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Abstract—The graphics processing unit (GPU) has made sig-
nificant strides as an accelerator in parallel computing. However,
because the GPU has resided out on PCIe as a discrete device,
the performance of GPU applications can be bottlenecked by
data transfers between the CPU and GPU over PCIe. Emerging
heterogeneous computing architectures that “fuse” the function-
ality of the CPU and GPU, e.g., AMD Fusion and Intel Knights
Ferry, hold the promise of addressing the PCIe bottleneck.

In this paper, we empirically characterize and analyze the
efficacy of AMD Fusion, an architecture that combines general-
purpose x86 cores and programmable accelerator cores on the
same silicon die. We characterize its performance via a set of
micro-benchmarks (e.g., PCIe data transfer), kernel benchmarks
(e.g., reduction), and actual applications (e.g., molecular dynam-
ics). Depending on the benchmark, our results show that Fusion
produces a 1.7 to 6.0-fold improvement in the data-transfer time,
when compared to a discrete GPU. In turn, this improvement in
data-transfer performance can significantly enhance application
performance. For example, running a reduction benchmark on
AMD Fusion with its mere 80 GPU cores improves performance
by 3.5-fold over the discrete AMD Radeon HD 5870 GPU with
its 1600 more powerful GPU cores.

Keywords-AMD Fusion; graphics processing unit; GPU;
GPGPU; accelerated processing unit; APU; OpenCL; perfor-
mance evaluation; benchmarking; heterogeneous computing;

I. INTRODUCTION

The widespread adoption of compute-capable graphics pro-
cessing units (GPUs) in desktops and workstations has made
them attractive as accelerators for high-performance parallel
computing [1]. Their increased popularity has been due in
part to a unique amalgamation of performance, power, and
energy efficiency. In fact, three out of the top five fastest
supercomputers in the world, according to the Top500, employ
GPUs [2].

A closer look at the Top500 list, however, reveals that the
supercomputers powered by GPUs attain only ∼50% of their
theoretical peak performance, whereas non-GPU-powered su-
percomputers attain ∼78% of the theoretical peak [2]. This
implies that there are certain aspects of GPUs that limit
their performance for Linpack, the benchmark used to rank
supercomputers on the Top500. Since GPUs have traditionally
resided on PCI Express (PCIe), additional overhead costs are
incurred for host-to-GPU data transfers and vice versa. As a
consequence, GPU applications are oftentimes bottlenecked by
the PCIe data transfers. Thus, GPUs are not a panacea [3]–[5].

With the emergence of heterogeneous computing architec-
tures that “fuse” the functionality of the CPU and GPU onto
the same die, e.g., AMD Fusion and Intel Knights Ferry,
there is an expectation that the PCIe bottlenecks would be
addressed. In these architectures, the x86 CPU cores and the
programmable GPU cores share a common path to system
memory. Also present are high-speed block transfer engines,
which assist in data movement between the x86 and GPU
cores. Hence, data transfers never hit the system’s external
bus, thereby mitigating the adverse effects of slow PCIe.

In this paper, we present an empirical characterization and
analysis of the effectiveness of the AMD Fusion architecture.
To the best of our knowledge, this work is the first to do
so. The processor built upon the Fusion architecture is called
an accelerated processing unit or APU. The APU combines
the general-purpose x86 cores of a CPU with programmable
vector-processing engines of a GPU onto a single silicon die.
We then re-visit Amdahl’s Law for today’s era of accelerated
processors. Specifically, we show that the fused CPU+GPU
cores enable better performance than a discrete GPU and even
traditional multi-core CPU processors by reducing the parallel
overhead of PCIe data transfers.

To characterize the performance of the AMD Fusion archi-
tecture, we use four benchmarks from the Scalable HeterOge-
neous Computing (SHOC) benchmark suite [6] as well as the
OpenCL PCIe bandwidth test. Via these benchmarks, we show
that the Fusion architecture can overcome the PCIe bottleneck
associated with a discrete GPU, though not always.

For the first-generation AMD Fusion, the APU, which is a
fused combination of CPU+GPU, delivers better performance
than a discrete CPU+GPU combination when the amount of
data to be transferred between the CPU and GPU exceeds a
minimum threshold and when the amount of computation on
the GPU cores is not high enough for the discrete GPU to
amortize the PCIe data-transfer overhead.

