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Abstract—A recent study shows that computation per kilowatt-
hour has doubled every 1.57 years, akin to Moore’s Law. While
this trend is encouraging, its implications to high-performance
computing (HPC) are not yet clear. For instance, DARPA’s target
of a 20-MW exaflop system will require a 56.8-fold performance
improvement with only a 2.4-fold increase in power consumption,
which seems unachievable in light of the above trend. To provide
a more comprehensive perspective, we analyze current trends in
energy efficiency from the Green500 and project expectations for
the near future.

Specifically, we first provide an analysis of energy efficiency
trends in HPC systems from the Green500. We then model and
forecast the energy efficiency of future HPC systems. Next, we
present exascalar – a holistic metric to measure the distance from
the exaflop goal. Finally, we discuss our efforts to standardize
power measurement methodologies in order to provide the
community with reliable and accurate efficiency data.

I. INTRODUCTION

DARPA’s target of a 20-megawatt (MW) exaflop supercom-

puter has brought energy efficiency to the forefront of the high-

performance computing (HPC) community. Historically, the

community has pursued performance an any cost. However,

the annual infrastructure cost surpassed the acquisition cost of

the systems themselves in 2004. By 2008, the annual energy

cost to power these systems exceeded the acquisition cost of

the systems [5]. Such costs have diminished the efficiency

benefits of Moore’s Law1 related speed-up [7]. Moreover,

DARPA’s target of a 20-MW exaflop system [6] would require

a 56.8-fold performance improvement with only a 2.4-fold

increase in power consumption.

Recently, Koomey et al. [13] surveyed the relationship

between computing power and the electricity required to power

the devices. The survey concluded that computations per

kilowatt-hour has doubled every 1.57 years.2 While this trend

is encouraging, its implication to high-performance computing

(HPC) is not yet clear. The Green500 [10], [3], which ranks

the most powerful supercomputers in terms of their energy

efficiency, is a data warehouse for analyzing the energy

efficiency of supercomputers. Such an analysis will provide

insights into the longer-term trends in energy efficiency for

HPC.

The Green500 was created in 2007 to raise awareness about

energy efficiency to the HPC community and to highlight

1Moore’s Law is popularly summarized as the performance of computing

devices doubling every 18 to 24 months.
2This relationship is popularly referred to as Koomey’s Law.

its importance. The Green500 encourages the treatment of

efficiency metrics such as operations per watt to be on par with

performance. As the Green500 continues to evolve, we analyze

and draw inferences from the data available and inform the

HPC community on the trends in energy efficiency. We also

strive to standardize the power measurement methodology for

large-scale systems to provide the community with accurate

and reliable power measurements. Towards these goals, we

make the following contributions in this paper:

• A general analysis of the energy efficiency, power con-

sumption, and performance efficiency for different types

of HPC systems.

• A model representing the growth in energy efficiency and

the commensurate decrease in energy used per computa-

tion. We project this trend and discuss the implications

of such growth for achieving a 20-MW exaflop system.

• The exascalar metric – a holistic measure of distance

from the goal of an exaflop system.

• A discussion of our efforts to standardize the power

measurement methodology for large-scale systems on the

Green500. We frame the run rules for the Green500 List

by inferring from the instantaneous power profile of high-

performance LINPACK (HPL) [2] on different platforms.

Based on our above contributions, we make the following

observations and conclusions. First, the energy efficiency of

both the Green500 List as a whole as well as the greenest su-

percomputer continue to improve. Second, heterogeneous (i.e.,

systems using GPUs or other co-processors) and custom-built

(a la BlueGene/Q) systems continue to have a better overall

energy efficiency than their conventional counterparts. Third,

we show that current trends in energy efficiency, projected to

the year 2020, and predict that we will be 7.2-fold short of

the efficiency required to meet DARPA’s 20-MW exaflop goal.

Fourth, we quantify the distance from the 20-MW exaflop

goal. Fifth, we show that a unified standard power measure-

ment methodology can be formulated to provide accurate and

reliable power measurements even though the instantaneous

power signature of the workload varies drastically on different

platforms.

