
Experiences with VITIS AI for
Deep Reinforcement Learning

Nabayan Chaudhury
Department of CS

Virginia Tech
Blacksburg, VA, USA
nabayanc@vt.edu

Atharva Gondhalekar
Department of ECE

Virginia Tech
Blacksburg, VA, USA
atharva1@vt.edu

Wu-chun Feng
Department of CS and ECE

Virginia Tech
Blacksburg, VA, USA
wfeng@vt.edu

Abstract—Deep reinforcement learning has found use cases
in many applications, such as natural language processing, self-
driving cars, and spacecraft control applications. Many use cases
of deep reinforcement learning methodologies impose additional
restrictions on the underlying hardware that runs policy evalua-
tion algorithms. For example, in many mission-critical systems,
the deployment of reinforcement learning often requires inference
with low latency and high accuracy. Recent studies in machine
learning have explored the impact of pruning the trained network
and shown that pruning the network can improve the accuracy
and performance of the inference. Inspired by the recent studies
on the effects of pruning trained networks, this work explores
the efficacy of the network pruning technique via the AMD Vitis
AI toolchain for reinforcement learning models.

In particular, we evaluate the soft actor-critic (SAC) model that
is trained to solve the MuJoCo humanoid environment, where the
objective of the humanoid agent is to learn a policy that allows
it to stay in motion for as long as possible without falling over.
During the training phase, we prune the model using the weight
sparsity pruner from the Vitis AI optimizer at different timesteps.
Our experiments show that pruning leads to an improvement in
the reinforcement learning policy evaluation, where the trained
agent can remain mobile in the environment and accumulate
higher rewards compared to a trained agent without pruning.
Specifically, we observe that pruning the network during training
can deliver up to 23% higher reward and 20% better mean
episode length compared to a network without any pruning.

Index Terms—reinforcement learning, humanoid, MuJoCo,
network pruning, FPGA, GPU, Vitis AI

I. INTRODUCTION

In recent years, deep reinforcement learning (DRL) has
found use cases in applications such as self-driving cars [1],
natural language processing [2], and mission-critical tasks such
as landing a spacecraft on celestial bodies [3]. Low-latency
decision-making while maintaining the quality of solutions in
resource and power-constrained environments is critical to the
success of DRL algorithms in many applications, making fast
and accurate DRL policy evaluation desirable.

Recent studies in the area of machine learning (ML) have
explored the impact of pruning the trained network on the
accuracy and performance of inference [4]–[6]. The process of

The work detailed herein has been supported in part by NSF I/UCRC
CNS-1822080 via the NSF Center for Space, High-performance, and Resilient
Computing (SHREC).

Fig. 1: Pruning a deep neural network using Vitis AI

pruning neural networks typically involves removing the con-
nections between network layers, based on a pruning policy.
Pruning has been shown to reduce the amount of computation
necessary to generate the output of the inference, and in many
cases, maintain the accuracy of the inference [4], [5]. Figure 1
shows an example of pruning a neural network using Vitis
AI [7], a software stack developed by AMD for neural network
inference on field-programmable gate arrays (FPGAs). In this
work, we evaluate the efficacy of a weight sparsity pruner from
the Vitis AI toolchain for the DRL model. We evaluate the soft
actor-critic (SAC) model that is trained to solve the MuJoCo
humanoid environment [8], where the humanoid agent learns
a policy with the objective of remaining in a healthy state (i.e.,
remaining in motion) for as long as possible without falling
over. We analyze the impact of pruning the network at various
stages of the training phase and measure the performance of
pruned networks using quantitative measures such as mean
reward and mean episode length. We evaluate the performance
impact of model pruning on an Nvidia RTX 3090 GPU,
providing us insight into model pruning for DRL networks.

In all, we make the following contributions in this paper.
• Application of Vitis AI to prune DRL networks for higher

reward and better mean episode length.
• Rigorous evaluation of the efficacy of pruning the trained

model at various stages during the training phase.
• Up to 23% higher reward and 20% higher (i.e., better) mean

episode length compared to the neural network without any
pruning.

