
24

In the past decade, a wide array of
interconnect technologies have entered the sys-
tem-area network (SAN) environment—
notably InfiniBand (http://www.infinibandta.
org), Myrinet,1 and QsNet.2 The success of
these networks, dubbed Ethernots, depends
primarily on their use of hardware-offloaded
protocol stacks and feature-rich interfaces that
are exposed to end-host applications. In a
wide-area network (WAN), however, Ether-
nots are less successful because they are incom-
patible with existing infrastructure (switches
and routers, for example). In this realm, Eth-
ernet and Ethernet-compatible technologies
such as Sonet/Synchronous Digital Hierarchy
are ubiquitous. Coupled with the traditional
IP-Ethernet infrastructure, which dates to the
early 1970s, these technologies support not
only the Internet but also the emerging envi-
ronments that overlay it—computational grids
and peer-to-peer networking, among others.

Ethernet’s foothold in WANs will become
even stronger as long-haul network providers
move from the more expensive Sonet to the
newer 10-Gigabit Ethernet (10GigE)3,4 back-
bones. Indeed, in late 2004, the longest con-
tinuous 10GigE connection was established
between Tokyo, Japan, and Switzerland via

Canada and the US (http://www.gridtoday.
com/04/1206/104373.html). This 18,500-
km 10GigE connection used 10GigE WAN
physical layer technology to set up a pseudo
local-area network (LAN) at the University of
Tokyo that appeared to include systems 17
time zones away. Ethernet—albeit 1GigE—
also dominates the Top500 supercomputer
list (http://www.top500.org).

Recent developments could also empower
Ethernet to penetrate the SAN arena, where it
has struggled against the Ethernots’ serious
performance advantage. Despite that, network
providers have been reluctant to view it as a
serious SAN interconnect because of Ether-
net’s formidable performance lag relative to
mainstream SAN technologies.

With 10GigE, this could change. Ether-
net’s recent developments to move closer to
Ethernot performance, and Ethernot’s
adoption of Ethernet-compatible technol-
ogy might make this performance lag much
less of an issue. Myricom, Myrinet’s vendor,
recently introduced network adapters that
use Myrinet interconnect technology but
implement Ethernet as the underlying wire
protocol. Similarly, Quadrics introduced
network switches that use the company’s
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technology but apply it to the Ethernet
market. 

For their part, Ethernet vendors have intro-
duced 10GigE TCP-IP offload engines
(TOEs)5 as hard evidence of their desire to
move toward the performance capabilities of
Ethernot networks. The question is whether
10GigE can bridge the Ethernet-Ethernot
performance gap, yet retain Ethernet’s ease of
deployment and low cost. For ease of deploy-
ment at least, the outlook is optimistic. The
IEEE 802.3ae 10-Gbps standard, which the
10GigE Alliance supports, already ensures
interoperability with existing IP-Ethernet
infrastructure, and the manufacturing volume
of 10GigE is driving costs down exponential-
ly, just as it did for Fast Ethernet and Gigabit
Ethernet. Indeed, per-port costs for 10GigE
have dropped tenfold in the past two years.

Convergence in the performance of 10GigE
and traditional Ethernot technologies—the
focus of our study—also looks promising.

Defining the performance gap
With so many networking technologies in

the current high-speed network market, char-
acterizing the performance gap among them
is not straightforward. Each technology expos-
es its own communication interface, which
affects both lower level performance charac-
terization and application development. With
each new technology, lack of portability
threatened to become a huge issue, and appli-
cation developers were quick to demand a
common interface to rectify the problem. The
message passing interface (MPI) and the sock-
ets interface are two of the more popular solu-
tions: MPI is the de facto standard for
scientific applications, while sockets are
prominent in traditional scientific applica-
tions as well as in grid and peer-to-peer com-
puting; file and storage systems; and other
commercial applications, including online
transaction processing. 

Because the solution of traditional sockets
over host-based TCP-IP has not been able to
cope with increasing network speed, Ether-
not technologies, specifically InfiniBand (IBA)
and Myrinet, proposed high-performance
sockets implementations such as the Sockets
Direct Protocol, or SDP (http://www.
rdmaconsortium.org). SDP lets existing sock-
ets-based applications transparently exploit the

hardware-offloaded protocol stack that these
networks provide. As a result, from the Ether-
net side, Chelsio and other 10GigE vendors
have recently released adapters that deliver
hardware-offloaded TCP-IP protocol stacks to
provide high-performance support for existing
sockets-based applications. One such protocol
stack is the TCP-IP offload engine (TOE).

