
End-system Performance Aware Transport over
Optical Circuit-Switched Connections
Amitabha Banerjee†, Wu-chun Feng‡, Dipak Ghosal†, and Biswanath Mukherjee†

†Dept. of Computer Science, University of California, Davis, CA 95616, USA
‡ Virginia Tech, Blacksburg, VA, 24061, USA

† abanerjee@ucdavis.edu, ghosal@cs.ucdavis.edu, mukherje@cs.ucdavis.edu,‡ feng@cs.vt.edu

Abstract— In this work we investigate the impact of the
receiving end-system performance on data transfer to it via a
dedicated optical circuit. Such a situation commonly exists in
an e-Science application which may receive data from an optical
circuit and process it simultaneously. We illustrate an end-system
performance monitoring tool which can deliver the feedback of
the receiving end-system performance using a transport protocol,
so that the sending end-system may control the sending rate using
this feedback.

I. I NTRODUCTION

The advent of large-scale collaborative science applications
has demonstrated the potential for broad scientific commu-
nities to pool globally distributed resources to produce un-
precedented data collections, simulations, visualizations, and
analysis. The success of these large collaborations requires the
ability to transfer huge amounts of data at high rates between
supercomputing centers, data repositories, and end hosts.

For example, data may be aggregated from distributed
information repositories that are physically located in different
sites across the world, for subsequent analysis at a computing
center. Alternatively, results generated at a supercomputer may
be transferred to remote clients for visualization. In each of
these cases, the volume of data may be hundreds of terabytes,
and in some cases, petabytes, transferred at very high speeds
(e.g., OC-192: 10 Gbps) and oftentimes across long distances
(e.g., intra- as well as inter-continental).

To support such applications, backbone lambda-grid net-
works have been provisioned to provide high, on-demand
bandwidth between end-points that are interconnected via op-
tical circuits. Examples include National LambdaRail (NLR)
and DOE’s UltraScienceNet [1] in the United States, and
CANARIE’s CA*net in Canada.

While end-to-end optical circuit-switched connections elim-
inate congestion in the network, they push the congestion to
the endpoints. For example, high priority and critical tasks may
prempt the execution of the process sending or receiving data.
Similarly, a compute-intensive processes such as visualization
of received data may be executing at the end-system, in which
case the operating system has to schedule a computationally
(CPU) bound process (visualization), and an I/O bound process
(receiving data) simultaneously. In such cases, packets may
get dropped due to buffer overflow at the Network Interface
Card (NIC) if the receiving data process is not scheduled by

TABLE I

SYSTEM CONFIGURATION.

Processor Speed Cache Size RAM Iperf
Intel Pentium 4 3 GHz 512 KB 2 GB DDR RAM 2.44 Gbps

the operating system at the appropriate times to transfer the
packets from the NIC buffer.

In this paper, we investigate how computational load on an
end-system may impact its ability to receive data at high bit
rates. In Section II we highlight experiments on end-system
performance which have been reported in greater detail in [7]
. In Section III, we illustrate a tool which extracts the end-
system performance metrics and then provides an estimated
bottleneck rate to the sending end-system.

II. EXPERIMENTS ON THEEND-SYSTEM PERFORMANCE

We conducted experiments with two machines connected
back-to-back with Chelsio 10-Gigabit Ethernet adapters [2]
using optical fiber. The system configuration and the maximum
bandwidth achieved by a TCP connection measured using Iperf
2.0.2 is shown in Table I. The IPerf measurements are with
a 9000-byte Maximum Transfer Unit (MTU). TCP offloading
was not enabled on the Chelsio adapters. Since the speed of a
single regular hard disk is substantially lower than the transfer
rate of 10 Gbps, we emulated an end-system to end-system file
transfer by transferring a file between two RAMdisks (which
use the RAM for storing data). RAMDisks allow for RAM
access times. We used Reliable Blast UDP (RBUDP) as a
transport protocol in our experiments [4].

We used MAGNET (Monitoring Apparatus for General
kerNel-Event Tracing) [3] to analyze the end-system per-
formance. MAGNET is a low-overhead tool that provides
fine-grained monitoring of kernel- and user-space events by
allowing any event to be monitored, and by time stamping
each event with the CPU-cycle counter which is the highest-
resolution time source available on most machines. Optionally,
additional information can be exported to give a more detailed
account of kernel operations.

