

Strategies for Preparing Computer Science Students for
the Multicore World

ABSTRACT

Multicore computers have become standard, and the number of
cores per computer is rising rapidly. How does the new demand
for understanding of parallel computing impact computer science
education? In this paper, we examine several aspects of this
question: (i) What parallelism body of knowledge do today’s
students need to learn? (ii) How might these concepts and
practices be incorporated into the computer science curriculum?
(iii) What resources will support computer science educators,
including non-specialists, to teach parallel computing? (iv) What
systemic obstacles impede this change, and how might they be
overcome? We address these concerns as an initial framework for
responding to the urgent challenge of injecting parallelism into
computer science curricula.

Categories and Subject Descriptors
K.0 Computing Milieux/General; K.3.2 Computer Science
Education

General Terms
Algorithm, Design, Performance, Reliability, Theory

Keywords
Parallelism, Multi-core Computing

1. INTRODUCTION
1.1 The Multicore Revolution
We are motivated to teach more parallelism and concurrency in
CS courses because of the necessary shift by hardware
manufacturers towards multi-core computer design. For over four
decades, hardware performance has improved at an exponential
rate, a remarkable feat that derives from ever increasing
miniaturization of transistor components. Since transistors
comprise the cores in a computer, i.e., the circuits within a
computer’s central processing unit (CPU) that are capable of
executing computer instructions, tinier transistors made it possible

to create more and more powerful cores, in terms of both logical
capability and speed. This continued until the last decade, when
the industry began to encounter physical limitations on the speed
of a single core. Since that time, computer performance has
improved primarily by increasing the number of cores per
computer rather than the speed of a core. This trend will continue
for the foreseeable future. Nowadays, nearly all new computers
provide at least two cores, and computers with 32 or more cores
can be constructed with commodity parts. In a few years,
“manycore” computers with hundreds or thousands of cores per
computer will become available [9].

Before the emergence of multi-core commodity computing
(approximately 2006), sequential software typically enjoyed
performance improvements as a direct consequence of hardware
performance improvements. Improvements came in both speed
and parallelism, in which multiple computational actions occur at
the same time. This parallelism within a CPU was largely out of
the view of a programmer, although the software that
programmers produced automatically benefited from it. But now,
programmers will have to write software that explicitly and
correctly takes advantage of parallelism from multiple cores
operating simultaneously, in order to obtain the hardware
speedups available on multi-core computers. Software products
and systems that do not capitalize on the additional cores in a
computer will be at a competitive disadvantage against those that
make effective use of multi-core parallelism.

Programmers in the scientific and high-performance computing
sectors have taken advantage of parallelism for decades, using
specialized “supercomputer” hardware and/or networked clusters
of computers. More recently, Internet-related companies have
become enormously successful by creating convenient ways to
program in parallel using clusters, as in Google’s use of the map-
reduce programming model [39]. But with the arrival of multi-
core computing, general consumer software products will now be
programmed for parallelism. As we have seen with previous
improvements in commodity hardware performance, we can
expect enhanced features requiring multi-core computing
capabilities in coming versions of operating systems, productivity
software, web browsers, and other products. Other applications,
instead of capitalizing on increased performance, will take
advantage of multi-core systems to offer the same level of service
with lower power consumption. For example, mobile phones will
soon have multi-core CPUs in order to operate at lower
frequencies and prolong battery life [119][108]. Thus, in every

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE-WGR’10, June 26–30, 2010, Bilkent, Ankara, Turkey.
Copyright 2010 ACM 978-1-4503-0677-5/10/06...$10.00.

Richard Brown
St. Olaf College (USA)

rab@stolaf.edu

Elizabeth Shoop
Macalester College (USA)
shoop@macalester.edu

Joel Adams
Calvin College (USA)
adams@calvin.edu

Curtis Clifton
Rose-Hulman Institute of

Technology (USA)
clifton@rose-hulman.edu

Mark Gardner
Virginia Tech University (USA)

mkg@vt.edu

Michael Haupt
Hasso-Plattner-Institut, University of

Potsdam (Germany)
 michael.haupt@hpi.uni-potsdam.de

Peter Hinsbeeck
Intel Corporation (Germany)
peter.hinsbeeck@intel.com

97

computing sector, programmers and system designers must now
gain a deep understanding of parallel computing in order to obtain
greater or even the same performance from a multi-core computer
as single-core machine once offered.

This makes it urgent for computer science (CS) students to gain
broad exposure to concepts of parallelism. The parallel features
of a multi-core computing system represent a new kind of
resource available for solving problems with computing. CS
graduates who have studied parallelism will bring understanding
of that technology to their careers, and employers will
increasingly demand it. In some countries, curricular change can
occur instantly through centralized decision-making; for example,
as Intel’s Michael Wrinn points out, all CS students in China now
study parallelism [126]. Broad-based curricular change is more
challenging in countries where curriculum decisions are made
more locally.

1.2 Strategies For Teaching Parallelism
Therefore, we formed our working group in order to develop
strategies for expediently and effectively incorporating parallelism
into undergraduate CS courses and curricula. It is not our purpose
to formulate a call for bringing more parallelism into CS
education, since industry and academic leaders have already made
that case compellingly [14][125][9]. Instead, our mission is to
consider how the CS education community can respond
strategically, productively, and as quickly as possible.

In order to explore our topic fully, our team includes not only CS
educators from many types of academic institutions, but also from
national research laboratories and from the hardware industry.
Our disciplinary areas of expertise range from low-level hardware
architecture to high-level virtual systems and programming
languages. The results of our study will hopefully spark further
discussion and expedited action within the international CS
education community.

Since we seek to advance global change, we must choose an
approach to our task that is neutral to differences in disciplinary
viewpoints and institutional nature when possible. For example,
we intend to highlight key concepts and issues with potential
relevance at many points in a CS curriculum, such as the notion of
scalability, believing that such pivotal concepts and issues are
likely to apply in most curricular and institutional settings. Thus,
our silence on a particular topic or tool should not be interpreted
as disapproval. Likewise, we desire to make no assumptions
about the curricula and institutions we address. For instance, we
avoid relying on generic course names (“CS1”, “CS2”,
“Algorithms”, etc.) when describing where a parallel topic might
appear in a CS curriculum, recognizing that there may be vast
differences in the content and nature of courses that share the
same title at different institutions.

We will use the word parallel as a generic term, meaning that
multiple computer actions occur at the same time, whether
physically or through software concurrency. Under this
convention, we may think of concurrency as virtual parallelism.
Writing “parallel” is more convenient than frequently writing, for
example, “parallel or concurrent,” but adopting a generic term is
also strategic for our purpose. Having to master the technical
distinctions and relationships between physical parallelism,
concurrency, distributed computing, multi-core computing, grid
computing, etc., constitutes a barrier to entry for non-specialists,
whether they are students or faculty. If beginners may safely use
“parallel” to mean any of the above, we can all move on toward

the primary goal of introducing everyone to parallelism.
Furthermore, in practice, implementation choices between virtual
or physical parallelism, or multi-core vs. distributed computing
vs. a hybrid system, change quickly based on the resources
available in a particular system. Thus, “parallel” as a generic term
is useful even for practitioners and specialists. We note that even
if the computing industry were not shifting to multi-core
computation at this time, we might now be conducting an ITiCSE
working-group strategic study in response to the explosion of
distributed computing (e.g., Google’s use of map-reduce
computation [39]).

Our document has a bias towards teaching principles of
parallelism using experiential learning. We affirm the research
literature endorsing active learning strategies, even though the
present-day tools students may use to get their hands-on
experience may soon pass away. We also believe that students
who learn the most enduring parallelism principles available will
be best equipped for the imminent flow of new tools and
techniques that will emerge during this new wave of parallel
computing.

1.3 Overview
The following sections of this document consider strategies for
introducing parallelism in CS curricula by examining several
aspects of such strategies.

In Section 2, we present a framework for expressing parallelism
content that integrates both an educator’s goals and a
practitioner’s objectives. In Section 3, we explore teaching and
learning practices, including the issue of when and where to teach
concepts of parallelism within a CS curriculum. In Section 4, we
examine goals for online sharing of content materials, teaching
strategies, assignments, and feedback among a supportive
community of CS educators. In Section 5, we suggest two
guidelines for bringing about the timely systemic change of
injecting parallelism into CS curricula, and briefly addresses some
of the challenges presented by such a transformation. We
summarize our findings and suggest further strategic steps in
Section 6.

2. TOWARD A PARALLELISM BODY OF
KNOWLEDGE
Parallelism and related fields of study have a long and deep
tradition. In addition to the underlying lasting concepts, there are
also a variety of tools and techniques for realizing parallel
computation. In this section we attempt to catalog many of the
lasting concepts that students should be exposed to. We do not
offer these as a comprehensive list, but as a starting point for
identifying a central body of knowledge in parallelism that could
be included in undergraduate curricula. Along with this catalog of
ideas, we identify some of the existing tools that instructors might
use to help their students explore these concepts.

In choosing the topics to include in a particular curriculum, the
overriding concern should be to help our students learn to “think
in parallel”. By that, we mean that graduates should be able to:

 recognize the opportunities for parallelism in any problem
and

 evaluate the applicability of different parallel solution
strategies.

Different institutions will choose to include different concepts in
their curricula. In section 3, we suggest some strategies for

98

choosing from the concepts we describe in this section and
integrating them into existing curricula.

We found it useful to organize our catalog of concepts into a
framework that incorporates both potential curricular structure
and practical development of applications, summarized in Table 1.

Table 1. Organizing the body of knowledge in parallelism.

Motivating
Problems and
Applications

(2.1)

Software Design (2.2.2)
Conceptual
Issues and
Theoretical
Foundations

(2.2.1)

Data Structures and Algorithms
(2.2.3)

Software Environments (2.2.4)

Hardware (2.2.5)

In this framework, we organize topics into four broad parallelism
knowledge areas, represented by the central column in Table 1.
Problems and application areas provide motivating context for
students to study and use solutions from these knowledge areas.
Cutting across these knowledge areas are the basic, well-known
conceptual issues and theoretical foundations in parallelism,
which we treat as a separate knowledge area.

This leads us to the following goals for CS graduates in this new
age of parallelism.

Given a problem to solve, students should be able to choose and
implement the following:

 The software design that will ensure efficient and reliable use
of parallelism,

 The algorithms and data structures that will work best,
 The software environment to use, and
 The parallel hardware to use,
while keeping in mind the issues that will arise from those choices
and the amount of scalability and performance that will be
achieved.

2.1 Problems as Motivation and Context
Students are more motivated and develop a greater understanding
when they see how a concept applies in context [16]. Here we
provide some sample problem domains that serve as natural
motivators for the use of parallelism.

Web search is a parallel application that students use frequently.
Google, the well know search engine, utilizes massive amounts of
essentially commodity PCs in large datacenters to create,
replicate, and constantly update the index of the world-wide-web
that millions of people search every day [19].

Another real world problem that shows the need for parallelism is
sequence searching in bioinformatics. Scientists compare
unknown gene or protein sequences against a database of known
sequences to determine similarities, which help identify
functionality. The database of all known genes, their nucleotide
sequences and associated information, GenBank, is currently 437
GB in size [11]. Metagenomics projects, such as the Global Ocean
Survey [122], and new technologies for generating DNA
sequences are expected to dramatically accelerate the amount of
data produced [99]. Indeed, such projects routinely use parallel
techniques to produce gene sequence data by employing large
number of sequencing machines running in parallel [124]. The
time it takes to compare an unknown sequence to the database has
become impractical for sequential computations whereas in 2003

a parallel version reduced the time from 22.4 hours to 8 minutes
when run on 128 processors [38].