The rest of the paper is organized as follows. Section II of-

fers a high-level analysis of the greenness of supercomputers,

along with an in-depth analysis of the efficiency characteristics

of the different types of machines that achieve high energy



efficiency. Section III studies the trends in energy efficiency

and energy-per-operation in HPC and presents the projected

implications for achieving an exascale system. It also describes

the exascalar metric. We discuss our efforts to standardize

the power measurement methodology for large-scale systems

in Section IV. Related work is discussed in Section V, and

finally, Section VI concludes the paper.

II. ANALYSIS OF THE GREEN500 LISTS

In this section, we analyze the Green500 List to infer trends

on different metrics ranging from efficiency to the architec-

tural composition of the lists. We first start with tracking

energy efficiency over time and describe the highlights of the

November 2012 release. We seek to uncover the relationship

between Moore’s Law and energy efficiency using the feature

size of the systems on the list as metrics. Third, we discuss

the statistics on the power consumption of the list over the

years. Finally, we comment on the architectural composition

(i.e., heterogeneous vs. homogeneous systems) of the list and

its correlation with efficiency in terms of both energy and

performance.

A. Efficiency Trends

The Green500 List has seen steady improvement in the

energy efficiency of systems over the years. Figure 1 shows the

energy efficiency of all the HPC systems for every Green500

List. The plot clearly shows that the gap between the most

energy-efficient systems and the rest of the systems is widen-

ing every year. The top ten systems in the last two editions

of the Green500 List possess an energy efficiency of more

than 2.0 GFLOPS/watt. In the last four lists, we have seen

outliers at the top end of the list. BlueGene/Q systems have

been largely responsible for this. In previous lists, efficiencies

of greater than 2.0 GFLOPS/watt were only achieved by the

BlueGene/Q systems. However, in the latest edition of the

Green500, several other flavors of systems surpassed the 2.0

GFLOPS/watt mark.
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Fig. 1. Energy Efficiency in Green500 Lists

The most energy-efficient system in the latest edition of

Green500 List is the Beacon system, which uses Intel Sandy

Bridge processors and Intel Xeon Phi co-processors to achieve

nearly 2.5 GFLOPS/watt. The SANAM supercomputer occu-

pies the second position; it is another heterogeneous system,

which uses Intel Sandy Bridge processor and AMD FirePro

GPUs. Titan, the world’s fastest supercomputer, according to

the November 2012 release of the Top500 list [4], is the third

most energy-efficient system. Each node in Titan consists of

AMD Opteron CPUs and NVIDIA Kepler (K20) GPUs. The

fourth spot is occupied by Todi, similarly equipped with AMD

Opteron CPUs and NVIDIA K20 GPUs, and the remaining top

ten spots are occupied by BlueGene/Q systems, as shown in

Table I. The rest of the machines that have an efficiency of

more than 2.0 GLOPS/watt are all BlueGene/Q systems.

# Gf/W Computer

1 2.499 Beacon - Intel Xeon E5-2670 + Intel Xeon Phi

2 2.351 SANAM - Intel Xeon E5-2650 + AMD FirePro S10000

3 2.142 Titan - AMD Opteron 6274 + Nvidia K20

4 2.121 Todi - AMD Opteron 6272 + Nvidia K20

5 2.102 JUQueen - BlueGene/Q

6 2.101 BGQdev - ATI Radeon GPU (Nagasaki U.)

7 2.101 rzuseq - B505, NVIDIA 2090 (BSC-CNS)

8 2.101 BlueGene/Q (IBM T.J. Watson Center)

9 2.101 BlueGene/Q (IBM T.J. Watson Center)

10 2.101 CADMOS BG/Q - BlueGene/Q

TABLE I
THE GREENEST 10 SUPERCOMPUTERS

Moore’s Law promises the increase in transistor density on

chip. A by-product of Moore’s law is the decreasing feature

size of the processors. We seek to track the correlation between

the feature size and increasing trend in energy efficiency on

the Green500 List. Figure 2 shows the trend in average feature

size for sets of machines on the Green500 and Top500 Lists.