The rest of the paper is organized as follows: §II outlines re-
lated work on DRL, neural network pruning, and Vitis AI. §III
describes the off-policy DRL along with simulated physics

HPEC 2024, Virtual



environments and the scope of Vitis AI. §IV articulates the
MuJoCo humanoid environment. §V presents our evaluation
on the the impact of pruning during the training and policy
evaluation phases. Finally, §VI describes future directions for
this work while §VII provides a conclusion to this work.

II. RELATED WORK

We present related work in three parts: (1) reinforcement
learning methods for the MuJoCo humanoid environment, (2)
prior work on exploring the effects of pruning in machine
learning, and (3) existing studies that make use of Vitis AI.

A. Reinforcement Learning (RL) in MuJoCo Environment

Multi-joint dynamics with contact, or MuJoCo for short, is
a general-purpose physics environment developed by Google-
Deepmind [9]. This work focuses on the humanoid environ-
ment within MuJoCo, where the objective of the humanoid
agent is to remain in a healthy state characterized by a
continuous state of motion without falling over. The MuJoCo
environment has been extensively used in machine-learning
(ML) research. Wen et al. [10] use the MuJoCo environment to
evaluate their multi-agent transformer network that casts multi-
agent reinforcement learning (RL) into a sequence modeling
problem. Shao et al. [11] present design-space exploration
techniques for hardware acceleration of RL policy training
and evaluate their hardware accelerator using MuJoCo en-
vironments. Liang et al. [12] present GPU-accelerated RL
simulations using the MuJoCo environment.

B. Pruning in Machine Learning

Hoefler et al. [4] survey many approaches to prune neural
networks and explore multiple training strategies to achieve
model sparsity. Chaturvedi et al. [5] explore the effects of
introducing sparsity in a densenet and deconvolution network
(DDNet). Obando-Ceron et al. [6] demonstrate that by remov-
ing network parameters during reinforcement learning (RL)
policy training, it is possible to perform policy evaluations
with better accuracy than evaluations with dense network
counterparts. Inspired by the aforementioned studies, this work
evaluates the impact of pruning DRL networks using Vitis AI.

C. Vitis AI

Vitis AI is a software stack developed by AMD for accel-
erating artificial intelligence inference on AMD FPGAs [7].
Ushiroyama et al. [13] use Vitis AI to implement convolutional
neural network on FPGAs. Cabrera et al. [14] use Vitis AI for
performing errant beam detection on AMD FPGAs.

Our work differs from these prior studies in the following
ways. First, while Vitis AI is primarily focused on optimizing
the trained networks for FPGAs, we show and evaluate our
pipeline that integrates Vitis AI components with a GPU im-
plementation. Second, while the effects of pruning, the use of
Vitis AI, and DRL in the MuJoCo environment are individually
well-explored subjects, we evaluate the multiplicative impact
of pruning DRL networks for MuJoCo environments using
Vitis AI.

III. BACKGROUND

A. Off-Policy Reinforcement Learning and Soft Actor-Critic

Reinforcement learning (RL) is a branch of machine learn-
ing (ML), where an agent learns to make optimal decisions
by interacting with an environment and with the goal of maxi-
mizing a cumulative reward [15]. Deep reinforcement learning
(DRL) combines RL with deep learning (DL), allowing deep
neural networks to learn the policy from instances of the
environment without constructing a complete state space of the
environment. The general training mechanism in RL involves
the agent making decisions in the environment, receiving
rewards, and updating its policy to maximize cumulative
rewards over time. Formally, the reinforcement learning (RL)
problem can be defined as a policy search in a Markov decision
process (MDP) defined by a tuple (S,A, P,R, γ), where S is
the set of states, A is the set of actions, P represents the
state transition probabilities, R is the reward function, and γ
is the discount factor. The objective of the agent is to learn
a policy π(a | s) that maximizes the expected cumulative
reward, defined as the return Gt:

Gt =

∞∑
k=0

γkRt+k+1 (1)

where Rt+k+1 is the reward received k + 1 steps after time
t, and γ ∈ [0, 1) is the discount factor that determines the
importance of future rewards. The goal is to find the optimal
policy π∗ that maximizes the expected return from any initial
state s0:

π∗ = argmax
π

E[Gt | π] (2)

State- and action-value functions estimate the expected return,
and these three sets of equations govern the learning objective.
The state-value function Vπ(s) and the action-value function
Qπ(s, a) are defined as:

Vπ(s) = Eπ[Gt | St = s] (3)

Qπ(s, a) = Eπ[Gt | St = s,At = a] (4)

As the agent spends time performing actions in the environ-
ment, it updates its policy and value estimates iteratively as a
coupled optimization objective.

