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Abstract—The community needs simpler mechanisms to
access the performance available in accelerators, such as GPUs,
FPGAs, and APUs, due to their increasing use in state-
of-the-art supercomputers. Programming models like CUDA,
OpenMP, OpenACC and OpenCL can efficiently offload
compute-intensive workloads to these devices. By default these
models naively offload computation without overlapping it with
communication (copying data to or from the device). Achieving
performance can require extensive refactoring and hand-tuning
to apply optimizations such as pipelining. Further, users must
manually partition the dataset whenever its size is larger than
device memory, which can be especially difficult when the
device memory size is not exposed to the user.

We propose a directive-based partitioning and pipelining
extension for accelerators appropriate for either OpenMP or
OpenACC. Its interface supports overlap of data transfers and
kernel computation without explicit user splitting of data. It
can map data to a pre-allocated device buffer and automate
memory-constrained array indexing and sub-task scheduling.
We evaluate a prototype implementation with four different
applications. The experimental results show that our approach
can reduce memory usage by 52% to 97% while delivering a
1.41× to 1.65× speedup over the naive offload model.

I. INTRODUCTION

Systems with accelerators, particularly GPUs, are be-

coming prominent on the Top500 [1]. Many programming

models support these systems, but rather than grapple with

unfamiliar programming models scientists often prefer to

keep their existing verified C, C++ or Fortran code. OpenMP

since version 4.0 [2], [3] and OpenACC [4] allow the

straightforward adoption of that existing code. Without ex-

tensively rewriting their code, users can add directives to

offload their computation to accelerators.

OpenMP and OpenACC have similar offload mechanisms.

Users annotate data with mapping or copying directives to

ensure that the accelerator can access the data. They then

launch computation on the accelerator and ensure that the re-

sults are available on the host when needed. If the accelerator

cannot access host memory directly or if the use of memory

associated with the accelerator can improve performance,

then the data is copied to device memory, which can take

significant execution time when performed synchronously

(i.e., the naive offload model). Thus, programmers often

work hard to overlap the transfers with computation. Further,

the data may not fit in device memory because scientific

applications frequently use huge data arrays or matrices.

In this case, the user must manually split the data and the

associated computation, which can involve significant code

changes since the user must partition large data arrays on

the host and separately pass each array pointer.

We extend OpenMP to partition data and to overlap

transfers with computation through pipelining automatically.

Our extensions allow data to be mapped into a small buffer to

reduce memory usage and offer a simple interface to pipeline

a parallel loop with an index handler and a kernel scheduler.

Our experimental results show that our techniques can re-

duce memory usage and improve performance significantly.

This paper makes the following contributions:

• A comprehensive study that identifies limitations of

current programming extensions for GPU devices;

• A new directive-based pipelined extension for OpenMP

that automates the overlap of data transfers and kernel

computation and reduces GPU memory consumption;

• A prototype implementation of our approach;

• A detailed evaluation of our approach for four applica-

tions on two diverse GPU architectures.

Our results demonstrates that our approach can provide a

1.41× to 1.65× speedup while reducing memory usage 52%

to 97% over the naive offload model.

The rest of the paper is organized as follows: In Sec-

tion II, we introduce GPU programming models and dis-

cuss the pipelining of data transfers. Section III describes

our directive-based pipelining extension, which improves

programmability, performance, and memory management.

Section IV presents our prototype implementation and the

use of our approach in four applications. In Section V, we

compare our prototype with current programming models.

II. BACKGROUND

Supercomputers increasingly have accelerators, such as

GPUs, FPGAs, APUs, and co-processors like the Intel Xeon

Phi to increase their performance per watt and performance

per dollar. Programming these accelerators requires the use

of alternate programming models or language extensions

such as CUDA, OpenMP, OpenACC, and OpenCL.
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OpenMP is a directive-based extension for Fortran, C and

C++ that is best known for providing portable multithread-

ing on shared-memory multicore systems. A loop can be

parallelized by inserting an OpenMP directive, and further

custom parallelism can be achieved with a combination

of directives and runtime API calls. Since OpenMP 4.0,

OpenMP has included device constructs that target offload

to devices with potentially distinct memory spaces. This

OpenMP support for accelerators is still relatively nascent,

offering opportunities for improvement [5].

CUDA, a parallel computing framework from NVIDIA,

targets NVIDIA GPUs. It is one of the most widely used

programming models for GPUs despite its lack of portability.

It provides a powerful, flexible programing interface with

low-level GPU control. GPU threads are grouped as a grid

of thread blocks, which are mapped to GPU streaming

multiprocessors. CUDA often requires the programmer to

re-factor their code significantly [6].

