
Restoring End-to-End Resilience
in the Presence of Middleboxes

Eric J. Brown,† Mark K. Gardner,† Umar Kalim,∗† and Wu-chun Feng∗
Office of IT†, Department of Computer Science∗

Virginia Tech, Blacksburg, VA 24060
{brownej, mkg, umar, wfeng}@vt.edu

Abstract—The philosophy upon which the Internet was built
places the intelligence close to the edge. As the Internet has
matured, intermediate devices or middleboxes, such as firewalls or
application gateways, have been introduced, thereby weakening
the end-to-end nature of the network. As a result, applications
must often modify their behavior to accommodate the middle-
boxes. This is is especially true in the case of transient failure of
stateful devices.

The failure of a middlebox causes it to lose the state it main-
tained, causing the failure of the associated TCP connections.
Rather than assign the responsibility for recovery to applica-
tions, we incorporate a mechanism called an isolation boundary
into TCP itself to increase resilience. The isolation boundary
maintains a small amount of state across TCP connections, thus
enabling reconnection. Furthermore, it does so without breaking
backward compatibility with existing TCP.

We present an implementation of the isolation boundary in
the FreeBSD kernel and demonstrate its backward compatibility
with TCP. We quantify the performance impact of the proposed
mechanism on the establishment of new and resumed connections
for both legacy and extended TCP stacks.

Index Terms—TCP/IP, middleboxes, fault tolerance, resilience.

I. INTRODUCTION

A guiding principle in the design of the Internet has been
that network communication is end-to-end and that network
intelligence should be as close to the resources on the edge
as possible [1]. Because of this, the capacity of the Internet
has scaled well with the rapid growth in the number of
devices. As the Internet has grown and matured, however,
it has been necessary to introduce intelligent intermediate
devices, such as firewalls or application gateways, hence
weakening the end-to-end nature of the network. Although
these intermediate devices weaken the notion of end-to-end
connections, they are necessary for operational or functional
reasons. Nevertheless, intelligent intermediate devices reduce
the network transparency for end hosts and their applications,
requiring the end hosts to make decisions that accommodate
the intermediate devices.

The proliferation of intelligent devices in the network has
increased the likelihood that communication will be inter-
rupted. When a middlebox fails, it loses the state it maintained
on behalf of ongoing communication. Even if the fault is
transient, the applications on the end host have no recourse but
to try to re-establish communication or to pass the problem
on to the user. Neither approach is entirely satisfactory. In the

former case, each application needs to be written to handle
middlebox failure. While burdensome, it is preferable to the
latter case where responsibility for handling the failure is
passed to the user who is not even aware of the existence of
middleboxes. However, there is another choice. Rather than
require applications or users to handle the failures, we take
the approach of incorporating a mechanism for increasing
resilience into TCP itself.

Specifically, we introduce a mechanism, which we call
an isolation boundary, that places a TCP connection in the
context of a transport independent flow (TI-flow). The isolation
boundary keeps track of where TCP is in the context of
the TI-flow so a new TCP connection can be created and
communication restored in the event of a transient failure
without the application — or more importantly, the user —
becoming aware. The isolation boundary separates flow iden-
tification from transport addressing. This facilitates extending
re-connection to include migration of the flow from one subnet
to another. Most important of all, our approach maintains
backward compatibility with existing devices, thus allowing
incremental adoption.

In Section II, we introduce the conceptual basis upon which
the isolation boundary rests. Section III discusses the proposed
extensions to TCP that provides the isolation boundary mech-
anism, and Section IV touches upon our implementation and
evaluates its compatibility and performance. Section V places
our work in the broader context, and Section VI concludes
with a discussion of future work.

II. CONCEPTUAL DESIGN

A. Logical Construct

It is well established that middleboxes today are an “Internet
fact of life” [2], nevertheless it is also accepted that they break
the end-to-end semantics assumed by typical applications. This
is because the middleboxes maintain state and interact in the
conversation, often transparently to the end systems. While
we acknowledge that middleboxes provide some benefits, the
liability is that when they fail, connections being carried
through them are also broken. In addition, a change in network
address will also break a connection as the transport protocols
rely on these addresses to identify the connection.

