
Architecture-Aware Mapping and Optimization on a 1600-Core GPU

Mayank Daga, Thomas Scogland, Wu-chun Feng
Department of Computer Science

Virginia Tech, USA
{mdaga, njustn, feng}@cs.vt.edu

Abstract—The graphics processing unit (GPU) continues
to make in-roads as a computational accelerator for high-
performance computing (HPC). However, despite its increasing
popularity, mapping and optimizing GPU code remains a diffi-
cult task; it is a multi-dimensional problem that requires deep
technical knowledge of GPU architecture. Although substantial
literature exists on how to map and optimize GPU performance
on the more mature NVIDIA CUDA architecture, the converse
is true for OpenCL on an AMD GPU, such as the 1600-core
AMD Radeon HD 5870 GPU.

Consequently, we present and evaluate architecture-aware
mapping and optimizations for the AMD GPU. The most
prominent of which include (i) explicit use of registers, (ii)
use of vector types, (iii) removal of branches, and (iv) use of
image memory for global data. We demonstrate the efficacy of
our AMD GPU mapping and optimizations by applying each
in isolation as well as in concert to a large-scale, molecular
modeling application called GEM. Via these AMD-specific
GPU optimizations, our optimized OpenCL implementation
on an AMD Radeon HD 5870 delivers more than a four-
fold improvement in performance over the basic OpenCL
implementation. In addition, it outperforms our optimized
CUDA version on an NVIDIA GTX280 by 12%. Overall, we
achieve a speedup of 371-fold over a serial but hand-tuned SSE
version of our molecular modeling application, and in turn, a
46-fold speedup over an ideal scaling on an 8-core CPU.

Keywords-GPU; AMD; OpenCL; NVIDIA; CUDA; perfor-
mance evaluation;

I. INTRODUCTION

The widespread adoption of compute-capable graphics
processing units (GPUs) in desktops and workstations has
made them attractive as accelerators for high-performance
parallel programs [1]. Many applications have benefited
from the use of GPUs, ranging from image and video
processing to financial modeling to scientific computing [2].
Thus, GPUs have begot a new era in supercomputing.

This advent of GPU-accelerated HPC, however, has
brought with it challenges with respect to programmability.
To aid in the programming of applications on GPUs, many
frameworks have been developed, most notably, CUDA [3]
and OpenCL [4]. Programs written in OpenCL can execute
across a plethora of different platforms and architectures.
These architectures include multi-core CPUs, GPUs, and

This work is supported in part by NSF grants IIP-0804155 for NSF
I/UCRC CHREC and CNS-0916719 and a DoD National Defense Science
& Engineering Graduate Fellowship (NDSEG).

even the Cell Broadband Engine. In contrast, CUDA pro-
grams currently execute only on NVIDIA GPUs.

Though our ability to implement general-purpose appli-
cations on GPUs has been facilitated by the above frame-
works, it is far from trivial to optimize one’s code and
extract optimum performance from the GPU. Over the last
three years, there has been significant research on CUDA
optimization strategies for NVIDIA GPUs in the literature,
e.g., [5], [6]; however, these optimization strategies are only
applicable to NVIDIA GPUs. Furthermore, programs written
in CUDA do not necessarily exhibit consistent performance
across NVIDIA GPUs from different generations [7].

Because well-known GPU optimizations already do not
perform consistently on GPUs from the same vendor, ex-
pecting them to perform equally well on GPUs from a
different vendor and with a different programming model,
i.e., OpenCL, would be foolhardy. As anecdotal corrob-
oration, Figure 1a presents the performance numbers for
a molecular modeling application that used well-known
CUDA optimizations on two different NVIDIA GPUs, each
from a different generation, as well as an AMD GPU, i.e.,
CUDA-based optimizations coded in OpenCL. While the
speedup on the two NVIDIA GPU platforms is roughly the
same, the speedup on the AMD GPU is about 30% lower,
despite the fact that the peak performance of an AMD GPU
is more than two-fold higher than a NVIDIA GPU, as shown
in Figure 1b.

The above evidence indicates that architecture-specific
optimizations are necessary. Thus, in this work, we propose
optimization strategies specific to OpenCL on AMD GPUs.
To the best of our knowledge, this is the first such detailed
study of optimization strategies built upon the underlying
AMD GPU architecture. Architectural subtleties, like the
presence of vector cores rather than scalar, only one branch
execution unit for 80 cores, and the presence of a rasterizer
on the GPU, influence our proposed optimization strategies:
(i) explicit use of registers, (ii) use of vector types, (iii)
removal of branches, and (iv) use of image memory for
global data.