In general, the feature size across sets of systems over the

years have improved (i.e., decreased in size) on both the lists.

Counterintuitively, the systems occupying the top ten ranks on

the Green500 Lists have had a larger feature size than the rest

of the list in years prior to 2010. However, this trend evened

out in 2010, and since then, the greenest ten machines have

had smaller feature sizes than the list on an average. This shift

highly correlates with the increase in custom or heterogeneous

processors, such as BlueGene/Q and GPU-based systems, on

the list.

B. Power Consumption Trends

The current fastest system consumes 8.2 MW of power

while delivering a performance of 17.59 PFLOPS. With

DARPA’s target power envelope for an exascale system at

20 MW, we need a 56.8-fold increase in performance with

only a 2.4-fold increase in the power envelope. To understand

the trend with respect to the thermal power envelope, we

need to track the power consumption of systems even if there

is a steady growth in energy efficiency. Figure 3 shows the

statistics on the power envelope of systems on the Green500

List. The mean power consumption of the list has been steadily

increasing while the maximum power envelope has remained
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Fig. 5. FLOP/Joule and Joules/FLOP Trend in HPC

TABLE II
LINEAR REGRESSION PARAMETERS FOR FLOP/JOULE AND JOULES/FLOP TREND

— Green5 Green10 Green50 Green100

Slope - FLOP/Joule 287.39 278.68 204.60 148.86

Intercept - FLOP/Joule 34.61 -87.61 -152.80 -87.43

R2 - FLOP/Joule 0.96 0.93 0.85 0.84

Slope - Joules/FLOP -257.12 -306.57 -453.50 -550.02

Intercept - Joules/FLOP 2235.95 2670.80 4158.9 5220.08

R2 - Joules/FLOP 0.91 0.94 0.97 0.98

A. Tracking Koomey’s Law for HPC: Historical and Projected

Trends for Energy Efficiency in HPC

Koomey et al. [13] have uncovered the relationship between

computing power and the electricity required to deliver the

performance. They have concluded that computations per

kilowatt-hour over time has doubled every 1.57 years. One of

the limitation of this work is that it focuses on peak power and

performance. However, this trend may not hold for systems

running at less than peak power. In this section, we explore

whether such trends hold in the HPC domain.

We analyze eight different Green500 Lists to infer insights

into the trends in energy efficiency for HPC. Specifically,

we seek to understand the change in the FLOP/joule and

joules/FLOP ratios over the years. Figure 5 shows the data

from the Green500 Lists. Both graphs in the figure present

the average ratio over the 5, 10, 50, and 100 most energy-

efficient supercomputers from the lists between June 2009 and

November 2012. We anlayze the averages in order to reduce

the bias towards small systems (i.e., systems that consume

relatively less power). We observe an increasing trend for

computations per joule and a decreasing trend for the joules

per computation in all cases. Figure 5 also presents the linear-

regression fits (labeled with suffix -lin) for the trends. A typical

regression has the form:

Metric = Slope ∗ Y ear + Intercept (1)

where Metric can be either FLOP/joule or joules/FLOP, and

Year is a number between one and eight. We would like to note

that not all observations are linear. However, linear regression

provides a good approximation of the trends. Table II shows

all the linear regression parameters for the data presented in

Figure 5. The R2 (i.e., the quality of fit) for the regression

varies from 0.84 to 0.96 for the FLOP/joule trend and from

0.91 to 0.98 for the joules/FLOP trend. The slope of lines

indicates how much each metric increases every six months.

For example, the FLOP/joule ratio increases by 287.39 every

six months for the Green5 data. The Green5 data is the fastest

growing trend for the FLOP/joule ratio, and the Green100 data

is the fastest decreasing trend for the joules/FLOP ratio.