Our empirical results indicate that the APU improves data-
transfer times by 1.7 to 6.0-fold over the discrete CPU+GPU
combination. For one particular benchmark, i.e., reduction,
the total execution time is 3.5-fold better on the Fusion APU
than on the discrete GPU despite the latter having 20 times
more GPU cores and more powerful cores at that. In turn,
the improvement in data-transfer times reduces the parallel
overhead, thus providing more parallelism to the application.



The rest of this paper is organized as follows. Section II
presents an overview of AMD GPUs and the issue of the
PCIe bottleneck in discrete CPU+GPU platforms. We then in-
troduce the AMD Fusion architecture and outline why it holds
the promise of overcoming this bottleneck. In Section III,
we re-visit Amdahl’s Law for accelerator-based processors.
In Section IV, we illustrate and discuss the results of our
experiments. Section V presents related work, followed by
conclusions and future work in Section VI.

II. BACKGROUND

Here we present an overview of the AMD GPU and discuss
the effect of the PCIe bottleneck, which oftentimes proves
to be an obstacle towards achieving better overall application
performance. We then describe the architecture of the first
generation of accelerated processing unit (APU), i.e. AMD
Fusion E-Series APU, and show how it holds the promise of
overcoming the PCIe bottleneck.

A. Overview of the AMD GPU

An AMD GPU follows a classic graphics design, which
is highly tuned for single-precision, floating-point arithmetic
and common image operations on two-dimensional and image
data. Fig. 1 provides an architectural overview.
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Fig. 1. Overview of an AMD/ATI Stream Processor and Thread Scheduler.

In this case, the compute unit is known as a SIMD engine
and contains several thread processors, each containing four
stream cores, along with a special-purpose core and a branch
execution unit. The special-purpose (or T-Stream) core is de-
signed to execute certain mathematical functions in hardware,
e.g., transcendentals like sin(), cos() and tan(). Since there
is only one branch execution unit for every five processing
cores, any branch in the program incurs some serialization to
determine the path each thread should take. The execution of
divergent branches is performed in lock-step manner for all the
cores present in a compute unit. In addition, the processing
cores are vector processors, which means that using vector
types can produce material speedup on AMD GPUs.

Discrete GPUs from AMD house a large number of pro-
cessing cores, ranging from 800 to 1600 cores. As a result, a
humongous number of threads need to be launched in order

to keep all GPU cores fully occupied. However, to run many
threads, the amount of registers used per thread has to be kept
to a minimum. That is, all the registers utilized per thread need
to be stored in a register file, and hence, the total number
of threads that can be scheduled is limited by the size of
the register file, which is a generous 256 KB on the latest
generation of AMD GPUs.

Another unique architectural feature of AMD GPUs is the
presence of a rasterizer – for working with two-dimensional
matrices of threads and data. Hence, accessing scalar elements
stored contiguously in memory is not the most efficient access
pattern. Accessing scalar elements can be made slightly more
efficient by doing so in chunks of 128 bits due to the
presence of vector cores. Loading these chunks from image
memory, which uses the memory layout best matched to the
memory hardware on AMD GPUs, also results in significant
improvement in performance.

B. PCIe Bottlenecks with Discrete GPUs
In Fig. 2, we demonstrate the cause of PCIe bottlenecks

with a discrete GPU. As shown, the x86 host CPU can
access the system memory as well as initiate functions on
the GPU. However, because the GPU resides on PCIe, a
DMA is required to transfer data from the system memory
of the CPU to device memory of the GPU to perform any
useful work. Although the GPU can execute hundreds of
billions of floating-point operations per second, the current
PCIe interconnects can transfer approximately only a gigaword
per second [7]. Due to this limitation, it behooves the GPU
application programmer to ensure high data reuse on the GPU
to be able to successfully amortize the cost of slow PCIe
transfers, and in turn, achieve substantial performance benefits.
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Fig. 2. Architectural Layout of a Discrete GPU.

However, ensuring high data reuse in all applications may
not be possible. For example, there might be applications for



which the execution time on a GPU is less than the time it
takes to get data onto the GPU or applications whose execution
profiles consist of iterating over DMA transfers and GPU
execution. For such applications, discrete GPUs may not be
the appropriate to accelerate performance.