We apply the above optimizations to a large-scale molec-
ular modeling application and present a comparison of
the efficacy of each optimization strategy. Recent literature
leads one to believe that applications written in CUDA for
NVIDIA GPUs should perform best. However, we show

Wuchun Feng
17th IEEE International Conference on Parallel and Distributed Systems (ICPADS), Tainan, Taiwan, Dec. 2011

Wuchun Feng

!"#$!%#$

""&$

'$

('$

%''$

%('$

"''$

"('$

!''$

!('$

)*+,+-$./0"#'$)*+,+-$/1234$51678$
9"'('$

-:,$(#;'$

!"
##
$%

"&
'(
#)
&*
+,

$-
.%
,#

$&
!!
/&

(a) Speedup on GPU Platforms with NVIDIA-Specific Optimiza-
tions

0

750

1500

2250

3000

January-03 April-04 March-06 May-07 June-08 March-10

475

855

1200
1360

2720

15 40 60
200 250

346

576
648 715

1063

1345

P
e
a
k
 G

F
lo

p
s

Release Month-Year

NVIDIA GPU AMD GPU

(b) Peak Performance of AMD GPUs vs. NVIDIA GPUs

Figure 1. Realized and Peak Performance of AMD and NVIDIA GPUs.

that when optimized appropriately, the performance of our
molecular modeling application on an AMD Radeon HD
5870 GPU with OpenCL is 12% better than an equally well-
optimized CUDA implementation on an NVIDIA GTX280
GPU. Overall, on the AMD GPU, we achieve a 371-fold
speedup for our molecular modeling application over the
serial hand-tuned SSE version for the CPU, and thus, a 46-
fold speedup over on a modern 8-core CPU, assuming ideal
scaling.

The rest of the paper is organized as follows. In Sec-
tion II, we enumerate the well-known CUDA optimizations
and present background information about the lesser-known
AMD GPU and discuss why the AMD GPU architecture
is not amenable to all CUDA optimizations. Section III
describes each of the proposed optimization strategies. In
Sections IV and V, we present our experimental setup and
the results of our optimizations, respectively. We present
related work in Section VI and conclusions in Section VII.

II. BACKGROUND

Here we describe the OpenCL programming interface and
the basics of GPU architecture. We then enumerate the well-
known CUDA optimizations. Finally, we present the AMD
GPU architecture and its differences from the more common
NVIDIA GPUs.

A. OpenCL and GPU Basics
OpenCL is an open-standard language for programming

GPUs and is supported by all major manufacturers of GPUs.
OpenCL terminology will be used throughout this paper in
place of CUDA terminology wherever possible. An OpenCL
application is made up of two parts: (i) C/C++ code run on
the CPU and (ii) OpenCL code on the GPU. The CPU code
is used to allocate memory, compile the OpenCL code, stage
it, and run it on the GPU. The OpenCL code consists of
kernels, which are functions run on the GPU when invoked

by the CPU. Each kernel is, in turn, made up of a one- to
three-dimensional matrix of work groups, which are made
up of one- to three-dimensional matrices of threads. Only
threads within a work group are capable of synchronizing
with one another, and thus, safely share data.

Currently, all GPUs share certain architectural similarities.
Therefore, it makes sense to make some generalizations
before discussing specific differences. GPUs are made up
of one or more compute units. Each compute unit contains
registers, local memory, and constant memory and can run
at least one work group at a time in a SIMD fashion.
A compute unit can be further broken down into one or
more processing elements, and optionally, special-purpose
processing elements for non-standard functionality. Beyond
the processor itself, GPUs also share a common hierarchical
memory model consisting of four main memories. Global
memory is the main memory, accessible from all compute
units and is usually not cached. Image memory is a special
mode of accessing global memory, which may add caching
but is read only. Local memory is a fast, explicitly managed
local store on each compute unit, which can be read and
written by all threads in the work group running on that
compute unit. Lastly, there is constant memory, which is
a low-latency, read-only space that is set by the CPU and
which is visible to all threads during kernel execution.

B. CUDA Optimizations
With the evolution of high-level programming interfaces

like CUDA and OpenCL, implementing applications on the
GPU has become less difficult. However, even using these
APIs, one still has to go through the arduous procedure of
optimizing the code in order to achieve optimum perfor-
mance. Over the years, optimizing CUDA codes on NVIDIA
GPUs has been studied extensively [5], [6], [8]–[13].

Below we broadly classify the “five commandments of
GPU optimization” for CUDA on NVIDIA GPUs as follows:

• Run many threads.
A NVIDIA GeForce GTX280 GPU has 240 cores.
Much like a CPU, if there are fewer threads than
cores, potential computation is wasted. Beyond the base
240 threads, to amortize the cost of global memory
accesses, one needs to ensure that there are enough
threads in flight to take over when one or more threads
are stalled on memory accesses.