The FLOP/Joule metric also represents the energy efficiency

of the system:

FLOPS/Watt =
Floating Point Operations/Second

Joules/Second

=
Floating Point Operations

Joules
(2)

Extrapolation of energy efficiency for an exascale system is

one of the valuable insights we gain from these models. For a

system to achieve exaflop while consuming 20 MW and 100

MW power, respectively, it should have an energy efficiency of

50 GFLOPS/watt and 10 GLOPS/watt, respectively. For frame

of reference, the current greenest supercomputer as of Novem-

ber 2012 has an energy efficiency of 2.49 GFLOPS/watt.

Assuming that the energy efficiency will improve at the same

rate as predicted by the linear models, Table III shows the

energy efficiency trend extrapolated to years 2018 and 2020.

When the linear model for energy efficiency for Green5 data

is extrapolated to year 2018 and 2020, it predicts that the

average energy efficiency of the greenest five supercomputers

will be 5.78 and 6.93 GFLOPS/watt, respectively. As expected

the averages of the other groups (which is more representative
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run rules for the Green500 List by drawing inference from

instantaneous power profile analysis.

The Green500 List uses the high-performance LINPACK

(HPL) benchmark [2] as the workload. Henceforth, our dis-

cussion will focus on the definition of power measurement

methodology for HPL benchmark. The HPL benchmark is a

linear algebraic package which solves a dense system of linear

equations. It runs in four phases: (1) random square matrix

generation, (2) LU factorization of the matrix, (3) backward

substitution to solve for the solution, and (4) checking for

correctness. We would like to emphasize that only the second

and third steps are used for calculating the LINPACK score

(in GFLOPS). We need to understand the power signature of

the HPL benchmark on different classes of systems in order

to define a power measurement methodology for it. To this

end, we ran single node and multi-node instances of CPU-

HPL [2] and CUDA-HPL [9]. Our single node setup consists

of two Intel Xeon E5-2665 processors with 128 GB of CPU

memory and one NVIDIA C2075 GPU. The multi-node setup

has four nodes with two AMD Opteron 6134 processors, 32

GB of CPU memory and two NVIDIA C2050 GPUs. The

four nodes communicate with each other over InfiniBand. We

would like to determine when to measure power for different

classes of systems when it is executing the HPL benchmark.

Figure 10 shows the instantaneous power profile of both

the CPU-HPL and CUDA-HPL in a single node setup. We

would require the power measurements to occur in the second

and third phases of the HPL benchmark as only these phases

contribute to the GFLOPS score. Henceforth, we refer to the

second and third phases of HPL benchmark as the compute-

intensive phases.4 The instantaneous power difference between

compute-intensive phases and the rest of phases is pronounced

for the CUDA-HPL runs. The first three phases of the CPU-

HPL have similar power signatures and the fourth phase has

different power profile. Due to the third phase (solve phase)

of HPL benchmark, we expect the GFLOPS to tail off at the

end of the compute-intensive phase [8]. And as instantaneous

4Recently, the developers of HPL benchmark have added time stamps in
the benchmark to identify this compute-intensive phase.

power has strong correlation with performance, we expect to

see a tail off in Figure 10. However, we do not observe such

a trend in the instantaneous power profile for the single node

setup. Figure 11 shows the power profile for the multi-node

setup. Unlike the runs for the single node setup, the power

signatures of different phases is more pronounced for both the

CPU- and CUDA-HPL benchmarks. We observe that there is

a period of gradual increase in power at the start of the CPU-

HPL which corresponds to the phase one of the benchmark

and there is a tail off at the end of the compute-intensive phase

which corresponds to third phase of the benchmark. Similar

trends can be seen for CUDA-HPL also.

We have based our power measurement methodology on

the observations made from instantaneous power signature

analysis of CPU-HPL and CUDA-HPL benchmarks. We ex-

pect the power measurements to cover only 20% of compute-

intensive phase of the HPL benchmark. As observed, HPL

has a tail off power trend within the compute-intensive phase.