Here we propose to address such challenges by develop-
ing the notion of an abstract flow, specifically a transport-
independent flow (TI flow) that represents the abstract com-



munication between applications, independent of the under-
lying transport protocols. For this purpose, we define the
notion of an isolation boundary, coupled with TCP, which
allows us to maintain end-to-end semantics at an abstract
level, without precluding middleboxes. This is possible by
introducing two mechanisms: (1) a transport-independent flow
identifier (TIFID) to uniquely define a flow abstraction and (2)
a mechanism to describe its own sequence space in order to
maintain the TCP semantics of reliable, in-order delivery.

In order to be backward compatible, the TI-flow capability
must be negotiated out-of-band from TCP’s data stream. To
have the least performance impact, maintenance of the TI-flow
capability should also happen out-of-band from TCP’s data
stream. We employ TCP options to establish and maintain
the placement of a TCP connection within the context of
the TI flow. To avoid duplicating the mechanics of TCP, we
propose that the isolation boundary leverages support from
TCP by delegating the tasks of reliable, in-order delivery and
the description of the sequence space. However, to implicitly
maintain the end-to-end semantics1 for the flow abstraction,
we define an abstract sequence space. The data in each TCP
connection is then mapped into this sequence space as a part
of placing the TCP connection in the context of the transport-
independent flow. All that is required is to describe how each
TCP connection fits into the overall context of the TI flow. It is
sufficient to establish this mapping during TCP’s synchroniza-
tion phase. Once the mapping is established, progress through
TCP’s sequence space implies progress through the transport-
independent sequence space. Note that the mechanism of
defining the TI flow does not imply maintaining distributed
state. Since we delegate the task of maintaining distributed
state to TCP and only synchronize the abstraction with TCP’s
semantics at the time of setup, the expected overhead will be
negligible.

Leveraging TCP options and keeping pace with TCP’s se-
quence space required us to implement the isolation boundary
in the kernel, e.g., FreeBSD. With a user-library implemen-
tation, we would have needed to develop a mechanism to
probe whether the communicating peer had support for such
flow abstractions. Any probe protocol would ultimately have
to resort to timeouts to infer the lack of support. Unlike the
user-library implementation, the presence of custom options in
the SYN+ACK message would indicate support, while absence
would indicate lack of support, thus eliminating the need for
any inferential rules. The discovery of end-to-end support can
happen alongside connection setup, thus allowing the kernel
implementation to avoid probing and be backward compatible
at the same time. Since the isolation boundary plays its role
only when a new transport flow is setup and does not interfere
with the critical data path, the expected overhead is negligible.

We argue that the isolation boundary does not interfere
with the critical path as most of the end-to-end semantics
for the flow abstraction are delegated to TCP. As such, the

1We assume that a conversation between endpoints may last longer than
the life of the TCP flow.

isolation boundary’s involvement is only with placing the
TCP connection into the context of the TI flow. (Note that
with a user-library implementation, we would not be able to
delegate the task of maintaining end-to-end semantics to TCP;
instead, since these mechanisms would be hidden from the
users’ context, the same would have to be implemented — as
duplicate effort — by the library.)

B. Practical Details

With the logical construct defined above, we now study
the details of creating an implementation. A critical aspect
that must be considered for a practical implementation is the
amount of data required to convey the context of the TI flow in
the TCP option field. Another important aspect is the question
of security. The introduction of the flow option should not
compromise TCP’s security characteristics.

To realize the flow identifier and the transport-independent
sequencing discussed above, we propose employing TCP op-
tions. TCP options may be used during the TCP SYN phase to
reliably exchange these parameters — a unique flow identifier
and the mapping between the transport-independent sequence
space (e.g., TIFID) and TCP’s sequence space. We discuss
the protocol for selecting the flow identifier and populating
the transport-independent sequence numbers in Section III.

Before we further discuss the practical details, we need
to acknowledge the constraints of using custom TCP options
to exchange the transport-independent flow identifier and the
transport-independent sequence numbers, e.g., space availabil-
ity in the TCP header. When the TCP SYN flag is set the
following options need to be supported: maximum segment
size (RFC793, four octets), window scaling (RFC1323, three
octets), selective acknowledgement permitted (RFC2018, two
octets), and time stamp (RFC1323, ten octets). This leaves us
with 21 octets, although most implementations will only leave
20 octets due to field alignment. Because of this limited TCP
option space, not all options can be supported simultaneously.
(We discuss the details of these unsupported options in our
preliminary work [3].)