RL algorithms can be designed in several ways. Online rein-
forcement learning involves continuous interaction of the agent
with the environment, which allows the agent to learn and
update its policy in real time. This enables the agent to adapt
quickly to environment changes. Examples include Q-learning
(DQN) [16] and actor-critic algorithms [17], [18]. Offline
reinforcement learning, in contrast, utilizes pre-collected data
to train the agent, where the agent has no further interactions
with the environment. Offline algorithms, naturally can run
into suboptimal policy performance when the agent encounters
novel states [19]. Notable offline algorithms include conser-
vative Q-learning (CQL) [20] and batch-constrained deep Q-
learning (BCQN) [21].

HPEC 2024, Virtual



In addition, algorithms can be either on-policy or off-
policy. On-policy algorithms, like proximal policy optimiza-
tion (PPO) [22] update the policy based on actions taken by the
current policy. These methods require consistent interaction
with the environment to get accurate policy updates, but they
have a tendency to explore the environment less as they
rely on the current policy’s knowledge of the environment.
In contrast, off-policy algorithms learn from actions outside
the current policy, encouraging exploration and improving
sample efficiency as the agent can learn from a diverse set
of actions [18], [23], [24].

Our choice of algorithm is motivated by our interest in
real-world, physics-based scenarios with large action spaces
and complex environments, for which online, off-policy, and
model-free algorithms are particularly advantageous. This led
us to select soft actor critic (SAC) [18] for our experiments.
SAC maximizes a tradeoff between the expected reward and
the entropy of the policy, which promotes exploration and
prevents premature convergence to suboptimal policies.

B. Simulated Physics Environments

Once the RL algorithms have been trained, it is essential
to have a method for benchmarking them in a controlled,
reproducible setting without interacting with the real world.
Such environments are generally dynamical systems with com-
plex control laws, like rigid body dynamical systems (objects
that do not deform and interact through collisions and forces)
and articulated body dynamical systems (interconnected rigid
bodies that exhibit human or animal motion). These systems
have their own action space (which is a superset of the policy
action space A) and observation space (which is a superset of
the policy state space S), where:

• Action space of the system (AS): set of all possible
actions an agent can take in the environment.

• State space of the system (SS): set of all possible con-
figurations of the environment.

Continuous action spaces consist of a range of values
in a given interval as control inputs and closely emulate
real-world, physics-based application scenarios. For example,
the Multi-joint dynamics with contact (MuJoCo) [25] engine
provides several such articulated rigid body continuous control
environments that are of interest to this study. Discrete action
spaces consist of a finite set of actions, where each action is
represented as a single binary choice, making the space lower-
dimensional. This simplifies the decision-making process but
may not capture the complexity of actions required in a more
sophisticated environment [26].

C. Vitis AI

Figure 2 describes Vitis AI, a comprehensive development
stack developed by AMD for accelerating artificial intelligence
(AI) inference on AMD hardware, including FPGAs (field-
programmable gate arrays) and SoCs (system on a chip) [7]. It
is designed with efficiency and acceleration in mind, allowing
users to deploy accelerated machine learning models on AMD
FPGAs. It provides an end-to-end solution — from model

optimization to deployment — where users can get high
performance, low latency, and efficient resource utilization.
Figure 2 shows the following key components of Vitis AI (or
VAI for short):

• VAI Model Zoo: A set of pre-trained and optimized
models that can be easily deployed on AMD FPGA
devices.

• VAI Optimizer: A tool capable of performing pruning on
AI models, reducing model size, and improving inference
speed without affecting accuracy. This paper focuses on
this particular tool.