Emerging architectures like AMD Fusion seek to address
these issues by eliminating PCIe access to the GPU by
“fusing” CPU and GPU functionality onto a single silicon die.

C. AMD Fusion Architecture

At the most basic level, the Fusion architecture combines
general-purpose scalar and vector processor cores onto a
single silicon die, thereby forming a heterogeneous computing
processor. It aims to provide the “best of both worlds” scenario
in the sense that scalar workloads, like word processing and
web browsing, use the x86 cores whereas vector workloads,
like parallel data processing, use the GPU cores.

Fig. 3 depicts a block diagram of this novel architecture.
The key aspect to note is that the x86 CPU cores and the
vector (SIMD) engines are attached to the system memory
via the same high speed bus and memory controller. This
architectural artifact allows the AMD Fusion architecture to
alleviate the fundamental PCIe constraint that has traditionally
limited performance on a discrete GPU. Apart from the
processing cores, Fusion also consists of the following system
elements: memory controller, I/O controller, video decoder,
display output, and bus interfaces, all on the same die.

Although Fusion’s x86 cores and SIMD engines share
a common bus to the system memory, the first-generation
implementation of Fusion divides system memory into two
parts — one that is visible to and managed by the operating
system running on x86 cores and one that is managed by
the software running on the SIMD engines. Therefore, even
on the Fusion architecture, data has to be moved from the
operating system’s portion of system memory to that portion
that is visible to the SIMD engines. However, unlike discrete
GPUs, where these data transfers from system memory to
device memory hit PCIe, the data transfers on Fusion are
expected to amount to a memcpy, as logically captured in
Fig. 4. Moreover, AMD currently provides high-speed block
transfer engines that move data between the x86 and SIMD
memory partitions. Therefore, the Fusion architecture holds
the promise of improving performance for all applications that
were previously bottlenecked by PCIe transfers. Future APU
architectures are expected to have these memories seamlessly
merged [7], which means that there will not be a need to
transfer data to and from the GPU memory at all.

Programming on Fusion is facilitated by the emerging
OpenCL standard. Therefore, existing applications written in
OpenCL for the discrete CPU and GPU combination can be
run without modification on the fused CPU+GPU of Fusion.

III. REVISITING AMDAHL’S LAW

We first briefly review Amdahl’s Law [8], followed by a
theoretical discussion on Hill and Marty’s work on applying
it to symmetric and asymmetric multi-core chips [9]. We then
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Fig. 3. Architectural Layout of the AMD Fusion Architecture.

re-visit Amdahl’s Law, specifically for accelerators, and show
that fused asymmetric CPU+GPU cores for an APU enable
more parallelism in the code than discrete GPUs or traditional
multi-core symmetric processors.

The speedup of parallel applications on multi-processor
architectures is limited by Amdahl’s Law, which implies
that the speedup obtained by implementing an application in
parallel is dependent upon the fraction of the workload that
can be parallelized [8]. Hence, the speedup, S, for a parallel
application is given by (1).

S =
1

s+ p/N
(1)

where p = parallel fraction of the application
s = serial fraction of the application, i.e., (1− p)

and N = number of processors

Amdahl’s law holds true in the ideal scenario for any multi-
processor system if we assume the workload to be constant,
i.e., strong scaling. This also makes the assumption that all the
processors have the same overall computational capabilities.
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Fig. 4. Description of Data Transfers.



If N →∞ then,
S =

1

s
(2)

Informally, this means that even when the serial fraction of
the work is small, the maximum speedup obtainable from an
infinite number of parallel processors is limited by 1/s.

Hill and Marty [9] first categorize multi-core chips into three
groups based on how the on-chip unit resources, or base core
equivalents (BCEs), are combined to form larger processing
cores. Specifically, they classify chips into symmetric, asym-
metric, and dynamic multi-core chips and then theoretically
analyze the attainable speedups on each platform.

Symmetric chips are the traditional multi-core chips, where
every processor has the same computational capability. Equa-
tion (1) can be directly applied to symmetric chips with the
implication that it is critical for the programmer to extract
parallelism from their code.

Dynamic chips are idealistic chips, where the cores can
be dynamically combined to boost the performance of the
serial fraction of the program, thereby providing maximum
efficiency even if the code has a fairly large serial fraction. We
do not study dynamic chips in this paper. However, we will
revisit them in the future to study the next-generation AMD A-
Series APUs, which promise to improve power efficiency by
dynamically turning on and off the CPU and GPU resources
depending on the application load (AMD Power Gating) [10].