The context-switch times between the different processes
was monitored by MAGNET at the receiving end-system. We
transferred a 500 MByte file using the experimental setup
described above. We observed that the sending rate at 1.6
Gbps resulted in the fastest end-system to end-system transfer

0

2,000

4,000

6,000

8,000

10,000

12,000

0 500 1,000 1,500 2,000 2,500 3,000 3,500

Time from start of RBUDP receive(ms)

Ti
m

e-
sl

ic
e

al
lo

ca
te

d

(a) Time slice allocated by the OS to the visualization
workload

0

50

100

150

200

250

300

0 500 1,000 1,500 2,000 2,500 3,000 3,500

Time from start of RBUDP receive (ms)

Lo
ss

le
ss

 T
im

e
in

te
rv

al
 (m

s)

(b) Lossless time intervalduration
Fig. 1. Context-switch time analysis for thevisualizationworkload.

time when the receiving end-system was under no additional
computational load. In order to emulate a computational load
on the receiving end-system, we ran an isosurface extraction
visualization process of a knee joint image, which is expected
to impose varying computational and I/O load, depending on
the stage of computation. We hereafter refer to the latter as a
visualization workload.

Figure 1(a) shows the duration of the time slices that is
allocated to the visualization workload by the operating system
when the end-system is receiving data simultaneously. For
simplicity, we only showed the results for the time duration of
the first UDP blast (iteration of transmitting UDP packets) of
RBUDP. We observed that many time slices allocated by the
OS to the visualization workload are of duration of as much
as 10 ms. Most of the packets arriving at the receiving end-
system in such a time interval when the visualization workload
is executing would be lost, because the network interface card
may not support enough buffer to store the arriving packets.
At a line rate of 1.6 Gbps, 2 MByte of data would be lost in a
duration of 10 ms, if not handled properly by the end-system.

We define time intervals when no packet losses occur at the
receiving end-system aslossless time intervals. We measure

the duration of the lossless time interval by comparing packet
losses with MAGNET traces. Figure 1(b) shows the duration
of lossless time intervals. We observed that most of the lossless
time intervals are distributed between 10 ms and 20 ms.

We explain these observations as follows. Most OS sched-
ulers differentiate between an I/O-bound process and a CPU-
bound process. One of the goals of the OS scheduler is to
improve the interactivity and response time of the system.
The OS intends to favor the I/O process when scheduling.
Different OSs have different means of classifying I/O and
CPU processes, and favoring the I/O-bound processes. For
example, the Linux 2.6 scheduler classifies between the above
two, based on the average sleep time of a process, which is
updated every time the process is context switched. A dynamic
bonus proportional to the average sleep time is awarded to the
task priority. I/O-bound processes have higher average sleep
time than CPU-bound processes, and they are thus favored.

In the above example, when the process receiving data
starts, it is classified as an I/O process. Interrupts are frequently
generated for the incoming packets. While the OS is handling
these interrupts, the CPU-bound visualization workload is held
up. After a certain period of time (280 ms in this case), the
OS begins to treat the process receiving data as a CPU-bound
process, since it has been running continuously. Thereafter,
both processes are handled equally.

III. E ND-SYSTEM PERFORMANCEMONITORING TOOL

From these experiments, we conclude that a receiving end-
system is prone to dropping packets when it is subject to
a computational load in addition to receiving data. Figure 2
shows a model of the various components of an integrated tool
that we are developing to track the end-system performance
and deliver the feedback to the sender so that the sender
may throttle the sending rate appropriately under such circum-
stances. The integrated tool consists of four components (i) a
fine grained, lightweight Kernel-level Event Monitoring Tool
(KEMT), (ii) a lightweight Event Prediction Tool (EPT), (iii)
a Queuing Network-model based Tool (QNT) for performance
analysis of the end-system so as to compute and predict the
end-system bottleneck rate of the receiving process, and (iv) a
Feedback Generator (FG) which integrates with the transport
protocol and delivers the feedback to the sender. We briefly
describe the role of each of the tools as follows:

A. Kernel-level Event Monitoring Tool (KEMT)

In order to model the network operation and to predict
substantial changes in end-system behavior, various event
traces need to be collected. Events must be monitored in the
kernel rather than in the application because many events that
negatively affect performance occur while the application is
not running and hence the application is unable to take note.
An example is the kernel scheduler.

Therefore, the KEMT must be a light-load kernel event
monitoring tool, which can timestamp events such as context-
switch between processes, hardware and software interrupts,

Kernel Event Monitoring
Tool (KEMT)

• New Process Starting
• Existing Process
Terminating
• Process Priority Change
• Software Interrupt by High
Priority Process

Event Prediction Tool (EPT)
• Change in Process

Interactivity Status
• Next lossless time

interval

Feedback Generator
• New Sending Rate
• Duration for that

Sending Rate
• Integrate with

transport protocol

Send feedback
Over network
To sender

Queuing Network-model
based Tool (QNT)

• Disk subsystem analysis
• CPU load analysis
• Inputs from KEMT and EPT

Fig. 2. Various components of the integrated tool

changes in the task priority, etc. and supply it to the EPT and
QNT for useful extraction. MAGNET is an example.