The size of the transport-independent sequence space should
be at least as big as TCP’s sequence space (32 bits). Any
smaller would create problems in the mapping between the
two spaces during TCP’s synchronization phase. Having more
space allows for the potential to address the issues of TCP
sequence space wrap-around over high-speed links as a future
concern. Larger spaces for both the transport-independent
sequence space and the TIFID will decrease the vulnerability
of the TI flow to session hijacking, which is also covered in
more detail in our preliminary work [3]. Because the upper
bound on sizes is dictated by the remaining space for TCP
options, we chose the upper bound for each field, i.e., TIFID,
sequence number, and acknowledgement number, to be 48 bits
each for a total of 18 bytes.

III. EXTENDING TCP

The TCP header, shown in Figure 1, consists of 20 octets
for fields that must be present in all TCP headers, followed



3029282726252423222120191817161514131211109876543210

Source Port Destination Port

Sequence Number

Acknowledgement Number

C
W
R

E
C
E

U
R
G

A
C
K

R
S
T

S
Y
N

P
S
H

F
I
N

ReservedData
Offset Window

Urgent Pointer128

96

64

32

0

160

192

224

256

288

Checksum

Flow Option Tag Length TIFID 1 TIFID 2

TIFID 3 TIFID 4 TIFID 5 TIFID 6

TISeq 1 TISeq 2 TISeq 3 TISeq 4

TISeq 5 6TISeq 1TIAck 2TIAck

3TIAck 4TIAck 5TIAck 6TIAck

Bit
B

it
 O

ff
se

t

31

Fig. 1. The Proposed Transport-Independent Flow Option.

by up to 40 octets of options. We extend TCP by creating a
transport-independent flow option, which is only valid during
connection setup. The option consists of three 48-bit fields, as
shown, in addition to the option tag and the length.

The first field contains the transport-independent flow iden-
tifier (TIFID)., which provides the layer of indirection needed
for the isolation boundary by labeling a flow independent of
the underlying transport. The TIFID is an opaque identifier
that is unique within the context of the two end hosts. A
straightforward way to specify a TIFID with the correct
properties is for the requesting process to specify a locally
unique value for the first half of the TIFID in the initial SYN
packet (TIFID1 through TIFID3) and the responding process
to specify a locally unique value for the second half in the
SYN-ACK packet (TIFID4 through TIFID6). As with TCP
initial sequence numbers, both halves of the TIFID should
be selected at random to guard against connection hijacking
attacks. Finally, the second half of the TIFID is zero during
the time that the TIFID is partially specified, i.e., in the SYN
packet.

By itself, the TIFID is insufficient to allow resynchro-
nization when the underlying transport fails. The missing
information is the position within transport-independent flow.
Thus, there are two additional fields in the flow option indi-
cating the next byte to be sent, i.e., the transport-independent
sequence number (TISeq), and the last byte received, i.e., the
transport-independent acknowledgement number (TIAck). As
with traditional TCP, the two end points select an initial TISeq
during the three-way handshake and each returns a TIAck to
acknowledge the receipt of a SYN packet. Unlike TCP, the
SYN bit does not need to be acknowledged because it is TCP’s
responsibility. When not defined, such as during the first phase
of the three-way handshake, a TISeq is zero.

The TISeq are mapped onto the protocol-dependent se-
quence numbers of the underlying (TCP) transport and remain
synchronized with them as long as the transport connection is
active. The TISeq progresses through its space in a manner
that is consistent with the transport sequence number being
incremented. Because of the implicit synchronization, there is

Peer A Peer B

Define TIFID_A
and Initialize

TISeq_A SYN + Flow Option Define TIFID_B
and initialize

TISeq_B

ACK + Flow Option

SYN + ACK + Flow Option Store TIFID
Store TIFID

Fig. 2. A Sequence Diagram During Connection Setup.

no need to explicitly send the TISeq and TIAck numbers after
the three-way handshake.

A. Connection Establishment

Figure 2 shows a sequence diagram of connection estab-
lishment. The initiator of communication, PeerA, defines the
first half of the flow identifier, TIFIDA, and initializes the
second half to zero. PeerA also selects a random initial TISeq
number, TISeqA, and establishes a mapping between TISeqA
and the initial TCP sequence number. (TIAckA is initialized
to zero.) It then sends a SYN packet with an flow option
containing these values. PeerB defines the second half of the
TIFID, TIFIDB , using a random value and selects a random
initial TISeq number, TISeqB . It acknowledges receipt of the
SYN packet by setting TIAckB = TISeqA. It then sends
a SYN+ACK packet with a flow option containing these
values. Upon receipt of the reply, PeerA notes the value of
the completed TIFID, which uniquely identifies the flow. It
then returns an ACK packet containing the completed TIFID,
its new TISeqA, and a TIAckA = TISeqB acknowledging
the SYN+ACK packet as the final phase of the three-way
handshake. Finally, PeerB validates that its SYN packet
was received by checking TIAckA. At this point, transport-
independent flows in each direction have been established,
along with the associated bidirectional TCP connections.