OpenCL is a standard, low-level model that the Khronos

group maintains. OpenCL implementations offer portability

across GPUs, multicore CPUs, DSPs, co-processors, and

FPGAs. However, OpenCL’s complex, very low-level API

often requires significantly more code than even CUDA.

OpenACC directives define compute and data regions

in C, C++, and Fortran programs. As with OpenMP, the

programmer must identify the region to offload with direc-

tives. An unofficial offshoot of OpenMP, OpenACC provides

little support for host devices or CPU-like accelerators,

limiting them to the same constructs as are applied to GPUs.

Nonetheless, current implementations are more mature than

existing support for OpenMP 4.X. Thus, several studies have

compared its directive-based approach to CUDA in terms of

performance, portability, and programmability [7], [8], [9].

III. DESIGN

Our extension automates the implementation of over-

lapped computation and data transfers and of computation

on data arrays that are too large for device memory. Users

neither need to re-factor their code nor to break down work

manually. We overcome three main challenges. First, we

must correctly sequence concurrent data transfers and kernel

computation. Second, we must partition the computation and

data so all necessary inputs and outputs for a partition fit in

memory on the target device. Third, we must modify array

indices to reflect the partitioned accesses.

We address these challenges by dividing the loop into

several smaller chunks, which we launch with their required

data transfers on different GPU streams. When the transfer

of the first chunk finishes, its kernel begins execution. Each

chunk’s transfers are enqueued separately, and thus may run

in parallel. We control the chunk size in the runtime system

automatically to avoid exceeding available memory. Chunk

size can be explicitly determined with the schedule()

#pragma omp target\
pipeline(schedule_kind[chunk_size,num_stream])\
pipeline_map(map_type:array_split_list)\
pipeline_mem_limit(mem_size)

pipeline() inputs
<schedule_kind> scheduler to use for this region(static, adaptive).
<chunk_size> sub task chunk size.
<num_stream> stream number to launch on GPU.

pipeline_map() and pipeline_mem_limit() inputs
<map_type> to/from/tofrom for input/ output / input & output arrays.
<array_split_list> array declaration
<mem_size> maximum memory usage

array_split_list structure
<var> variable(array) to copy
[split_iter:size] split_iter: split start offset, size: split range
[0:m] other non related dimensions

p p () p

p p _ p() p p _ _ () p

i bl ( ) t

Figure 1: Our proposed pipeline extension for OpenMP

clause if desired. Future work will integrate a performance

model into an auto-tuning scheduler for better performance.

Our framework calculates dependencies of the current

chunk and removes the data that only previous chunks

require. By mapping the data array to a small pre-allocated

device buffer, we copy new data arrays into the location of

this stale data inside the buffer. Thus, by mapping the seg-

ment of data for a chunk into a small buffer, we significantly

reduce the memory requirement of many kernels.

Figure 1 presents the clauses that our extension adds.

The pipeline_map clause extends the semantics of the

map clause, which makes all data available at the beginning

and/or at the end of the region. Our pipeline_map clause

splits the data updates and subsequent loop computation into

multiple subtasks. As with the map clause, the map_type
specifies the data transfer direction.

The array_split_list is a new parameter that

defines how to split the arrays. The format of this

parameter is <var>[split_iter:size][0:m]. The

<var> is the variable or base pointer of an array. The

[split_iter:size] parameter identifies the dimension

to split while split_iter is a function of the loop

variable of the subsequent loop. The function defines the

split starting offset in that dimension while the size defines

the range. The split currently can be performed in one

or two dimensions since our runtime system supports 1D

and 2D memory copies. This size parameter helps us

determine the array offset. We use different internal APIs

for data movement based on the subsequent loop, which

we discuss later. The [0:m] parameter defines the other

dimensions, which do not impact the split. The parameter

helps us determine the array size. The pipeline() clause

specifies which schedule to use; currently we only support

static, but future work will support adaptive schedules.

The chunk_size is the number of indices in the

subsequent loop that we handle in each device buffer

(potentially fewer in the last chunk). The num_stream
parameter determines the number of GPU streams used.

This parameters determines the number of chunks that we

launch asynchronously. We choose these two parameters as

the key components of our framework not only because they
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#pragma omp target \
pipeline(static[1,3])\
pipeline_map(to:A0[k-1:3][0:ny-1][0:nx-1])\
pipeline_map(from:Anext[k:1][0:ny-1][0:nx-1])\
pipeline_mem_limit(MB_256)

for(k=1;k<nz-1;k++) {
#pragma omp target teams distribute parallel for

for(i=1;i<nx-1;i++) {
for(j=1;j<ny-1;j++) {

Anext[Index3D (i, j, k)] =
(A0[Index3D (i, j, k + 1)] +
A0[Index3D (i, j, k - 1)] +
A0[Index3D (i, j + 1, k)] +
A0[Index3D (i, j - 1, k)] +
A0[Index3D (i + 1, j, k)] +
A0[Index3D (i - 1, j, k)])*c1

- A0[Index3D (i, j, k)]*c0;
} }

}

Figure 2: A stencil benchmark example

provide information to improve the data transfer between

host and device, but also because they can significantly affect

performance and memory use.