On the other hand, asymmetric chips are those that have
one large complex core for sequential programming and sev-
eral other simpler cores that help the larger core in parallel
processing. Hill and Marty show that asymmetric multi-cores
offer more potential speedup than their symmetric counterparts
even for lower values of p [9]. For example, they show that
for p = 0.975 and N = 256, the best asymmetric speedup is
125.0, whereas the best symmetric speedup is 51.2. However,
they make an idealistic assumption that the parallel fraction of
the program utilizes all the available cores completely. This is
only possible if there is a perfect co-scheduling mechanism
that enables complete utilization of the on-chip resources.
Nevertheless, it is evident that asymmetric multi-core chips
are more efficient than the symmetric ones [9].

We now study Amdahl’s Law for accelerator-based systems,
which can be considered to be a special type of asymmetric
multi-cores, where the accelerator cores and the serial pro-
cessor may be separated by PCIe. In general, Amdahl’s Law
ignores the overhead incurred due to parallelizing a workload.
On any multi-core processor, this overhead is largely due to
setup of parallel threads, interprocessor communication, and
thread rejoining. Therefore, the speedup obtained is always
less than the ideal. Furthermore, the overhead incurred by
parallelizing an application on an accelerator-based system,
especially the GPU, is even higher because data has to be
transferred over the slow PCIe. This fact is corroborated by
one of our micro-benchmark results, as shown in Fig. 5.

This particular micro-benchmark performs a fmad opera-
tion between each element of two float-type arrays of size
96 MB each. It is executed on three different platforms, i.e.,

0	
   50	
   100	
   150	
   200	
   250	
  

Achieved	
  (Fused	
  GPU)	
  

Achieved	
  (Discrete	
  GPU)	
  

Achieved	
  (Mul:core)	
  

Ideal	
  Amdahl's	
  Law	
  (4	
  cores)	
  

Single	
  Threaded	
  

Time	
  (ms)	
  

Serial	
  Time	
   Parallel	
  Time	
   Overhead	
  

Fig. 5. Characterization of Parallel Overhead.

a modern four-core CPU, a discrete CPU and GPU (AMD
Radeon HD 5870) and a fused CPU+GPU (AMD E-Series
Zacate APU). We use OpenMP as the parallel programming
platform for the four-core processor and OpenCL for the
Radeon GPU and the Zacate APU. The figure shows the
total execution time as the sum of (i) the execution time of
the serial part, (ii) the execution time of the parallel part,
and (iii) the overhead incurred due to parallelization, i.e.,
device buffer creation, destruction, and buffer transfer. (We
have not included the constant OpenCL setup time, i.e. kernel
compilation, program and platform initialization.)

The execution time of the ‘parallel part’ in the case of the
discrete GPU and APU is the kernel execution time. The
single-thread implementation depicts the serial and parallel
fractions of the code, while in case of the ideal Amdahl’s
law, the parallel part is sped up by four-fold (on a four-
core CPU) with zero overhead. While the actual multi-core
implementation, parallelized using OpenMP, does contain par-
allel overhead, it is negligible when compared to the overhead
incurred due to parallelization on the accelerated platforms.

For the discrete GPU, however, the parallel overhead is so
significant that it is more than the sum of execution times of
the serial and parallel parts. So, while the execution time of
the parallel part on the discrete GPU is substantially better
than that on the multi-core CPU, the overhead is so much
more that it does not make the micro-benchmark amenable for
GPU processing. It also demonstrates the bottleneck caused by
communication over PCIe.

Lastly, the APU (or fused CPU+GPU) does assist in re-
ducing the parallel overhead. However, due to the presence of
computationally less powerful SIMD cores, the execution time
of the parallel part is longer than on the discrete GPU.

To apply Amdahl’s Law to accelerator-based platforms, we
model the following two factors:

• Accelerated Parallel Fraction (p′): For traditional sym-
metric multi-core processors, the parallel fraction p would
ideally be optimized to p/N . However, accelerator cores
have very different computational capabilities from the
serial cores; so, using the terms p and N in the equation
will be meaningless. The actual performance on the
accelerators can vary depending on how the algorithm



is mapped to its cores. So, we change the performance
of the parallel fraction p to p′, as shown in the Fig. 6.
Note that p′ can be greater than p for a poor mapping.