B. Connection Re-establishment

The failure of a middlebox in the network causes the
logical end-to-end connections passing through it to also fail.
Even though the connection failed, the isolation boundary
maintains the position within the application data streams in
each direction, via TISeq and TIAck, so that the transport can
resume in the correct place once a new TCP connection is
established.

The procedure for resuming operation after disconnection
is the same as for creating a new connection except the
previously completed TIFID, signified by a second half not
equal to zero, is used instead. Since the TIFID is already
complete, the receiving stack looks up the isolation boundary
information corresponding to the complete TIFID and creates
a new TCP connection upon which to resume the sending
of application data. The exchange of SYN and SYN+ACK
packets in this case allows the stacks to re-synchronize where



they left off at the time of the disconnection by exchanging
the TISeq and TIAck numbers. The peers also use the TISeq
and TIAck numbers to establish new mappings from the old
transport-independent sequence space to the new transport-
dependent sequence space.

C. Backward Compatibility

End hosts advertise that they implement the isolation bound-
ary by specifying the flow option in a TCP header. If both hosts
specify the flow option, then the functionality of an isolation
boundary is enabled. If either host is unable to support the
isolation boundary for any reason, they will not supply the
flow option during connection establishment, and hence, both
will continue to connect without the isolation boundary, thus
maintaining backward compatibility.

Even when some overzealous middleboxes strip off un-
known TCP options, compatibility is still maintained because
hosts that do not implement the isolation boundary will behave
the same as before while hosts that do implement the isolation
boundary will be led to believe that the other host does not,
and hence, fall back to legacy behavior.

In this way, backward compatibility is maintained, and there
is no requirement that all hosts be updated simultaneously.

IV. IMPLEMENTATION AND EVALUATION

We implemented the isolation boundary in the FreeBSD
8.1 kernel. A summary of the changes follows: 1,156 lines
added in 55 locations, 58 lines deleted in 34 locations, and
435 lines modified in 42 locations. A total of 1,649 out
of 237,410 (0.7%) lines were touched in the network stack,
representing 131 locations in 12 out of 122 files (9.8%). We
defer discussing the details due to lack of space but invite
the interested reader to peruse the source code, which will
be made available under the BSD license, and submitted for
inclusion in the kernel.

We now turn our attention to evaluating the backward com-
patibility, correctness, and performance of the implementation.

A. Backward Compatibility and Correctness

There are two cases to consider in ensuring backward com-
patibility with legacy TCP: a modified sender connecting to
an unmodified receiver and an unmodified sender connecting
with a modified receiver. We use SSH as an example and show
traces of connection establishment using a tcpdump, which
has been modified to display the new TCP option.

Trace 1 shows the three-way handshake during connection
establishment between a sender that wants to establish an
isolation boundary and a receiver that does not. The SYN
packet uses the flow option to convey a partial TIFID and
an initial TISeq. The TIAck is zero as there is nothing to
acknowledge yet. The SYN+ACK packet does not contain a
flow option, since the receiver does not implement the isolation
boundary or is unable set one up at this time. As a result, the
sender does not set the flow option in the ACK packet and
both hosts communicate without an isolation boundary.

In the case of an unmodified sender talking to a modified
receiver, the receiver is made aware that the sender does

Trace 1 Sender Implements the Isolation Layer
Packet 1: IP 192.168.1.2.4874 > 192.168.2.4.ssh:

Flags[S],seq 100,win 65535,options[mss
1460,nop,wscale 3,sackOK,TS val 787 ecr 0,
flow-d tifid 4b2209000000 tiseq 00000000001f
tiack 000000000000],len 0

Packet 2: IP 192.168.2.4.ssh > 192.168.1.2.4874:
Flags[S.],seq 200,ack 101,win 65535,
options[mss 1460, nop, wscale 3, sackOK,
TS val 197 ecr 787],len 0

Packet 3: IP 192.168.1.2.4874 > 192.168.2.4.ssh:
Flags[.],ack 1,win 8326, options[nop, nop,
TS val 788 ecr 197],len 0

Trace 2 Both Implement the Isolation Layer
Packet 1: IP 192.168.1.2.11305 > 192.168.2.4.ssh:

Flags[S],seq 110,win 65535,options[mss
1460,nop,wscale 3,sackOK,TS val 109 ecr 0,
flow-d tifid 0a4530000000 tiseq 00000000001d
tiack 000000000000],len 0

Packet 2: IP 192.168.2.4.ssh > 192.168.1.2.11305:
Flags[S.],seq 456,ack 111,win 65535,
options[mss 1460,nop,wscale 3,sackOK,TS val
138 ecr 109, flow-d tifid 0a4530be79bf tiseq
00000000001f tiack 00000000001d],len 0

Packet 3: IP 192.168.1.2.11305 > 192.168.2.4.ssh:
Flags[.],ack 1,win 8326,options[nop,nop,TS
val 110 ecr 138,flow-d tifid 0a4530be79bf
tiseq 00000000001d tiack 00000000001],len 0

not implement (or has decided not to set up) the isolation
boundary when it receives the SYN packet without the flow
option being set. Therefore, it does not set the flow option in
the SYN+ACK packet it sends, and the connection proceeds
without the isolation boundary. We omit the trace for this case
as it is exactly the same as legacy TCP.

Now that backward compatibility has been demonstrated,
we show the case where both the sender and the receiver
implement the isolation boundary. As Trace 2 shows, the
sender sets the flow option in the SYN packet. The receiver
replies with a SYN+ACK packet containing a flow option
with a complete TIFID, its initial TISeq, and the appropriate
TIAck. Upon receipt of the reply, the sender knows that the
receiver wants to utilize an isolation boundary so it sends an
ACK packet with the flow option filled out to confirm that
it received the option correctly. This protects the isolation
boundary capability in the presence of a middlebox that strips
options in one direction and not the other. The connection
proceeds utilizing the isolation boundary. The TCP flow option
is no longer needed in any other packets of the connection.

B. Overhead Incurred by the Isolation Boundary

Because the flow option added to TCP to support the
isolation boundary is only transmitted on the wire during
connection setup, i.e., during the three-way handshake, we
expect any additional overhead would be most observable as an
increase in setup time during that phase. (During the operation
of the connection, there is a small amount of processing
needed to keep the TISeq and TIAck in synchronization with
their TCP counterparts, but the effect is minimal as we will



show.)
1) Overhead during establishment:: The instructions added

to the kernel increase the time it takes to establish a TCP
connection. The amount of additional work that is done is
small, so the effect should also be small.

There are two challenges in measuring the time it takes
to establish a TCP connection so that a comparison can
be made. First, precisely measuring the overhead requires
kernel instrumentation, which is tedious to set up and has
the potential to perturb the normal operation of the kernel,
thereby obscuring the values being measured. Second, the
overhead occurs on both the initiator of communication and
the responder. Measuring elapsed time in a distributed control
system, such as TCP, is further complicated by the fact that the
clocks on the end hosts are in only loosely synchronized when
compared with the magnitude of the values being measured.

The first concern is addressed by measuring times in user-
space code under the assumption that (on average) both
the extended and legacy TCP stacks should see the same
perturbations from unrelated processing on the hosts. This
assumption is supported by the low variance seen on repeated
measurements.

The second concern is addressed by taking both time stamps
on the same host. A simple client and server are used to create
a connection. A time stamp is place in the client code just
before the call to connect whereupon the client immediately
blocks on recv. The server immediately closes the connection
upon returning from accept causing the recv on the client
to return without reading any data. The client then closes its
socket. Except for the processing that occurs on the final FIN
packet from the client to the server, acquiring time stamps
in these locations brackets all the additional processing that is
done on both the client and the server in the isolation boundary
implementation. Subtracting the elapsed time for establishing
a connection with extended TCP stack from the elapsed time
for the legacy stack gives the overhead. The average overhead
was computed over a large enough number of runs that the
half width of the 95% confidence interval is below 5%.

The test environment consists of three Dell PE2650 servers
running FreeBSD 8.1. The servers each have dual Intel Xeon
SMT processors with a frequency of at least 2.0 GHz and hy-
perthreading turned on. They also have 4 GB of DDR2 RAM
and a bus speed of 533 MHz and are connected by 1 Gbps
Ethernet. The average throughput measured with iperf is
940 Mbps for the legacy TCP stack. Two of the servers are
configured as a client and a server. The third is configured as
a WAN emulator using Dummynet.