Therefore we require that the tail off region to not be a part

of the measurement. We refer to this region as the region

of interest (ROI). The Figures 10 and 11 clearly mark the

ROI for the Green500 List. We define the power measurement

methodology for the Green500 List as follows:

1) The measurement granularity should be at least one

sample per second.

2) The power measurement should be within the compute-

intensive phase of the benchmark.

3) The power measurement should cover at least 20% of

the compute-intensive phase or one minute (whichever

is longer).

• If the power measurement covers less than 90% of

the compute-intensive phase, it should not include

the tail off region. We assume that the last 10% of

the compute-intensive phase is the tail off region.

Therefore, we require the measurement to occur

within the first 90% of the compute-intensive phase

of the benchmark (i.e., ROI for Green500 submis-

sions).

• Reporting measurements which includes the tail off



region is allowed only if the power measurement

covers more than 90% of the compute-intensive

phase.

4) The component(s) measured should consume a mini-

mum of 1 kilowatt to reduce any random fluctuations

in power measurement.

The Green500 team along with the EEHPC working

group [1] will continue to update our power measurement

methodology to provide a reliable and accurate overview of the

power envelopes of large-scale systems. These reliable power

measurements will help us project our energy efficiency trends

and view where we stand with respect to 20-MW exaflop goal.

V. RELATED WORK

Bergman et al. [11] discuss the major challenges to achieve

an exascale system in their exascale computing study [6]. They

classify these challenges as (i) energy and power challenge,

(ii) memory and storage challenge, (iii) concurrency and

locality challenge and (iv) resiliency challenge. They also

provide several discussions on taking the current technology

and projecting it to exascale to provide a perspective of what

it would yield. In [11], the authors update the exascale study

to cover more data and metrics. They also add heterogeneous

systems to the types of system analyzed. In this paper, we

analyze the general energy efficiency trends in HPC using

Green500 data and provide a projection of energy efficiency

for systems in 2018 and 2020.

Koomey et al. have uncovered that the number of opera-

tions performed for a kilowatt-hour has doubled every 1.57

years [13]. Koomey also provides a methodology to estimate

the total power consumption by servers in the US [12]. This

study determines the total electricity by using measured data

and estimates of power with publicly available and concluded

that the total power consumed by servers (including the

cooling and the infrastructure) is 2% of the total US power

consumption. We model the growth rate for energy efficiency

and track Koomey’s law for HPC systems in this paper. We

also use measured data from the Green500 database.

VI. CONCLUSION

In the past, the HPC community has been particularly guilty

of seeking performance above all else. Recent expectations

such as the DARPA’s 20-MW exascale system goal, the ever

increasing cost of electricity, power provisioning infrastructure

and cooling and the commensurate decrease in efficiency

benefits due to Moore’s law related performance gains have

brought metrics such as energy efficiency and total cost of

ownership to the forefront in HPC community. While recent

postulation by Koomey et al. on the growth in computations

per kilowatt-hour are encouraging, the implications of such

trends to HPC is yet to be understood.

In this paper, we use the Green500 database to track, analyze

and project energy efficiency trends in HPC. In general, our

study shows that energy efficiency has increased and the

energy efficiency of GPU- and MIC-based and custom built

system dominate the CPU-based systems. We build a linear

model which tracks the energy efficiency of different sets of

machines on the Green500 list. Our projection results indicate

that we are 7.2x smaller than the energy efficiency goals of 20-

MW exaflop goal efficiency goals in the year 2020. We also

present the exascalar metric – a holistic metric to measure

the distance from the 20-MW exaflop goal and show that the

top exascalar system is about 2.2 orders of magnitude as a

linear measure from the goal. Finally, we propose a unified

power measurement methodology for accurate and reliable

power measurement on large-scale systems. Clearly, the energy

efficiency of large-scale systems should grow at a higher rate

than current trends to achieve the 20-MW exaflop goal in

2020. The Green500 list will continue to track innovations in

energy efficiency of large-scale systems and inform the HPC

community about the exciting times that lie ahead.
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