Image and video processing provides a rich array of example
application areas that could motivate students. Single images
themselves represent rich information that can be processed in
parallel, and an increasingly more important application area is
the processing of high-dimensional sets of images. Past work in
this field drove a great deal of study of parallel architectures, and
more recently this field is turning towards the use of stock parallel
hardware [89]. For example, Colombo, et al. describe a system for
tracking full human body motion to create realistic movie
animation using a cluster of workstations, each responsible for
particular tasks[28]. Image processing and analysis for robot
vision systems is another motivating example for students [75]. In
medicine, medical imaging is another example area where parallel
hardware and algorithms are now being used to speed up the time
to process scans and to enable patients to get results of cancer
scans during an office visit [35]. Lastly, video processing for
surveillance systems is a field that relies on parallel and
distributed processing to provide real-time video analysis results
to users [102].

Current financial analysis software takes advantage of parallel
processing to provide analysis of market segments, such as equity
options, in real time [34]. Many parallel algorithms for financial
analysis have been proposed [63][81], which provide solutions in
a real-world application domain of interest to many students.

An overview of many application areas is provided in [42],
including these additional examples that instructors might use as
motivation:

 Fluid dynamics
 Environment and Energy
 Molecular dynamics in computational chemistry
 Ocean Modeling
 Simulations of earthquakes
 Data mining
 Tree-structures: online massively parallel games
 Graphics: image processing, rendering, hidden-surface

removal
 Sorting
 Ray tracing
 Weather/climate modeling
 Natural language processing and text analytics
 Speech recognition

2.2 Knowledge Areas
The following subsections discuss the cross-cutting theoretical
concepts and each of the four knowledge areas shown in Table 1.
We identify some representative learning outcomes for each.
These are high-level goals that represent what undergraduate
programs may strive to achieve and can be expanded to further
detail for individual courses. We provide them as examples to
stimulate thought, rather than as a prescriptive solution. Following
the outcomes, we discuss some of the central ideas in each area—
this is not intended to be complete, but to provide a starting point
for further consideration when incorporating parallelism to a
program. We conclude each knowledge area by suggesting a few
other ideas that an institution might choose to cover in addition to
(or instead of) the ideas we have chosen to discuss.

99

2.2.1 Conceptual Issues and Theoretical
Foundations
Representative Educational Outcomes:

Computer science graduates will be able to:

 Identify and discuss issues of scalability in parallel
computational settings.

 Define and recognize common types of parallelism and
communication, namely data parallelism, task parallelism,
pipelining, message passing, and shared memory
communication.

 Define race condition and deadlock; identify race conditions
in code examples; identify deadlock in computational and
non-computational scenarios.

 Assess the potential impact of parallelism on performance
using Amdahl’s and Gustafson’s Laws.

Central Ideas
One aspect of becoming educated in parallelism is having an
awareness of key concepts and issues that arise in many contexts
in parallel computing. Many of the technical details of hardware
and software capabilities and environments change rapidly, but
the concepts and issues in this category change much more
slowly, and may be viewed as enduring principles that will
continue to have relevance and value in the long term.

For example, the notion of scalability is central throughout
parallel computing, and the behavior of an algorithm or
computing strategy as some factor in a problem increases (for
example, the number of processors or the size of the data) is often
a key consideration when computing in parallel. Issues of scale
can be identified and explored at all levels of a CS curriculum.
Indeed, letting beginning students experience for themselves the
effects of scale on computational time in various contexts can be
an engaging and effective motivator for them to explore
parallelism, while simultaneously imprinting invaluable lessons
about the nature of parallel computation. Encounters with
scalability in subsequent courses continue to reveal manifold
aspects of that pervasive issue. In fact, an awareness of the notion
of scale and a habit of considering issues related to scalability in
computing scenarios are valuable components of any CS student’s
training, whether or not those scenarios happen to arise in the
context of parallel computing. Scalability merits consideration
whenever addressing a new computing situation, application, or
system, along with other central issues such as algorithmic
approach, efficiency, and correctness.

Besides knowledge of central notions such as scalability, CS
students need awareness of commonly used terms that refer to
categories or types of parallelism and of communication between
processors, such as task parallelism (where a computation is
accomplished using cooperating functional units or tasks), data
parallelism (where a given computation is applied in parallel to
multiple data sets), pipeline parallelism (task parallelism where
the output from one task becomes the input for another), message
passing (in which operations for sending and receiving messages
form a basis for communication between tasks), and shared
memory communication (in which tasks communicate through
shared variables or data structures). Note that this collection of
terms does not represent a non-overlapping or necessarily a
complete decomposition of forms of parallel computation or
communication. A more objective classification approach might

be taken, such as Flynn’s taxonomy [49], which, for example,
might describe task parallelism as MIMD (Multiple Instruction,
Multiple Data). However, Flynn’s decomposition is less
commonly helpful in present-day parallel computing, which often
carries out entire procedures or programs in parallel, not only
individual instructions. We recommend looking to current usage
in research and industry when selecting terminology for teaching
CS students, while always selecting and formulating those terms
appropriately for the intended audience. For example, the so-
called SPMD (Single Program or Process, Multiple Data)
category of computation [37], a subset of MIMD (Multiple
Instruction, Multiple Data) and introduced after Flynn’s
categories, identifies arguably the most common model of applied
parallel computation. SPMD is a useful and enduring notion
because it describes the common software strategy in which
parallel computing specialists build computational frameworks
that domain experts can use to productively program applications.
We note that all members of such a project team must know
enough about concepts and principles of parallelism to have a
conceptual understanding of what they are doing, and that domain
experts with stronger parallelism backgrounds can make greater
contributions (as can parallelism specialists with domain
knowledge).

Another central concept in parallel computing is that of speedup,
which defines how much faster a parallel solution is than its
sequential counterpart. Speedup is measured using the formula:

SpeedupC = Time1 / TimeC

where Time1 is the time required by the sequential solution to
solve the problem, and TimeC is the time required by the parallel
solution to solve the problem using C cores. Likewise, the concept
of parallel efficiency is important:

EfficiencyC = SpeedupC / C

which indicates how efficiently a given parallel solution uses the
hardware's parallel capabilities. Measuring a solution's SpeedupC
and EfficiencyC for different values of C provides a way to
quantify that solution's scalability with respect to C.

It is not enough merely to know definitions and proper usage of
these important terms. Goals for elaboration on and application of
these notions in CS curricula appear in subsequent knowledge-
area sections.

While scalability issues may arise in almost any context, other
concepts relevant to parallelism arise in certain types of scenarios,
such as resource management situations. A race condition exists
when the correct behavior of a program or system depends on
timing. For example, if multiple processes both read and write a
shared variable, an unfortunate ordering of operations may lead
one process to overwrite another process’s update of that shared
variable, leading to the loss of that update, unless a strategy is
devised to avoid such errors. In many CS curricula, race
conditions have been introduced in an intermediate or advanced
course in Operating Systems or a related topic, in which context a
collection of synchronization strategies may be explored for
avoiding them (see, for example, [107]). However, the idea that
the correct behavior of an algorithm involving a shared variable
may depend on timing will arise earlier if one introduces parallel
computing earlier in a CS student’s coursework, and recognizing
the potential for race conditions in parallel code is a valuable skill
for CS students. As [80] indicates, the notion of a race condition
does not itself require advanced CS training, and is both

100

accessible and even discoverable by beginning students. If the
notion of a race condition appears early in a CS curriculum, it can
readily be cited in subsequent courses when it relates to topics in
parallel, e.g., whenever programming (explicitly or implicitly)
with multiple threads and shared memory.

An increasing number of parallel programming environments
provide automatic avoidance of race conditions, either by
avoiding shared memory (for example, through message passing)
or through mutual exclusion synchronization (e.g., “smart” pointer
objects with reference counting). However, even programmers
with access to such environments need to understand enough
about race conditions to choose those features. Given the current
rapid and volatile development of parallel computing, CS students
will benefit from a broad acquaintance with issues of parallelism,
in preparation for the range of computation they may encounter
during the span of their careers.

Deadlock is another pervasive issue that may arise in parallel
computations. A deadlock exists if a set of multiple processes or
threads are blocked awaiting events that can only be caused by
processes in that same set. Common-sense instances of deadlock
in non-computational settings abound, for example, involving
vehicles entering opposite ends of a one-way bridge, and general
discussions of how to avoid or remedy deadlock in those
situations require no particular CS training. Realistic code
examples where a typical young CS student can identify deadlock
are rare. But an intuitive, common-sense discussion of potential
deadlock may beneficially influence the design of parallel
algorithms at any level. As with race conditions, a comprehensive
consideration of deadlock avoidance and recovery strategies can
appear in a more advanced course, as it may already in a
curriculum without early parallelism.

The theory of parallel computation is not so widely taught as the
theory of sequential computation, nor is a list of topics for
theoretical parallel computation so standardized at the
undergraduate level as the formal-languages approach in a many
Theory of Computation courses. But Amdahl’s Law and
Gustafson’s Law (see, for example, [101] or [17]), two formulas
for upper bounds on parallel speedup, are useful for both
estimating potential performance improvements and gaining
insight into the effects of parallelism in an algorithm. Briefly,
Amdahl’s Law concerns speedup from parallelizing a sequential
algorithm, and Gustafson’s Law (also known as Gustafson-Barsis’
Law) considers the speedup effects of scaling algorithms that are
already parallel. Both formulas are quite accessible to
undergraduates, and even a few computations with them can give
a student enlightening awareness of the impact of sequential
portions of a computation on its parallel speedup.

It would be satisfying to include one or more general theoretical
frameworks for parallel computation in an undergraduate CS
curriculum. Some candidates exist: the Parallel Random Access
Machine (PRAM) model helps define and understand the class of
efficiently decidable parallel problems applicable to shared-
memory multicore systems[73][46]; the Pi calculus formally
models concurrent systems whose configuration may change
during a computation, which forms the basis for a wide variety of
research efforts and applications [92][93][91]; and tuple spaces,
which implement an associative memory with parallel concurrent
access, representing an abstraction of distributed shared memory
[55].

Other potential topics

The comments above should not be interpreted as prescriptive or
encyclopedic, but as evocative for stimulating discussion, as we
indicated earlier. In particular, one may well consider other topics
to be central in this knowledge area. Examples: fine-grained vs.
course-grained parallelism; parallel memory access in the PRAM
model; and handling read-write conflicts in concurrent programs.

2.2.2 Software Design
Representative educational outcomes:

Given a problem to solve, CS graduates should be able to:

 Decompose it into sequential and parallel portions,
 Recognize possible parallel approaches that can be used to

solve it, and
 Devise and implement an efficient and scalable strategy

using a chosen approach.

Central Ideas

The availability of multiple cores brings the potential for
improved software performance, but at the cost of increased
complexity and difficulty. The advent of multicore processors
thus brings a disruptive change to the practice of software design.
It also brings a variety of new opportunities to the software
designer.

Not all problems should be solved using a parallel computation.
For example, computations may have internal dependencies or I/O
requirements that necessitate sequential execution. However,
multicore hardware may be beneficial even for these sequential
computations by using these parallel techniques:

Instance parallelism: Multiple instances of the same computation
can be run simultaneously (often launched by a controlling script),
each using different inputs and producing different outputs. Given
K cores, this approach permits up to K instances of the same
problem to be solved in the time required to solve a single
instance. Distributed computations such as SETI@Home [106],
Folding@Home [50], and similar Berkeley Open Infrastructure
for Network Computing [15] projects can be seen as a special case
of instance parallelism.

Library parallelism: For some kinds of computations (e.g., matrix
algebra), there are libraries that provide parallel versions of
commonly needed operations. On a multicore machine, a
sequential program may be able to significantly boost its
performance by replacing sequential versions of those operations
with parallel versions from a library.