• VAI Quantizer: A tool that quantizes AI models by
reducing precision from fp32 (single-precision floating
point) to lower precision formats like int8, accelerating
computation and reducing memory usage.

• VAI Compiler: A tool that compiles the reduced model
into a deployable model supported by AMD FPGA
hardware, e.g., AMD Deep-Learning Processing Unit
(DPU) [7].

• VAI Profiler: An application-level tool that allows for
thorough profiling of deployable models for inference,
giving insights into further optimizations for maximum
performance.

• VAI Library: A library of APIs for easy utilization of the
VAI software stack. It supports models in the Model Zoo
as well as custom models.

• VAI Runtime: A runtime environment that executes com-
piled models on AMD FPGA hardware and capable of
efficient resource allocation and task scheduling.

• Deep-Learning Processing Units (DPUs): General-
purpose AI inference accelerators that target convolution
neural networks (CNNs), allowing for simultaneous de-
ployment and inference.

Vitis AI provides a comprehensive software platform for de-
ploying AI models for inference and supports trained models
in both PyTorch and TensorFlow. The deployment pipeline
typically follows the optimization step, where the optimizer
prunes the network and the quantizer reduces precision, in-
creasing memory usage and inference speed. Then, the Model
Inspector and Compiler allow users to manually modify details
of the model to ensure successful deployment on the DPUs,
following which the runtime system allows for efficient in-
ference. In short, Vitis AI provides the following benefits:
(1) improved model inference while adhering to hardware
restrictions, (2) scalability, as it supports a range of hardware
from low-power devices to datacenter accelerators, ajd (3)
compatibility with different deep-learning frameworks and
model architectures.

To date, Vitis AI has been used to implement convolutional
neural networks [29], accelerate existing object detection al-
gorithms [30], and perform embedded object detection with
custom model architectures [31]. In all cases, the reported
results highlight a significant decrease in power consumption
and increase in throughput. Additionally, model quantization
has been shown to increase robustness against adversarial ex-

HPEC 2024, Virtual



� Vitis AI components used in this work

Fig. 2: Vitis AI: Unified AI inference solution stack [7], [27], [28]

amples [32], and the Vitis AI development stack has been used
in real-world errant beam detection, showing fast performance
and high accuracy [33].

IV. CASE STUDY: MUJOCO HUMANOID

In this section, we use the “multi-joint dynamics with
contact” environment (i.e., MuJoCo) as our case study to
illustrate the efficacy of Vitis AI.

A. Environment

The MuJoCo humanoid environment simulates a 3D bipedal
humanoid robot designed to mimic human locomotion [34].
Figure 3 shows the humanoid agent in different states that it
can end up in through an episode of training [8]. The robot
consists of a torso with a pair of legs and arms. Each leg has
three segments (thigh, shin and foot), and each arm has two
segments (upper and lower arm).

The primary goal in this environment is to control the
humanoid to walk or run as far as possible without falling.
The following summarizes the action and state spaces:

• Action Space:
– Type: Continuous
– Dimension (Degrees of freedom): 17
– Range: Box(-0.4, 0.4, (17,), float32)
– Description: The action space is defined by the torques

acting at each of the humanoid’s joints
• Observation Space:

– Type: Continuous
– Dimension: 376
– Range: Box(-inf, inf, (376,), float64)

– Description: The observation space consists of the
position and velocity values of the various joints and
body parts. These in turn define the state the humanoid
is in at any given time.

The reward structure in the humanoid encourages stable and
efficient locomotion. It is divided into a healthy reward that is
a fixed reward for every timestep that the humanoid remains
standing, a forward reward that is calculated based on the
forward displacement of the humanoid’s center of mass and
encourages forward movement, a control cost penalty for
using excessive control forces, and a contact cost penalty for
high external forces. This naturally translates to locomotion
being human-like and not forced by excessive inputs. Each
episode terminates when either the humanoid reaches 1,000
timesteps, or the humanoid becomes unhealthy, signified by
the z-coordinates of the torso falling outside a healthy range.
Because the goal of the agent is to keep walking as long as
possible, performance evaluation can be done by measuring
the average episode lengths and average cumulative rewards.
If the episodes run for longer timesteps, the cumulative reward
increases and the agent is capable of walking further.