The average time between time stamps without the isolation
boundary mechanism is 1.168± 0.054 msec while the average
with the mechanism is 1.148± 0.045 msec. Based upon the
overlapping of the confidence intervals, we conclude that the
increase in overhead for connection establishment is negligi-
ble.

2) Overhead during data transfers: For each packet re-
ceived, the TISeq and TIAck values must be updated to
advance at the same rate as the corresponding TCP variable to

which they are logically bound. This adds a small amount of
code that is executed only when the isolation boundary is in
use. We quantify the cost of the additional code by comparing
the time it takes to transfer an amount of data using iperf
both with and without the isolation boundary. Dummynet is
configured to not delay packets in order to ensure that the
network pipe remains as full as possible to make the effect
more readily observable.

The time it takes to transfer 262.1 MB of data us-
ing iperf on a kernel without the isolation boundary is
2,230.0± 3.3 milliseconds (ms) while the time it takes using
a kernel with an active isolation boundary is 2,229.3± 0.5 ms
with both confidence intervals computed at 95% confidence.
This substantiates the claim made earlier that very little pro-
cessing is needed to keep the transport-independent sequence
and acknowledgment numbers in synchronization with their
TCP counterparts.

C. Time to Reconnect

Although the isolation boundary enables automatic recon-
nection when a middlebox loses state, reconnection must be
fast enough to remain transparent to the user or application.
As above, there is the issue of finding a common time base in
a distributed system in which to estimate the reconnect time.
Unlike measuring the connection overhead, we cannot use the
client/server approach to bound the time since the application
is unaware that its TCP connection has failed.2 Instead, we
use the tcpdump time stamps on the SYN and ACK packets
of the three-way handshake in a trace taken on the originating
host as our sources of time. The difference between the two
time stamps is an estimate of the reconnection time. We also
measure the setup time for a legacy connection as a baseline.

Fig. 3. Time for client to reconnect vs. round-trip time.

As expected, because reconnection causes a packet ex-
change, the time for a client to reconnect is expected to
be a function of the round-trip time (RTT), as evidenced in

2We simulate failure by accessing a custom sysctl variable that calls a
kernel function to disconnect the “failed” TCP connection and re-synchronize
the TI-flow with a new TCP connection.



Figure 3. It takes about one RTT for the sender to get back
to the state before disconnection and one and a half RTT
for the receiver to do the same. Because we are measuring
time from the perspective of the sender, the reconnect time
should be less than the 1.5 ∗ RTT needed to establish a
TCP connection on the receiver. Except for the highest RTT
measured, the reconnection time of the extended TCP stack is
indistinguishable from the connection setup time of the legacy
stack. For an RTT of 95.75± 0.11 ms, as shown in the inset,
the reconnection time is 96.26± 0.13 ms while the connect
time is 95.80± 0.16 msec. The difference is significant at the
95% confidence level. For most applications, a difference of
0.46 ms should be acceptable. We have yet to optimize the
code and expect that it can be further reduced.

V. RELATED WORK

The realization that middleboxes are no longer harmful
and are an “Internet fact of life” has been ever growing [2].
Though it is accepted that when deployed as active entities
they typically violate end-to-end semantics, the features that
they provide are worth the pain. It is for this reason that we see
conscious efforts by the networking community to facilitate
the deployment of middleboxes in a manner that retains their
benefits while minimizing their drawbacks, e.g., [4], [5].

At present, two approaches exist to mitigate the challenges
introduced by the middleboxes: (1) a method of explicit
control of the middleboxes (e.g., middlebox communication
(MIDCOM) [6]–[9], and IETF Next Steps in Signaling (NSIS)
[10]); and (2) the conventional method of traversing the
middleboxes (i.e., without any control relationship between the
end host and the middlebox as is in the case of IETF Session
Traversal Utilities for NAT (STUN) [11], Traversal Using
Relays around NAT (TURN) [12], and Interactive Connectivity
Establishment (ICE) [13]).

We do not argue that the methods developed to maintain
end-to-end semantics without precluding middleboxes are bet-
ter or lacking. Instead in this paper, we present the case of the
Isolation Boundary, which enables the end hosts to establish an
abstract concept of the application stream independent of the
underlying transport. Such a mechanism allows us to accept
interactions with middleboxes all the while strengthening the
end-to-end nature of the communication.

Below we discuss select efforts and highlight their approach
towards maintaining end-to-end semantics while accepting
middleboxes.