• Use on-chip memory.
In addition to registers, NVIDIA GPUs provide two
types of low-latency, on-chip memory: (i) local memory
and (ii) constant memory. Judicious use of either can
reduce the number of global memory accesses without
increasing register usage. However, both of these mem-
ory types are of limited capacity, necessitating prudent
use of space.

• Organize data in memory.
Likely the most well-known optimization for CUDA
codes on NVIDIA GPUs is ensuring that reads from
global memory are coalesced. Threads in the same
warp, or local group, should access contiguous memory
elements concurrently. In addition to coalescing, one
should also ensure that threads access data from dif-
ferent banks of local memory to avoid bank conflicts,
otherwise these accesses are serialized. Similarly, dif-
ferent active warps accessing the same global memory
partition results into a bottleneck known as partition
camping, which can lead to a potential eight-fold slow-
down for the GTX280 [14].

• Minimize divergent threads.
Threads within a warp should follow identical execution
paths as much as possible. If threads diverge due
to conditionals and follow different paths, then the
execution of said paths becomes serialized. In the worst
case, this can cause a 32-fold slowdown.

• Reduce dynamic instruction count.
The execution time of a kernel is directly proportional
to the number of dynamic instructions executed by
it. The onus of reducing the number of instructions
lies upon the programmer. Reducing the number of
instructions can be done using traditional compiler
optimizations like common subexpression elimination,
loop unrolling, and explicit prefetching of data from
the memory. However, these optimizations result in in-
creased register usage, which in turn, limits the number
of threads that can be run concurrently.

Recalling from Figure 1a that there is a substantial per-
formance difference amongst GPUs from different vendors,
i.e., NVIDIA GTX 280 and AMD Radeon HD 5870, the
difference in performance can be attributed to the fact that
they have different underlying architectures. This does not,
however, explain why the AMD Radeon HD 5870, which
has significantly higher peak performance, as shown in

Figure 2. Block Diagram of an AMD Stream Processor and Thread
Scheduler

Figure 1b, has lower overall application performance. This
indicates that architecture-specific optimizations should be
performed to extract the best performance on each architec-
ture. In the following subsection, we present a description
of the architecture of AMD GPUs.

C. AMD Architecture

AMD GPUs follow a more classic graphics processing
design, highly tuned for two-dimensional data and compu-
tations with few conditionals and little to no random access.
Figure 2 shows a high-level architecture of an AMD GPU.
In this case, the compute unit is a SIMD engine (in AMD
parlance) and contains several thread processors, which each
contain four processing cores as well as a special-purpose
core and a branch execution unit. The special-purpose, or
T-Stream, core executes certain mathematical functions in
hardware, such as transcendentals like sin(), cos() and
tan(). As shown in Figure 2, only one branch execution
unit exists for every five processing cores. Therefore, any
branch, divergent or not, incurs some amount of serialization
in order to determine what path each thread will take.

The “five commandments of GPU optimization” from
Section II-B include minimizing divergent conditionals. This
commandment is particularly important for the AMD GPU,
where a single compute unit contains 80 cores, and thus,
divergence may serialize execution for up to 80 cycles per
instruction. In addition, while the cores in a compute unit
on a NVIDIA GPU execute in SIMD fashion, each of them
is a scalar core, whereas the processing elements of an
AMD GPU are VLIW-based SIMD processors. As a result,
using vector types and vector math on NVIDIA is simply
extra overhead, whereas on AMD it can produce material
speedups.

Not only are the processing elements different, but AMD
GPUs are made up of significantly more of them than their
NVIDIA counterparts. As a result, the first commandment
is even more important for AMD GPUs than those from
NVIDIA, as they have far more computational slots to fill.

Another noticeable difference, which can be seen in
Figure 2, is the presence of the rasterizer. AMD GPUs are
designed and optimized for working with two-dimensional
matrices of threads and data. While the AMD GPU no longer
incurs a performance penalty for using one-dimensional
arrays of threads in OpenCL, accessing scalar elements
stored contiguously in memory is not the most efficient
access pattern. While the “five commandments of GPU op-
timization” do mention coalesced memory accesses, which
still applies here, taking it to the next step and using larger
blocks of 128 bits is more efficient. Loading these blocks
from image memory, which uses the memory layout best
matched to the memory hardware on AMD GPUs, can
deliver large performance improvements on AMD GPUs.

