114]

[115]

[116]

[117]

[118]

[119]

224

E Georg Luebeck and Suresh H Moolgavkar. Multistage carcinogenesis and the
incidence of colorectal cancer. Proc Natl Acad Sci USA, 99(23):15095-15100,

2002.

Ruibang Luo, Binghang Liu, Yinlong Xie, Zhenyu Li, Weihua Huang, Jianying
Yuan, Guangzhu He, Yanziang Chen, Qi Pan, Yunjie Liu, et al. Soapdenovo2: an
empirically improved memory-efficient short-read de novo assembler. Gigascience,

1(1):18, 2012.

Jun Ma, Lei Zhang, Jianguo Zhang, Mengmeng Liu, Liuping Wei, Tingting Shen,
Cui Ma, Yanyan Wang, Yingli Chen, and Daling Zhu. 15-lipoxygenase-1/15-
hydroxyeicosatetraenoic acid promotes hepatocellular cancer cells growth through
protein kinase b and heat shock protein 90 complex activation. The international

journal of biochemistry & cell biology, 45(6):1081-1041, 2013.

Phuong L Mai, David Malkin, Judy E Garber, Joshua D Schiffman, Jeffrey N
Weitzel, Louise C Strong, Oliver Wyss, Luana Locke, Von Means, Maria Isabel
Achatz, et al. Li-fraumeni syndrome: report of a clinical research workshop and

creation of a research consortium. Cancer genetics, 205(10):479-487, 2012.

Carla Marini, Michele Romoli, FElena Parrini, Cinzia Costa, Davide Mei,
Francesco Mari, Lucio Parmeggiani, Elena Procopio, Tiziana Metitieri, Elena
Cellini, et al. Clinical features and outcome of 6 new patients carrying de novo

KCNB1 gene mutations. Neurology Genetics, 3(6):e206, 2017.

Inigo Martincorena, Amit Roshan, Moritz Gerstung, Peter Ellis, Peter Van Loo,
Stuart McLaren, David C Wedge, Anthony Fullam, Ludmil B Alexandrov, Jose M
Tubio, et al. High burden and pervasive positive selection of somatic mutations

in normal human skin. Science, 348(6237):880-886, 2015.

[120] Iriigo Martincorena, Joanna C Fowler, Agnieszka Wabik, Andrew RJ Lawson,

Federico Abascal, Michael WJ Hall, Alex Cagan, Kasumi Murai, Krishnaa Mah-
bubani, Michael R Stratton, et al. Somatic mutant clones colonize the human

esophagus with age. Science, 362(6417):911-917, 2018.

[121] Takatoshi Matsuyama, Toshiaki Ishikawa, Kaoru Mogushi, Tsuyoshi Yoshida,
Satoru lida, Hiroyuki Uetake, Hiroshi Mizushima, Hiroshi Tanaka, and Kenichi
Sugthara. Mucl2 mrna expression is an independent marker of prognosis in

stage i and stage iii colorectal cancer. International journal of cancer, 127(10):

2292-2299, 2010.

[122] Simon Kebede Merid, Daria Goranskaya, and Andrey Alexeyenko. Distinguishing
between driver and passenger mutations in individual cancer genomes by network

enrichment analysis. BMC Bioinformatics, 14:308, 2014.

[123] Pu Miao, Jianhua Feng, Yufan Guo, Jianda Wang, Xiaoziao Xu, Ye Wang,
Yanfang Li, Liuyan Gao, Chaoguang Zheng, and Haiying Cheng. Genotype and
phenotype analysis using an epilepsy-associated gene panel in Chinese pediatric

epilepsy patients. Clinical Genetics, 94(6):512-520, 2018.

[124] Bruce Moore. Principal component analysis in linear systems: Controllability,

observability, and model reduction. IEEE transactions on automatic control, 26

(1):17-32, 1981.

[125] Shailendra Mundhada, Rajyalakshmi Luthra, and Pedro Cano. Association of hla
class i and class i1 genes with ber-abl transcripts in leukemia patients with t (9;

22)(q34; q11). BMC cancer, 4(1):25, 2004.

[126] Aaftab Munshi. The opencl specification. In 2009 IEEE Hot Chips 21 Symposium
(HCS), pages 1-314. IEEE, 2009.