We can also limit memory usage with the

pipeline_mem_limit() clause. The num_stream
and chunk_size parameters determine the size of the

device buffer, which we tune before we allocate the buffer

to fit total memory usage within available size. The other

target clauses, for example, device or private, work

as previously. Currently, the pipeline_map applies to

the subsequent loop, linking it to one loop variable, which

means there is only one split_iter for each OpenMP

region. Future work will extend it to support nested loops.

Figure 2 shows a three-level nested loop that performs a

stencil computation in which pipeline(static[1,3])
sets chunk_size to 1 and the number of GPU streams

to 3. The to pipeline_map clause specifies that the

three-dimensional input array A0 will be pipelined. By

default, we split the outermost loop. Here we denote the

outer loop variable as k. We use a function of k and

<num> to indicate the data chunks that we must copy

before launch of the kth chunk’s kernel. For instance, the

[k-1:3] indicates that we must copy the k−1, k and k+1
chunks in that dimension to the device before the kth kernel

executes. The [k-1:3] in the first set of brackets on A0
means we split this array by its Z dimension. It defines the

dependency relationship between the array and the outermost

loop. For example, before kernel iteration k=t, we must

copy chunk t-1, t, and t+1 of A0 to device memory.

The [0:ny-1][0:nx-1] defines the other dimensions of

array A0. The from pipeline_map clause defines the

output array Anext. For this array, the [k:1] indicates

that each iteration only stores its corresponding chunk.

The teams distribute parallel for clause still

parallelizes the nested loop i and j inside loop k.

A powerful code analysis engine capable of deep anal-

ysis of code and dependencies [10] could significantly

simplify our proposed extension. Potentially the compiler

could determine the array definition information and even

the data dependencies. However, the assumption of these

capabilities would limit the applicability of our extension to

code that can be analyzed completely at compile time and

complicate its adoption into the OpenMP specification. Thus,

our prototype allows all parameters to be passed explicitly.

IV. IMPLEMENTATION

Based on our proposed extension, we implement a pro-

totype runtime framework and extend four applications to

exploit it: (1) a Lattice QCD application; (2) the stencil

benchmark from the Parboil benchmark suite [11]; and, from

the Polybenchmark set [12], (3) the 3D Convolution bench-

mark; and (4) the Matrix Multiplication benchmark. We split

each loop into configurable-sized chunks that are handled

by different streams. Each chunk has data dependencies that

must be present on the device before its kernel executes. As

we already define the number of streams, chunk size, and

data dependencies in our extension, we can pre-allocate a

device buffer that conforms to the loop’s memory usage.

We map the data from the original data space to the buffer

data space and copy each chunk to its corresponding location

in the buffer. Currently, we use the mod operator (%) to get

the offset of each chunk inside the buffer. For example, if we

have a buffer that can hold four chunks, so it has positions

0, 1, 2, and 3, then, we copy chunk i to position (i % 4).

Once a data chunk is not needed for later partitions (kernels),

we replace it. As long as the data is present, we schedule

the corresponding subtask kernel to launch on the GPU.

While we target OpenMP syntax, more OpenACC im-

plementations are currently available, as mentioned in Sec-

tion II. Thus, we implement a prototype on top of Ope-

nACC. We first transform the benchmarks into OpenACC

as a baseline that we denote as “Naive”. We implement

a pipelined version (“Pipelined”) of each benchmark that

manually divides the iterations but does not alter array

indices. Thus, it requires the full memory footprint in device

memory. Finally we use our extended runtime to map the

chunks to a reduced memory space (“Pipelined-buffer”).

Based on the stream numbers and array declaration infor-

mation, we pre-allocate a fixed-size buffer at the beginning

of execution. Each array defined by the pipline_map()
clause in the OpenMP region is associated with a

data region. The array dimensions, chunk_size and

num_stream determine the size of the device buffer

for this data region. Once created, our runtime records

the array’s information for later use. We use a static

pointer for the device buffer, which we allocate in

GPU memory with cudaMalloc() on NVIDIA de-

vices or clCreateBUffer() on AMD devices. We

use cudaHostalloc() to allocate pinned host memory,

which avoids the data movement time from virtual to pinned

buffer memory. The asynchronous memory copy is handled

by cudaMemcpyAsync() for contiguous data movement;

we use corresponding OpenCL functions for AMD.
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We also implement a 2D array interface using

cudaMallocPitch() and cudaMemcpy2DAsync()
to support non-contiguous data transfer. Currently, our pro-

totype handles non-contiguous copies for 2D arrays, which

means buffering a “Block” of a matrix. If split_iter is

applied to both dimensions of a 2D array, we mark it as a

2D data region and record the corresponding information,

e.g., x_offset and y_offset. Depending on the data

dependencies of each subtask, we map the required data to

this buffer and then pass the offsets in the buffer to the

corresponding computation kernels.