III. AMD OPTIMIZATIONS

Since we have shown that the NVIDIA-specific “five
commandments of GPU optimization” do not necessarily ap-
ply equally to AMD architectures, we discuss optimizations
that apply to AMD GPUs, but perhaps, may not apply to
NVIDIA GPUs.

A. Kernel Splitting
Figure 2 shows that an AMD GPU possesses only one

branching unit for every five processing cores. Consequently,
even non-divergent branches can cause significant perfor-
mance degradation. For the purpose of readability, even if
the outcome of a conditional can be determined before a
GPU kernel is called, the conditional is frequently pushed
into the GPU kernel. Figure 3 shows a simple example of
this phenomenon, which we refer to as kernel splitting. On
CPUs, the performance lost to non-divergent branches is
minimal due to speculative execution and branch prediction.
On NVIDIA GPUs, the cost is slightly higher but acceptable.
However, as we showed in [15], it can impact performance
by as much as 30% on an AMD GPU. As a result, although
it will help everywhere, we count kernel splitting as an AMD
GPU optimization because it makes a far greater impact on
that platform.

To implement kernel splitting, conditionals whose result
can be predetermined prior to the beginning of the kernel
should be moved from the GPU kernel to the CPU, and
the kernel split into two kernels, each of which takes a
different branch of that conditional. The CPU then simply
calls the kernel which follows the correct branch. Despite the
simplicity of the optimization, implementing it in practice
can be complicated. The optimized version of the molecular
modeling code employs 16 kernels to enable this optimiza-
tion work for all inputs.

B. Local Staging
Local staging has its basis in the same logic as the second

commandment from Section II-B. When data loaded into on-
chip memory is reused, the subsequent accesses are more

int main() {
...
int a = 5;
//run work() kernel
...

}
kernel void work(int a){
if(a){

//do work 1
}else{

//do work 2
}

}

int main() {
...
int a = 5;
if(a){
//run work1() kernel

}else{
//run work2() kernel

}
...

}
kernel void work1(int a){
//do work 1

}
kernel void work2(int a){
//do work 2

}

Figure 3. Kernel Splitting

efficient than accessing the data from its original location in
global memory.

//before
for(i=0; i<count; i++){
local[id]++;

}
global[id] = local[id];

//after
int g = global[id];
for(i=0; i<count; i++){
g++;

}
global[id] = g;

Figure 4. Register Accumulator

Local and constant memory on AMD GPUs are signif-
icantly slower to access than registers are. So, for small
amounts of data and for data that is not shared between
threads, registers are much faster. AMD GPUs have four
times more registers than NVIDIA GPUs, 256k vs 64k, and
hence, it is frequently worth using extra registers to improve
memory performance. One case where this is especially
true is for accumulator variables, as shown in Figure 4.
If the algorithm includes a main loop in each thread that
updates a value once each time through the loop, moving
that accumulator into a register, even over local memory,
can make a significant difference in performance, as will be
discussed in Section V. If more than 124 registers are used
by each thread, local variables will spill into global memory
and can degrade performance even further.

C. Vector Types
Vector types in OpenCL are analogous to SIMD vectors

for SSE or AltiVec units on CPUs, i.e., a single word of 64 to
512 bits in size that contains smaller scalars for computation.
Generally, the most used type of this class is float4,
matching both the size of a pixel in graphics and size of
an SSE word. Using vector types in CUDA programs maps
the operations down to scalar types (except in the cases of
loads and stores), thus there is little performance benefit
for NVIDIA GPUs. On the other hand, the memory on

AMD GPUs is optimized for accesses of 128 bits as well
as computation on vectors of 2-4 floats. However, some
mathematical operations are not optimized for this case,
specifically the transcendental functions supported by the
T-Stream core. The overhead of unpacking the vector and
performing the transcendentals is higher than doing all the
math with scalars.

Even when scalar math is faster, however, loading memory
in float2 or float4 is more efficient than loading
scalars. Prefetching with vector loads, unrolling a loop to
perform the math in scalars, and then storing the vector can
result in significant improvement in performance.

D. Image Memory
With older versions of NVIDIA GPUs, image memory

was commonly listed as a way to increase memory per-
formance. Its caching helped with repeated access, and in
some cases, improved data access times. In more recent
literature, this optimization seems to have disappeared. In
fact, applying this optimization on a CUDA version of our
code degrades the performance by 8%.

Image memory offers many transformations meant to
speed-up the access of images, but it is equally capable of
reading arbitrary data in float4 vectors. As mentioned
above, loading larger types from memory is more efficient
than loading scalars, adding to it the benefits of caching
and more efficient memory access patterns offered by image
memory on AMD, makes for a potent combination. In
addition, the changes necessary to use image memory for
read-only input data is minimal in the kernel, only requiring
modification of the initial load of the float4.