• Parallel Overhead (o): For traditional symmetric multi-
core processors, the parallel overhead (o) is typically
negligible given that the inter-processor communication
is generally small. For accelerator-based platforms, how-
ever, the parallel overhead o forms a significant part of the
program because of the data transfer overhead between
CPU memory and device (GPU) memory.

s

s p

p/N (Symmetric Multi-Cores)

(Sequential Processor)s

s
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p’ (Accelerator-based System)o

(Sequential Processor)

Fig. 6. Code Partitioning for Different Parallel Programming Platforms.

Therefore, the new speedup, S′, for a parallel application
can be represented as:

S′ =
1

s+ p′ + o
(3)

where, p′ = accelerated parallel fraction
o = parallel overhead

It is still important to find enough parallelism in the code to
minimize s, so that the parallel fraction in the program can be
maximized. However, because discrete GPUs have large o, the
benefit of the extracted parallelism p′ is substantially reduced
as a result. On the other hand, the parallel overhead o for AMD
Fusion is much smaller and will therefore benefit more from a
larger parallel fraction in the code, i.e., p′. Architectures like
AMD Fusion resemble true asymmetric multi-core processors
with much higher resource utilization and efficiency, as argued
by Hill and Marty [9].

In summary, AMD Fusion should perform better than a
discrete GPU with equivalent SIMD compute units if the
extracted parallelism p′ remains the same, because the parallel
overhead, o, is relatively smaller when compared to its discrete
GPU counterpart. However, in practice, the parallel fraction p′

can be larger for memory-bound applications running on the
APU platform because the memory bandwidth on a traditional
CPU is lower than that of the discrete GPU. As a consequence,
we can expect to achieve better speedup S′ for AMD Fusion
provided that the memory interface to the SIMD cores is as
fast as the one on a discrete GPU.

However, are GPUs the panacea for all problems? Will
the GPUs always out-perform multi-core CPUs? The answer
depends on the application, the type of GPU, and the co-
scheduling strategy (p′). Architectures such as AMD Fusion
are a step in the right direction, as the results presented in
Fig. 5 make a strong point in favor of this novel architecture.
If the APU comes with more powerful SIMD engines and
memory interfaces that are as fast as those in a discrete GPU,
then the performance of the accelerated applications will only
get better on these fused platforms.

IV. EXPERIMENTS AND DISCUSSIONS

Here we present and discuss the results of our experiments
that help to demonstrate the efficacy of a fused CPU+GPU
processor like the AMD E-series Zacate APU, an instantiation
of the AMD Fusion architecture.

A. Experimental Setup

Table I provides information about our three test platforms:
AMD Zacate APU, AMD Radeon HD 5870, and a discrete
version of the GPU on the Zacate APU, namely the AMD
Radeon HD 5450. It is important to note that the AMD Zacate
APU is only an experimental system in a laptop form factor.

We selected the PCIeBandwidth test from the AMD Stream
SDK version 2.3 as well as four benchmarks from the Scalable
HeterOgeneous Computing (SHOC) benchmark suite to eval-
uate our test platforms. Table II provides a brief description of
each benchmark test. The platforms were programmed using
OpenCL v1.1 with AMD Stream SDK v2.3 and AMD Catalyst
graphics driver v10.7.

B. PCIe Bandwidth Tests

We used the OpenCL PCIeBandwidth test to understand the
cost of data transfers on discrete GPUs as well as within the
AMD Fusion architecture and to identify when and where the
Fusion architecture performs better. Fig. 7 presents the data
transfer bandwidth for varying data sizes, ranging from 1 KB
to 64 MB on the three test platforms. (We ran 10,000 iterations
of the test for each data transfer size.)

Fig. 7a shows the bandwidths obtained when data is trans-
ferred from the ‘host’ (CPU) to ‘device’ (GPU). Though the
APU eliminates PCIe access, the bandwidth that it achieves
for smaller data sizes is less than that obtained on the discrete
GPU platform. Only after a certain threshold does the benefit
of eliminating PCIe become evident and the AMD Zacate APU
starts to outperform its discrete brethren. Fig. 7b shows similar
results for the reverse case, i.e., when data is transferred from
the ‘device’ (GPU) to ‘host’ (CPU). However, for ‘device to
host’ transfers, the threshold beyond which the Zacate APU
achieves greater bandwidth is lower than that for the ‘host to
device’ transfers. Further, the ‘host to device’ bandwidth is
higher than ‘device to host’ bandwidth for the discrete GPU,
while the opposite is true for Zacate APU.

