
Optimizing Deep Learning
for Biomedical Imaging

Ayush Chaturvedi1, Guohua Cao2, and Wu-chun Feng1

1 Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
{ayushchatur,wfeng}@vt.edu

2 School of Biomedical Engineering, ShanghaiTech University, Shanghai, CHINA
caogh@shanghaitech.edu.cn

Abstract. With the significant increase in the use of deep learning (DL)
for biomedical imaging, the corresponding DL models have become in-
creasingly complex and computationally intensive to achieve high ac-
curacy. This work presents both architecture-aware optimizations and
sparsity optimizations to efficiently utilize underlying parallel hardware
resources and reduce the computational demand of DL models while
maintaining their accuracy. We demonstrate the efficacy of our opti-
mization techniques on an existing DL model in the biomedical domain,
i.e., DDNet, short for Densenet and Deconvolution Network, that is de-
signed to enhance the quality of CT images. Overall, our optimization
techniques in concert reduce the total training time by 1.94× while main-
taining accuracy.
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1 Introduction

Computed tomography (CT) has been pivotal in detecting abnormalities within
the human body. With recent advances in artificial intelligence (AI) and the
availability of open-source CT image datasets, deep learning (DL) models are
actively being trained to help detect abnormalities in CT images [10, 15, 21]. The
accuracy of these DL models depends heavily on the quality of CT images in
the datasets, which, in turn, correlate to amount of radiation dosage from a CT
scan. While a standard-dosage CT scan can generate high-quality CT images,
it increases the attributable risk of death from cancer by up to 0.1% [2]. Thus,
medical institutions worldwide use a low-dosage CT (LDCT) scan, resulting in
low-quality CT images. In turn, scientists rely on DL models to improve the
quality of CT images generated from low-dosage CT scans [9, 14, 23]. However,
these LDCT images further exacerbate the computational needs of DL, as train-
ing these DL models requires substantial data and state-of-the-art computing
resources. Thus, optimization techniques are needed to train these DL models
more efficiently with fewer computational resources. To this end, we apply and
demonstrate our optimization techniques on our DL image enhancement model
called DDNet [27], short for Densenet and Deconvolution Network.
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Fig. 1 shows the auto-encoder-decoder architecture of DDNet, consisting of a
convolution network and deconvolution network, both connected via skip connec-
tions. The convolution network features four denseblocks [11], each containing
five densely connected convolution layers for efficient feature extraction. Along
with the dense blocks, the network consists of 37 convolution layers in total.
The images used to train the network model consist of high-quality (HQ) and
low-quality (LQ) chest CT images of size 512 × 512 in 32-bit grayscale. For
the loss computation, the network uses a complex loss function that combines
the mean square error (MSE) and multi-scale structural similarity index metric
(MS-SSIM) [25].

Fig. 1. Architecture of DDNet.

While DDNet improves the quality of chest CT scans and, in turn, results in
better COVID-19 detection [8], its architecture requires very large GPU memory
and extensive training time. Although both the human brain and a DL model
consist of millions of interconnected neurons that serve as fundamental pro-
cessing units, the human brain, unlike traditional DL models, exhibits a sparse
structure [7, 12], i.e., not all the neurons in the brain are always interconnected.
Hence, we present algorithmic strategies and, in turn, optimizations that incor-
porate sparsity into DL models to reduce their computational demands during
training while maintaining accuracy.3

In summary, our work improves current state-of-the-art DL-based CT imag-
ing via the following contributions:

– Novel realization of sparse algorithms to reduce complexity and training time
of deep-learning (DL) models by accounting for their neural architecture.

– An optimized data loader that mitigates the data-movement latency associ-
ated with training DL models on small datasets in the PyTorch framework.

– A mixed-precision algorithm for convolution neural networks that leverages
a specialized data format and ‘tensor cores’ in modern NVIDIA GPUs.

3 These sparse techniques should not be confused with “sparse reconstruction tech-
niques” in biomedical imaging [1]. Thus, for lucidity, we define sparsity in DL models
as referring to the magnitude of zero entries in their programmatic representation.
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2 Sparse Optimizations

Like the human brain, a deep learning (DL) model consists of many layers with
millions or billions of neurons. These layers are represented as a combination of
parameters (i.e., weights and biases) stored in huge multi-dimensional matrices,
also called tensors. Having larger layers with more parameters improves accuracy,
but operations on huge tensors require significant computational resources. Thus,
to reduce the number of effective parameters, sparse techniques modify specific
entries in a tensor to zero in a process called pruning, thus creating sparsity
in tensors and the overall DL model. In this work, we leverage three kinds of
sparse techniques for our DDNet model: random unstructured, structured, and
magnitude-based sparse optimizations.