Network researchers have been studying interaction of end-
hosts with middleboxes [6]–[9]. Here, the authors argue that
the middleboxes should be application agnostic (i.e., they
should not be required to maintain application intelligence
to assist to the fullest). For this reason, they propose an
architecture and a framework to allow trusted entities —
referred to as MIDCOM agents — to assist middleboxes
in meeting their objectives without incorporating application
intelligence in the middleboxes. The MIDCOM agents may
reside on end-hosts, proxies or application gateways depending
upon the circumstances. In contrast to MIDCOM the isolation

boundary establishes a higher level concept — a transport
independent flow — which allows us to maintain end-to-end
semantics despite the presence of middleboxes.

Another noteworthy effort is that of Salz et al. [14] which
feature support for end hosts interacting with middleboxes (in
this case proxies). Here the authors argue that session layer
services are necessary to meet functional requirements such as
connection multiplexing, congestion state sharing, application-
level routing, mobility management. They present the project
TESLA which builds an abstraction of session layer services
allowing the applications to interact with network flows instead
of calling functions on the sockets API. Also, the TESLA
library maps the incoming logical flow to one transport
flows. This allows for seamless migration in the case of a
disconnection. The implementation is done by writing event-
handlers with a callback-oriented interface between handlers.
This method also allows programmers to add functionality
to the library. The solution is implemented as a shim layer
(using dynamic library interposition) which runs in user space
and traps network operations. Performance evaluation (in
terms of achievable throughput) of the implementation shows
that TESLA does incur some overhead, though negligible.
However, in case of latency, TESLA performs at par with
all application based implementations of session semantics.
As with TESLA, by default, the isolation boundary supports
resilient transport flows in the face of intermittent connectivity.
A prominent difference though is that TESLA is implemented
as a user space library while we implement the isolation
boundary as part of the TCP/IP stack (kernel) implementation.

As also discussed in Section II opting for kernel imple-
mentation allows us to maintain backward compatibility —
the isolation boundary avoids using any probes to detect if
the peer also supports the same mechanisms. Also, by being
part of the kernel, most of the end-to-end semantics can be
conveniently delegated to TCP, which would have been hidden
from a user-library implementation and therefore would have
to be duplicated. Lastly, since the mechanisms proposed by
the isolation boundary only interact with the connection setup
phase and do not interfere with the critical/data path, the
expected overhead is negligible, as we have also observed from
empirical observations presented in Section IV.

An approach, a predecessor perhaps to the MIDCOM
framework, is presented by Maltz et al. [15]. The authors
develop the idea of mobility management with the aid of
proxy that implements the required semantics. The idea is
to split the communication stack between the mobile node
and the proxy to facilitate mobility. This splitting of the
stack enables features such as (1) enabling support for use
of multiple interfaces; (2) enabling simultaneous use of mul-
tiple transport flows over different network interfaces; (3)
providing the ability to define preferences for each network
interface; (4) implementing presentation primitives, in other
words assist middleboxes, by methods such as translation,
encoding, compression and, encryption at the proxy; and (5)
managing disconnections and migration of flows from one
network interface to the other. To do so, they present the



project MSOCKS which features a custom protocol. This
protocol allows exchange of control information between the
mobile node and the proxy to realize the features listed above.
The performance evaluation of the implementation (by the
authors) as well as design highlights scalability concerns.
Another concern, given the design, is with disconnections and
migrations (i.e., how quickly does the implementation react
to a disconnection and migrate its flows to alternate network
interfaces). Though the work presented accepts middleboxes
and makes a conscious attempt to assist them, the mechanics
explicitly do away with the end-to-end semantics and therefore
adopt an approach which is the antithesis of what the isolation
boundary proposes.

VI. SUMMARY AND FUTURE WORK

In this paper, we have laid out arguments for establishing an
isolation boundary in TCP that helps to restore end-to-end re-
silience in the presence of middleboxes while maintaining full
backward compatibility with legacy TCP. Our realization of
the isolation boundary introduces little overhead, and in most
cases, it is difficult to measure the difference in performance.

One aspect of the isolation boundary which we have not
focused on is the second variant of the TCP flow option
outlined in our previous work [3]. Instead of providing a
stream for application data, it provides a control channel
that could be used to allow the end host to negotiate with
middleboxes to obtain desired services. In all respects, other
than the type of stream, it behaves exactly like the variant
discussed in this work. To distinguish between the two, we
call the first the Flow-D (or data variant) and the second
the Flow-C (or control variant). A key property of Flow-C
is the extensibility it enables in TCP while also maintaining
backward compatibility. Because of lack of space, we leave
the discussion of this option and its protocol for future work.