E. Combining Optimizations
If two optimizations can improve performance of a base

application individually, it is common to assume that they
will “stack” or combine to create an even faster implementa-
tion when applied together. All the optimizations presented
to this point, both as part of the “five commandments of GPU
optimizations” and in this section, produce some amount of
benefit when applied to completely unoptimized code. Given
the fact that they all benefit the unoptimized version, one
might believe that using all of the optimizations together
would produce the fastest implementation. This is not the
case.

In the auto-tuning work of [16], Datta et al. had many
optimizations to tune simultaneously, as we do here, and
decided on an approach which was later referred to as
hill climbing [17]. Essentially, hill climbing consists of
optimizing along one axis to find the best performance, then
finding the best parameter for the next axis after fixing the
first, and so on. This implies that all the parameters are
cumulative, or at least, that order does not matter. While this
is a popular approach, we find that the inherent assumptions
about combining optimizations are not reasonable, at least

when it comes to optimizing for GPUs. Further discussion
of optimization stacking will be presented in Section V.

IV. EXPERIMENTAL SETUP

Our experiments were run on two GPUs from the same
generation, an AMD 5870 and an NVIDIA GTX 280. The
host systems for these GPUs consist of an Intel E5405
quad-core processor running at 2.0 GHz along with 4-GB
DDR2 SDRAM. The operating system is a 64-bit version of
Ubuntu 9.04 distribution. The AMD 5870 was programmed
with OpenCL 1.1 from the ATI Stream SDK version 2.4
with fglrx driver version 8.87. The NVIDIA GTX 280 was
programmed with the CUDA 3.1 toolkit with driver version
256.40.

To illustrate the efficacy of our optimizations, we have
validated them against a production-level, molecular mod-
eling application called GEM [18]. GEM allows one to
visualize the electrostatic potential along the surface of a
macromolecule. GEM is an all-pairs computation between
two lists. The input is a list of all atoms in the structure,
along with their charges, and a list of pre-computed surface
points, or vertices, for which the potential is desired.

The input to our tests is a viral capsid, a biomolecule
consisting of 476,600 atoms. The performance results (i.e.,
execution times) contain the main computational kernel plus
the memory allocations and transfers that are necessary for
it to function; disk I/O is not included. Speedups are over
the unoptimized version on the same GPU unless otherwise
noted.

V. RESULTS & ANALYSIS

In this section, we demonstrate the effectiveness of each
of our optimization techniques in isolation as well as in
combination. Subsequently, we present performance results
of our application when it is specifically optimized for dif-
ferent GPU architectures and conclude that the AMD GPU
performs up to 12% better than its NVIDIA counterpart.

A. Kernel Splitting
In Figure 5, we compare the performance results between

the unoptimized OpenCL implementation and the one op-
timized with kernel splitting. We find that kernel splitting
delivers a 1.7-fold performance benefit. This can be reasoned
as follows. The AMD GPU architecture has only one branch
execution unit for five processing cores, as discussed in
Section II-C. Hence, branching on an AMD GPU incurs
a huge performance loss as the branch itself now takes five
times as long as branches on the NVIDIA GPU architecture,
for example.

B. Local Staging
Commandment #1 states that in order to obtain optimum

performance, one should strive to improve thread utilization
on the GPUs. One way of achieving that is by reducing

!"#$

!"%$
!"&$

'"%$

!"'$!"!$!"'$!"'$!"!$

%"!$

'"%$

("($

(")$

!"($

!")$

'"($

'")$

%"($

%")$

*+
$

,-
$

,.
$

/0
$

10
$

/2
'$

/2
3$

4-
+0

'$

4-
+0

3$

4-
40

'$

4-
40

3$

!"
##
$%

"&

Figure 5. Speedup Due to Each Optimization over Unoptimized OpenCL
GPU Version
KS: Kernel Splitting, RA: Register Accumulator, RP: Register Preloading,
LM: Local Memory, IM: Image Memory, LU{2,4}: Loop Unrolling{2x,4x},
VASM{2,4}: Vectorized Access & Scalar Math{float2, float4},
VAVM{2,4}: Vectorized Access & Vector Math{float2, float4}

the number of registers utilized per thread as more registers
means fewer threads in the kernel. However, AMD GPUs
have four times as many registers as equivalent NVIDIA
GPUs, and hence, one may use them more freely on AMD
GPUs. We achieved superior performance on the AMD GPU
by explicitly using extra registers in our GEM kernel. GEM
involves accumulating the potential at the vertex due to each
atom in the molecule. Rather than updating the intermediate
result in global memory for each atom, we make use of
a register accumulator and obtain a 1.3-fold speedup, as
shown in Figure 5. Using registers to preload data from
global memory is also useful. Preloading provides up to
a 1.6-fold speedup, also shown in Figure 5. The kernel
uses a small set of data repeatedly throughout the execution
of the kernel; preloading this data into a register rather
than reading from global memory delivers a substantial
performance benefit.