To provide a fair comparison, we keep the OpenACC

kernel structure the same as our pipelined version. Be-

cause we use a pre-allocated buffer instead of an ar-

ray, we can only use deviceptr() to point to these

buffer pointers inside the computation kernels. The Ope-

nACC kernel regions are linked to different GPU streams

with the async() clause. However, the data of each

chunk only uses part of the buffer. Unfortunately, Ope-

nACC runtime APIs do not support this partial array

asynchronous copy. Thus, we use cudaMemcpyAsync()
or clEnqueueWriteBuffer() Since OpenCL uses

cl_mem as the data type instead of a pointer, which is

not compatible with deviceptr() in PGI’s OpenACC

for AMD OpenCL, we implement a small OpenCL kernel

to extract the pointer from the cl_mem data type before

passing it to the OpenACC kernel. Since we only do

this procedure once at the beginning of the benchmark

when we allocate the buffer, it has little performance

impact. The back-end runtime generates a new the de-

vice base pointer and corresponding offsets, leaving the

body identical and making compiler analysis and index

transformation unnecessary. To link this data copy to the

corresponding GPU stream that the OpenACC async()
clause creates, we use acc_get_cuda_stream() and

acc_get_opencl_queue(). These APIs help us to

retrieve the stream used by the async() clause to match

our manual transfers with the kernels.

We do not use the OpenACC acc_map_data() clause

to map partial host arrays to device buffers for several

reasons. First, for each host array, we map different indices

to one pre-allocated device buffer in a round-robin order and

use an offset within the device buffer for array accesses.

Second, acc_map_data() can only map one segment

of the host array to one device buffer. Mapping multiple

host array indices to different locations in the device buffer

results in an error. Third, based on our experiments, using

the acc_map_data() API with the asynchronous update

directive is slower than directly using the CUDA memory-

copy APIs even without asynchronous operations.

V. EVALUATION AND DISCUSSION

We evaluate our approach on four applications: a 3D

Convolution benchmark; a stencil benchmark; a matrix
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Figure 3: Lattice QCD Time Distribution (left) and Normalized Speedup
(right) on NVIDIA K40m

multiplication benchmark; and a production Lattice QCD

application. We run our experiments on two types of GPUs:

AMD Radeon 7970 and NVIDIA Tesla K40m. Our AMD

experiments run on a node with an AMD Radeon HD 7970

GPU, which has 2048 stream processors and 3GB of on-

board memory. Our NVIDIA experiments run on a node

containing two NVIDIA Tesla K40m GPUs, each of which

has 2880 stream cores and 12GB of on-board memory.

For each benchmark, we measure the performance in

terms of the function that contains the GPU operations,

including all transfers but ignoring time for code that is

identical in all versions. We execute all test runs six times

and use their average as the final result.

A. Initial study of the pipeline technique

The naive offload model, i.e., synchronously copying and

executing, is inefficient. Figure 3 shows a time distribution

on an NVIDIA K40m of different phases in a naive Lattice
Quantum Chromodynamics (QCD) application written with

OpenACC. Data transfers consume nearly 50% of execution

time, during which no computation is performed. This

execution model wastes GPU and CPU compute resources

during data transfers. Thus, the current standard interface

still has limitations in terms of performance, programmabil-

ity, and memory usage. To understand the pipeline technique

and the impact of stream counts and data sizes, we first

use the Lattice QCD application as a case study on the

NVIDIA Tesla K40m GPU. From Figure 3, we observe that

pipelining achieves a 1.6× speedup for the small test case.

As the problem size grows, the speedup increases, indicating

that larger cases may approach the theoretical upper bound

of 2×, which would be achieved if data transfers and

computation were perfectly overlapped.

We also vary chunk size and number of streams in

Figure 4. These two parameters can significantly affect

performance. The number of streams value is the number of

GPU streams that we use in parallel, which is the number of
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(large test case)

transfers and kernels that may simultaneously be in flight.

More GPU streams could potentially hide more “bubbles”

in the pipeline. However, more GPU streams requires more

scheduling overhead. As we divide the task into multiple

chunks, chunk size determines the size of each chunk and,

thus, the number of chunks. More chunks requires more API

calls, and thus more overhead. Few chunks mean that the

transfers of the first input chunk and the last output chunk,

which cannot be overlapped, are larger and account for more

of the runtime which can degrade performance. Thus, we

vary these parameters to explore the trade-off.