Pipeline parallelism: When a sequential algorithm is sufficiently
complex, and there are many instances of the problem to solve, a
software designer can divide the algorithm into N sequential
stages, and spawn a thread or process to perform each step.
Ideally, the algorithm is divided so that each stage takes the same
length of time to perform, so that the processing load is evenly
distributed across the stages, a design aspect called load
balancing. The behavior of the thread or process performing step
i can be described as follows:
while (true) {
 if i is the first step {
 data = getInputs();
 } else {
 data = readResultsFromStep(i-1);
 }

101

 results = performStep(i, data);

if (i is the last step) {
 output(results);
 } else {
 sendToStep(i+1, results);
 }
}
Once the N stages of the pipeline are filled and the first result
emerges from the final stage, subsequent results will be produced
in time 1/N.

For computations without sequential dependencies, software
designers may be able to more directly exploit a multicore
processor's parallel capabilities. In particular, software designers
who want their software to run faster as more cores are available
can try to decompose their software into pieces that will run in
parallel on different cores. Two of the ways software can be
decomposed into pieces are:

Domain decomposition (data parallelism): the software designer
divides the data or problem domain into pieces, and then designs
the software to process those pieces in parallel. For example, if
the problem is to blur a large MxN image on a machine with K
cores, the designer might spawn K threads, divide the image's M
rows into K blocks of size M/K, and blur each block in parallel
using a different thread.

Functional decomposition (task parallelism): the software
designer divides the computation into functional units or tasks,
analyzes the dependencies among these tasks, and then designs
the software to spawn threads or processes that perform these
tasks in parallel (as dependencies allow). For example, if the
problem is to model the climate system, and the system's
functional pieces are the ocean, the land, the atmosphere, and the
water, then the designer might design a task to perform each
functional piece, and then execute these tasks in parallel to model
the climate. Functional pieces may be further decomposed into
sub-tasks, as appropriate.

To run faster as more cores are available, software must be
designed so that the number of processes or threads dividing the
labor increases with the number of available cores. There are a
number of parallel programming patterns that knowledgeable
software designers can exploit, including operational patterns like
the Map-Reduce and Scatter-Gather, and computational patterns
like Pipeline, Embarrassingly Parallel, Geometric, Divide And
Conquer, to name just a few [82]. Familiarity with these patterns
will ease the work of software designers.

A program that runs faster when given more cores is said to scale.
Scalability, or potential to scale is a desirable property. Suppose
there are two companies P and Q with competing software
programs, and that P's program scales but Q's does not. Whenever
a system with more cores is released, company P's program will
require little if any maintenance to run faster on the new system,
giving them a competitive advantage over company Q.

Given a problem, one common pattern in this approach is
exhibited by computations based on a parallel for loop:

 id = getWorkerID();
 numWorkers = getNumWorkers();
 blockSize = problem.size() / numWorkers;

 for (i = id; i < problem.size(); i += blockSize) {
 processPiece(i, problem);
 }

Another common pattern is the master-worker pattern, in which
the same code is run on many processes in parallel:

 id = getWorkerID();
 numWorkers = getNumWorkers();\

 if (id == MASTER) {
 combinedResult = divideAmongWorkers(problem);
 } else { // Worker
 do {
 i = getWorkFromMaster();
 partialResult = processPiece(i, problem);
 sendToMaster(partialResult);
 } while (i > 0); // work remains
 }

One reason for its popularity is the master-worker pattern can be
used with either task- or data-parallel computations.

Besides parallelism techniques, CS students need to know enough
about parallel software development methods to approach applied
problems that require those techniques. The SPMD
computational model described in Section 2.2.1 gives rise to the
dominant software development method for computing research
projects involving parallelism, in which some parallel computing
specialists create a computational framework within which a
much larger number of domain experts can contribute largely
sequential algorithms towards the creation of an application.
Google’s use of map-reduce computing [39] provides a widely
used example of this approach that can be discussed and (with
accessible map-reduce interfaces) used by CS students at all
levels, including introductory students. Most research
applications developed using SPMD currently use MPI
programming (see 2.2.4 below), which is accessible to
intermediate and advanced CS students.

Other potential topics
In addition to the above concepts, other important topics that
could be considered important enough to include are in the area of
quantitative and qualitative measurement of the approach taken.
For example, students could analyze their solutions in terms of
software metrics related to parallelism such as scalability,
performance, reliability, and maintainability. Students could also
analyze quantitative experimental measurements of their
solutions, or examine the performance of standard benchmarks
that use particular patterns [13].

2.2.3 Data Structures and Algorithms
Representative educational outcomes:

Given a problem to solve and a chosen parallel approach to
solving it, CS graduates should be able to:

 Choose an appropriate reliable data structure,
 Find appropriate existing parallel algorithms that solve the

problem, and
 Devise and implement an efficient and scalable strategy

using the algorithm and data structure with that approach.

102

 Measure the performance changes of algorithms using
various numbers of cores

 Compute the speedup and efficiency of parallel algorithms
using various numbers of cores

Central Ideas

Data structures have a solid foundation in CS undergraduate
programs. When considering certain parallel solutions to
problems, students will need to consider whether the data
structure they use will be shared among multiple
threads/processes. If so, and that structure access is implemented
using locks, then it will need to be safe— free of race conditions
and deadlock. Libraries of thread-safe data structures exist, such
as the concurrent containers in Intel's Threading Building Blocks
[65] and Java’s java.util.concurrent package ([57] provides an
excellent accounting of the complexity involved in implementing
such shared structures in Java.)

Because shared access to a common data structure via mutual
exclusion locking introduces much complexity in the solutions
and they are prone to error, other implementations have devised
alternative shared data structure access. Fraser and Harris describe
their implementation of multiword compare-and-swap operations
or software transactional memory (STM) solutions that do not use
locks [51]. Simon Peyton Jones has described the use of STM in
Haskell [72], where it is a natural fit. Intel, IBM, and Sun have
developed a draft standard for STM in C++, and Intel provides a
C++ STM library [66].

Like data structures, algorithms are a foundational topic in
undergraduate CS programs. Given the current state of hardware,
students will need grounding in parallel algorithmic solutions to
problems. Many solutions that heretofore had been part of parallel
computing research and found a home in advanced courses should
be incorporated into introductory and intermediate courses that
feature the study of algorithms. Texts that have taken this
approach include [90] and [12].

Many parallel solutions to classic algorithmic problems have been
proposed. In the field of numerical computing, vector and matrix
operations, as well as Fourier transformations, are good examples.
Various parallel algorithms for searching tasks have been
proposed; e.g., an algorithm for parallel string matching [123],
parallel N-queens problem solvers [111][1], or parallel alpha-beta
searches [48], which are relevant in game programming. Sorting
is also a relevant field of study, where many parallel versions of
quick sort, merge sort, and radix sort, just to name a few, have
been described [4][127][79].

Finally, the map-reduce algorithm design paradigm, first found in
functional programming, is highly relevant today as a distributed
processing technique pioneered by Google [39]. The basic
concept of providing a map function to distribute processing and a
reduce function to gather and report the results is accessible to
undergraduate students. For example, the WebMapReduce
software [54][54][53], a simplified interface for the widely used
Hadoop open-source implementation of map-reduce, enables CS
students at introductory or later levels to develop parallel
computations on a cluster by creating the map and reduce
functions/methods in a programming language of their choice.

We anticipate that more algorithms and data structures that take
advantage of parallelism will appear soon, many arising from
computing research and industry.

2.2.4 Software Environments
Representative educational outcomes:

Given a problem to solve and a chosen parallel approach to
solving it, CS graduates should be able to:

 Choose an appropriate software library or programming
language abstraction for the approach, and

 Devise and implement the solution using that approach.

Central Ideas

Just as CS educators have many choices of languages and
software libraries to use for sequential programming instruction,
they also have several choices for parallel programming
instruction. This is an area under constant development, but good
languages and libraries exist that can be used for instructional
purposes today. There are several models for parallel
programming of cooperating tasks that are commonly used and
supported by various languages, language extensions, or systems:
shared memory, message passing, actors, and fully distributed.

In the single shared memory model, cooperating tasks share
information by accessing a shared data space in memory on a
single computer. Implementations of this model must ensure that
writes to the shared data by multiple tasks are atomic by providing
some form of synchronization.

In the message passing model, cooperating tasks maintain their
own data and share values by communicating them through
messages sent and received among those tasks. The message
exchange can be synchronous, meaning that a send (or receive)
operation causes a task to wait or “block” until another task
performs a corresponding receive (or send), or asynchronous,
meaning that neither send nor receive operations cause blocking.

The actor model is a programming language abstraction built over
threads and based on message passing. Developed as a theoretical
model to describe parallel computation in the 1970’s [60], the
actor model has seen a resurgence in the current era of multicore
technology. Actors are objects that send and receive messages
asynchronously. They can also create new actors.

In fully distributed models, the tasks are running on multiple
machines connected by some type of interconnection network. An
extension of the shared memory concept to distributed systems of
computers is called distributed shared memory. Larger-scale fully
distributed applications can be realized with systems such as Map-
reduce or using message passing. Map-reduce is especially useful
when demonstrating how to scale the processing of large datasets,
and can be motivated by pointing out Google’s use of it to index
the web. An open-source implementation of Map-reduce called
Hadoop is sufficiently mature and can be installed on clusters of
computers or used in the cloud on Amazon Web Services
(AWS)[6].

Languages and software libraries support combinations of these
models in various ways. Notably, functional programming as a
paradigm provides inherent support for parallelism in that it
fosters immutable state and closures. Functional languages that
have parallel programming capabilities include Concurrent
Haskell and Erlang. Concurrent Haskell uses the concept of
shared memory between cooperating tasks, and as previously
mentioned, avoids the use of locks on the shared memory[59].
Erlang, developed by communications company Ericsson to

103

support distributed applications, uses the message-passing
paradigm, rather than shared memory, and employs the actors
model[44].

Scala is a relatively new language that was designed with parallel
processing hardware in mind and provides an interesting
integration of functional and object-oriented features [96]. Scala,
which stands for a scalable language, employs an actors-based
model. The Scala compiler produces bytecode that will run on a
Java Virtual Machine (JVM).

Grand Central Dispatch (GCD), a language extension for C, C++,
and Objective-C developed by Apple, provides a programming
layer of abstraction over threads. Programmers design ‘tasks’
reminiscent of closures that are queued up for execution on an
underlying dispatch system, which handles the execution of those
tasks on threads.

The OpenMP package for C/C++ and Fortran enables
programmers to signify sections of code to be run in parallel using
shared memory data structures. Portions of serial code can be
made to execute in parallel by means of compiler directives called
pragmas. Like GCD, work is assigned to threads at runtime.

Intel Threading Building Blocks (TBB) [65] is an object-oriented
approach to multi-core programming implemented as a C++
template library. TBB provides a library of object-oriented
algorithms, such as loops and sorting, as well as concurrent
containers, which are thread-safe data structures such as queues,
vectors, and hash maps. Programmers using TBB do not have to
be experts on threads– they logically define tasks to be executed
in parallel and the TBB run-time library automatically maps that
logical definition onto available threads, making efficient use of
resources on the machine. Advanced programmers may optionally
customize TBB computations at the lower levels of memory
allocation, synchronization, etc.

Code adhering to the message passing model can be written using
frameworks conforming to the Message Passing Interface (MPI)
standard, introduced in 1994. Several implementations of MPI for
C, C++, Fortran, and Python are in fairly wide use and well
developed. The great majority of high-performance parallel
scientific software currently uses MPI, and is often developed
using an SPMD-based methodology as described in Section 2.2.2.

A Java library called PJ provides a hybrid solution to parallel
programming that blends ideas from OpenMP and MPI in an
objected-oriented fashion that naturally fits with the Java language
[98]. Programmers can implement solutions on shared memory
multicore machines or clusters of computers.

The graphics processing units (GPUs) found in most commodity
PCs contain multiple processing units. Though traditionally
dedicated to graphical applications, the power of these GPUs can
now be used for general-purpose parallel computation using a few
different available libraries (when used for more than graphics, a
graphics card is known as a general-purpose GPU, or GPGPU).
NVIDIA has also developed a programming interface based on
C/C++ for programming its GPU hardware architecture, called the
Compute Unified Device Architecture (CUDA). There are CUDA
wrappers for other languages, such as Python, Java, and Ruby.
Microsoft also has a GPGPU API called DirectCompute, for use
under Windows Vista and Windows 7.