2.1 Unstructured and Structured Sparsity

The sparse taxonomy is defined by the structure imposed on the tensors while
pruning the values from a DL model. Structured sparsity addresses the dimen-
sions of the tensors associated with weights, bias, and filter values, whereas
unstructured sparsity only formulates the criteria for selecting values from these
tensors in a DL model. We use both techniques and apply them to DDNet.

In DDNet, the convolution and deconvolution layers collectively form a signif-
icant part of the overall computation in the forward pass, i.e., matrix-multiply-
add (MMA) operations on multi-dimensional tensors. Moreover, skip connections
across the network and shortcut connections within the dense blocks require in-
termediate results to be held in memory, thus increasing memory requirements
for DDNet. To reduce compute and memory overhead, we introduce sparsity by
pruning tensors engaged in skip connections, convolution, and deconvolution.

Random Unstructured: Randomly pruning parameters of the DL layers falls
under the class of unstructured sparse techniques [6, 17]. Fig. 2(a) contrasts
convolution (red triangle) over a chest CT image without (above) and with
(below) randomly pruned tensors. As depicted, random entries in the tensors of
the convolution filter and weights are set to zero, thus ceasing to contribute to
the model and reducing the number of effective parameters in DDNet.

Structured: Fig. 2(b) incorporates structured sparsity into DDNet by pruning
entire dimensions in the weights tensors and blocks in the convolution filters. We
only prune those dimensions that are not associated with skip connections in the
weights tensors. In filters, blocks on the upper left corner and lower right corner
are pruned. The resulting tensors are modified to a dense representation so that
only non-zero entries are brought to the memory. Moreover, pruning blocks or
channels in these tensors reduce their effective dimensions and the total number
of convolution operations. As a result, the convolution layers are now calculated
faster because they require fewer MMA operations and less memory.

Magnitude-based Sparsity: To intelligently prune from a DL model, we em-
ploy another sparsification technique that imposes ‘criteria’ to select parameters
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(a) Random sparsity (b) Structured sparsity

Fig. 2. Convolution operation with sparse filter and weights using (a) random sparse
and (b) structured sparse techniques, respectively.

(a) (b)

Fig. 3. Normal distribution of parameters for (a) dense DDNet and (b) DDNet with
50% sparsity.

to be pruned. For example, ‘Top-K’ uses the absolute values of the model pa-
rameters as a proxy for their importance. The underlying assumption is that
parameters with the smallest magnitude will contribute the least to the DL
model. To select which parameters to prune, we analyze the normal distribution
of all parameter values associated with every layer in DDNet in Fig. 3(a). By
sorting these values based on their magnitude and then pruning K% of the values
from the lower half of the sorted distribution, we get a distribution of parameter
values, as shown in Fig. 3(b), where K is set to 50.

While sparsity provides significant performance benefits, it comes at the ex-
pense of information loss due to the removal of data via pruning. Consequently,
the accuracy of the DDNet model suffers, as shown in Table 1. As remediation,
the model needs to be retrained, which we articulate in §2.2 with our proposed
hybrid training schedule.
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Model % Sparsity Sparsity Type

DDNet (dense) 0 None

DDNet (sparse) 50 Random

MS-SSIM Training Time

97.22 ± 1.49 235 minutes

42.39 ± 2.10 175 minutes

Table 1. Accuracy with sparse and dense DDNet. Hyperparameters: batch size = 1;
learning rate = 1e-4; decay rate = 0.95; training epochs = 50.

2.2 Hybrid Training Schedule

While sparse optimizations reduce the required number of parameters, there
are certain parameters that encode patterns that are critical for the model’s
accuracy. Removing such parameters leads to a decrease in the model’s ability
to accurately predict the target variable (see MS-SSIM column in Table 1).