It is appropriate to use local memory when there is high
data reuse in the kernel, which is the case for our application.
Speedup due to the use of local memory on the GPU results
in a 2.3-fold improvement. In fact, using local memory is
1.4-fold faster than using register preloading in isolation.
This result is unexpected, as one would expect register
preloading to be more beneficial than using local memory,
given the fact that the register file is the fastest on-chip
memory.

C. Image Memory

The presence of L1 and L2 texture caches assists the
image memory by providing lower memory-access latency
when one needs to access indexed data from the GPU
memory. Using image memory in read-only mode results in
the FastPath memory access being utilized on AMD GPUs
to leverage the presence of the L2 cache [19]. However,
if image memory is used in read-write mode, the GPU

sacrifices the L2 cache in order to perform atomic operations
on global objects. Hence, one should be judicious in using
read-write image memory only when necessary. We have
used read-only image memory to store data that is heavily
reused in the kernel. An improvement of up to 1.2-fold
was obtained, as shown in Figure 5. This is completely at
odds with our previous experience with texture memory on
CUDA, in which the same optimization actually degraded
the performance by 8%.

D. Vector Types

Loop unrolling reduces the number of dynamic instruc-
tions that control the loop, such as pointer arithmetic and
”end of loop” tests on each iteration. It also reduces branch
penalties, and hence, delivers better performance. Figure 5
presents the performance benefit obtained by explicit 2-way
and 4-way loop unrolling. As 4-way unrolling reduces the
dynamic instruction count by a factor of two more than 2-
way unrolling, it results in better performance.

Accessing global memory as vectors proves to be faster
than scalar memory accesses, as shown in Figure 5. How-
ever, the length of the vector, either float2 or float4,
that results in the fastest kernel performance may depend
upon the problem size. From the figure, we note that for us,
float2 is faster than float4.

Use of vector math also proves to be highly beneficial
on AMD GPUs, as corroborated by Figure 5. Vector math
can provide more than a three-fold speedup, as in case of
float2. AMD GPUs are capable of issuing five floating-
point, scalar operations in a VLIW. Use of vectorized math
assists the compiler in filling the 5-way VLIWs in each
compute unit. The dynamic instruction count is also reduced
by a factor of the length of the vector as multiple scalar
instructions are packed into a single instruction.

E. Efficacy of Combining Optimizations

In Figure 6, we present the performance benefits obtained
when optimization are combined. Notably, they do not pro-
vide “stackable” performance benefits as one might expect.
From the figure, we note that a combination of kernel
splitting (KS) and register preloading (RP) tends to be
better than when kernel splitting (KS) and local memory
(LM) are combined (even though in isolation, LM performs
better than RP).

Similarly, when vector math (VM) is used in conjunction
with other optimization techniques like kernel splitting
(KS), the performance obtained is not as one would expect.
Scalar math (SM) tends to be faster with kernel splitting
(KS), though when isolated, the results are otherwise. Some
of these results are due to register pressure and the number
of threads that can run concurrently changing as the number
of registers and amount of local memory change. However,
not all the performance differences can be explained by this.

Identifying the source of these performance discrepancies
forms the basis of our future work.

!"#$

%"&$

!"'$

%"!$

("($

("#$

&"($

&"#$

!"($

!"#$

%"($

%"#$

)*+,-$)*+./$)*+010-$)*+01*-$

!"
##
$%

"&

Figure 6. Speedup Due to Combining Optimizations over Unoptimized
OpenCL GPU Version
KS: Kernel Split, LM: Local Memory, RP: Register Preloading,
VAVM: Vectorized Access & Vector Math,
VASM: Vectorized Access & Scalar Math

Since the combinations of optimizations result in seem-
ingly arbitrary performance benefits, we tested all com-
binations and found that with OpenCL on AMD GPUs,
kernel splitting (KS) + register preloading (RP) + im-
age memory (IM) performs the best. Figure 7 presents
the speedup obtained on both AMD and NVIDIA GPUs
with OpenCL and CUDA, respectively. We compared the
unoptimized version as well as the one with architecture-
specific optimizations and found out that the unoptimized
CUDA implementation performs better than the unoptimized
OpenCL implementation. However, in the case of the opti-
mized version, OpenCL on AMD GPU is faster by 12% than
CUDA on its NVIDIA counterpart.