B. Algorithm

For the purpose of our experiments, we use the Stable-
Baselines 3 (SB3) library and its implementation of the Soft
Actor-Critic Algorithm (SAC) [18], [35]. SB3 provides a
comprehensive set of algorithm implementations for fast devel-
opment and deployment, while supporting custom policy net-
works and in-house benchmarking and evaluation. We choose
SAC because of its model-free, off-policy, and online nature,
making it ideal for solving large, physics-based environments

HPEC 2024, Virtual



(a) Squatting (b) Running (c) Prone (d) Supine

Fig. 3: MuJoCo [8], [9] humanoid exhibiting different poses

that require exploration to reach an optimal policy. We train
the agent using SAC for a total of 100,000 timesteps in each
experiment, pruning the model after we reach 10%, 20%, 50%,
75% and 100% of training timesteps. Pruning is done using the
Sparse Pruner from the Vitis AI Optimizer, setting the weight
sparsity to 0.5. The complete details of the algorithm can be
found in Algorithm 1.

Algorithm 1: Training and pruning SAC model on
MuJoCo humanoid with Vitis AI

Input : Total timesteps TOTAL_TIMESTEPS,
Pruning timestep PRUNING_TIMESTEP,
Number of evaluation episodes
NUM_EVAL_EPISODES

Output: Trained and pruned SAC model, Evaluation
results

Data: Training and evaluation environments, SAC
model, Vitis AI optimizer, Callbacks

1 Initialize: Training and evaluation environments,
action noise, SAC model, and callbacks;

2 for timestep← 0 to TOTAL_TIMESTEPS - 1 do
3 if timestep == PRUNING_TIMESTEP then
4 Prune the model using Vitis AI Optimizer with

specified sparsity;
5 end
6 end

7 for episode← 0 to NUM_EVAL_EPISODES - 1 do
8 Evaluate the trained model for one episode;
9 Log episode results (rewards, episode lengths);

10 end

V. EVALUATION

We evaluate the performance of six different SAC models
trained on the MuJoCo Humanoid-v4 environment on an
NVIDIA RTX 3090 GPU by running each policy on 100
unique evaluation environments to ensure robustness of results.
Our trained models are in PyTorch, and we use 100 unique
instances of the MuJoCo Humanoid for each model as our
evaluation environments.

The models under evaluation are as follows:
• Baseline (no pruning)

TABLE I: Summary of training and inference performance for
humanoid environment

Model
Training

time
(seconds)

Evaluation
time

(seconds)

Mean
cumulative

reward

Mean
episode
length

SAC baseline
(without pruning)

890.60 11.78 644.99 131.07

SAC pruned
after 10000 (10%) timesteps

1018.86 13.28 646.67 128.85

SAC pruned
after 20000 (20%) timesteps

1038.79 14.19 781.34 139.47

SAC pruned
after 50000 (50%) timesteps 978.01 16.72 812.62 159.68

SAC pruned
after 75000 (75%) timesteps

946.83 13.75 662.24 131.31

SAC pruned
after 100000 timesteps/full training

894.58 14.18 696.99 134.54

Mean reward and mean episode length: higher is better
Training and evaluation time measured on NVIDIA RTX 3090 GPU.

• Policy network pruned after 10% training timesteps
• Policy network pruned after 20% training timesteps
• Policy network pruned after 50% training timesteps
• Policy network pruned after 75% training timesteps
• Policy network pruned after 100% training timesteps, i.e

after the model has trained to completion.

Model performance is measured by the mean cumulative
reward and the mean episode length. Better policy evaluation
is indicated by larger mean rewards and longer episode lengths
as the agent can stay in a ‘healthy state’ for an extended period,
where it can remain in motion without falling over. Figure 4
shows the accumulated reward evolution over time during the
training process for the baselines compared to models pruned
at a specific timestep.