OpenCL is a new standard, initially developed by Apple, which
has been implemented for the GPU hardware of several

manufacturers, including NVIDIA and AMD. It is platform
agnostic, and lets a program use both the CPU and GPU cores.

Nearly all of these examples of software environments for
programming parallelism were developed in academic research
projects or industry, and now have become accessible and
desirable for CS education. We anticipate rapid growth in this
area as parallelism becomes more and more essential in all forms
of computing. For example, computing researchers using Sandia
Labs’ object-oriented Trilinos project [117] provides a base class
DistObject for efficiently redistributing an already distributed data
object, enabling domain experts to program a small number of
conceptually simplified methods that reuse sophisticated parallel
techniques through a pattern paradigm. Also, Intel’s TBB
provides a programmer with “building blocks” in the form of
object-oriented algorithms and thread-safe data structures, for
constructing efficient and correct parallel applications [43]. CS
curricula will especially benefit from software-environment
support for effective parallel programming patterns, including
new patterns yet to be discovered and developed by academic and
industry research.

Finally, we note that these technologies are often used in
conjunction with each other in practice. For example,
programmers may use MPI together with OpenMP or CUDA on
clusters of multi-core or GPU-equipped computers.

2.2.5 Hardware
Representative educational outcomes:

Given a problem to solve and a chosen parallel approach to
solving it, CS graduates should be able to:

 Choose appropriate hardware for the approach, and
 Devise and implement the solution using that approach on

that hardware.

Central Ideas

Students need to know about machine organization in order to
create effective computing applications and systems. It is difficult
to understand performance issues without a reasonable mental
model of the hardware (a review and comparison of current
hardware can be found in [110]). As an example of why this is
important, the Sieve of Eratosthenes exercise [101] written in a
cache-friendly sequential manner has dramatically better
performance than parallelizing in a cache-oblivious manner.
Parallelizing the cache-friendly version further increases the
speedup. Thus, at least a conceptual understanding of machine
organization is necessary to effectively make use of parallelism.

Some of the key hardware organizational schemes relevant to
parallel computing today are: multiple instruction, multiple data
(MIMD) and its subset, SPMD; single instruction, multiple data
(SIMD); and clusters.

Current commodity PCs and servers containing multicore
processors are MIMD machines—each core is capable of
simultaneously processing data independently. Some of that data
can be shared by tasks running on those cores, however.
Advanced specialized MIMD machines, such as IBM’s BlueGene
series, use high-bandwidth connections between racks of many
machines in order to support sharing of memory.

The GPGPU cards provide a form of SIMD organization, in
which the same instructions are executed by each core
simultaneously on separate data. This organization arises naturally

104

for graphics processing, where often the same manipulation needs
to be done on every pixel to be displayed.

Clusters of independent machines connected via a network switch,
called Beowulf clusters, represent another type of organization
commonly used for parallel computing. In cluster computing,
there is no concept of shared memory data. Cloud computing is an
extension of cluster computing, where cloud vendors enable users
to configure their own virtual cluster on remote hardware that the
vendors maintain and provide for that purpose.

Exposing students to a variety of hardware topics helps them to
develop adequate conceptual models of hardware that informs
choices made in the other parallel knowledge areas presented in
this section. Simple models are often sufficient to allow the
student to begin exploring parallel execution at the beginner level.

Other potential topics
We have intentionally made only general and summary
observations in our comments above. Any curriculum will
naturally explore specific topics at much greater depth in certain
courses than we have indicated, including both parallelism that
have become standard in those courses (e.g., instruction-level
parallelism) and topics that have recently emerged or re-emerged
as important (such as multi-core architectures, interconnection
topologies, grid computing).

3. TEACHING AND LEARNING
STRATEGIES
Although the list of parallel concepts and knowledge areas we
presented in the previous section might seem daunting, we
contend that there are straightforward mappings from existing
curricula to updated ones that include these topics. To help
students learn to “think in parallel,” we assert that a spiral and
experiential approach to the topics is desirable. Although we are
advocating a particular approach, we recognize that each
institution has its own unique curricular challenges and
opportunities. We respect and embrace that diversity. In the
following we attempt to identify topics that are likely to be part of
many curricula and show how particular ideas in parallelism
might be included with these likely existing topics.

3.1 Overarching Approach
To help our students learn to think in parallel, we advocate a
spiral approach to these topics, introducing ideas at a basic
(though “intellectually honest”) level early, then revisiting the
ideas with greater depth and formality later in a curriculum
[23][24]. This approach encourages a focus on fundamental
ideas. As Schwill wrote, “A subject is more comprehensible if
students and teachers grasp its fundamental principles.
Fundamental ideas condense information by organizing
incoherent details into a linking structure which will be kept in
mind for a longer time. Details can be reconstructed from this
structure more easily” [105].

Along with a spiral approach, the hands-on practice of
experiential learning will allow students to test their own
conceptual frameworks. We are not advocating the teaching of
tools over concepts, rather we are advocating experiential learning
so students can engage with concepts and test their own
conceptual models. Educators and students should expect changes
to tools and techniques. By ensuring that our students are well
grounded in the concepts, we prepare them to adapt to these
changes. Many different existing tools and techniques can be

used to introduce and expand upon the concepts we have outlined
in the previous section. We will provide some examples below.

We believe that the key to this process is in problem selection:
sprinkle problems through the curriculum that benefit from
parallelism, but whose solutions introduce new issues, the
resolution of which expands a student's understanding step by
step. By repeatedly exposing students to topics through the spiral
approach, we can help students to recognize the underlying
concepts, not just the specific technologies. In doing so, we hope
to optimally prepare them for whatever emerges in the future.

The following is an illustrative example using particular
technologies. The basic philosophy is to start gently in an
introductory course, with students devising sequential solutions to
embarrassingly parallel problems like matrix addition or simple
image processing tasks. In the next course, instructors using C++
for example, could then use OpenMP to have students solve the
same problems with parallel solutions. We have found that
OpenMP is easy enough to use that a simple introduction to
multicore technology and threads is enough to get the students up
and running, including those who are not CS majors. The key is to
motivate the material through a hands-on exercise that lets them
directly experience the benefit of parallelism, visually if possible.

As an example, an exercise involving a standard computation
might increase the size of a data structure (i.e., matrix or image)
enough that the students become impatient waiting for a
sequential solution to complete. Given the speeds of modern
computing equipment, young students often become accustomed
to their computations completing almost immediately, so they
may perceive running times of only a few seconds as being
unexpectedly long. Thus, if a student's parallel implementation
completes in a fraction of the time required for a sequential
computation, that student directly experiences the performance
speedup. Several of us have found that a hands-on experience of
parallelism speedup becomes a personal turning point for some
students, motivating them to learn more about modern parallel
computing practices and equipment, sometimes even leading non-
majors to take more CS courses.

In subsequent courses like operating systems, we can then give
problems whose multithreaded solutions introduce race
conditions, deadlocks, etc., and so motivate the use of
synchronization constructs. Likewise, a course like programming
languages can introduce the benefits of functional languages (e.g.,
immutability or STM) for parallelism, and compare the
concurrency mechanisms of different languages. It is also
conceivable to cover actors as a natural way of implementing
parallel software when object-oriented abstraction is used.
Advanced elective courses can delve even further, because
students have seen and understand the concept of using parallel
solutions to solve real problems.

3.2 Adapting Existing Curricula
There are many natural places in most curricula where parallel
topics can be introduced. Introducing parallelism in this way
results in broad, incremental, but perhaps not deep, changes to
courses. However, we anticipate that the cumulative effects of
these incremental changes will be deep changes in students’
abilities to think in parallel.

3.2.1 Introductory Level
The spiral approach argues that even introductory CS students
should be introduced to parallelism beginning early in their

105

careers, including a significant number of students who do not
continue in CS but who will use computing in their work.

There are already several published examples of faculty
successfully introducing parallelism topics early in the
curriculum:

 When introducing event-based programming or graphics, it is
natural to use multiple threads of execution. By focusing on
race-free problems, Kim Bruce and his colleagues Andrea
Danyluk and Thomas Murtagh have successfully used this
approach for many years at Williams College and Pomona
College [22].

 Daniel Ernst and Daniel Stevenson (University of
Wisconsin/Eau Claire, U.S.) argue for introducing parallel
computing and concurrency using applications such as image
processing and encryption cracking [45].

 The WebMapReduce software [54] produced at St. Olaf
College and associated teaching material [97] enables
introductory students to program with Google-style
distributed map-reduce computing [39] with Hadoop [7],
using Java, C++, Python or Scheme to create mapper and
reducer functions/methods.

All these examples involve experiences that connect a student's
programming with appealing applications having external
importance. In Bruce et al's work, students write parallel programs
using “active objects”, simple library classes that encapsulate
threads and provide threading behavior through simple
inheritance. In Ernst and Stevenson's examples, students write
concurrent programs using Java threads directly. In
WebMapReduce, students write code that is executed in parallel
by a fault-tolerant, data-parallel system that is capable of handling
large-scale data sets. In all these cases, accompanying discussion
can relate the activities to broader issues in parallelism.

Another way to introduce parallel thinking in introductory courses
is through the use of “Computer Science Unplugged” sorts of
examples [30]. For example, one of us uses a simple survey
where he asks students, “How do you multitask? Please describe
below how you use your time while doing multiple things within
the same time period.” He collects this information and
categorizes it according to a particular approach to parallel
programming, say pipelining or multi-threading. Discussing these
results in class provides an opportunity both to demonstrate that
parallelism is a common feature of daily life and to foreshadow
later classes in the curriculum. Because the examples are drawn
from the students’ own experience, students are more likely to see
engage in the discussion.

Lewendowski and colleagues have recently shown that students in
the very beginning of introductory CS courses, when given a
problem posed in English prose, are able to grasp the problems of
concurrent access to shared data by multiple tasks [80]. The
problem they posed was one of people buying concert tickets from
multiple sales clerks at a bank of ticket windows. The sales clerks
represent multiple parallel tasks, and the information they share is
which tickets have been sold and which are still available. This
problem could be posed in an introductory course, and students
could be asked to formulate solutions. Those solutions could be
discussed, thereby giving students their first taste of race
conditions and how to handle them, without getting into the
details of hardware design that have traditionally been needed to
understand them in advanced courses.

3.2.2 Concepts-first Curricula
Some institutions prefer curricula that focus on concepts first,
sometimes to the exclusion of studying computers as physical
machines early in students’ careers. These programs might
choose to introduce abstract machines, such as Concurrent
Sequential Processes (CSP) [61] or the Pi Calculus [92][93][91],
early in the curriculum, deferring hardware parallelism and
software environments to later in the curriculum.

3.2.3 Data Structures
In courses that introduce or use common data structures, there can
be a natural transition from the study of individual sequential
access to those structures to considering issues of safe concurrent
access to those entities, whether through appropriate use of
synchronization structures or through lockless data structures. For
example, one of us has used an exercise where students initially
build a sequential, single-threaded web crawler in Java, storing
links found in traditional list, map and queue data structures.
Following that, we introduce the use of threads and have the
students build a multi-threaded crawler using the corresponding
thread-safe data structures found in the java.util.concurrent
library.

3.2.4 Software Design
In intermediate courses on software design and development, the
ability to identify and take advantage of parallelism becomes an
essential skill.

In a course that teaches software patterns, an instructor might
choose to introduce a pattern or two for parallel processing. There
are many parallel patterns identified already [82], and more work
on identifying such patterns is on-going [64][74]. By introducing
a pattern or two in an existing course, instructors can keep
parallelism in front of their students. Some institutions might
consider using a broader selection of the parallel patterns in a later
course.