Figure 4 shows the results for the large test case on the

K40m. Using two streams generally performs significantly

better than one, showing the benefits of overlapping data

transfers and computation. However, using more than four

streams offers no further benefit due to increasing API and

scheduling overheads while only slightly increasing potential

overlap. Increasing the chunk size reduces API call and

kernel launch overhead but makes load balancing harder.

Increasing the chunk size usually does not adversely impact

performance. Thus, we can ignore the additional overhead to

use more chunks for this case. The K40m needs two streams

to reach its best performance for this application.

B. 3D Convolution

Many science and engineering applications use convo-

lutions on multi-dimensional periodic data. Applications

include deconvolving blurred images, signal and image

processing, noise suppression, feature extraction, wave prop-

erties modeling and many others [13], [14]. We use the 3D

Convolution benchmark from the Polybenchmark set as an

example on which to evaluate our approach.

Figure 5 present its performance on the K40m. The

Pipelined version achieves 1.45× speedup over the Naive

version. Our prototype also delivers 1.46× speedup over the

Naive version, which provides exactly the same performance

compared to the hand-coded Pipelined version.

Figure 6 shows the memory usage across versions. Since

the default test case of the benchmark is relatively large,

the Naive and Pipelined versions require about 3.5 GB of
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Figure 6: GPU Memory Usage Evaluation

GPU memory. Our Pipelined-buffer version only consumes

93 MB of GPU memory, which means we could save 97% of

device memory. With this huge memory savings, we could

potentially run much larger datasets or keep other useful data

structures in device memory for a larger application.

Figure 7 shows that the number of overlapping streams

affects the performance of the Pipelined version. However,

using two streams no longer delivers the best performance;

we instead need up to eight streams to achieve the best per-

formance. As our results show with our other applications,

the number of streams can significantly affect performance,

but the ideal number of streams varies across applications.

We also find that our prototype uses slightly more memory

as the number of streams increases, because we must pre-

allocate a larger buffer as we increase the number of streams.

Still, we reduce memory use 96% even with eight streams.

Figure 8 (left) shows the performance of the 3D Con-

volution benchmark on the AMD Radeon 7970 GPU. We

first compare the Naive version with the Pipelined version.

The Pipelined version is 57% slower than the Naive version,
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which is significantly different from our NVIDIA K40

results. To understand this difference, we use the AMD APP

Profiler [15] to profile the Pipelined version, which reveals

that data transfer times lead to the significant performance

degradation. Although the data volume that is transferred is

the same, the Pipelined version takes much longer to move

it: the transfer rate for the Naive version is about 6 GB/s

while it is only 2 GB/s for the Pipelined version.

To ameliorate this issue, we vary the chunk size and num-

ber of streams. Our conclusions include that even if more

chunks imply more API call overhead, it can be ignored on

NVIDIA GPUs. However, that overhead is more significant

with the AMD GPU. The AMD APP Profiler results indicate

that the performance degradation arises because:

• We split the task by the outer loop into small chunks,

which means the chunk size is 1 and number of chunks

is the problem size in that dimension, which requires

many API calls and high scheduling overhead;

• Splitting the tasks into small chunks decreases the array

size of each transfer, possibly to below the data transfer

unit size for the AMD GPU, thus limiting bandwidth.

To test our theory, we modify our code to decrease the

number of chunks. We then evaluate the performance of the

Pipelined version versus the Naive version as we vary the

number of chunks. Figure 8 (right) shows that if we split

the problem into only two chunks that we achieve 1.2×
speedup over the Naive version. Performance improves as

we increase the number of chunks until we use nine chunks,

after which it degrades sharply. Performance is worse than

the Naive version using between 20 to 50 chunks and

continues to decline to the default chunk count.

C. Stencil

The Parboil Stencil benchmark represents an iterative

Jacobi solver of the heat equation on a 3-D structured

grid, which can also be used as a building block for more

advanced multi-grid PDE solvers. We implement a prototype

of the stencil benchmark using our approach.

Figure 5 shows the performance evaluation for the stencil

benchmark on the K40m GPU. The Pipelined version,

which uses native OpenACC pragmas to pipeline the kernel

computation and data transfer, achieves 1.57× speedup over

the Naive version. Our Pipelined-buffer version is even

faster than the Pipelined version, even including the time to

handle array indexing and function calls. Our analysis finds

that we only use two streams to implement the Pipelined-

buffer version. However, we assign one stream to handle

each subtask with the OpenACC async() clause, which

indicates that it uses the maximum number of available

GPU streams by default. Although more GPU streams could

potentially hide more bubbles in the pipeline, they require

more scheduling and API calls and can create contention

overhead. Overall, these effects have more overhead than

the benefit from overlapping data transfer and kernel com-

putation. Since these parameters are building blocks of our

schedules, we evaluate their impact, as Figure 7 shows.