[127] Rachael Natrajan, Suzanne E Little, Jorge S Reis-Filho, Lara Hing, Boo Messahel,
Paul E Grundy, Jeffrey S Dome, Toni Schneider, Gordan M Vujanic, Kathy

225

[128]

[129]

[130]

[131]

/132

[133]

226

Pritchard-Jones, et al. Amplification and overexpression of cacnale correlates

with relapse in favorable histology wilms’ tumors. Clinical cancer research, 12

(24):7284-7293, 2006.

Cristobal A Navarro and Nancy Hitschfeld. Gpu maps for the space of computation
in triangular domain problems. In 2014 IEEE Intl Conf on High Performance
Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety
and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC,
CSS, ICESS), pages 375-382. IEEE, 2014.

Cristobal A Navarro, Benjamin Bustos, and Nancy Hitschfeld. Potential benefits
of a block-space gpu approach for discrete tetrahedral domains. In 2016 XLII
Latin American Computing Conference (CLEI), pages 1-5. IEEE, 2016.

CO Nordling. A new theory on the cancer-inducing mechanism. Br J Cancer, 7

(1):68, 1953.

NVIDIA. Cuda C++ Best Practices Guide. https://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/index. html#instruction-optimization,

2019. Accessed 2019-12-30.

Nuala A O’Leary, Mathew W Wright, J Rodney Brister, Stacy Ciufo, Diana
Haddad, Rich McVeigh, Bhanu Rajput, Barbara Robbertse, Brian Smith- White,
Danso Ako-Adjei, et al. Reference sequence (refseq) database at ncbi: current

status, taxonomic expansion, and functional annotation. Nucleic acids research,

44(D1):D733-D745, 2015.

Hasmik Osipyan, Martin Krulis, and Stéphane Marchand-Maillet. A survey of
cuda-based multidimensional scaling on gpu architecture. In OASIcs-OpenAccess
Series in Informatics, volume 49. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-

matik, 2015.

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#instruction-optimization
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#instruction-optimization

[134] Aisling O’Driscoll, Jurate Daugelaite, and Roy D Sleator. ‘big data’, hadoop and
cloud computing in genomics. Journal of biomedical informatics, 46(5):77/-781,

2013.

[135] Bin Pan, Shaobo Zheng, Chunziao Liu, and Yawen Xu. Suppression of IGHG1
gene expression by siRNA leads to growth inhibition and apoptosis induction in

human prostate cancer cell. Mol Biol Rep, 40(1):27-33, 2013.

[136] Pan Pantziarka. Primed for cancer: Li fraumeni syndrome and the pre-cancerous

niche. ecancermedicalscience, 9, 2015.

[137] Sungin Park, Soo-Yong Shin, and Kyu-Baek Hwang. Cfmds: Cuda-based fast
multidimensional scaling for genome-scale data. BMC bioinformatics, 13(17):1,

2012.

[138] Yonil Park, Sergey Sheetlin, Ning Ma, Thomas L Madden, and John L Spouge.
New finite-size correction for local alignment score distributions. BMC research

notes, 5(1):286, 2012.

[139] Alejandro Parrales and Tomoo Iwakuma. Targeting oncogenic mutant p53 for

cancer therapy. Frontiers in oncology, 5:288, 2015.

[140] Nikki R Paul, Jennifer L Allen, Anna Chapman, Maria Morlan-Mairal, Egor
Zindy, Guillaume Jacquemet, Laura Fernandez del Ama, Nermina Ferizovic,
David M Green, Jonathan D Howe, et al. «abf1 integrin recycling promotes
arp2/3-independent cancer cell invasion via the formin fhod3. Journal of Cell

Biology, 210(6):1013-1031, 2015.

[141] Karl Pearson. Mathematical contributions to the theory of evolution. iii. regres-
sion, heredity, and panmizia. Philosophical Transactions of the Royal Society
of London. Series A, containing papers of a mathematical or physical character,

187:255-318, 1890.

227

228

[142] Mihaela Pertea, Geo M Pertea, Corina M Antonescu, Tsung-Cheng Chang,
Joshua T Mendell, and Steven L Salzberg. Stringtie enables improved recon-

struction of a transcriptome from rna-seq reads. Nature biotechnology, 33(3):

290, 2015.