These trained policies are each run on 100 evaluation
environment, with the values for mean accumulated rewards
and mean episode lengths reported in Table I. Note that
the training times increase due to the pruning process itself
requiring some overhead, and the evaluation time increases
with improved performance as the agent under optimal policy
now spends more time in the environment and accumulates
higher rewards. Figures 5a and 5b show the distributions of
rewards and episode lengths of the 100 evaluation instances.

In particular, pruning the model halfway through the train-
ing process leads to a model with the best evaluation per-
formance overall, suggesting a trade-off point where the pre-
trained, non-pruned model after pruning can generalize quickly

HPEC 2024, Virtual



Timestep when the pruning is performed

Fig. 4: Training reward evolution over time

with sufficient further training.
Overall, the results indicate that model pruning generally

improves the evaluation performance of SAC models in the
MuJoCo Humanoid environment and that there exists an
optimal pruning timestep where performance gains can be
maximized.

VI. FUTURE WORK

We plan to extend our investigation into the other steps
of the Vitis AI toolchain, specifically the quantizer and the
compiler. We want to apply the complete Vitis AI workflow to
several off-policy, online deep reinforcement learning (DRL)
algorithms and observe the following:

• Model Optimization: We plan to investigate more ad-
vanced pruning techniques offered by the Vitis AI Op-
timizer, like Iterative Pruning and Once-for-All (OFA)
pruning, which are more data-aware and require iterative
refinement.

• Model Quantization: We plan to investigate the different
quantization techniques offered by the Vitis AI Quan-
tizer, calibrating them to obtain minimum precision while
maintaining model performance.

• Model Compilation and Deployment: Pruned and quan-
tized models need to be compiled and deployed to the
Deep Learning Processing Units (DPUs) to fully leverage
the acceleration capabilities provided by Vitis AI. This
will need careful mapping to the target hardware and
thorough investigation into the Xilinx runtime library
(XRT).

• Evaluation on Hardware: We plan to implement the
policy evaluation using the deep-learning processor unit
(DPU) and compare the performance of DPUs with our
existing results.

• Extension to Other DRL Algorithms: While our study
focused on SAC, there exist several other state-of-the-
art algorithms that should be deployed and evaluated
for generalization to different classes of learning tasks,

including Proximal Policy Optimization (PPO) [22], Ad-
vantage Actor Critic (A2C) [36], and Twin-Delayed
DDPG (TD3) [37].

VII. CONCLUSION

In this study, we explore the impact of model pruning on the
performance of Soft Actor-Critic (SAC) algorithms trained on
the MuJoCo Humanoid environment. We employ the Sparse
Pruner Optimizer from the Vitis AI toolchain at various stages
of the training process to investigate the effect of pruning
on accumulated rewards and episode lengths and evaluate
these models on 100 unique evaluation environments each
to ensure robustness. All models were trained and evaluated
on an Nvidia GTX 3090 GPU. Our findings indicate that
pruning generally enhances the performance of SAC models.
Specifically, pruning at 50% of the total timesteps resulted in
a 23% increase in accumulated rewards and 20% increase in
episode lengths, which is the maximum observed performance
improvement, suggesting that this interval may strike an favor-
able balance between sufficient training and effective pruning.
However, it is important to note that this observation is based
on empirical evidence from a limited set of pruning intervals.

Through this study, we aim to provide a foundation for fur-
ther research into the Vitis AI toolchain for deep reinforcement
learning inference. In future work, we plan to incorporate other
steps in the toolchain: model quantization, compilation and
deployment to FPGA hardware for inference, and compare
performance to traditional CPU and GPU implementations.
Furthermore, we plan to include other state-of-the-art deep RL
algorithms in our analysis, such as Proximal Policy Optimiza-
tion (PPO), Advantage Actor Critic (A2C) and Twin-Delayed
DDPG (TD3).

ACKNOWLEDGEMENT

The work was supported in part by NSF I/UCRC CNS-
1822080 via the NSF Center for Space, High-performance,
and Resilient Computing (SHREC).

REFERENCES

[1] A. R. Fayjie, S. Hossain, D. Oualid, and D.-J. Lee, “Driverless Car:
Autonomous Driving Using Deep Reinforcement Learning in Urban
Environment,” in 2018 15th International Conference on Ubiquitous
Robots (UR), 2018, pp. 896–901.