We observe that the Pipelined version uses eight (8)

streams by default, which explains its execution time of 6.48

seconds in Figure 5. Further, as we increase the number

of streams, the execution time of the Pipelined version

increases dramatically while our Pipelined-buffer version

remains stable. If we limit the number of streams to two

instead of using the default eight streams, the Pipelined ver-

sion performs best. However, as the stream count increases,

the performance crosses over: with over six streams, the

Pipelined-buffer version is faster. Either pipelined version

provides at least 1.5× speedup over the Naive version.

Figure 6 shows the memory usage of our prototype for

the Stencil benchmark. Our Pipelined-buffer version re-

duces memory consumption nearly 50% compared with the

Pipelined version. Further, the GPU runtime and scheduler,

rather than the data set, consume a large portion of the

memory for this small test case.
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The stream count can significantly affect memory use.

The Pipelined version requires more memory to schedule

the streams and to maintain the corresponding information.

Our Pipelined-buffer version also requires a larger buffer al-

location. Also, memory use increases slightly as we increase

the stream count. Our approach always reduces memory

consumption nearly 50% for the Stencil benchmark.

Figure 8 (left) shows the poor performance of Parboil

Stencil on the AMD HD 7970 with the default number

of chunks. For the Stencil benchmark, the Naive version

is 56% faster than the Pipelined version. We again ver-

ify that reduced effective transfer bandwidth leads to the

performance loss. Figure 8 (right) shows that with two

chunks, the Pipelined version achieves 1.35× speedup over

the Naive version. As we increase the number of chunks

to four, performance improves slightly. With more chunks,

performance degrades until it is the same as the Naive

version between 10 and 20 chunks, after which it becomes

worse. The results with the 3D convolution and Stencil

benchmarks demonstrate that data transfer bandwidth and

API overhead limit the benefit of pipelining on the AMD

GPU. More chunks require more API calls and scheduling

overhead and reduce the chunk size below that required to

maximize data transfer bandwidth.

Overall for the Stencil benchmark, our approach signifi-

cantly reduces memory use while performing competitively

with a hand-coded OpenACC solution. Further, our approach

automates index translation and scheduling, which improves

programmability, thus increasing the key motivation to

use directive-based extensions. We find that stream count

can impede the OpenACC solution. Using too many GPU

streams reduces performance of the Pipelined version, while

our prototype is not sensitive to stream count.

D. Lattice QCD

Quantum Chromodynamics (QCD) is the component of

the standard model of elementary particle physics that gov-

erns the strong interactions. Our Lattice QCD benchmark is

a larger application from the SciDAC Lattice Group. The

main computational subroutine has several parallel regions,

which operate on a high-dimensional lattice. These features

complicate a hand-coded implementation, which indicates

that programmability is particularly important. The problem

size can be formalized by O(Cn4) where C is a relatively

large constant. We evaluate our prototype with three data

sets: n=12 (small), 24 (medium), and 36 (large).

Figure 5 shows the performance of the Lattice QCD code.

In the large test case, our prototype delivers 1.54× speedup

over the Naive version. The huge indexing operation to

map the high-dimensional space to the pre-allocated buffer

probably leads to the performance difference. We pass the

offset variables into the OpenACC kernel region to point to

the corresponding location inside the pre-allocated buffer.

Since the kernel is much larger and contains many more

array element accesses, the index calculations, additional op-

erations inside the kernel, reduce performance compared to

the hand-coded version. Nonetheless, the Pipelined-buffered

version significantly outperforms the Naive one.

Figure 6 shows that compared with the Pipelined version,

our prototype significantly reduces memory use. As we

increase the problem size, the memory savings also increase.

For the largest test case, our approach reduces GPU memory

use up to 79% and achieves competitive performance.

E. Matrix Multiplication benchmark

Matrix multiplication is a fundamental building block

for many scientific computing applications. Moreover, the

algorithmic patterns of matrix multiplication are represen-

tative. In our previous benchmarks, all data transfers are

contiguous. In this section, we use the Matrix-Multiplication

benchmark from Polybenchmark suite as a case study to

investigate the performance of our approach with non-

contiguous data transfers.

We use a naive OpenACC matrix multiplication imple-

mentation from Polybenchmark suite as our “baseline”.

With the matrix multiplication A × B = C, this Naive

implementation assigns one GPU thread to each element in

matrix C. Each GPU thread gathers a line of A and a column

of B and then calculates the corresponding element in C.

Many optimization methods have been developed to im-

prove matrix multiplication performance; matrix blocking

or tiling is an important one. By splitting the matrix into

tiles, the size of each sub-matrix can be controlled to fit

in shared memory. We assign one GPU thread block to

each sub-matrix multiplication after loading the elements

into shared memory. We accumulate these results into C.