Many traditional software patterns also provide opportunities to
discuss parallelism. For example, when discussing model-view-
controller [78][100], an instructor might discuss how long-running
events in the controller may need to be executed in parallel to
allow the view portion of the program to remain responsive to
user input. Similar observations about potential uses of
parallelism arise in other traditional patterns such as adapter,
proxy, or observer [53].

A course that discusses software architecture might also provide a
profitable place to introduce some parallelism. For example,
when discussing client-server architectures, an instructor can
discuss the problem of scaling the system with the number of
clients. The server will have to be multi-threaded (whether
manually or through the underlying implementation platform) to
be able to serve more than one client at a time. Students can
readily grasp this need for parallelism.

Courses that include team projects provide another opportunity for
Unplugged exercises. An instructor can prompt interesting
discussion with questions like, “How are the members working on
a team project an example of parallelism?”, or “How is a team
employing an agile methodology an example of parallelism?”

3.2.5 Algorithm Analysis
Courses that discuss algorithm analysis might include elements of
the distributed paradigm, notions of consensus and election, and
issues of fault tolerance. These topics remain relevant in the
multi-core age; indeed, early processors with many general-

106

purpose cores (such as Intel's recently released 48-core research
chip [109][62] and their experimental 80-core network-on-chip
[121][83]) arguably behave like distributed systems in many
respects. Topics such as assessment of parallel speedup (e.g.,
Amdahl's Law), data scalability, categories of parallel computing
(e.g., data parallelism vs. task parallelism), relative performance
of various thread computing models rise in importance in the
presence of large-scale multi-core computing.

In a course that covers sorting algorithms, an instructor could
introduce parallel merge sort, for example. This is just a small
step beyond traditional merge sort and does not require substantial
additional time. Introducing an algorithm like parallel merge sort
helps students to begin to consider the parallelizability of an
algorithm as an important facet in choosing the algorithm to use in
a particular circumstance.

3.2.6 Programming Language Concepts
Many people think that some previously underused programming
language features, such as functional programming, actors [60][3],
and software transactional memory (STM) [76][51] will become
more important in the age of multi-core [21]. Independent of this,
we seem to be in an era where practitioners are expected to be
fluent in a variety of languages. For example, many application
development teams use software frameworks such as Thrift ([8],
originally developed at Facebook.com) to combine services built
from many different languages. For these reasons, programming
language concepts are rising in importance. Institutions that have
de-emphasized programming language concepts in the past my
wish to reevaluate those decisions. Institutions that have
maintained programming language concepts in their curricula
should consider introducing parallelism concepts in the following
ways.

 Institutions that approach programming languages using a
breadth-first, variety-of-languages approach may wish to
consider using a language like Clojure [58][27] or Haskell
[59], which include support for STM. Scala [96][116] and
Erlang [44] include support of the actor model. Fortress [5] is
being specifically designed with parallelism in mind; for
example, for loops are parallel by default.

 If an institution chooses to use a narrower set of languages,
many of these concepts can be approached using libraries.
For example, the Kilim [112] and Candygram [25] libraries
provide support for implementing actors in Java and Python
respectively. Duece for Java [40] and Axon for Python [10]
would let students experiment with STM. The JCSP libraries
implement CSP in Java [29].

 Institutions who approach programming languages using a
more theoretical approach might consider introducing
parallelism using models like CSP [61] or the Pi Calculus
[92][93][91].

 Institutions who approach programming languages by
constructing a series of interpreters [52] should consider
incorporating concurrency in the interpreters [120].

3.2.7 Operating Systems, Computer Architecture and
Organization
If students have been begun to develop a conceptual model of
parallelism in introductory courses using examples such as we
have described above, then this will enable deeper study and
understanding of concepts such as instruction level parallelism,
hyperthreading, and multicore architecture, which are traditionally
studied in courses involving computer architecture and

organization. The introduction of parallelism earlier may free up
time in such courses to cover other topics.

While parallelism is a traditional topic in operating system
courses, other courses dealing with systems software can also
benefit from curricula extended with concurrency and
multithreading aspects. For instance, courses that address
programming language implementations in the form of virtual
machines could cover the implementation of parallel language
features such as actors in terms of lower-level features such as
threads and locking. As a concrete example, the way the Erlang
VM implements the language’s lightweight actor model can be
studied in depth.

3.2.8 Advanced Electives
The integration of parallelism topics throughout the curriculum
still leaves room for advanced electives in parallelism. In fact,
these electives will be able to explore advanced topics even more
deeply when students arrive in them with basic concepts already
in place. For example, if students have used a system such as
WebMapReduce to implement solutions to basic data-parallel
problems earlier in their studies, then a special course in parallel
programming or distributed systems could delve deeply into the
use of Hadoop to solve sophisticated problems, such as creating a
PageRank [19] type of index of all of Wikipedia. As another
example, if students have already used OpenMP to implement
data parallel solutions, they should more easily be able to consider
message-passing solutions to problems requiring sophisticated
task-parallel solutions, using any of a variety of tools, such as
MPI or TBB. Rivoire describes an advanced undergraduate course
that integrates several of these technologies [104].

3.3 Language Issues
The increasing importance of parallelism affects the choice of
programming languages used in teaching. Going forward,
educators will have to consider the support offered by a language
for various parallel development concepts. Different institutions
will choose to make this choice in different ways.

Teaching languages like Alice [33] or Scratch [103] already offer
significant support for basic parallelism. In particular:

Alice provides four constructs for specifying sequential or parallel
control:

A DoInOrder {} block that executes the statements in the block
sequentially

A DoTogether {} block that executes all the statements in the
block simultaneously

A ForEachInOrder {} loop that sequentially performs the
statements in the block, for each item in a list sequentially

A ForAllTogether {} loop that sequentially performs the
statements in the block, for all items in a list simultaneously

These constructs make it remarkably easy to simulate real-world
simultaneous behaviors in Alice. For example, to simulate a
basketball referee raising both arms to indicate a successful 3-
point basket, one might program:

DoTogether {

 referee.leftArm.turn(forward, 180);

 referee.rightArm.turn(forward, 180);

}

Scratch provides a simple event-based mechanism for specifying
parallel behavior. For any event e, any Scratch sprite (i.e.,

107

animate-able object) or the stage can define handlers for e. When
event e occurs, all handlers for e are executed simultaneously.

When shown their use, young students find these constructs
remarkably intuitive and easy to use. Scratch and Alice are thus
engaging ways to introduce students to parallel thinking.

Although sequential computing has dominated in CS education
since the field’s inception, many aspects of parallel computation
are actually quite natural and accessible, even to pre-college
students. Beginning CS students are capable not only of
understanding parallelism concepts and programming examples,
but also of discovering issues such as those surrounding
concurrent access to shared resources [118][26][80]. For many
problems within computing and beyond, parallelism provides the
most natural solution strategies, and we encourage identifying and
acting on the natural opportunities for parallelism in CS courses.

Python has been growing in importance as an early teaching
language. The current standard Python implementations use a
“global interpreter lock” to ensure that multiple threads running in
the interpreter mutate the interpreter’s state in a way that is
consistent with a sequential execution of the thread’s code [56].
In essence, this means that multi-threaded Python code cannot
take full advantage of multi-core processors. Other Python
implementations, such as IronPython [69] and Jython [115] do not
have a global interpreter lock, and so do not suffer this relative
disadvantage. However, these implementations are not necessarily
compatible with the standard APIs and libraries that an instructor
might wish to use in a course.

4. SUPPORT: A SHARING COMMUNITY
OF EDUCATORS
4.1 Online Community
Effective and productive sharing in the environment of a
welcoming and lively community of peers can make a tremendous
difference in supporting faculty during this time of transition
toward the parallel future of computing. Given the great diversity
of faculty experience and interest, and the widely varying nature
of curricular needs, no single source of support will be sufficient
for all situations. However, a broad community of educators
seeking to bring about systemic change can profoundly assist
others who wish to enhance their backgrounds in parallel
computing by thoughtfully creating a variety of strategies for
training and supporting each other.

To support broad based changes to curricula such as we have
proposed in a timely manner, we will need to share material and
ideas by electronic means and form a community. Though several
repositories currently exist offering access to parallel and more
general computing content with various levels of metadata and
search capabilities, these resources are still underutilized [94].
Moreover, most of the enhancements to courses that we suggest in
this report are not yet placed in any easily accessible location that
will facilitate fast adoption. In this section we consider some
existing web sites for sharing CS educational materials, discuss
barriers to forming a true community of educators, and suggest
ways that we might overcome them.

Several efforts towards sharing CS educational materials are
currently underway.

 Ensemble (http://www.computingportal.org/), funded by the
National Science Foundation, is a “Pathway project” of the
National Science Digital Library(NSDL). Aimed at the

entire computing education community, this project seeks to
encourage contribution, use, and review of a broad range of
CS educational materials. There is currently no material for
parallel computing on this site, but a community devoted to
introducing parallel concepts throughout the curriculum has
been formed there.

 Another part of the NSDL is the CITIDEL project
(Computing and Information Technology Interactive Digital
Library, http://www.citidel.org/), which serves as a
repository for computer science education materials. Its
‘computing materials community’ contains several
collections, organized by relatively standard course subject
areas, such as computer graphics, networks, and algorithms.
Educators can join and contribute materials such as lecture
slides, exams, and papers describing classroom techniques.
Users can browse by the communities and collections, or by
author or date. In an attempt to provide controlled
vocabularies, users can also browse by subjects, which are
organized by the ACM Computing Curricula
recommendations.

There are some sites directed more specifically at the parallel
computing education community.

 Intel Academic Community (IAC) provides an open platform
for sharing parallelism courseware components [2]. The
components are organized using the controlled vocabulary of
the ACM Computing Curricula Detailed Body of Knowledge
([68], p.36). The platform itself is based on Moodle
technology, widely understood and adopted by academia.
The open platform allows for both downloading and linking
to exiting course material as well as the uploading of new
items. Intel has instituted both a ranking and reviewing
capability for broad community input as well as a system of
expert reviews.

 OpenSparc sponsors a wiki called “Sharing Teaching
Material for Concurrent Computing” [32], which is designed
with collaboration in mind. Instructors provide course
materials under the Creative Commons License that are
freely accessible by other educators.

 The CUDAZone site, sponsored by NVIDIA, serves as a
repository for code examples in a variety of application areas
[36].

These resources are a start towards making materials available to
educators for searching and browsing. But courseware repositories
alone will not be enough to meet the goal of forming a community
of educators who are trying to change their curriculum quickly in
incremental ways. We need to be communicating by sharing ideas
about what works and what doesn’t, discussing learning
objectives, comparing classroom techniques for teaching various
new topics, and providing peer reviews of shared materials. ome
sites are already seeking these objectives. Notably, the Intel
Academic Community website hosts relevant blogs and forums,
and produces video content including the weekly "Teach Parallel"
broadcasts [114]. Building from this significant beginning,
website providers must discover and incorporate features and
content that are ever more accessible, convenient, and valuable for
this purpose, and CS educators must begin incorporating the
resulting rich online resources into their course preparation
practices and teaching, in order for the vital community we
envision to emerge.

108

We face several challenges to establishing an active and vibrant
on-line community for parallelism in the CS curriculum:

 The episodic nature of course development—busy professors
may only access these resources when they need specific
materials, or when they have completed a project and are
ready to share their results.

 A lack of incentive—professors are typically worried about
completing tasks that are valued for promotion and tenure
(research, teaching, and service to profession); it is not clear
that participation in such a community will be valued by
those outside the community as viable service.

 A small community size—popular sites with ratings and
comments and blog posting rely on strength on numbers to
develop a strong community of users; our community of CS
educators is likely to remain relatively small.

 Shared content may not be easily adapted by others—to be
widely shared, some content will ideally to be either platform
independent, or easily ported from one environment to
another. This is not always an easy prospect for busy
professors.