Our study focused on the sockets interface.
We first compared the performance of the
host-based TCP-IP stack over 10GigE to that
of 10GigE TOEs so that we could understand
the performance gains achievable through the
use of hardware-offloaded protocol stacks for
10GigE. We then compared the performance
of 10GigE TOEs with that of other intercon-
nects providing similar hardware-offloaded
protocol stacks such as IBA and Myrinet.
Although QsNet provides a similar hardware-
offloaded protocol stack, there is no mecha-
nism to use it transparently for sockets-based
applications; that is, there is no SDP imple-
mentation. Consequently, we did not include
this network in our evaluation.

We evaluated the performance of 10GigE,
IBA, and Myrinet at both a detailed
microbenchmark level and an application level
with sample applications from multiple
domains.

Protocol offload engines
Traditionally, the job of processing proto-

cols such as TCP-IP has fallen to the software
running on the host CPU. Recently, network
speeds have outpaced the CPU, which has
become burdened with resource-intensive
memory copies, checksum computation, inter-
rupts, and reassembly of out-of-order pack-
ets—all part of protocol processing’s heavy
load. In high-speed networks, the CPU ends
up dedicating more cycles to network traffic
handling than to the applications it is running. 

Protocol offload engines (POEs) are emerg-
ing as a solution to limit the processing that
CPUs require for networking. The basic idea
of a POE is to offload protocol processing
from the host CPU to the network adapter.
Providers can implement a POE with a net-
work processor and firmware, specialized
application-specific ICs, or a combination.
High-performance networks such as IBA and
Myrinet provide their own protocol stacks
that are offloaded onto the network-adapter
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hardware. Many 10GigE vendors, on the
other hand, have chosen to offload the ubiq-
uitous TCP-IP stack so as to maintain com-
patibility with the traditional IP-Ethernet
infrastructure, particularly over the WAN. For
this reason, a special case of POE has
evolved—the TOE.

10GigE
The 10GigE infrastructure that we evalu-

ated consists of two foundational hardware

blocks: the Chelsio T110 TOE-based network
adapter and the Fujitsu XG800 virtual cut-
through switch.

As Figure 1a shows, the Chelsio T110 is a
PCI-X network adapter that can support com-
plete TCP-IP offloading from a host system
at line speeds of 10 Gbps. The adapter consists
of the terminator, which provides the basis for
offloading; separate memory systems, each
designed for holding particular types of data;
media access control (MAC); and an extend-
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ed platform adapter component (XPAC) opti-
cal transceiver for physically transferring data
over the line.

The 10GigE infrastructure interconnects
the Chelsio T110 network adapters using a
Fujitsu XG800 virtual cut-through switch.
Figure 1b shows a functional block diagram
of the switch, which features nonblocking
layer-2 switching for 12 10GigE ports with
450-ns flow-through latency. The XG800
switch is also unique in that it uses the Fujit-
su MB87Q3070 switch-on-a-chip, which sig-
nificantly reduces the switch footprint.

InfiniBand
IBA defines a switched network fabric to

interconnect processing and I/O nodes that
provides the communication and manage-
ment infrastructure for interprocessor com-
munication and I/O. Host-channel adapters
(HCAs) that reside on the processing or I/O
nodes connect network nodes to the fabric.

In our study, we evaluated the InfiniScale
switch from Mellanox Technologies, a full wire-
speed 24-port switch that supports link-pack-
et buffering, inbound and outbound partition
checking, and automatic negotiation of link
speed. The switch has an embedded reduced
instruction-set computer (RISC) processor for
exception handling, out-of-band data-man-
agement support, and support for counters to
allow performance monitoring. The InfiniHost
HCA connects to the host through the PCI-X
bus and delivers bandwidth of up to 8 Gbps
over its ports. The hardware implements both
memory protection and address translation.
The HCA supports on-board dual data rate
(DDR) memory up to 1 Gbyte.