Ensuring shared memory use with OpenACC is difficult;

we use the private() and cache() clauses. We denote

this version as the “block-shared” version. Each task only

needs data from a column of blocks in matrix A and a

row of blocks in matrix B. We then apply our previous

approach to this benchmark, partitioning the inputs and tasks

into chunks by columns in A and rows in B. We assign

one GPU stream to each task and copy the necessary data

to a pre-allocated buffer. Mapping columns of blocks in

Matrix A requires non-contiguous data transfers. After that

we launch the computation kernel, and finally pipeline these

GPU streams. This version is our “pipeline-buffer” version.

Figure 9 shows matrix multiplication performance across

versions on an NVIDIA K40 GPU. We observe that the

block-shared version, which uses block partition and shared

memory, can achieve up to 3× speed up over the baseline:

Using shared memory significantly reduces global memory

access. We also observe that our pipeline-buffer version

achieves almost the same performance as the block-shared

version. We then use NVIDIA Visual Profiler to profile these

two versions. We find that since the matrix multiplication is

compute bound, the data transfer takes little time compared
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Figure 10: Matrix Multiplication memory consumption on NVIDIA K40m

to kernel computation. Although non-contiguous data trans-

fers take more time, it can be completely overlapped with the

kernel computation. Thus, the two versions achieve nearly

the same performance.

Figure 10 shows the memory usage of our Matrix Mul-

tiplication versions. Pipelined-buffer significantly reduces

memory consumption. As we increase the problem size, the

memory savings also increase. Since we only split the Matrix

A and B, if the data size is large enough, it reduces memory

use nearly 66% while delivering competitive performance.

This savings allow the Pipelined-buffer to compute, with no

performance loss, problem sizes that exceed GPU memory

for the other two versions, as shown by the two rightmost

problem sizes in Figures 9 and 10.

F. Evaluation Summary and Discussion

We implement a prototype using our approach for the

Parboil Stencil benchmark, the Polybench 3D Convolution

and Matrix Multiplication benchmarks, and a Lattice QCD

application. Our approach significantly reduces GPU mem-

ory use while delivering competitive performance to a hand-

written pipelined version. The complex relationship between

concurrency in data transfers, kernel launching, and stream

scheduling overhead makes optimal performance difficult to

achieve with hand-coded approaches. The trade-off does not

have a constant solution but choosing the wrong values can

adversely impact performance.

In terms of memory consumption, our implementation can

save a huge portion of GPU memory for these benchmarks.

Our results demonstrate that we can save more memory as

the size of the test case increases. This increase in savings is

because splitting the task into multiple sub-tasks decreases

the space complexity of the code by one dimension. For

example, we decrease the space complexity of the Lattice

QCD application from O(n4) to O(Cn3), where C is a

coefficient related to the dimension that we split. Thus, we

can save more memory space with a larger split dimension,

The implementation of our prototype revealed limitations

of OpenACC for this pattern. The naive offloading model,

synchronously copying and executing in sequence, is inef-

ficient. However, manually pipelining the kernel computa-

tion and data transfer significantly reduces programmability.

Moreover, this approach allocates GPU memory based on

the host array size; no ”partial array asynchronous copy”

APIs are available. Thus, regardless of the use of syn-

chronous or asynchronous copies, we must allocate the entire

array in the GPU memory, exactly the same size as on

the host. Our approach, by mixing CUDA and OpenACC

APIs, handling the indexing to map the host array to a

pre-allocated device buffer, and scheduling data movement

and kernels correctly, addresses this problem. Our proposed

extension improves programmability while achieving high

performance and significant reductions in memory use.

We also find that the AMD GPU is sensitive to the number

of chunks that we create, unlike NVIDIA GPUs. Using

more chunks suffers from more API calls and scheduling

overhead. Moreover, if the chunk size is too small, the data

transfer does not achieve full bandwidth.

We also investigate the feasibility of integrating non-

contiguous data transfers into our approach. Our results

shows that although the non-contiguous data transfers take

much longer, they can be perfectly overlapped with compute

bound kernels like matrix multiplication. Our approach

could significantly reduce memory usage while delivering

competitive performance in this case.

Our prototype results show that directive-based program-

ming models for accelerators should include our partitioning

and pipelining extension. This approach significantly im-

proves performance and programmability. It also supports

running applications with huge data sizes without complex

coding changes.

VI. RELATED WORK

In this paper, we design a method to support compiler-

implemented pipelining for data transfer and compute over-

lap in directive-based models such as OpenMP [2] and

OpenACC [4]. Our preliminary work [16] presents some

benefits of this approach. While double buffering, or pipelin-

ing in general, is a common manual optimization, it is

582

IEEE IPDPS, Orlando, Florida, USA, May, 2017



not a common facility of either production programming

models or research prototypes although some have explored

mechanisms that could support it.