 Technology changes quickly—some materials may lose
applicability and relevance as hardware and software evolve.

We see some important features to add to online communities to
facilitate sharing. The ability to find relevant and appropriate
content is as important as the content itself. There are many
salient features that should be included as metadata associated
with the shared content to support its easy accessibility by course
developers. These will provide attributes for searching such as its
level of difficulty, learning objectives, platform requirements, or
language used.

Although user rating and comments offer value to consumers, the
benefit of peer review is more highly valued and sometimes
required in academia. However, requiring peer review prior to
posting may slow the sharing process, so it is not something we
would advocate initially. Traditional online rating systems, such
as 1-5 stars, may also not be appropriate for or widely used by our
community.

The success of sharing of course content inevitably falls upon the
participants involved. Besides developing shareable content,
academic community members need to aware of the mechanisms
available for sharing, and then actually take part in the sharing
process, including posting of sharable content, downloading and
using what is available, and providing feedback to the community.
It is equally important to enrich the breadth of content offerings
by capturing the work of community members as they port student
exercises to other platforms or update course materials to
accommodate revisions in OS and related tools. To make this
easier and to test materials, remote systems are available that
allow academicians to access manycore systems. The Elastic
Compute Cloud (EC2) from Amazon Web Services (AWS)
provides inexpensive access to virtual instances of machines with
preconfigured numbers of “virtual cores” [6]. Intel’s Many Core
Testing Lab (MTL), which offers community access to advanced
systems expressly for the purpose of creating and testing content
as well as use by the community as a teaching platform [67]. Such
efforts must continue to be expanded in order to build a critical
mass of available teaching content.

These expectations for testing and sharing materials are somewhat
at odds with the episodic nature of course development in
academia and with the value we receive from participating. Some
of us however, will need to take part in order to meet the goal of
changing our curriculum to keep pace with the change in
hardware.

Besides offering an effective sharing environment such as a
repository, it is necessary develop a community of participants
conducting a variety of supporting activities including but not
limited to posting and using content, as well as commenting on
posted content. We need to induce repeat visits independent of
immediate courseware development needs. Likewise other
mechanisms for informing members of new and updated content,
such as RSS feeds, can provide similar value for more passive
members. Nevertheless the success of such efforts is still
dependent on available time and motivation of often-overworked
professors to participate in the process. Hopefully some of us will
take up the charge to be proactive.

By stating these objectives for online resources, we do not imply
their absence from existing sites. For example, many sites include
forms of search and metadata that help an instructor identify
materials suitable for a particular situation. As another example,
Intel Corporation has chosen to assign a high priority to online
support for the international community of computing educators
teaching parallelism, as members of that community create
materials and curricular innovations appropriate for their own
diverse academic situations. This effort shows leadership in both
energetic building of online supports for community and in
respectfully encouraging CS educators to develop parallel
teaching materials. Yet much work remains on these objectives
for discovering and implementing ever more effective support
mechanisms, in order to engage and serve the emerging
heterogeneous populace of CS educators who will soon begin
teaching parallelism in new curricular contexts.

Developing an on line community can be likened to throwing a
party. You can offer all kinds of party favors to get things started,
but your success ultimately depends on keeping those who arrive
early around long enough to develop a critical mass wherein it is
the quality of the participants and their activities that comprise the
value proposition that keeps the party going. Not only should your
party be broadly advertised, the benefits of attending need to be
well understood. Once the parallel CS educator community
decides on appropriate meeting spaces online, we need to both
advertise and participate in order to be effective.

4.2 Workshops
Community development can be further reinforced through live,
face-to-face interaction between both active and prospective
members. Workshops (which are an established feature associated
with many technical and academic conferences), can offer not
only technical training in parallel programming but also perhaps
more importantly focus on curriculum development, including
case studies documenting professors’ real accounts of curriculum
development, outlining obstacles encountered and tactics for
overcoming them (for example, [31]). Workshops have proven to
encourage community development and contribution of materials
to repositories, as described in [70]. It now is feasible to create
remote videoconferencing workshops [95]. Not only will
these activities invigorate our community at a grass roots level,
but also provide an opportunity to cross-pollinate parallel

109

curriculum development across a variety of disciplines within the
scopes of the various targeted conferences.

5. BRINGING ABOUT SYSTEMIC
CHANGE
5.1 An approach to change
As the foregoing sections indicate, we view parallelism as a topic
area that would ideally appear at many locations in a CS
curriculum, and at the elementary, intermediate, and advanced
levels. We recommend a spiral approach to exploring
fundamental concepts of parallelism, with enduring principles
always reinforced by “hands-on” experiential learning. Several
factors convince us of this position.

 Since multi-core computing will soon have a profound effect
on nearly all forms of computation, even non-major students
who may only study CS for a term or two will benefit from
exposure to fundamental and enduring parallelism concepts,
however they may use computing in their future academic
and employment careers.

 As every advertising agency knows, frequent periodic
exposure to information helps a hearer to understand and
retain that information, and also implicitly conveys a sense of
that information’s significance. Likewise, frequent
appearance of concepts and practice in parallelism
throughout a CS curriculum will likely prepare students
better for the future of ubiquitous parallel computing they
will face than a more concentrated exposure localized within
a single course.

 The scientific study of learning and education research
support teaching strategies such as hands-on “active
learning” ([18][88][85][84][87][86]) and a spiral approach
to presenting and learning deep and substantial concepts over
time ([77][23][24][41]). For example, we note that the spiral
approach is considered a core learning pattern in the field of
CS Didactics, found in several European countries, which
concerns the scientific scholarship of learning in our
discipline [105][113][20].

These strategies for teaching parallelism suggest a systemic
change in CS curricula, in which strategically selected topics in
parallelism appear frequently in the contexts of numerous CS
courses. While we do not claim to know how to untie the Gordian
Knot of transformative change, we suggest three guidelines that
may help the community to succeed in injecting more parallelism
into CS curricula.

1. Incremental change. Cyclically making strategic small
modifications helps to create manageable change.

2. Assessment. Assessing results helps to identify and
quantify the effectiveness of change.

3. Proceeding in and from community. A collaborative,
open, and supportive community provides an excellent
environment for fostering change among the widest set
of stakeholders.

Some examples may shed light on how these guidelines can
function together to encourage systemic change. The field of
information security was represented in the 2001 version of the
ACM-IEEE/CS curricular guidelines in the titles of only two
knowledge units, one required (3 hours) and one elective [71].
But the rising importance of the field in present-day computing
and the energetic incremental activity of the information security
community led the 2008 revision of those curriculum guidelines

to include six knowledge units with titles involving security, three
of which are required (12 hours total) [68]. Note that the
guidelines include assessment cues (such as the number of
required hours and learning objectives for each knowledge unit)
that help to identify and quantify these curricular changes.

We believe that an incremental, assessable, and community-based
approach will also serve the CS education community as it
introduces more parallel computing concepts in undergraduate CS
curricula

5.2 Some challenges
We comment below on some of the challenges that the CS
education community may face as it seeks to expand the presence
of parallelism in CS program offerings.

5.2.1 CS curricula are already full
The most obvious concern about bringing more parallelism into
CS curricula is the challenge of adding topics in parallelism to
courses and academic programs that are already overstuffed with
content. We have made no attempt to recount a thorough
justification for teaching more parallelism to CS students, but
instead we have assumed that premise and focused on strategies
for instituting that change in CS curricula.

However, we note that leading corporations in information
technology and top research groups have already made a strong
case for this curricular transformation. To quote John Shalf of
Lawrence Berkeley National Laboratories in connection with the
recent announcement of Intel 32- and 50-core CPU products to be
delivered by 2011, "[T]he most important thing moving forward is
that everyone is now affected by parallelism. So the ideas have
moved from being the interest of a handful of academics and
supercomputing advocates to a mainstream problem that is
important to the broader computing industry – the likes of
Microsoft and Intel. This means it is even more imperative that we
train future computer scientists to solve problems using
parallelism from the get-go. The transformation of our
educational system will be as big and disruptive as the changes to
our software environment. So we’d better start now" [47].

Given the urgent need to bring more parallelism into the CS
curriculum, some traditional course content may be displaced for
at least the short term. Over time, we anticipate that the CS
education community will discover cost-neutral substitutions and
rearrangements of topics within courses that will allow concepts
of parallelism to be taught with little or no sacrifice of other
course topics. In fact, several examples of efficiently introducing
parallelism appear in Section 3. As research and industry develop
new parallel programming algorithms, data structures, and
environments, the creative CS education community will surely
discover better and better curricular optimizations incorporating
them.

5.2.2 The urgency of this change
CS curricula do change over time. For example, the now
universal acceptance of object-oriented programming in
undergraduate CS education shows that systemic curriculum
change is possible in our discipline. However, that transformation
took about 20 years to accomplish, which is far more time than we
have to produce CS graduates who are competitive in parallel
computing, given the rapid expansion of programmer-accessible
parallelism in today’s computer hardware.

Fortunately, incremental change is an effective strategy that
initially requires only a small allocation of time and equipment.

110

Students who learn a few strategically chosen lessons in
parallelism now will graduate to academic and employment
careers with useful lessons and some valuable insights. If
subsequent students learn more parallelism, the accumulation of
modest steps in parallel computation can soon lead to deeper
education in the principles of parallelism, strengthened by broad
experiential learning activities.

5.2.3 Faculty challenges
Teaching parallelism at all levels of a CS curriculum, and in
courses that have not traditionally been associated with
parallelism, places significant demands on the faculty teaching
those courses. Up to now, parallelism has been a specialty of a
small proportion of a CS faculty. The rapidly changing nature of
all CS subfields has always placed a substantial burden on CS
faculty in keeping up with their academic interests and
responsibilities. Each CS professor must make his or her own
cost-to-benefit calculation about how much time to invest in each
new technology or disciplinary development, including the
increasingly prominent developments involving parallelism. The
timely success of a systemic change towards teaching more
parallelism in the CS curriculum will hinge on making it as easy
as possible for professors who are non-specialists in parallelism to
develop competence in the new topics they now need for their
courses, and to obtain the course materials and parallel computing
infrastructure support required to teach those new topics.

As indicated at the beginning of Section 4, an intentional
supportive community of peers is key to helping faculty making
this transition toward the parallel future of computing. Such a
community will bring parallelism specialists and non-specialists
together, and will also connect persons with similar professional
interests outside of parallelism, for example, instructors of a given
type of course or persons with common academic interests. Some
example strategies include: technical workshops, whether on-site
or remotely accessed; workshops on teaching and learning
strategies, presented by educators, which may focus on particular
courses common among many institutions’ CS curricula, or
particular teaching techniques, etc.; formation of mentoring
networks, or other relationship-based support strategies; and the
creation and maintenance of effective online resources for
locating, finding, sharing, and developing resource materials,
assignments, and pedagogical systems that support the teaching of
parallelism. See Section 4 for further elaboration on this
community-based approach.

6. SUMMARY OF RECOMMENDATIONS
AND FUTURE WORK
The following recommendations summarize the results of our
study of strategies for injecting parallelism into CS curricula.

1. Teach a broad collection of enduring principles of
parallelism through hands-on experiential learning, in order
to prepare students best for the volatile future of parallel
computation while reinforcing concepts through active
learning.

2. Let research findings and industrial developments inform
the modifications of courses and curricula to include more
parallelism. We present a suggested framework for a body
of knowledge for parallel computing that derives from the
recommendations of researchers in academia and industry.

3. Teach parallelism early and often, at all levels of
undergraduate CS curricula. Both CS majors and non-
majors need background in parallelism, and the material

merits ongoing vertical study during a major’s
undergraduate career.

4. Use a spiral approach for presenting substantial concepts
and issues in parallelism, as recommended by the European
field of CS Didactics, and incorporate other results of the
sciences of teaching and learning when introducing
concepts and practices of parallelism in new locations in CS
courses and curricula.