Myrinet
Myrinet is a high-speed network that uses

wormhole-routed crossbar switches to connect
all the network adapters. MX and GM, two of
Myrinet’s low-level messaging layers, provide
protected user-level access to the adapters and
ensure reliable, in-order message delivery. The
Myrinet network in our evaluation consists of
a Myrinet-2000 switch—a 16-port crossbar—
that connects Myrinet-2000 E cards, each of
which has two ports, and each port has a 2-
Gbps bandwidth. Thus, the network adapter
can support an aggregate of 4 Gbps in each
direction using both ports. The network

adapter connects to a 133-MHz, 64-bit PCI-
X interface on the host. It has a programmable
Lanai-XP processor running at 333 MHz with
a 2-Mbyte on-board synchronous RAM
(SRAM). The Lanai processor can access host
memory via the PCI-X bus through the direct
memory access (DMA) controller.

Interfacing with protocol offload engines
Because the Linux kernel does not current-

ly support POEs, many researchers have stud-
ied ways of enabling applications to interface
with POEs. The two predominant approach-
es are high-performance sockets implementa-
tions (such as SDP) and TCP stack override.

High-performance sockets
High-performance sockets are pseudo sock-

et implementations built around two goals.
The first is to provide a smooth transition in
deploying existing sockets-based applications
on clusters connected with networks using
offloaded protocol stacks. The second is to use
the offloaded stack for protocol processing,
which lets applications tap into most of the
raw network performance. As Figure 2a
shows, these sockets layers override the exist-
ing kernel-based sockets and force transfer of
the data directly to the offloaded stack. SDP
is an industry-standard specification for such
high-performance sockets implementations.

In the high-performance sockets approach,
the TCP-IP stack in the kernel does not have
to be touched at all because all the data com-
munication calls (read, write, and so on) are
trapped and directly mapped to the offloaded
protocol stack.

However, this requires duplicating func-
tionality that the sockets layer handles (such as
buffer management for data retransmission and
pinning of buffers) in the high-performance
sockets implementation. IBA and Myrinet use
this approach so that sockets-based applications
can use the offloaded protocol stacks.

TCP stack override
The second approach, which Figure 2b

shows, retains the kernel-based sockets layer
but bypasses the host TCP-IP stack and push-
es the data directly to the offloaded protocol
stack. The Chelsio T110 10GigE adapter
takes this approach.

Because the Linux operating system lacks

27MAY–JUNE 2006



support for TOE devices, Chelsio provides a
TCP offload module (TOM) framework and
toedev, a thin layer that decides if a connection
goes to the TOM or the traditional host-based
TCP-IP stack. The TOM is responsible for
implementing the TCP processing that the
TOE cannot do. It also maintains the state of
all offloaded connections.

The advantage of this approach is that it
does not require any duplication of the sock-
et layer’s functionality. The disadvantage is
that an application cannot use this approach
without modifications to the kernel.

Experimental testbed
To evaluate the performance of these three

networks, we ran the study on three experi-
mental clusters.

Cluster 1 consists of two Opteron 248

nodes, each with a 2.2-GHz CPU along with
1 Gbyte of a 400-MHz DDR synchronous,
dynamic RAM (SDRAM) and 1 Mbyte of L2
cache. The nodes connect back-to-back with
the Chelsio T110 10GigE adapters.

Cluster 2 consists of four Opteron 846
nodes, each with four 2.0-GHz CPUs (quad
systems) along with 4 Gbytes of 333-MHz
DDR SDRAM and 1 Mbyte of L2 cache.
Nodes connect via a 12-port Fujitsu XG800
10GigE switch with Chelsio T110 10GigE
adapters at the end hosts.

We performed experiments on Clusters 1
and 2 with the SuSE Linux distribution
installed with kernel 2.6.6 (patched with
Chelsio modules). We used these clusters to
compare the performance of the host-based
TCP-IP stack on 10GigE with that of the
10GigE TOEs. For this comparison, in gen-
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eral, we used Cluster 1 for all experiments
requiring only two nodes and Cluster 2 for
those requiring more.

Cluster 3 consists of four nodes built around
SuperMicro’s Super X5DL8-GG mother-
boards with ServerWorks GC LE chipsets,
which include 64-bit, 133-MHz PCI-X inter-
faces. Each node has two Intel Xeon 3.0-GHz
processors with a 512-Kbyte L2 cache, 533-
MHz front-side bus, and 2 Gbytes of 266-
MHz DDR SDRAM. We used the RedHat
9.0 Linux distribution and the Linux-
2.4.25smp kernel. Each node also had the
10GigE, IBA, and Myrinet networks. We
used this cluster to compare 10GigE, IBA,
and Myrinet.