!"#$

%%$

#&%$

#'!$

($

!(($

&(($

#(($

)(($

*+,-,.$/01&%($.2-$3%'($!"
##
$%

"&
'(
#)
&*
+,

$-
.%
,#

$&
!!
/&

456789:;<=>?4-.@$A7<5?BC$ A789:;<=>?4-.@$A7<5?BC$

Figure 7. Speedup with Architecture-Specific Optimizations

VI. RELATED WORK

Most work in GPU computing over the last few years
has been performed using NVIDIA’s CUDA architecture [3],

[20]. The NVIDIA CUDA Programming Guide lists many
optimization strategies useful for extracting peak perfor-
mance on NVIDIA GPUs [11]. In [5], [6], [8], [9], Ryoo et
al. present optimization principles of a GPU using CUDA.
They conclude that though the optimizations assist in im-
proving performance, the optimization space is large and
tedious to explore by hand. In [12], Volkov et al. argue that
the GPU should be viewed as being composed of multi-
threaded vector units and infer that one should make explicit
use of registers as primary on-chip memory as well as using
short vectors to conserve bandwidth.

Previously published work on optimizations for AMD
GPUs has been with Brook+, which has now been depre-
cated by AMD with the release of OpenCL. In [21], [22],
authors propose optimization strategies for Brook+ and eval-
uate them by implementing a matrix multiplication kernel
and a multi-grid application for solving PDEs, respectively.
In [15], authors accelerate the computation of electrostatic
surface potential for molecular modeling by using Brook+
on AMD GPUs. In [23], authors present a software platform
which tunes the OpenCL program written for heterogeneous
architectures to perform efficiently on CPU-only systems.

To the best of our knowledge, the only research related to
OpenCL GPU optimizations is a short paper [24] and a case
study discussing an auto-tuning framework for designing
kernels [25]. Hence, the work presented here is the first
to publish and propose OpenCL optimization strategies for
AMD GPUs. We believe that one needs to exploit the
causal relationship between programming techniques and the
underlying GPU architecture to extract peak performance.
Hence, there exists the need for architecture-specific opti-
mizations.

VII. CONCLUSION

GPUs are garnering greater mind share and market share.
Their advantages in performance, performance-per-dollar,
and performance-per-watt continue to drive them further
into the high-performance computing (HPC) space. Along
with this, they are also being used more and more for
accelerating desktop applications. In either case, realizing
the benefits that GPUs can provide is contingent on writing
GPU-enabled applications, and subsequently, on being able
to optimize these programs to make efficient use of the
hardware. Optimizing codes for NVIDIA GPUs has been
well studied and published extensively, but optimizing for
other GPU platforms, such as those from AMD, has barely
been mentioned.

In this work, we extend the knowledge of the optimization
space applicable to GPU architectures. We accomplish this
by studying the optimizations which improve performance
on a 1600-core GPU, specifically an AMD Radeon HD
5870, in comparison with those which are known to achieve
similar results on NVIDIA’s CUDA GPU platform. To do
this, we chose an application whose optimization space we

have studied thoroughly on the NVIDIA CUDA platform,
as well as on the older programming model provided by
AMD, known as Brook+ [15], and manually implemented
every common CUDA optimization, as well as some new
ones for it on OpenCL. Through this process, we found
that while the combination of optimizations favored by the
CUDA community produces performance improvement for
NVIDIA GPUs, the same combination is not always best
for AMD GPUs. For that matter, some of the optimizations
that cause performance degradation on NVIDIA produce
speedups on AMD and vice versa. To summarize, we have
shown that well-known optimizations from one architecture
do not always apply favorably to another. In addition, we
have presented and evaluated several less-known optimiza-
tions for OpenCL on AMD GPUs and shown that in some
cases they can have as much, or even more, effect than the
traditional well-known optimizations.

REFERENCES

[1] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan, “Brook for GPUs: stream
computing on graphics hardware,” in Int’l Conf. on Computer
Graphics and Interactive Techniques, 2004, pp. 777–786.

[2] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and
J. Phillips, “Gpu computing,” Proc. of the IEEE, vol. 96, no. 5,
pp. 879 –899, May 2008.

[3] NVIDIA, “CUDA.”

[4] Khronos Group, “OpenCL.”

[5] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone,
D. B. Kirk, and W. W. Hwu, “Optimization Principles and
Application Performance Evaluation of a Multithreaded GPU
Using CUDA,” in Proc. of the 13th ACM SIGPLAN Symp. on
Principles and Practice of Parallel Programming, February
2008, pp. 73–82.