Besides releasing the source code under the BSD license for
inclusion in the FreeBSD kernel, we are preparing a request
for comments for submission to the IETF to stimulate further
discussion within the networking community. Also in the spirit
of the IETF, we seek collaborators interested in developing
independent implementations and joining in interoperability
testing.

ACKNOWLEDGEMENTS:

The authors would like to thank Colin Constable, Barnaby
Crahan, Jayabharat Boddu, John Scudder, and Danny Jump
from Juniper Networks for sponsoring the research and for
providing feedback. They would also like to think Carl Harris

and William Dougherty from Virginia Tech for their support
and encouragement.

REFERENCES

[1] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-End Arguments in
System Design,” ACM Transactions on Computer Systems, vol. 2, pp.
277–288, 1984.

[2] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris,
and S. Shenker, “Middleboxes No Longer Considered Harmful,” in
Proceedings of the 6th Symposium on Operating Systems Design and
Implementation. USENIX Association, 2004, pp. 215–230.

[3] U. Kalim, E. Brown, M. Gardner, and W. Feng, “Enabling Renewed
Innovation in TCP by Establishing an Isolation Boundary,” in 8th
International Workshop on Protocols for Future, Large-Scale and
Diverse Network Transports (PFLDNeT), 2010. [Online]. Available:
http://pfld.net/2010/technical.php

[4] D. Joseph and I. Stoica, “Modeling Middleboxes,” Network, IEEE,
vol. 22, no. 5, pp. 20–25, 2008.

[5] D. A. Joseph, A. Tavakoli, and I. Stoica, “A Policy-Aware Switching
Layer for Data Centers,” in Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication, ser. SIGCOMM ’08. ACM, 2008,
pp. 51–62.

[6] P. Srisuresh, J. Kuthan, J. Rosenberg, A. Molitor, and A. Rayhan,
“Middlebox communication architecture and framework,” RFC 3303
(Informational), Internet Engineering Task Force, Aug. 2002. [Online].
Available: http://www.ietf.org/rfc/rfc3303.txt

[7] R. P. Swale, P. A. Mart, P. Sijben, S. Brim, and M. Shore,
“Middlebox Communications (midcom) Protocol Requirements,” RFC
3304 (Informational), Internet Engineering Task Force, Aug. 2002.
[Online]. Available: http://www.ietf.org/rfc/rfc3304.txt

[8] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and Issues,” RFC
3234 (Informational), Internet Engineering Task Force, Feb. 2002.
[Online]. Available: http://www.ietf.org/rfc/rfc3234.txt

[9] M. Stiemerling, J. Quittek, and T. Taylor, “Middlebox Communications
(MIDCOM) Protocol Semantics,” RFC 3989 (Informational), Internet
Engineering Task Force, Feb. 2005, obsoleted by RFC 5189. [Online].
Available: http://www.ietf.org/rfc/rfc3989.txt

[10] R. Hancock, G. Karagiannis, J. Loughney, and S. V. den Bosch, “Next
Steps in Signaling (NSIS): Framework,” RFC 4080 (Informational),
Internet Engineering Task Force, Jun. 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4080.txt

[11] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN -
Simple Traversal of User Datagram Protocol (UDP) Through Network
Address Translators (NATs),” RFC 3489 (Proposed Standard), Internet
Engineering Task Force, Mar. 2003, obsoleted by RFC 5389. [Online].
Available: http://www.ietf.org/rfc/rfc3489.txt

[12] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal
Utilities for NAT (STUN),” RFC 5766 (Proposed Standard), Internet
Engineering Task Force, Apr. 2010. [Online]. Available: http:
//www.ietf.org/rfc/rfc5766.txt

[13] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol
for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols,” RFC 5245 (Proposed Standard), Internet Engineering Task
Force, Apr. 2010. [Online]. Available: http://www.ietf.org/rfc/rfc5245.txt

[14] J. Salz, A. C. Snoeren, and H. Balakrishnan, “TESLA: A Transpar-
ent, Extensible Session-Layer Architecture for End-to-end Network
Services,” in 4th USENIX Symposium on Internet Technologies and
Systems (USITS), 2003, pp. 211–224.

[15] D. A. Maltz and P. Bhagwat, “MSOCKS: An Architecture for Transport
Layer Mobility,” in IEEE INFOCOM, vol. 3. IEEE, 1998, pp. 1037–
1045.