[148] Ralph S Peters, Lars Krogmann, Christoph Mayer, Alexander Donath, Simon
Gunkel, Karen Meusemann, Alexey Kozlov, Lars Podsiadlowski, Malte Petersen,

Robert Lanfear, et al. Evolutionary history of the hymenoptera. Current Biology,
27(7):1013-1018, 2017.

[144] Erin Pleasance, Keira Cheetham, Philip Stephens, David McBride, Sean
Humphray, Chris Greenman, Ignacio Varela, Meng-Lay Lin, Gonzalo Ordonez,
Graham Bignell, Kai Ye, Julie Alipaz, Markus Bauer, David Beare, Adam Butler,
Richard Carter, Lina Chen, Anthony Cox, Sarah Edkins, Paula Kokko-Gonzales,
Niall Gormley, Russell Grocock, Christian Haudenschild, Matthew Hims, Terena
James, Mingming Jia, Zoya Kingsbury, Catherine Leroy, John Marshall, Andrew
Menzies, Laura Mudie, Zemin Ning, Tom Royce, Ole Schulz-Trieglaff, Anastas-
sia Spiridou, Lucy Stebbings, Lukasz Szajkowski, Jon Teague, David Williamson,
Lynda Chin, Mark Ross, Peter Campbell, David Bentley, Andrew Futreal, and
Michael Stratton. A comprehensive catalogue of somatic mutations from a human

cancer genome. Nature, 463(14):191-196, 2010.

[145] Robi Polikar, Lalita Upda, Satish S Upda, and Vasant Honavar. Learn++: An
incremental learning algorithm for supervised neural networks. IEEE transactions

on systems, man, and cybernetics, part C (applications and reviews), 31(4):497-

508, 2001.

[146] Julia R Pon and Marco A Marra. Driver and passenger mutations in cancer.

Annual Review of Pathology: Mechanisms of Disease, 10:25-50, 2015.

[147] Yun Qin, Xicai Tang, and Mingzing Liu. Tumor-suppressor gene nbpfl inhibits
invasion and piSk/mtor signaling in cervical cancer cells. Oncology Research

Featuring Preclinical and Clinical Cancer Therapeutics, 23(1-2):13-20, 2016.

[148] Raimundo Real and Juan M Vargas. The probabilistic basis of jaccard’s index of

similarity. Systematic biology, 45(3):380-385, 1996.

[149] Lauren L. Ritterhouse, Lori J. Wirth, Gregory W. Randolph, Peter M. Sadow,
Douglas S. Ross, Whitney Liddy, and Jochen K. Lennerz. Rosl rearrangement
in thyroid cancer. Thyroid, 26(6):1, 2016.

[150] Doyen Sahoo, Quang Pham, Jing Lu, and Steven CH Hoi. Online deep learning:

Learning deep neural networks on the fly. arXiv preprint arXiv:1711.03705, 2017.

[151] Hirotomo Saitsu, Tenpei Akita, Jun Tohyama, Hadassa Goldberg-Stern,
Yu Kobayashi, Roni Cohen, Mitsuhiro Kato, Chihiro Ohba, Satoko Miyatake,
Yoshinori Tsurusaki, et al. De novo KCNB1 mutations in infantile epilepsy

inhibit repetitive neuronal firing. Scientific Reports, 5:15199, 2015.

[152] Sarah Sandmann, Aniek O De Graaf, Mohsen Karimi, Bert A Van Der Reijden,
Eva Hellstrom-Lindberg, Joop H Jansen, and Martin Dugas. Fvaluating variant

calling tools for non-matched next-generation sequencing data. Scientific reports,

7:43169, 2017.

[153] Hamid Sarbazi-Azad. Advances in GPU Research and Practice: A volume in
Emerging Trends in Computer Science and Applied Computing, chapter 23, pages
649-705. Morgan Kaufmann, 2017.

[154] Hamid Sarbazi-Azad. Advances in GPU Research and Practice: A volume in
Emerging Trends in Computer Science and Applied Computing, chapter 9, pages
543-580. Morgan Kaufmann, 2017.

229

230

[155] Joellen M Schildkraut, Ellen L Goode, Merlise A Clyde, Edwin S Iversen, Patri-
cia. G Moorman, Andrew Berchuck, Jeffrey R Marks, Jolanta Lissowska, Louise
Brinton, Beata Peplonska, et al. Single nucleotide polymorphisms in the TP53

region and susceptibility to invasive epithelial ovarian cancer. Cancer Research,

69(6):2349-2357, 2009.