5. Select concepts and applications strategically when
introducing parallelism in elementary courses and other
non-traditional locations in CS curricula. The depth and
complexity of parallel computing is usually less important
than accessibility and its perceived significance for
beginners.

6. Develop an open, inviting community of CS professors,
administrators, and staff who are seeking to bring more
parallelism into the CS curriculum. Include both specialists
and non-specialists in parallelism, and encourage
collaboration, training, and mentoring relationships among
all community members.

7. Create effective online resources to support that community
of CS academics seeking parallelism in CS courses and
curricula. Some elements of such online resources include:

a) community review of online materials, with appropriate
incentives and academically recognized rewards;

b) creative features for search, sharing, feedback, and
ongoing discussion that make sites much more than
mere repositories; and

c) open cross-listing and linking between such sites, digital
libraries such as NSDL, and other resources in order to
provide wide, convenient access and to encourage a
sharing and supportive community.

8. Approach the shift towards more parallelism in CS courses
and curricula strategically, beginning with incremental
change and proceeding in and from community.

We also have several suggestions to the international CS
educations for future work that would build on our findings.

 Present experiences about efforts to implement these ideas in
various institutional types and curricular settings, at national
and local meetings. We note that assessed work will be most
persuasive and edifying for the community, and that well-
analyzed failures often yield as least as many lessons as
smooth success stories.

 Collaborate with other faculty on this challenge of
parallelism. Collaboration of peers on new initiatives can
reap the strengths and minimize the weaknesses of all.
Mentoring relationships between newcomers and more
experienced persons typically benefit both parties, both
professionally and personally, as well as in the subject at
hand. The injection of parallelism into CS curricula will
require rapid and effective systemic change, and an open
spirit of collaboration is the primary ingredient in forming
the community of CS educators needed to support that
transformation.

 Develop opportunities for workshops and other gatherings of
CS educators, for purposes such as training in associated
technologies, and sharing strategies and vehicles for teaching
concepts of parallelism. We note that workshop sessions
often accompany professional meetings such as SC
(SuperComputing), SPLASH (formerly OOPSLA), SIGCSE,
and others, and some of these are long established, well

111

supported, and very effective. However, many additional
venues and various types of gatherings and workshops will
be needed to reach the great variety of professional
backgrounds, institutional settings, and curriculum
requirements that must be served.

 Continue to explore strategic aspects of bringing parallelism
into the CS curriculum. Some of the aspects identified in this
report deserve deeper consideration. Two immediate needs
in preparation for the coming transformation are the
expedited development of effective teaching and learning
strategies for parallel computing content, and the
collaborative establishment of effective means of sharing
among a community of CS educators who will gather around
teaching parallelism. Another substantial issue worth
studying that is not a focus of the present report is tenure and
promotion rewards structure for producing and sharing high-
quality online materials related to teaching and learning
parallelism.

7. ACKNOWLEDGMENTS
Most of the content of this report was developed during an
electronic discussion that took place during the two months prior
to our intensive writing meeting in Ankara. Our discussion group
consisted of the authors and an expert advisory panel who freely
and energetically informed and challenged us, greatly influencing
and benefiting our work. The members of our advisory panel
were: Clay Breshears, Intel Corporation; Daniel Ernst, University
of Wisconsin—Eau Claire; Gregory Gagne, Westminster College
and coauthor of [107]; Michael Heroux, Sandia National Labs and
St. John’s University; Jeanne Narum, Project Kaleidoscope; and
Matthew Wolf, Georgia Tech and Oak Ridge National Labs.

8. REFERENCES
[1] Abramson, B. and Yung, M. 1989. Divide and conquer

under global constraints: A solution to the N-queens
problem. Journal of Parallel and Distributed Computing.
6, 3 (Jun. 1989), 649-662.

[2] Academic - Intel® Software Network.
http://software.intel.com/en-
us/academic/?cid=cim:ggl|academic_us_brand|ks112A7|
s. Accessed: 08-06-2010.

[3] Agha, G. 1986. Actors: a model of concurrent
computation in distributed systems. MIT Press.

[4] Akl, S.G. 1990. Parallel Sorting Algorithms. Academic
Press, Inc.

[5] Allen, E., Chase, D. et al. 2005. The Fortress language
specification.

[6] Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/. Accessed: 07-28-2010.

[7] Apache Hadoop Project. http://hadoop.apache.org/.
Accessed: 06-28-2010.

[8] Apache Thrift. http://incubator.apache.org/thrift/.
Accessed: 08-02-2010.

[9] Asanovic, K., Bodik, R. et al. 2009. A view of the
parallel computing landscape. Commun. ACM. 52, 10
(2009), 56-67.

[10] Axon: STM. http://www.kamaelia.org/STM. Accessed:
08-02-2010.

[11] Benson, D.A., Karsch-Mizrachi, I. et al. 2010. GenBank.
Nucl. Acids Res. 38, suppl_1 (Jan. 2010), D46-51.

[12] Berman, K.A. and Paul, J.L. 2004. Algorithms:
Sequential, Parallel, and Distributed. Course
Technology.

[13] Bienia, C., Kumar, S. et al. 2008. The PARSEC
benchmark suite: characterization and architectural
implications. Proceedings of the 17th international
conference on Parallel architectures and compilation
techniques (Toronto, Ontario, Canada, 2008), 72-81.

[14] Bisciglia, C. and Kimball, A. 2008. Getting started with
cluster computing for undergrads. Vendor Session. The
39th ACM technical symposium on Computer science
education (2008).

[15] BOINC. http://boinc.berkeley.edu/. Accessed: 08-06-
2010.

[16] Bransford, J. and National Research Council
(U.S.).;National Research Council (U.S.). 2000. How
people learn : brain, mind, experience, and school.
National Academy Press.

[17] Breshears, C. 2009. The Art of Concurrency: A Thread
Monkey's Guide to Writing Parallel Applications.
O'Reilly Media.

[18] Briggs, T. 2005. Techniques for active learning in CS
courses. J. Comput. Small Coll. 21, 2 (2005), 156-165.

[19] Brin, S. and Page, L. 1998. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks and
ISDN Systems. 30, 1-7 (Apr. 1998), 107-117.

[20] Brinda, T. and Schubert, S. 2001. Didactic system for
object-oriented modelling. Proceedings of the IFIP TC3
Seventh IFIP World Conference on Networking the
Learner: Computers in Education (2001), 473–482.

[21] Bruce, K. and Freund, S.N. 2008. Programming
languages as part of core computer science. SIGPLAN
Not. 43, 11 (2008), 50-54.

[22] Bruce, K.B., Danyluk, A. et al. 2010. Introducing
concurrency in CS 1. Proceedings of the 41st ACM
technical symposium on Computer science education
(Milwaukee, Wisconsin, USA, 2010), 224-228.

[23] Bruner, J. 1974. Toward a Theory of Instruction. Belknap
Press of Harvard University Press.

[24] Bruner, J. 1977. The Process of Education. Harvard
University Press.

[25] Candygram. http://candygram.sourceforge.net/.
Accessed: 08-02-2010.

[26] Chesebrough, R.A. and Turner, I. 2010. Parallel
computing: at the interface of high school and industry.
Proceedings of the 41st ACM technical symposium on
Computer science education (Milwaukee, Wisconsin,
USA, 2010), 280-284.

112

[27] Clojure - home. http://clojure.org/. Accessed: 08-06-
2010.

[28] Colombo, C., Del Bimbo, A. et al. 2008. A real-time full
body tracking and humanoid animation system.
PARALLEL COMPUTING -AMSTERDAM-. 34, 12
(2008), 718-726.

[29] Communicating Sequential Processes for Java (JCSP).
http://www.cs.kent.ac.uk/projects/ofa/jcsp/. Accessed: 08-
06-2010.

[30] Computer Science Unplugged. http://csunplugged.org/.
Accessed: 08-02-2010.

[31] Computing Frontiers 2010 - Workshop.
http://www.computingfrontiers.org/2010/workshop.html.
Accessed: 06-27-2010.

[32] ConcurrentComputing < CourseMaterial < TWiki.
http://wiki.opensparc.net/bin/view.pl/CourseMaterial/Co
ncurrentComputing. Accessed: 06-26-2010.

[33] Cooper, S., Dann, W. et al. 2003. Teaching objects-first
in introductory computer science. Proceedings of the
34th Technical Symposium on Computer Science
Education (SIGCSE’03) (2003), 191–195.

[34] CUDA for Finance.
http://www.nvidia.com/object/cuda_finance.html.
Accessed: 07-13-2010.

[35] CUDA for Medical.
http://www.nvidia.com/object/cuda_medical.html.
Accessed: 07-13-2010.

[36] CUDA Zone.
http://www.nvidia.com/object/cuda_home_new.html.
Accessed: 06-30-2010.

[37] Darema, F. 2001. The SPMD Model : Past, Present and
Future. Recent Advances in Parallel Virtual Machine and
Message Passing Interface. Springer Berlin Heidelberg. 1.

[38] Darling, A., Carey, L. et al. 2003. The Design,
Implementation, and Evaluation of mpiBLAST.
ClusterWorld Conference & Expo and the 4th
International Conference on Linux Cluster: The HPC
Revolution 2003 (San Jose, California, June 2003).

[39] Dean, J. and Ghemawat, S. 2004. MapReduce: Simplified
Data Processing on Large Clusters. OSDI (2004), 137-
150.

[40] Deuce STM - Java Software Transactional Memory.
http://www.deucestm.org/. Accessed: 08-02-2010.

[41] DiBiasio, D., Clark, W. et al. 1999. Evaluation of a spiral
curriculum for engineering. Frontiers in Education,
Annual (Los Alamitos, CA, USA, 1999), 12D1/15-
12D1/18vol.2.

[42] Dongarra, J., Foster, I. et al. 2002. The Sourcebook of
Parallel Computing. Morgan Kaufmann.

[43] Enable Safe, Scalable Parallelism with Intel Threading
Building Block's Concurrent Containers.
http://www.devx.com/cplus/Article/33334. Accessed: 08-
04-2010.

[44] Erlang Programming Language, Official Website.
http://www.erlang.org/index.html. Accessed: 08-02-2010.

[45] Ernst, D.J. and Stevenson, D.E. 2008. Concurrent CS:
preparing students for a multicore world. Proceedings of
the 13th annual conference on Innovation and technology
in computer science education (Madrid, Spain, 2008),
230-234.

[46] Explicit Multi-Threading (XMT) - Home Page.
http://www.umiacs.umd.edu/users/vishkin/XMT/index.sht
ml. Accessed: 06-28-2010.

[47] Feature - John Shalf talks parallel programming
languages. http://www.isgtw.org/?pid=1002557.
Accessed: 07-27-2010.

[48] Finkel, R.A. and Fishburn, J.P. 1982. Parallelism in
alpha-beta search. Artificial Intelligence. 19, 1 (Sep.
1982), 89-106.

[49] Flynn, M.J. 1972. Some computer organizations and their
effectiveness. IEEE Transactions on Computers. 100,
(1972), 21.

[50] Folding@home. http://folding.stanford.edu/. Accessed:
08-06-2010.

[51] Fraser, K. and Harris, T. 2007. Concurrent programming
without locks. ACM Trans. Comput. Syst. 25, 2 (2007), 5.

[52] Friedman, D.P. and Wand, M. 2008. Essentials of
Programming Languages, 3rd Edition. The MIT Press.

[53] Gamma, E., Helm, R. et al. 1995. Design patterns:
elements of reusable object-oriented software. Addison-
wesley Reading, MA.

[54] Garrity, P. and Yates, T. WebMapReduce.

[55] Gelernter, D. 1985. Generative communication in Linda.
ACM Trans. Program. Lang. Syst. 7, 1 (1985), 80-112.

[56] GlobalInterpreterLock - PythonInfo Wiki.
http://wiki.python.org/moin/GlobalInterpreterLock.
Accessed: 08-06-2010.