[2] V. Uc-Cetina, N. Navarro-Guerrero, A. Martin-Gonzalez, C. Weber, and
S. Wermter, “Survey on reinforcement learning for language processing,”
Artificial Intelligence Review, vol. 56, no. 2, pp. 1543–1575, Feb 2023.
[Online]. Available: https://doi.org/10.1007/s10462-022-10205-5

[3] S. Gadgil, Y. Xin, and C. Xu, “Solving The Lunar Lander Problem under
Uncertainty using Reinforcement Learning.”

[4] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, “Sparsity
in deep learning: pruning and growth for efficient inference and training
in neural networks,” J. Mach. Learn. Res., vol. 22, no. 1, jan 2021.

[5] A. Chaturvedi, G. Cao, and W. chun Feng, “Optimizing Deep Learning
for Biomedical Imagin,” in International Conference on Computational
Advances in Bio and medical Sciences, December 2023.

[6] J. Obando-Ceron, A. Courville, and P. S. Castro, “In value-based deep
reinforcement learning, a pruned network is a good network,” 2024.
[Online]. Available: https://arxiv.org/abs/2402.12479

[7] (2024) Vitis AI. Advanced Mirco Devices (AMD). [Online]. Available:
https://github.com/Xilinx/Vitis-AI

HPEC 2024, Virtual



(a) Accumulated rewards (b) Episode lengths

Fig. 5: Policy evaluations for networks pruned at different timesteps

[8] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[9] Google-Deepmind. (2024) MuJoCo. [Online]. Available: https://github.
com/google-deepmind/mujoco

[10] M. Wen, J. Kuba, R. Lin, W. Zhang, Y. Wen, J. Wang, and Y. Yang,
“Multi-Agent Reinforcement Learning is a Sequence Modeling
Problem,” in Advances in Neural Information Processing Systems,
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
Eds., vol. 35. Curran Associates, Inc., 2022, pp. 16 509–16 521.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2022/file/69413f87e5a34897cd010ca698097d0a-Paper-Conference.pdf

[11] S. Shao, J. Tsai, M. Mysior, W. Luk, T. Chau, A. Warren, and
B. Jeppesen, “Towards Hardware Accelerated Reinforcement Learning
for Application-Specific Robotic Control,” in 2018 IEEE 29th Inter-
national Conference on Application-specific Systems, Architectures and
Processors (ASAP), 2018, pp. 1–8.

[12] J. Liang, V. Makoviychuk, A. Handa, N. Chentanez, M. Macklin,
and D. Fox, “GPU-Accelerated Robotic Simulation for Distributed
Reinforcement Learning,” in Conference on Robot Learning, 2018.
[Online]. Available: https://api.semanticscholar.org/CorpusID:53084610

[13] A. Ushiroyama, M. Watanabe, N. Watanabe, and A. Nagoya, “Convo-
lutional neural network implementations using vitis ai,” in 2022 IEEE
12th Annual Computing and Communication Workshop and Conference
(CCWC), 2022, pp. 0365–0371.

[14] A. M. Cabrera, Y. A. Yucesan, F. Y. Liu, W. Blokland, and J. S. Vetter,
“Errant Beam Detection Using the AMD Versal ACAP and Vitis AI,” in
2023 IEEE High Performance Extreme Computing Conference (HPEC),
2023, pp. 1–6.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, 2nd ed. The MIT Press, 2018. [Online]. Available:
http://incompleteideas.net/book/the-book-2nd.html

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb 2015. [Online]. Available: https://doi.org/10.1038/nature14236

[17] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in Advances
in Neural Information Processing Systems, S. Solla, T. Leen,
and K. Müller, Eds., vol. 12. MIT Press, 1999. [Online].
Available: https://proceedings.neurips.cc/paper files/paper/1999/file/
6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

[18] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor.” in ICML, ser. Proceedings of Machine
Learning Research, J. G. Dy and A. Krause, Eds., vol. 80.
PMLR, 2018, pp. 1856–1865. [Online]. Available: http://dblp.uni-
trier.de/db/conf/icml/icml2018.html#HaarnojaZAL18

[19] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,”

ArXiv, vol. abs/2005.01643, 2020. [Online]. Available: https://api.
semanticscholar.org/CorpusID:218486979

[20] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-
learning for offline reinforcement learning,” in Proceedings of the 34th
International Conference on Neural Information Processing Systems, ser.
NIPS ’20. Red Hook, NY, USA: Curran Associates Inc., 2020.