[156] Bertil Schmidt, Jorge Gonzalez-Dominguez, Christian Hundt, and Moritz Schlarb.

Parallel programming: concepts and practice. Morgan Kaufmann, 2017.

[157] Giinter Schneider, Marc Schmidt-Supprian, Roland Rad, and Dieter Saur. Tissue-

specific tumorigenesis: context matters. Nature Reviews Cancer, 17(4):239, 2017.

[158] Jessica Zeitz Self, Leanna House, and Chris North. Andromeda: Observation-level

and parametric interaction for exploratory data analysis, 2015.

[159] Nidhi Shah, Michael G Nute, Tandy Warnow, and Mihai Pop. Misunderstood
parameter of ncbi blast impacts the correctness of bioinformatics workflows. Bioin-

formatics, page bty833, 2018. doi: 10.1093/bioinformatics/bty833.

[160] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E Schein, Steven JM
Jones, and Inang Birol. Abyss: a parallel assembler for short read sequence data.

Genome research, 19(6):1117-1123, 2009.

[161] Inderpreet Singh, Arrvindh Shriraman, Wilson WL Fung, Mike O’Connor, and
Tor M Aamodt. Cache coherence for gpu architectures. In 2013 IEEE 19th

International Symposium on High Performance Computer Architecture (HPCA),

pages 578-590. IEEE, 2013.

[162] Amit Singhal et al. Modern information retrieval: A brief overview. IEEE Data
Eng. Bull., 24(4):35-43, 2001.

[163] Ramin Skibba. Geneticists hope to unlock secrets of bats’ complex sounds. Nature

News, 539(7630):481, 2016.

[164] Hoseok Song, Monica Hollstein, and Yang Xu. p53 gain-of-function cancer mu-
tants induce genetic instability by inactivating atm. Nature Cell Biology, 9(5):
573, 2007.

[165] YH Song and CJ Zhang. Effect of hydralazine on demethylation status and
expression of apc gene, proliferation and apoptosis of human cervical cancer cell
lines. Zhonghua bing li xue za zhi= Chinese journal of pathology, 36(9):614,
2007.

[166] Tyagi M. Vallania F. Bredemeyer A.J. Pfeifer J.D. Mitra R.D. Duncavage E.J.
Spencer, D.H. Performance of common analysis methods for detecting low-
frequency single nucleotide variants in targeted next-generation sequence data.

J Mol Diag, 16(1):75-88, 201.

[167] Mazimilian Stahl, Nathan Kohrman, Steven D Gore, Tae Kon Kim, Amer M
Zeidan, and Thomas Prebet. Epigenetics in cancer: a hematological perspective.

PLoS Genetics, 12(10):¢1006193, 2016.

[168] David Tamborero, Abel Gonzalez-Perez, and Nuria Lopez-Bigas. Oncodriveclust:
exploiting the positional clustering of somatic mutations to identify cancer genes.

Bioinformatics, 29(18):2238-224.4, 2013.

[169] Ernest Y Tan, Cynthia L Richard, Hong Zhang, David W Hoskin, and Jonathan
Blay. Adenosine downregulates dppiv on ht-29 colon cancer cells by stimulating

protein tyrosine phosphatase (s) and reducing erk1/2 activity via a novel pathway.

American Journal of Physiology-Cell Physiology, 291(3):C433-C444, 2006.

[170] Tatiana Tatusova, Michael DiCuccio, Azat Badretdin, Vyacheslav Chetvernin,
Eric P Nawrocki, Leonid Zaslavsky, Alexandre Lomsadze, Kim D Pruitt, Mark
Borodovsky, and James Ostell. Ncbi prokaryotic genome annotation pipeline.

Nucleic acids research, 44(14):6614/-6624, 2016.

231

232

[171] Isabelle Thiffault, David J Speca, Daniel C Austin, Melanie M Cobb, Kenneth S
Eum, Nicole P Safina, Lauren Grote, Emily G Farrow, Neil Miller, Sarah Soden,
et al. A novel epileptic encephalopathy mutation in KCNB1 disrupts Kv2.1 ion

selectivity, expression, and localization. Journal of General Physiology, 146(5):

399-410, 2015.