B. Event Prediction Tool (EPT)

Optical circuits may span across large geographical dis-
tances, resulting in large Round-Trip Times (RTTs). Hence any
feedback that is sent from the receiving end-system encounters
a feedback delay. The purpose of the event prediction tool is to
address the feedback delay. The goal is to predict events that
are likely to change the workload and hence the bottleneck
rate of the receive process. Examples of such events that may
be predicted are change in the dynamic task priority, disk I/O
interrupts, etc. QNT may be invoked at such predicted times
to analyze the system and determine the bottleneck rate which
may be fed back to the sender.

C. Queuing Network-model based Tool (QNT)

Given the kernel level data, the goal is to determine the
bottleneck rate of the process receiving data. Queuing network
models have been extensively used for system performance
analysis. For example, DiskSim [5] uses system-level traces
obtained from instrumenting the operating system with queu-
ing network models to estimate the response time of an I/O
subsystem against a given workload. The predicted response
times are demonstrated in [5]to be very accurate to the actual
measurements. An analytical model to predict the throughput
of a disk array for a given workload is discussed in [6].
Along the above lines, QNT will analyze the system as well
as the network I/O performance, to determine a bottleneck
for receiving data. This bottleneck is then communicated to
Feedback Generator.

D. Feedback Generator (FG)

FG will integrate with the transport protocol to send the
bottleneck rate to the sender. The end-system performance
monitoring tool must be lightweight so that it does not impose
any additional load on the receiving end-system. In addition,
it is favorable for KEMT and EPT to be a real time or soft
real-time processes so that they are appropriately scheduled
by the operating system.

We have designed a simple prototype for the above model
which we call the Rate-Adaptive Protocol for Intelligent

Data-transfer (RAPID) [7]. We chose RBUDP as a transport
protocol. The interactive status of the process receiving data
is polled at fixed polling intervals. A prediction is made as
to when the process receiving data may reach such a state at
which the OS treats it at a lower priority than an alternate
CPU-bound process. At the predicted time compensated with
the known RTT, a feedback is sent tosending agentto
suspend sending for some duration of time, which is define as
the suspend interval. The motivation is to allow the process
receiving data to be idle for the corresponding time, during
which the OS may schedule an alternate (CPU-bound) process.

Figure 3 shows the transfer time for a 800 MB file transfer
between two machines on the testbed reported in Section
II. We compare the file transfer time between RBUDP and
RAPID at different values of RTT. At 0 RTT, RAPID shows
an improvement of as much as 25%. The transfer time for
RAPID increases with RTT because the prediction algorithm
must compensate for the RTT. RAPID outperforms the fastest
RBUDP transfer possible (by manually tuning the transfer rate
to 1.2 Gbps) till an RTT of 80ms. We believe that better
prediction algorithm will compenstae for longer RTTs. These
results demonstrate that tuning the sending rate depending on
feedback of the receiving end-system performance may be an
effective solution.

MTU = 9000 bytes

0.00

5.00

10.00

15.00

RBUDP @2Gbps RAPID @2Gbps,
RTT=0ms

RAPID @2Gbps,
RTT=50ms

RAPID @2Gbps,
RTT=80ms

RAPID @2Gbps,
RTT=120ms

Fastest RBUDP
Transfer @1.2 Gbps

Scheme and RTT

Fi
le

 T
ra

ns
fe

r T
im

e
(s

)

Max

Average

Min

Fig. 3. File-Transfer Time for a visualization workload at MTU=9000

REFERENCES

[1] DoE UltraScience Net at http://www.csm.ornl.gov/ultranet/
[2] Chelsio 10 Gigabit Etehrnet Adapter at

http://www.chelsio.com/products/T210.php
[3] M. Gardner, W. Feng, M. Broxton, A Engelhart, and G. Hurwitz, “MAG-

NET: A Tool for Debugging, Analysis and Adaptation in Computing
Systems,”Proc., CCGrid 2003, Tokyo, Japan, May 2003.

[4] E. He, J. Leigh, O.Yu, T. A. DeFanti, “Reliable Blast UDP : Predictable
High Performance Bulk Data Transfer,”Proc. IEEE Cluster Computing,
Chicago, Illinois, 2002.

[5] G. Ganger and Y. Patt, “Using System-Level Models to Evaluate I/O
Subsystem designs”,IEEE Transactions on Computers, vol.47, no. 6,
June 1998.

[6] M. Uysal, G. A. Alvarez, and A. Merchant, “A Modular, Analysti-
cal Throughput Model for Modern Disk Arrays”,Proc., International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, pp. 183–192, August 2001.

[7] A. Banerjee, W. Feng, B. Mukherjee, and D. Ghosal, “RAPID: An
End-System Aware Protocol for Intelligent Date Transfer over Lambda
Grids”, Proc., IEEE IPDPS 2006, Rhodes, Greece, April 2006, to appear.