[6] S. Ryoo, C. Rodrigues, S. Stone, S. Baghsorkhi, S.-Z. Ueng,
and W. mei Hwu, “Program Optimization Study on a 128-
Core GPU,” in Workshop on General Purpose Processing on
Graphics Processing, 2008.

[7] J. Archuleta, Y. Cao, T. Scogland, and W. Feng, “Multi-
Dimensional Characterization of Temporal Data Mining on
Graphics Processors,” in Proc. of the IEEE Int’l Parallel and
Distributed Processing Symp., Rome, Italy, May 2009.

[8] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi,
S.-Z. Ueng, J. A. Stratton, and W.-m. W. Hwu, “Program
optimization space pruning for a multithreaded gpu,” in CGO
’08: Proc. of the IEEE/ACM Int’l Symp. on Code Generation
and Optimization. New York, NY, USA: ACM, 2008, pp.
195–204.

[9] S. Ryoo, C. I. Rodrigues, S. S. Stone, J. A. Stratton, S.-
Z. Ueng, S. S. Baghsorkhi, and W. mei W. Hwu, “Program
optimization carving for gpu computing,” Journal of Parallel
and Distributed Computing, vol. 68, pp. 1389 – 1401, 2008.

[10] D. Cederman and P. Tsigas, “On dynamic load balancing on
graphics processors,” in Proc. of the ACM SIGGRAPH Symp.
on Graphics hardware, 2008, pp. 57–64.

[11] NVIDIA, “NVIDIA CUDA Programming Guide-3.2,” 2010.

[12] V. Volkov and J. Demmel, “Benchmarking GPUs to Tune
Dense Linear Algebra,” in Proc. of the 2008 ACM/IEEE Conf.
on Supercomputing, November 2008.

[13] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-
Alvandi and Andreas Moshovos, “Demystifying gpu microar-
chitecture through microbenchmarking,” in ISPASS ’10: Proc.
of the IEEE Int’l Symp. on Performance Analysis of Systems
and Software, 2010.

[14] NVIDIA, “Optimizing Matrix Transpose in CUDA,” 2009.

[15] R. Anandakrishnan, T. R. Scogland, A. T. Fenley, J. C. Gor-
don, W. Feng, and A. V. Onufriev, “Accelerating electrostatic
surface potential calculation with multi-scale approximation
on graphics processing units,” Journal of Molecular Graphics
and Modelling, vol. 28, no. 8, pp. 904 – 910, 2010.

[16] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker, D. Patterson, J. Shalf, and K. Yelick, “Stencil
computation optimization and auto-tuning on state-of-the-art
multicore architectures,” in High Performance Computing,
Networking, Storage and Analysis, 2009, pp. 1–12.

[17] S. W. Williams, “Auto-tuning performance on multicore com-
puters,” Ph.D. dissertation, EECS Department, University of
California, Berkeley, Dec 2008.

[18] John C. Gordon, Andrew T. Fenley, and A. Onufriev, “‘An
Analytical Approach to Computing Biomolecular Electro-
static Potential, II: Validation and Applications,” Journal of
Chemical Physics, 2008.

[19] AMD, “AMD Stream Computing OpenCL Programming
Guide.”

[20] J. Nickolls and I. Buck, “NVIDIA CUDA software and GPU
parallel computing architecture,” in Microprocessor Forum,
May, 2007.

[21] B. Jang, S. Do, H. Pien, and D. Kaeli, “Architecture-aware
optimization targeting multithreaded stream computing,” in
Proc. of 2nd Workshop on General Purpose Processing on
Graphics Processing Units, ser. GPGPU-2. New York, NY,
USA: ACM, 2009, pp. 62–70.

[22] F. Xudong, T. Yuhua, W. Guibin, T. Tao, and Z. Ying,
“Optimizing stencil application on multi-thread gpu archi-
tecture using stream programming model,” in Architecture
of Computing Systems - ARCS 2010, ser. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2010, vol.
5974, pp. 234–245.

[23] J. Gummaraju, L. Morichetti, M. Houston, B. Sander, B. R.
Gaster, and B. Zheng, “Twin peaks: a software platform for
heterogeneous computing on general-purpose and graphics
processors,” in Proc. of the 19th Int’l Conf. on Parallel
Architectures and Compilation Techniques, ser. PACT ’10.
New York, NY, USA: ACM, 2010, pp. 205–216.

[24] S. Rul, H. Vandierendonck, J. DHaene, and K. D. Bosschere,
“An experimental study on performance portability of opencl
kernels,” in Symp. on Application Accelerators in High Per-
formance Computing, ser. SAAHPC ’10, 2010.

[25] C. Jang, “OpenCL Optimization Case Study: GATLAS -
Designing Kernels with Auto-Tuning.”