[172] Rui Tian, Malay K Basu, and Emidio Capriotti. Contrastrank: a new method
for ranking putative cancer driver genes and classification of tumor samples.

Bioinformatics, 30(17):1572-i578, 2014.

[178] Cristian Tomasetti, Luigi Marchionni, Martin A Nowak, Giovanni Parmigiani,
and Bert Vogelstein. Only three driver gene mutations are required for the devel-
opment of lung and colorectal cancers. Proc Natl Acad Sci USA, 112(1):118-123,
2015.

[174] Warren S Torgerson. Multidimensional scaling: I. theory and method. Psychome-
trika, 17(4):401-419, 1952.

[175] L-J Tsai, S-H Hsiao, L-M Tsai, C-Y Lin, J-J Tsai, D-M Liou, and J-L Lan. The
sodium-dependent glucose cotransporter slcball as an autoimmune modifier gene

in sle. Tissue antigens, 71(2):114—126, 2008.

[176] Hege Vardal. Venom gland and reservoir morphology in cynipoid wasps. Arthro-
pod structure & development, 35(2):127-136, 2006.

[177] Sonja Verheyden, Soldano Ferrone, Arend Mulder, Frans H Claas, Rik Schots,
Barbara De Moerloose, Ywves Benoit, and Christian Demanet. Role of the
inhibitory kir ligand hla-bwj and hla-c expression levels in the recognition of

leukemic cells by natural killer cells. Cancer immunology, immunotherapy, 58

(6):855, 2009.

233

[178] A Vincent, M Perrais, JL Desseyn, JP Aubert, P Pigny, and I Van Seuningen.
Epigenetic requlation (dna methylation, histone modifications) of the 11p15 mucin
genes (muc?2, mucsac, muchb, muc6) in epithelial cancer cells. Oncogene, 26(45):

6566-6576, 2007.

[179] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Fvgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, CJ Carey, Ilhan Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas,
Denis Lazalde, Josef Perktold, Robert Cimrman, lan Henriksen, E. A. Quintero,
Charles R Harris, Anne M. Archibald, Antonio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0-Fundamental Algo-
rithms for Scientific Computing in Python. arXiv e-prints, art. arXiw:1907.10121,
Jul 2019.

[180] Bert Vogelstein, Nickolas Papadopoulos, Victor E. Velculescu, Shibin Zhou, Jr.
Diaz, Luis A., and Kenneth W. Kinzler. Cancer genome landscapes. Science, 339

(6127):1546-58, 20183.

[181] Hao-Yuan Wang, Wen Wang, Yan-Wei Liu, Ming-Yang Li, Ting-Yu Liang, Ji-
Ye Li, Hui-Min Hu, Yang Lu, Chen Yao, Yong-Yi Ye, et al. Role of KCNB1 in
the prognosis of gliomas and autophagy modulation. Scientific Reports, 7(1):1/,
2017.

[182] Tao Wang, Yan-Hua Chen, Heng Hong, Yan Zeng, Jiao Zhang, Jian-Ping Lu,
Beverly Jeansonne, and Qun Lu. Increased nucleotide polymorphic changes in the
5 -untranslated region of §-catenin (ctnnd2) gene in prostate cancer. Oncogene,

28(4):555-564, 2009.

234

[183] Donate Weghorn and Shamil Sunyaev. Bayesian inference of negative and positive

selection in human cancers. Nature genetics, 49(12):1785-1788, 2017.

[184] John Weinstein, Eric Collisson, Gordon Mills, Kenna Shaw, Brad Ozenberger,
Kyle Ellrott, Ilya Shmulevich, Chris Sander, and Joshua Stuart. The cancer

genome atlas pan-cancer analysis project. Nat Genet, 48(10):1288-129/, 2016.

[185] John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Mills Shaw,
Brad A Ozenberger, Kyle Ellrott, Ilya Shmulevich, Chris Sander, Joshua M Stuart,
Cancer Genome Atlas Research Network, et al. The cancer genome atlas pan-

cancer analysis project. Nature genetics, 45(10):1113, 20185.

[186] Jianing Xi, Minghui Wang, and Ao Li. Discovering mutated driver genes through
a robust and sparse co-reqularized matriz factorization framework with prior in-
formation from mrna expression patterns and interaction network. BMC bioin-

formatics, 19(1):214, 2018.