Task-based models like OmpSs [17], [18], [19] and

StarPU [20] construct graphs of “tasks” composed of stati-

cally sized chunks of data and computation, which are then

scheduled. A user can achieve overlap by subdividing a

given loop into a number of tasks, as long as they select

the size and translate addresses manually. Our extension

dynamically generates a range of logical tasks from the

representation provided by the user, providing a similar

result but giving the runtime more flexibility.

Higher-level logically global models like Legion [21]

encode the structure of their data and computation as part of

the base model and can apply optimizations like those that

we discuss in their runtimes. The challenge with these is

that they cannot be incrementally applied to existing codes,

requiring significant refactoring if not rewriting. Similarly,

logically global models like Chapel [22] support optimiza-

tion of abstract loop computations through custom domain

maps and other policies, but existing codes must be modified

significantly to use them.

CoreTSAR [23], [24] explores automated coscheduling

between devices with potentially disjoint memory spaces.

CoreTSAR uses mapping functionality that associates data

to computation along a single dimension for certain specific

patterns. Our specifications take similar information to the

array association pattern employed by CoreTSAR. However,

CoreTSAR uses this information to divide computation

across devices rather than to overlap computation and com-

munication and to reduce memory use.

Our extension maps high-dimensional arrays to a low-

dimensional buffer, from non-contiguous to contiguous. Re-

cent studies on MPI libraries such as MVAPICH2 [25], [26],

[27], MPICH2 [28], [29], [30], and OpenMPI [31] provide

such support to pipeline data transfers between PCIe with the

data transfer on high performance interconnects to optimize

bandwidth. Some of the custom data-type facilities of these

libraries provide similar specification facilities to those that

we propose, but differ in that they represent the data type as

a whole rather than as something tied to computation and

thus indexable as part of one.

At the system level, studies such as ADSM [32],

CGCM [33], Spark-GPU [34], and RSVM [35] provide

compiler-based optimizations for data management and

movement between CPUs and GPUs, depending on static or

dynamic compile-time analysis or on programmer supplied

annotations. Our extension provides an interface to map data

from high dimensional host arrays to low dimensional device

buffers, which significantly simplifies the use and application

of those optimizations.

Current compute nodes with over 256-GB system memory

support large memory applications like weather forecasting.

However, current GPUs only have 5GB to 12GB of discrete

GPU memory, a major obstacle in porting these applica-

tions to accelerators. Beyond the size restrictions imposed

by accelerators, neither OpenMP nor OpenACC have any

mechanism to deal with an out-of-memory situation on the

device. When one occurs, the user cannot recover from

the associated error. Our extension not only improves the

usability of streaming kernels on these platforms, but also

codee portability by making it more resilient to changes in

device memory sizes.

VII. CONCLUSION

In this paper we propose a directive-based pipelining

extension for offload models such as OpenMP 4.X and Ope-

nACC. Our extension allows GPU programmers to pipeline

data transfers without major refactoring, thus automating

overlap of computation and communication. Further, map-

ping subsections of the host array to a device buffer reduces

memory requirements. To show the benefits of our design,

we choose four applications: the Stencil benchmark from the

Parboil suite, the 3D Convolution and Matrix Multiplication

benchmarks from the Polybenchmark set, and a SciDAC

Lattice QCD application. We extend them with our prototype

runtime and present a detailed evaluation that compares the

programmability, performance and GPU memory consump-

tion of our approach to that of a naive OpenACC version.

Our results show that our extension can significantly

reduce memory consumption and deliver excellent perfor-

mance. The memory savings of our approach increase with

problem size. Moreover, our implementation is less sensitive

to the number of streams used than a typical hand-coded

pipelining solution; choosing the wrong stream count can

significantly degrade performance with the Pipeline version.

Our prototype implementation already shows the benefit

of our directive-based pipelining extension, in terms of

programmability, performance and memory consumption for

some specific applications. We will continue this work by

investigating more benchmarks and use-cases for our ex-

tension. Currently, our experiments use NVIDIA and AMD

GPUs; we will test and analyze our approach on other sys-

tems, such as Intel Xeon Phi co-processors, and even multi-

nodes with different accelerators. We are also considering a

source-to-source translator based on our previous work [23],

[24]. The current extension is still in the early stages in how

to define dependencies. We will design a function-based ex-

tension that allows the developer to pass in a function pointer

to improve that functionality. Integrating powerful compiler-

level code analysis and optimization could significantly

improve performance, especially for the indexing and API

call overhead. Finally, we will further study how the other

parameters affect our design and integrate a performance

model in an autotuning scheduler.
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