Thus, the ideology that the Fusion architecture would over-
come the PCIe bottleneck in a discrete GPU platform is not
always true. The bandwidth obtained on the APU increases



TABLE I
TEST PLATFORMS

Platform AMD Zacate APU AMD Radeon HD 5870 AMD Radeon HD 5450
Stream Processors 80 1600 80
Compute Units 2 20 2
Memory Bus Type NA GDDR5 DDR3
Device Memory 192 MB 1024 MB 512 MB
Local Memory 32 KB 32 KB 32 KB
Max. Workgroup Size 256 Threads 256 Threads 128 Threads
Peak Core Clock Freq. 492 MHz 850 MHz 675 MHz
Peak FLOPS 80 GFlop/s 2720 GFlop/s 104 GFlop/s
Host:
Processor AMD Engg. Sample @1.6 GHz Intel Xeon E5405 @2.0 GHz Intel Celeron 430 @1.8 GHz
System Memory 2 GB (NA) 2 GB DDR2 2 GB DDR2
Cache L1: 32K, L2: 512K L1: 32K, L2: 6M L1: 32K, L2: 512K
Kernel Ubuntu 2.6.35.22 Ubuntu 2.6.28.19 Ubuntu 2.6.32.24

TABLE II
BENCHMARK SUITE

Benchmark Description
Bandwidth Test Measures the bandwidth of PCIe interconnect between host processor and the discrete GPU as

well as bandwidth of transfers between the two divisions of system memory for the APU.
It does so by repeatedly transferring data of various sizes (1KB to 64 MB) to and from the device.

FFT Measures the performance of a two dimensional Fast Fourier Transform. The benchmark computes
multiple FFTs of size 512 in parallel. The FFT implementation is based on the algorithm described
by Volkov and Kazian [11].

MD Measures the performance of pairwise calculation of the Lennard-Jones potential from molecular
dynamics. Each thread computes the acceleration for one particle based on the potential field
generated by all particles into a cutoff area. It uses a neighbor-list algorithm as LAMMPS [12].

Scan Measures the performance of the parallel prefix sum algorithm (also known as Scan) on a large
array of floating point data.

Reduction Measures the performance of a sum reduction operation using floating point data. The kernel first
performs a partial reduction on the global data, storing the results in local memory. Next, a
reduction is computed over the local data array and the result is stored in global memory.

with the increase in data-transfer size, which suggests that
there is some cost incurred to carry out the data transfer, e.g.,
DMA set-up and buffer pinning, and this cost of transferring
data gets amortized with the increase in data-transfer size.
From our results, one can infer that the APU does not provide
the promised benefit of overcoming PCIe costs for small data
transfers, but it begins to show promise for larger data sizes.
Moreover, it is difficult to know this crossover point since it
may vary from application to application (and since the Zacate
APU is largely a “black box” to the end user). However, this
problem of deducing the threshold data size is only temporary
as the next generation of APUs from AMD are expected to
merge the two memory partitions.

C. Kernel Benchmarks

We demonstrate the efficacy of the Fusion architecture via
four application benchmarks (MD, FFT, Scan, and Reduction)
from the SHOC benchmark suite.

Fig. 8 and Fig. 9 present the data transfer and kernel
execution times for each application benchmark with varying
problem sizes on the three accelerator platforms: (i) AMD
Zacate APU, (ii) discrete AMD Radeon HD 5450, and (iii)
discrete AMD Radeon HD 5870. (We ran each test 200 times
and report the average.)

Since the GPU present in the Zacate APU is similar to the
discrete AMD Radeon HD 5450, one would expect similar

kernel execution times on these two platforms, however, it
is not the case. It was not possible to run two applications,
i.e., scan and reduction, on the low-power discrete 5450 GPU
because of its upper limit of 128 work-items in a work-group
while the SHOC benchmark suite requires at least 256 work-
items to run. Therefore, we do not present results for these
benchmarks on the discrete AMD Radeon HD 5450 GPU.