[187] Shucai Xiao and Wu-chun Feng. Inter-block gpu communication via fast bar-
rier synchronization. In Parallel & Distributed Processing (IPDPS), 2010 IEEE

International Symposium on, pages 1-12. IEEE, 2010.

[188] Yawen Xu, Binshen Chen, Shaobo Zheng, Yong Wen, Abai Xu, Kai Xu, Bingkun
Li, and Chunxiao Liu. 1gG silencing induces apoptosis and suppresses prolifera-
tion, migration and invasion in LNCaP prostate cancer cells. Cell Mol Biol Lett,

21:27, 2016.

[189] Eun-Kyoung Yim, Guang Peng, Hui Dai, Ruozhen Hu, Kaiyi Li, Yiling Lu,
Gordon B Mills, Funda Meric-Bernstam, Bryan T Hennessy, Rolf J Craven,
et al. Rak functions as a tumor suppressor by requlating pten protein stability

and function. Cancer cell, 15(4):804-314, 2009.

[190] Jungi Yin, Shubhankar Gahlot, Jack Morrison, Ketan Maheshwari, Sajal Dash,
and Mallikarjun Shankar. Deployment and evaluation of extreme-scale machine

learning and deep learning on the summit supercomputer. SC 19, 2019.

[191] Meng Yu, Ying Zhu, Zhiying Xie, Yiming Zheng, Jiangzi Xiao, Wei Zhang, Ichizo
Nishino, Yun Yuan, and Zhaoxia Wang. Novel T'T'N mutations and muscle imag-

ing characteristics in congenital titinopathy. Annals of Clinical and Translational

Neurology, 2019.

[192] Hongen Zhang, Paul Meltzer, and Sean Davis. Rcircos: an R package for Circos
2D track plots. BMC Bioinformatics, 14(1):244, 2013.

[193] Jing Zhang, Hao Wang, Heshan Lin, and Wu-chun Feng. cublastp: Fine-grained
parallelization of protein sequence search on a gpu. In Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International, pages 251-260. IEEE,
2014.

[194] Jing Zhang, Sanchit Misra, Hao Wang, and Wu-chun Feng. mublastp: database-
indezed protein sequence search on multicore cpus. BMC bioinformatics, 17(1):

143, 2016.

[195] Xinan Zhang and Richard Simon. Estimating the number of rate limiting genomic

changes for human breast cancer. Breast Cancer Res Treat, 91(2):121-124, 2005.

235

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Characteristics of Big Data
	A Case for Domain-Aware Algorithm Design
	Three Guidelines for Efficient Big Data Analytics
	Representative Applications to Demonstrate Three Guidelines
	Developing a Parallel and Portable Weighted Multi-Dimensional Scaling Tool
	Identifying Carcinogenic Multi-Hit Combinations of Genetic Mutations
	Incremental Sequence Similarity Search via Automated E-Value Correction
	Mitigating Catastrophic Forgetting Using Historical Summary

	Organization of the Dissertation

	Geometric Optimization for Developing a Weighted Multi-Dimensional Scaling Tool
	Introduction
	Background and Related Work
	Mathematical Formulation
	Force-Directed Multi-Dimensional Scaling
	Application of Weighted Multi-Dimensional Scaling (WMDS) in Visual to Parametric Interaction (V2PI)

	Claret: A Fast and Portable Multi-Dimensional Scaling (MDS) Tool
	Porting Stochastic Force-Based Multi-Dimensional Scaling (SF-MDS) to GPU Using OpenCL
	Performance and Portability of Claret
	Quantifying Layout Similarity

	Stretched Random Projection
	Johnson-Lindenstrauss Lemma for Weighted Euclidean Distance
	Computing Weighted Euclidean Distance Using Random Projection

	Accelerated Forward Weighted Multi-Dimensional Scaling for Visual to Parametric Interaction Tools
	Supporting Non-Euclidean Distances
	Interface Between Claret and Web Andromeda
	Performance Comparison
	Case Study: Analyzing TCGA Mutation Data to Discover Cancer-Causing Genes Through the Incorporation of Domain Knowledge