Fig. 4(a) compares the total training and validation loss for the dense DDNet
model (black and green line) and 50% sparse DDNet model (red and blue line).
The total training loss of the model with sparsity (blue line) starts at a lower
value and keeps decreasing until 10 epochs, at which point it suddenly explodes
to finally converge at a final value that is orders of magnitude worse than its
dense DDNet counterpart. Thus, to recover the accuracy lost via pruning, the
parameters that remain (after pruning) must be subject to a certain amount of
re-training. To identify the point in time during training as to ‘when’ sparsity
and re-training should be done, we visualized the gradients of the total loss
values during the training and validation phase.

(a) (b) (c)

Fig. 4. Results of Hybrid Training: (a) Training Loss Comparison Between Dense and
Sparse DDNet, (b) Progression of Gradients of the Total Loss During Training, (c)
Accuracy with Different Hybrid Schedules: Dense Epochs Followed by Sparse Epochs.

Fig. 4(b) shows a logarithmic plot for the progression of the gradients of the
total (training and validation) loss values for a dense DDNet model. The figure
shows that the change in the gradients spans multiple orders of magnitude across
the first 28 epochs of training (red dotted lines). Thereafter, the loss values
continue to diminish but remain within the same order of magnitude, indicating
that the overall loss value is approaching a global minima.
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Removing parameters until the gradients saturate will hurt the model’s ac-
curacy. Thus, we propose a ‘hybrid training schedule’ wherein dense training is
followed by pruning (i.e., sparsity) and then re-training, thus preserving accu-
racy while improving performance. Using such a hybrid schedule, Fig. 4(c) shows
the variation in accuracy (i.e., MS-SSIM) with different combinations of dense
(X-axis below) and sparse epochs (X-axis above) that total 50 epochs. The hori-
zontal black dashed line represents the accuracy corresponding to complete dense
training (baseline). The vertical green dashed line highlights the point having
an ideal balance of dense and sparse epochs that results in the same accuracy.

3 Architecture-Aware Optimizations

To complement the sparsity optimizations, we propose three architecture-aware
optimizations to fully utilize the underlying Nvidia Ampere GPU hardware.

3.1 DoLL: Efficient Data-Loader for Small Datasets

Distributed data parallelism (DDP) scales the training of DL models that uti-
lize large datasets. In PyTorch, DDP capabilities are supported by a Distributed
Data Loader (DDL) library that prefetches data to the GPUs via multi-threaded
worker processes in the background. However, with small datasets, DDL is in-
efficient for two reasons: (1) worker threads can sit idle after working on their
corresponding chunk of the dataset (or mini-batch) and consume resources for
the rest of the training period and (2) operations on the respective mini-batches,
e.g., index distribution, batch sample preparation, and transformations, occur
on the CPU while training occurs on the GPU. To remediate these issues, we
design an efficient data-loader for small datasets, i.e., DoLL.

Architecture of DoLL Fig. 5 shows the DoLL architecture, which uses
the large GPU memory by staging the entire dataset on it, in parallel, for each
replica process. Unlike DDL, DoLL does not initialize communication queues and
inter-process communication (IPC) for index distribution or data preparation;
instead, it leverages the NVIDIA Collective Communications Library (NCCL)
so data is directly communicated between GPUs within each node over the
NvLink interconnect, thus bypassing the CPU and PCIe bus. While staging the
entire dataset on GPU memory takes significantly longer than moving a small
mini-batch sample, the overall cost is significantly less than moving small mini-
batches from CPU to GPU repeatedly during each training epoch. As a result,
more operations can now be performed on the faster GPU with DoLL.

3.2 Mixed Precision and Tensor Cores

Mixed-precision training leverages a combination of higher- and lower-precision
storage formats to accelerate computation in the training process by utilizing
higher clock speeds for arithmetic operations in lower precision. In the forward
pass, tensor cores perform matrix-multiply-add (MMA) operations in TF32 for-
mat [20] for convolution, as shown in Fig. 6(a), and deconvolution.
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Fig. 5. Architecture of the new data loader, i.e., DoLL.

(a) Convolution operation in mixed
precision on tensor cores.

(b) Backward pass in single and mixed
precision.

Fig. 6. Mixed precision: (a) convolution in the forward pass and (b) backward pass.

Performing the entire MMA operation in mixed precision delivers high per-
formance for the following two reasons: (1) tensor cores perform fused-matrix-
multiply-add (FMMA) operations in a single clock cycle, delivering more through-
put than a CUDA core, which takes two clock cycles to complete an FMMA,
and (2) using a specialized format, TF32, the FMMA operations require less
memory because of the reduced number of mantissa bits.