Molecular Dynamics (MD): Fig. 8a shows the data-transfer
times and kernel execution times for a molecular dynamics
(MD) benchmark. We see that the APU reduces the data
transfer times for all problem sizes, and the effectiveness of
the APU increases with an increase in problem size, which is
in-line with the bandwidth numbers obtained by the OpenCL
PCIeBandwidth test, shown in Fig. 7.

As expected, the kernel executes fastest on the discrete
AMD 5870 because of the presence of substantially faster and
greater number of GPU processing cores. However, between
the AMD Radeon HD 5450 and the APU, the kernel surpris-
ngly executes faster on the APU than on the Radeon HD 5450.

By analyzing the execution profile of MD, we found out
that it is a compute-bound application. The current core-clock
frequencies of the APU and the AMD Radeon HD 5450 were
found to be 278 MHz and 157 MHz, respectively. Hence, the
APU is clocked 1.77-fold faster than the discrete GPU, which
is the likely reason for faster kernel execution on the APU. To
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Fig. 7. PCIe Bandwidth Test.

corroborate this fact, we report the Gflop/s obtained for MD
on these two platforms in Table III. Although the difference
in the Gflops/s obtained is not 1.77-fold (difference in core-
clock frequency), the presence of slower processing cores on
the discrete AMD 5450 indicates that it is the reason for the
slower kernel execution on the AMD Radeon HD 5450.

TABLE III
PERFORMANCE OF MD IN GFLOP/S.

Problem MD
Size APU 5450 Difference Factor

1 1.63 1.39 1.17×
2 1.90 1.44 1.32×
3 1.90 1.45 1.31×
4 1.91 1.44 1.33×

Fast Fourier Transform (FFT): Fig. 8b shows the data-
transfer times and kernel-execution times for a 1-D FFT
transformation on all three accelerator platforms. Like the
previous MD benchmark, the APU assists in reducing data-
transfer times for FFT and enables a greater amount of data
to be transferred, resulting in a larger perceived benefit for
the APU. As expected, the kernel execution time is minimal
on the powerful discrete AMD 5870, when compared to
other platforms. However, the kernel execution time on the
APU is worse than on the AMD Radeon HD 5450. As FFT
transformations are known to be memory bound [13], [14],
analyzing the device memory bandwidth on the APU as well as
the AMD Radeon HD 5450 would provide us with a concrete
reason for slower kernel execution on the APU.

To this end, using the DeviceMemory benchmark from the
SHOC Benchmark Suite, we computed the global memory
bandwidth on these two platforms and found that global
memory bandwidth on the AMD Radeon HD 5450 is roughly
two times better than on the Zacate APU. We also measured
the performance (GFlop/s) of FFT on the two platforms,
which are presented in Table IV. This table shows that the
performance achieved on the AMD Radeon HD 5450 is twice
as much as that on the APU, and hence, we infer that the better

global memory bandwidth leads to faster kernel execution on
the discrete AMD Radeon HD 5450.

TABLE IV
PERFORMANCE OF FFT IN GFLOP/S.

Problem FFT
Size APU 5450 Difference Factor

1 0.68 1.36 2.00×
2 0.69 1.40 2.03×
3 0.70 1.40 2.00×
4 0.70 1.42 2.03×
5 0.70 1.43 2.04×

Scan and Reduction: Fig. 9a and Fig. 9b present the data-
transfer times and kernel execution times for scan and reduce,
respectively. The total execution time for scan is approximately
the same for the high-powered AMD Radeon HD 5870 GPU
and laptop-powered AMD Zacate APU. This empirical result
is a stunning one given that the AMD Radeon HD 5870 not
only has faster GPU cores, but it also has 20 times more of
them, when compared to the APU. Though kernel execution
is slower on the APU, data transfers are faster, thus offsetting
the effect of the slower APU processing cores. For the reduce
benchmark, the total execution time is actually better on the
‘less powerful’ AMD Zacate APU than on the discrete and
‘more powerful’ AMD Radeon HD 5870. The elimination of
PCIe in data transfer allows the fused GPUs in the Zacate
APU, with less than 1

20 of the computational capability of an
AMD Radeon HD 5870, to deliver 3x better performance.