	Optimizing Inverse WMDS for Quantifying Visual to Parametric Interactions
	Runtime Analysis
	Optimizing Runtime for Algorithm Parameters

	Conclusion and Discussion

	Domain-Aware Algorithm Design to Identify Carcinogenic Gene Combinations
	Introduction
	Domain-Aware Algorithm Design
	Parallelization of the Approximate Algorithm to Identify Three- and Four-Hit Combinations
	Scaling Out the Algorithm Using Hundreds of GPUs

	Mapping the Problem to Weighted Set Cover (WSC) Problem
	Somatic Mutations Calculated from the Cancer Genome Atlas (TCGA) Data
	Mapping the Problem of Finding Multi-Hit Combinations to a Weighted Set Cover (WSC) Problem
	Algorithm for Finding an Approximate Solution to the Weighted Set Cover Problem

	Classification Performance and Quality of Identified Two-Hit Gene Combinations
	Differentiation Capability Between Tumor and Normal Tissue Samples With High Accuracy via a Set of Two-Hit Combinations
	Robustness of Two-Hit Combinations to Different Training and Test Sets
	Properties of Identified Genes and Combinations

	Scaling Up the Approximate Algorithm to Identify Three-Hit Gene Combinations
	Representation of Gene-Sample Matrix
	Mapping to the NVIDIA Tesla V100 PCIe Graphical Processing Unit (GPU)
	Speedup and Accuracy Calculation

	Classification and Runtime Performance of the Parallel Algorithm
	Optimization and Parallelization Reduces Runtime for the Two-Hit Algorithm
	Runtime Reduction Permits Identification of Three-Hit Combinations
	Runtime Reduction Permits Identification of Some Four-Hit Combinations
	Contribution of Optimization Techniques to Overall Speedup
	Multi-Hit Combinations Differentiate Between Tumor and Normal Samples with High Accuracy

	Distributing Large Combinatorial Workload Across Many GPUs
	Reducing Global Memory Access
	Distributing Workload Across Nodes and GPUs

	Classification Performance and Scaling Efficiency of the Scaled-Out Algorithm
	Scaling Out to 100 Nodes
	Compute Utilization and Analysis of Its Variance Across GPUs
	Classification Performance of the Identified Four-Hit Combinations

	Conclusion and Discussion
	Distinguishing Between Driver and Passenger Mutations
	A Rational Basis for Combination Therapy
	Identifying Combinations of Gene Mutations From the Identified Gene Combinations
	Beyond Four-Hit Gene Combinations

	Incremental Sequence Similarity Search via Automated E-Value Correction
	Introduction
	Background and Related Work
	Core Concepts of BLAST Result
	BLAST Statistics for E-Value Computation
	Existing E-Value Correction Software and Their Features

	Methods
	E-Value Correction in an Incremental Setting
	Merging Two Search Results with Correct E-Value Statistics
	iBLAST Implementation
	Case Studies

	Results
	iBLAST Program
	Case Study I: Method Verification
	Case Study II: High Efficiency of iBLAST for Large Alignment Search Tasks on Novel Datasets
	Case Study III: Expedited Informatics via Taxon-Specific Searches
	Identification of Better Scoring Hits by iBLAST Than NCBI BLAST

	Conclusion and Discussion

	Mitigating Catastrophic Forgetting Using Historical Summary
	Introduction
	Background and Related Work
	State-of-the-Art Approaches for Mitigating Catastrophic Forgetting

	Mitigating Catastrophic Forgetting Using Historical Summary
	Conclusion and Discussion

	Conclusion and Future Work
	Applications and Artifacts
	Future Work

	Appendices
	Appendix Identifying Multi-Hit Combinations
	Identifying Somatic Variants Using MuTect2 and VEP: Command Parameters
	Algorithm and Data Structure
	Robustness of Our Algorithm Across Sets of Partitions
	Identified Combinations for 17 Cancer Types
	Correlation Between Genes Within Combinations
	Coverage of Samples by Identified Combinations
	Distinguishing Between Driver and Passenger Mutations

	Appendix iBLAST
	Existing E-Value Correction Software and Their Features
	E-Value Correction
	Creating Experimental Databases
	Databases for Case Study I
	Databases for Case Study II

	Load-Balancing via Query Partitioning
	Explanation for NCBI BLAST Missing Many Top Hits

	Bibliography