For the backward pass, loss calculations and gradient updates are computed
in half-precision with values scaled with a scalar value. Simultaneously, the orig-
inal values are stored and respectively updated in higher single-precision (with
the same scale factor) to preserve accuracy. Fig. 6(b) contrasts the training work-
flow between single precision (black arrows) and mixed precision (blue arrows).

3.3 Graph Capture Optimization

Deep learning (DL) frameworks often use a loose coupling of low-level hardware-
specific binaries (written in CUDA, HIP, C, and C++) for performance-critical
operations with user-friendly APIs for programming productivity. This results
in reduced performance and increased overhead, e.g., CUDA kernel launches.

In PyTorch, the CUDA kernel launch overhead is the latency experienced due
to the repetitive launch of the same CUDA kernels (on Nvidia GPUs) to compute
layers in the DL model during the training iterations. To address this, we leverage
the CUDA Graphs API with PyTorch. Fig. 7 illustrates the optimization through
an example of a DL model with two layers undergoing two training epochs with
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Fig. 7. An example demonstrating graph capture optimization (GCO).

(below) and without (above) our graph capture optimization (GCO). The two
layers, Layer 1 and Layer 2, launch two GPU kernels, each containing (A, B)
and (C, D), respectively, via the CUDA backend API; in reality, these layers
may launch multiple GPU kernels. The GCO initializes an alternative CUDA
stream to capture the runtime information of the DL workflow; this stage is
called ‘tracing.’ The new CUDA stream records information about the control
and data path in the main CUDA stream (where training happens), such as the
execution order of the GPU kernels (A, B, C, and D), their input parameters,
their sizes, and data types. As a consequence, tracing consumes additional GPU
memory that is needed for secondary buffers to match the size, data type, and
dimensions of the input and output tensors of each GPU kernel. As a result, the
entire iteration is slower due to the ‘tracing overhead’ (blue arrow).

Once the tracing finishes, the alternative stream holds a serialized version
of a static CUDA graph, which has the same data path and execution order of
GPU kernels as the main CUDA stream. Then, at the start of the next epoch,
PyTorch’s just-in-time (JIT) compiler uses the captured information and in-
stantiates a static CUDA graph containing the GPU kernels in the main CUDA
stream. The alternate stream and memory buffers are discarded, and a static
CUDA graph is launched on the GPU scheduler. The launched CUDA graph is
replayed for the rest of the training duration, mitigating the need to repeatedly
launch and destroy GPU kernels at each epoch. Thus, the subsequent epochs
run faster, amortizing the latency of the tracing in the initial epochs.

4 Results and Analysis

In this section, we evaluate the accuracy of our optimizations with respect to
MS-SSIM (multi-scale structural similarity index) [25] and performance with
respect to total time to train DDNet with a target MS-SSIM value of 97.22 ±
1.49. We construct a dataset of chest CT scans from four public biomedical data
sources: Mayo Clinic [18], BIMCV Medical Imaging Databank of the Valencia
Region, MIDRC: Medical Imaging and Data Resource Center [19] and Lung
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Image Database Consortium (LIDC) Image Collection. These radiological data
sources contain 3D chest CT scans composed of 2D image slices, each of size 512×
512 pixels. The training setup for the dense and sparse DDNet hyperparameters
is as follows: 50 epochs for training, batch size = 32, learning rate = 0.0001, and
decay rate = 0.95. The original (dense) DDNet took 79 minutes to converge to
the target MS-SSIM value, which, in turn, we use as our reference training time.

4.1 Sparse Optimizations

Table 2 shows the speedup and accuracy drop using different sparse techniques.
With a hybrid training schedule of 25 dense epochs and 25 sparse epochs, all
the sparsity optimizations provide a similar speedup of 1.14× with no loss in ac-
curacy because all three sparse optimizations target only the same convolution
and deconvolution layers in the DDNet model. Moreover, all optimizations prune
50% of entries in the weights and bias tensors associated with these layers to
benefit from the 2:4 sparsity support in the 2nd generation of tensor cores on the
Nvidia Ampere GPU [20]. With the same 50% sparsity in all three optimization
techniques, an equal number of effective parameters translates to an equal num-
ber of FMMA operations in all sparse techniques. As a result, the final sparse
models show the same degree of optimization and training time reduction.