As presented in Section III, the speedup S′, due to paral-
lelization of an application on a GPU with infinite processing
cores, is a function of the parallel overhead, which is the time
spent in transferring data between the CPU and the GPU.
Table V summarizes the savings in data transfer times due to
the elimination of PCIe. The benefit is computed as the ratio
between the data transfer time on a discrete GPU and the APU.
For each application, the median of savings for all problem
sizes is computed. From the table, it is evident that the AMD
Fusion architecture is certainly successful in overcoming the
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Fig. 8. Application Performance (MD and FFT).

PCIe bottleneck that the discrete GPU suffers from.
However, we must note that the speedup, S′, is also a

function of p′, the accelerated parallel fraction of the program.
Moreover, p′ can vary significantly depending on the number
of compute units and available memory bandwidth on the
GPU, as well as the arithmetic intensity and memory access
pattern of the algorithm. While o can be reduced greatly by
using AMD Fusion to alleviate the data transfer costs between
CPU and GPU memory, there is no guarantee that p′ will re-
main unchanged from the discrete GPU. It is an important and
challenging problem to understand the performance variation
of p′ among the fused CPU+GPU and discrete GPU systems,
which we have identified as our future work.

V. RELATED WORK

Due to the newness of the AMD Fusion architecture, not
much has been discussed in literature about this particular
architecture. However, substantial research has been conducted
to evaluate the performance of GPUs. For example, Ryoo et
al. have carried out an optimization study and have evaluated
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TABLE V
BENEFIT DUE TO ELIMINATION OF THE PCIE.

Application Benefit Over Benefit Over
AMD 5870 AMD 5450

MD 1.7× 1.6×
FFT 2.0× 1.7×
Scan 6.1× N/A

Reduction 3.1× N/A

the performance of discrete NVIDIA GPUs [15]–[17]. The
authors have demonstrated that while GPUs hold the promise
of delivering substantial benefits, one needs to be diligent in
optimizing GPU applications. Jang et al. and Xudong et al.
have proposed optimization strategies for AMD GPUs using
the Brook+ programming language and have evaluated them
by implementing a matrix multiplication kernel [18] and a
multi-grid application [19] for solving PDEs, respectively.

Micro-benchmarks have been extensively used to reveal the
architectural details of the discrete GPUs. For example, Volkov
et al. have exploited GPUs to tune dense linear algebra and
have developed detailed benchmarks to reveal kernel bottle-
necks like shared memory access patterns and kernel launch
overhead [20]. Wong et al. have also used micro-benchmarks
to understand the micro-architecture of the NVIDIA GT200
GPU [21]. Both of them used decuda, which is a disassembler



for NVIDIA’s machine level instructions, to understand the
mapping of various instructions on the GPU [22].

Recently, a technology called GPUDirect [23] has been
developed, which aims to minimize the cost of data transfers
between GPUs in a multi-GPU environment. However, it plays
no role in addressing the PCIe bottlenecks that arise due to
data transfers between CPU and the GPU.

VI. CONCLUSIONS AND FUTURE WORK

GPUs have proven to be quite beneficial in accelerating
many scientific applications. However, quite often, the perfor-
mance of GPU applications is thwarted by slow PCIe transfers
between the CPU and GPU. Novel architectures like AMD
Fusion, which eliminate PCIe accesses to and from the GPU,
hold the promise of overcoming these bottlenecks, and in turn,
improving application performance.

In this paper, we have empirically demonstrated the effec-
tiveness of the Fusion architecture, where PCIe data transfer
costs are replaced by simple fast memory block transfers
between the x86 and SIMD memory partitions. We show that
for some applications, these costs could be reduced by as much
as six-fold. However, in the case of smaller data-transfer sizes,
we found that the data-transfer cost for AMD Fusion was
actually worse than its discrete brethren. This is a problem
that points to the likelihood that expensive underlying protocol
mechanisms and policies create overhead costs that cannot
be amortized until a certain data-size threshold is reached.
Future APU architectures are expected to have these memories
seamlessly merged, which means that there will not be a need
to transfer data to and from the GPU memory at all, with the
overall application performance only getting better.

Finally, we showed that the application performance on
AMD Fusion is quite robust. In particular, for one benchmark,
i.e., reduction, Fusion delivers a three-fold improvement in
application performance when compared to a discrete GPU
that is 20 times computationally more powerful.
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