[21] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International Conference on Machine
Learning, 2018. [Online]. Available: https://api.semanticscholar.org/
CorpusID:54457299

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms.” CoRR, vol. abs/1707.06347,
2017. [Online]. Available: http://dblp.uni- trier.de/db/journals/corr/
corr1707.html#SchulmanWDRK17

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep
reinforcement learning.” in ICLR, Y. Bengio and Y. LeCun, Eds., 2016.
[Online]. Available: http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#
LillicrapHPHETS15

[24] S. Dankwa and W. Zheng, “Twin-delayed ddpg: A deep reinforcement
learning technique to model a continuous movement of an intelligent
robot agent,” in Proceedings of the 3rd International Conference on
Vision, Image and Signal Processing, ser. ICVISP 2019. New York,
NY, USA: Association for Computing Machinery, 2020. [Online].
Available: https://doi.org/10.1145/3387168.3387199

[25] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012, pp. 5026–5033.

[26] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016, cite arxiv:1606.01540.
[Online]. Available: http://arxiv.org/abs/1606.01540

[27] G. Jocher, A. Stoken, J. Borovec, NanoCode012, ChristopherSTAN,
L. Changyu, Laughing, tkianai, A. Hogan, lorenzomammana, yxNONG,
AlexWang1900, L. Diaconu, Marc, wanghaoyang0106, ml5ah, Doug,
F. Ingham, Frederik, Guilhen, Hatovix, J. Poznanski, J. Fang, L. Y. ,
changyu98, M. Wang, N. Gupta, O. Akhtar, PetrDvoracek, and P. Rai,
“ultralytics/yolov5: v3.1 - Bug Fixes and Performance Improvements,”
Oct. 2020. [Online]. Available: https://doi.org/10.5281/zenodo.4154370

[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[29] A. Ushiroyama, M. Watanabe, N. Watanabe, and A. Nagoya, “Convo-
lutional neural network implementations using vitis ai,” in 2022 IEEE

HPEC 2024, Virtual



12th Annual Computing and Communication Workshop and Conference
(CCWC), 2022, pp. 0365–0371.

[30] J. Wang and S. Gu, “Fpga implementation of object detection accelerator
based on vitis-ai,” in 2021 11th International Conference on Information
Science and Technology (ICIST), 2021, pp. 571–577.

[31] M. Machura, M. Danilowicz, and T. Kryjak, “Embedded object
detection with custom littlenet, finn and vitis ai dcnn accelerators,”
Journal of Low Power Electronics and Applications, vol. 12, no. 2,
2022. [Online]. Available: https://www.mdpi.com/2079-9268/12/2/30

[32] Y. Fukuda, K. Yoshida, and T. Fujino, “Evaluation of model quantization
method on vitis-ai for mitigating adversarial examples,” IEEE Access,
vol. 11, pp. 87 200–87 209, 2023.

[33] A. M. Cabrera, Y. A. Yucesan, F. Y. Liu, W. Blokland, and J. S. Vetter,
“Errant beam detection using the amd versal acap and vitis ai,” in 2023
IEEE High Performance Extreme Computing Conference (HPEC), 2023,
pp. 1–6.

[34] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of

complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2012, pp. 4906–4913.

[35] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22, no.
268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/20-
1364.html

[36] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lil-
licrap, D. Silver, and K. Kavukcuoglu, “Asynchronous methods for
deep reinforcement learning,” in Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume
48, ser. ICML’16. JMLR.org, 2016, p. 1928–1937.

[37] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” arXiv preprint arXiv:1802.09477,
2018.

HPEC 2024, Virtual