Sparsity Type Speedup MS-SSIM
%Accuracy

Drop

Structured 1.14× 97.75± 1.62 0

Random Unstructured 1.14× 97.30± 2.17 0

Top-K 1.14× 96.98± 2.02 0.02

Table 2. Speedup vs. accuracy with different sparse optimizations.

4.2 Architecture-Aware Optimizations

We apply and evaluate our architecture-aware optimizations individually for
both sparse and dense models and then in concert. First, mixed precision delivers
a speedup of 1.49× for the dense model and 1.34× for the sparse models (see
Fig. 8(a)). Additionally, with mixed precision, the memory consumption of the
two models reduces from 62GB to 27GB because using lower precision (TF32 in
the forward pass and half-precision in the backward pass) requires fewer bytes.

Second, DoLL provides a constant speedup of 1.21× (see Fig. 8(a)) for the
dense and sparse models since the amount of training data is the same for both
models. Fig. 9(a) compares the profiles for data movement using two data load-
ers: PyTorch’s DDL and our DoLL. With DDL, 60% of all data movement is
due to the repetitive CPU-to-GPU, i.e., host-to-device (H2D), transfers of incre-
mental portions of the dataset. DoLL reduces this H2D transfer overhead from
60% down to 7% by moving the entire dataset to the GPU before training starts,
thus minimizing H2D transfers. In terms of the amount of data moved between
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(a) Individual optimizations. (b) All optimizations in concert.

Fig. 8. Speedup with combinations of optimizations. MP: Mixed precision, UD: Using
DoLL, GCO: Graph capture optimization.

(a) (b)

Fig. 9. Improvement with architecture-aware optimizations. (a) Data movement profile
of DDNet by percentage and total bytes, (b) per epoch time comparison with GCO.

the CPU and GPU. With DoLL, the H2D transfer is less than 1GB, which is
in contrast to the 7GB with DDL. However, the DL model now consumes more
GPU memory, as expected and shown in Fig. 9(a), where the data movement
for device-to-device increases from 24% to 64% and memset from 9% to 22%.

Third, graph capture optimization (GCO) delivers a 1.16× speedup. Fig. 9(b)
shows a per-epoch time comparison of the baseline DDNet model (blue line) to
one with GCO (maroon line). Due to the tracing overhead, the initial five epochs
are slower, but the overall mean per epoch time is faster.

When all three optimizations are combined (see Fig. 8(b)), we observe an
overall speedup of 1.7× for the baseline model and 1.6× each, for the three sparse
models. A concerted overall speedup for all the optimizations is not realized
because GCO does not work well with mixed precision. When GCO is combined
with mixed precision, the data types and the size of the input tensors in GPU
kernels vary at each iteration due to the mixed precision. As a result, the graph
optimization skips such GPU kernels from the CUDA graph, and the CUDA
kernel launch latency for such GPU kernels is thus not mitigated.

5 Related Work

This section presents related work from (1) deep learning-based CT image en-
hancement and (2) sparsity in deep learning (DL). Li et al. [16] present an ex-
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tensive survey of DL-based image post-processing techniques for improving CT
image quality. DNN architectures, such as auto-encoders [22], deep convolution
neural networks (CNNs) [4], generative adversarial networks (GANs) [26], and
transformers [28] have shown potential in improving CT image quality. However,
these architectures generally ignore the computational cost of training and the
hardware support needed in the CT equipment to deploy such DNNs.

To address the above, sparse optimizations reduce the complexity of DL mod-
els, including CNNs [3], GANs [24] and transformer-based neural networks [5].
Hoefler et al. present an extensive survey on sparsity in deep learning [13].

6 Conclusion

With the increasing use of deep learning (DL) in the biomedical domain, re-
searchers need to focus on both the accuracy and performance of DL models.
While an accurate model is essential, the high computational cost of training
such a model limits its accessibility. Therefore, this work presents a combination
of architecture-aware and sparse optimizations for DL models in the biomedical
domain. Our architecture-aware optimizations deliver a speedup of up to 1.7× for
the baseline (dense) DDNet model without losing any accuracy. By introducing a
hybrid dense+sparse training schedule to the aforementioned architecture-aware
optimizations, we achieve an additional 1.14× speedup, resulting in an aggregate
speedup of 1.94× while maintaining accuracy.
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