[57] Goetz, B., Peierls, T. et al. 2006. Java Concurrency in
Practice. Addison-Wesley Professional.

[58] Halloway, S. 2009. Programming Clojure. Pragmatic
Bookshelf.

[59] Haskell - HaskellWiki. http://www.haskell.org/.
Accessed: 08-02-2010.

[60] Hewitt, C., Bishop, P. et al. 1973. A universal modular
ACTOR formalism for artificial intelligence.
Proceedings of the 3rd international joint conference on
Artificial intelligence (Stanford, USA, 1973), 235-245.

[61] Hoare, C. 1985. Communicating sequential processes.
Prentice/Hall International.

[62] HPCwire: Intel Unveils 48-Core Research Chip.
http://www.hpcwire.com/features/Intel-Unveils-48-Core-
Research-Chip-78378487.html. Accessed: 06-27-2010.

[63] Huang, K. and Thulasiram, R. 2005. Parallel algorithm
for pricing American Asian options with multi-

113

dimensional assets. High Performance Computing
Systems and Applications, 2005. HPCS 2005. 19th
International Symposium on (2005), 177-185.

[64] InfoQ: A Pattern Language for Parallel Programming.
http://www.infoq.com/presentations/Pattern-Language-
Parallel-Programming. Accessed: 06-28-2010.

[65] Intel Threaded Building Blocks.
http://www.threadingbuildingblocks.org/. Accessed: 08-
05-2010.

[66] Intel® C++ STM Compiler, Prototype Edition 3.0 -
Intel® Software Network. http://software.intel.com/en-
us/articles/intel-c-stm-compiler-prototype-edition-20/.
Accessed: 07-16-2010.

[67] Intel® Manycore Testing Lab - Intel® Software
Network. http://software.intel.com/en-us/articles/intel-
many-core-testing-lab/. Accessed: 07-28-2010.

[68] Interim Review Task Force. CS2008 Curriculum Update-
http://www.acm.org/education/curricula/ComputerScienc
e2008.pdf.

[69] IronPython.net. http://ironpython.net/. Accessed: 08-03-
2010.

[70] Joiner, D.A., Gray, P. et al. 2006. Teaching parallel
computing to science faculty: best practices and common
pitfalls. Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and practice of parallel
programming (New York, New York, USA, 2006), 239-
246.

[71] Joint Task Force on Computing Curricula 2001.
Computing curricula 2001. J. Educ. Resour. Comput. 1,
3es (2001), 1.

[72] Jones, S.P. 2007. Beautiful Concurrency. Beautiful Code:
Leading Programmers Explain How They Think. O'Reilly
Media. 385-406.

[73] Keller, J., Keller, C. et al. 2000. Practical PRAM
Programming. Wiley-Interscience.

[74] Keutzer, K. and Mattson, T. 2009. Our Pattern Language
(OPL): A design pattern language for engineering
(parallel) software. ParaPLoP Workshop on Parallel
Programming Patterns (2009).

[75] Klette, R., Huang, T. et al. 2001. Multi-Image Analysis:
10th International Workshop on Theoretical Foundations
of Computer Vision Dagstuhl Castle, Germany, March
12-17, 2000 Revised Papers. Springer.

[76] Knight, T. 1986. An architecture for mostly functional
languages. Proceedings of the 1986 ACM conference on
LISP and functional programming (Cambridge,
Massachusetts, United States, 1986), 105-112.

[77] Kolb, A. and Kolb, D. 2009. The Learning Way.
Simulation & Gaming. 40, 3 (Jun. 2009), 297-327.

[78] Krasner, G.E. and Pope, S.T. 1988. A cookbook for using
the model-view controller user interface paradigm in
Smalltalk-80. J. Object Oriented Program. 1, 3 (1988),
26-49.

[79] Kumar, V., Grama, A. et al. 1994. Introduction to
parallel computing: design and analysis of algorithms.
The Benjamin/Cummings.

[80] Lewandowski, G., Bouvier, D.J. et al. 2010.
Commonsense understanding of concurrency: computing
students and concert tickets. Commun. ACM. 53, 7
(2010), 60-70.

[81] Manger, R., Grbic, M. et al. 1995. A parallel SVD
algorithm and its application to financial ratio analysis.
Microprocessing and Microprogramming. 41, 1 (Apr.
1995), 97-106.

[82] Mattson, T.G., Sanders, B.A. et al. 2004. Patterns for
Parallel Programming. Addison-Wesley Professional.

[83] Mattson, T.G., Wijngaart, R.V.D. et al. 2008.
Programming the Intel 80-core network-on-a-chip
terascale processor. Proceedings of the 2008 ACM/IEEE
conference on Supercomputing (Austin, Texas, 2008).

[84] McConnell, J.J. 2005. Active and cooperative learning:
more tips and tricks (part II). SIGCSE Bull. 37, 4 (2005),
34–38.

[85] McConnell, J.J. 2005. Active and cooperative learning:
tips and tricks (part I). SIGCSE Bull. 37, 2 (2005), 27–30.

[86] McConnell, J.J. 2006. Active and cooperative learning:
final tips and tricks (part IV). ITiCSE-WGR '06: Working
group reports on ITiCSE on Innovation and technology
in computer science education (New York, NY, USA,
2006), 25–28.

[87] McConnell, J.J. 2006. Active and cooperative learning:
further tips and tricks (part 3). SIGCSE Bull. 38, 2
(2006), 24–28.

[88] McConnell, J.J. 1996. Active learning and its use in
computer science. Proceedings of the 1st conference on
Integrating technology into computer science education
(Barcelona, Spain, 1996), 52-54.

[89] Merigot, A. and Petrosino, A. 2008. Parallel processing
for image and video processing: Issues and challenges.
Parallel Comput. 34, 12 (2008), 694-699.

[90] Miller, R. and Boxer, L. 2005. Algorithms Sequential &
Parallel: A Unified Approach. Charles River Media.

[91] Milner, R. 1999. Communicating and Mobile Systems:
the Pi-Calculus. Cambridge University Press.

[92] Milner, R., Parrow, J. et al. 1992. A calculus of mobile
processes, I. Inf. Comput. 100, 1 (1992), 1-40.

[93] Milner, R., Parrow, J. et al. 1992. A calculus of mobile
processes, II. Inf. Comput. 100, 1 (1992), 41-77.

[94] Mitchell, S.M. and Lutters, W.G. 2006. Assessing the
Value of Computer Science Course Material
Repositories. Conference on Software Engineering
Education and Training Workshops (Los Alamitos, CA,
USA, 2006), 2.

[95] Neeman, H., Severini, H. et al. 2010. Teaching high
performance computing via videoconferencing. ACM
Inroads. 1, 1 (2010), 67-71.

114

[96] Odersky, M., Spoon, L. et al. 2008. Programming in
Scala: A Comprehensive Step-by-step Guide. Artima Inc.

[97] Parallel Computing in the Computer Science Curriculum.
http://csinparallel.org. Accessed: 08-03-2010.

[98] Parallel Java Library. http://www.cs.rit.edu/~ark/pj.shtml.
Accessed: 08-06-2010.

[99] Pettersson, E., Lundeberg, J. et al. 2009. Generations of
sequencing technologies. Genomics. 93, 2 (Feb. 2009),
105-111.

[100] Pinson, L. and Wiener, R. 1988. An introduction to
object-oriented programming and Smalltalk. Addison-
Wesley Pub. Co.

[101] Quinn, M.J. 2003. Parallel Programming in C with MPI
and OpenMP. McGraw Hill Higher Education.

[102] Remagnino, P., Jones, G.A. et al. 2001. Video-Based
Surveillance Systems: Computer Vision and Distributed
Processing. Springer.

[103] Resnick, M., Maloney, J. et al. 2009. Scratch: programming
for all. Commun. ACM. 52, 11 (2009), 60-67.

[104] Rivoire, S. 2010. A breadth-first course in multicore and
manycore programming. Proceedings of the 41st ACM
technical symposium on Computer science education
(Milwaukee, Wisconsin, USA, 2010), 214-218.

[105] Schwill, A. 1997. Computer science education based on
fundamental ideas. Information technology: supporting
change through teacher education. Chapman & Hall.
285-291.

[106] SETI@home. http://setiathome.berkeley.edu/. Accessed:
08-06-2010.

[107] Silberschatz, A., Galvin, P.B. et al. 2008. Operating
System Concepts. Wiley.

[108] Silven, O. and Jyrkkä, K. 2007. Observations on power-
efficiency trends in mobile communication devices.
EURASIP J. Embedded Syst. 2007, 1 (2007), 17-17.

[109] Single-chip Cloud Computer.
http://techresearch.intel.com/articles/Tera-
Scale/1826.htm. Accessed: 08-02-2010.

[110] Sodan, A.C., Machina, J. et al. 2010. Parallelism via
Multithreaded and Multicore CPUs. Computer. 43, 3
(2010), 24-32.

[111] Sosic, R. and Gu, J. 1994. Efficient Local Search with
Conflict Minimization: A Case Study of the n-Queens
Problem. IEEE Transactions on Knowledge and Data
Engineering. 6, 5 (Oct. 1994).

[112] Srinivasan, S. and Mycroft, A. 2008. Kilim: Isolation-
typed actors for java. ECOOP 2008–Object-Oriented
Programming. (2008), 104–128.

[113] Stechert, P. and Schubert, S. 2007. A strategy to structure
the learning process towards understanding of
informatics systems. Working/Joint IFIP-Conference
Informatics, Mathematics and ICT (IMICT2007): A
golden triangle. Boston, USA, 27th–29th June (2007).

[114] Teach Parallel on Intel Software Network TV - Intel®
Software Network. http://software.intel.com/en-
us/articles/teach-parallel/. Accessed: 08-07-2010.

[115] The Jython Project. http://jython.org/. Accessed: 08-03-
2010.

[116] The Scala Programming Language. http://www.scala-
lang.org/. Accessed: 08-06-2010.

[117] The Trilinos Project. http://trilinos.sandia.gov/.
Accessed: 08-04-2010.

[118] Torbert, S., Vishkin, U. et al. 2010. Is teaching parallel
algorithmic thinking to high school students possible?:
one teacher's experience. Proceedings of the 41st ACM
technical symposium on Computer science education
(Milwaukee, Wisconsin, USA, 2010), 290-294.

[119] Van Berkel, C.H. 2009. Multi-core for mobile phones.
Proc. Design, Automation and Test in Europe Conference
and Exhibition (DATE) (2009).

[120] Van Roy, P. and Haridi, S. 2004. Concepts, Techniques,
and Models of Computer Programming. The MIT Press.

[121] Vangal, S., Howard, J. et al. 2008. An 80-Tile Sub-100-
W TeraFLOPS Processor in 65-nm CMOS. Solid-State
Circuits, IEEE Journal of. 43, 1 (2008), 29-41.

[122] Venter, J.C., Remington, K. et al. 2004. Environmental
genome shotgun sequencing of the Sargasso Sea. Science
(New York, N.Y.). 304, 5667 (Apr. 2004), 66-74.

[123] Vishkin, U. 1985. Optimal parallel pattern matching in
strings. Information and Control. 67, 1-3 (1985), 91-113.

[124] Wheeler, D.A., Srinivasan, M. et al. 2008. The complete
genome of an individual by massively parallel DNA
sequencing. Nature. 452, 7189 (Apr. 2008), 872-876.

[125] Wrinn, M. 2008. Confronting manycore: Parallel
programming beyond SMP (multicore is just the
beginning); Vendor session. The 39th ACM technical
symposium on Computer science education (2008).

[126] Wrinn, M. 2010. Suddenly, all computing is parallel:
seizing opportunity amid the clamor. Proceedings of the
41st ACM technical symposium on Computer science
education (Milwaukee, Wisconsin, USA, 2010), 560-560.

[127] Xavier, C. and Iyengar, S. 1998. Introduction to parallel
algorithms. Wiley.

115

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