The 10GigE network in Cluster 3 is based
on Chelsio T110 10GigE adapters with TOEs
connected to a 12-port Fujitsu XG800 switch.
The driver version on the network adapters is
1.2.0. The IBA network is based on Infini-
Host MT23108 dual-port 4x HCAs through
an InfiniScale MT43132 24-port nonblock-
ing switch. The adapter firmware version is
fw-23108-rel-3 2 0-rc4-build-001, and the
software stack is based on the Voltaire IBHost-
3.0.0-16 stack. Research groups, including
some at Mellanox Technologies6 and Ohio
State University,7 have recently implemented
research prototypes for zero-copy implemen-
tations of SDP over IBA, but these imple-
mentations tend to be less stable than the
more widely available buffered-copy imple-
mentation of SDP that we used in our study.

Finally, the Myrinet network in Cluster 3
is based on Myrinet-2000 E (dual-port)
adapters connected by a Myrinet-2000 worm-
hole-routed crossbar switch. Each adapter is
capable of a 4-Gbps bandwidth in each direc-
tion. For SDP/Myrinet, we performed evalu-
ations with two implementations. The first
uses the GM/Myrinet drivers (SDP/GM
v1.7.9 over GM v2.1.9). The second imple-
mentation runs over the newly released
MX/Myrinet drivers (SDP/MX v1.0.2 over
MX v1.0.0). The SDP/MX implementation
achieves significantly better performance than
the older SDP/GM, but being a very new
implementation, SDP/MX comes with its
share of stability issues. Because of this, we
conducted only the ping-pong latency and
unidirectional bandwidth tests for both
SDP/MX and SDP/GM, but the rest of the

tests were for SDP/GM alone. With Myri-
com’s current effort on SDP/MX, we expect
these stability issues to be resolved very soon;
consequently, the Myrinet results should
improve.

For all evaluations, we ran each experiment
10 times, dropped the highest and lowest val-
ues, and took the mean of only the remaining
eight runs. For microbenchmark evaluations,
each run consisted of 100,000 iterations.

Host-based TCP-IP versus TCP offloading
engine

To evaluate the performance of 10GigE
with TOE as compared with that of the host-
based TCP-IP stack over 10GigE—hereafter,
TOE and non-TOE—we used a suite of
microbenchmarks. We first performed evalu-
ations on the basis of a single connection mea-
suring the point-to-point latency and
unidirectional bandwidth together with the
CPU utilization. We then performed evalua-
tions on the basis of multiple connections
using the multistream, hot-spot, fan-in, and
fan-out tests.

Single-connection microbenchmarks
Figures 3 and 4 show the basic single-stream

performance (point-to-point latency and uni-
directional bandwidth) of the 10GigE TOE
as compared to non-TOE. Point-to-point
latency is the time a sockets application takes
to transfer X bytes of data. In this experiment,
the sender application process sends X bytes
of data to the receiver process; the receiver
process, upon receipt of this data, returns X
bytes of data to the sender process. We repeat-
ed this for N iterations and calculated the aver-
age. We measured the one-way point-to-point
latency as half the average value (across the N
iterations) and reported it.

For the unidirectional bandwidth experi-
ment, the sender process continuously sends
N messages to the receiver process, each mes-
sage containing X bytes of data. The receiver
process, on receipt of all N × X data bytes,
sends an acknowledgment message to the
sender process. The sender process calculates
the total time measured from just before it
started sending the data until it received the
acknowledgment. Subtracting the one-way
latency for the acknowledgment message from
this value gives the total time taken to transfer
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the N × X bytes. We calculated the unidirec-
tional bandwidth as the total amount of data
transferred divided by the total time taken.

As Figure 3a shows, for a standard Ethernet
frame size of 1.5 Kbytes, the 10GigE TOE can
achieve a point-to-point latency of about 8.9 µs
compared with the 10.37 µs achievable with a
non-TOE—an improvement of about 14.2
percent. As Figure 3b shows, the TOE achieves
a maximum bandwidth of 7.6 Gbps as com-

pared with the 5 Gbps for a
non-TOE—an improvement
of about 52 percent. 

Figure 4 shows the results
of increasing the adapter’s
maximum transmission unit
(MTU) size to 9 Kbytes
(jumbo frames). The non-
TOE bandwidth increases to
7.2 Gbps, but there is no
additional improvement for
the TOE because of the way
it handles message transmis-
sion; the device driver hands
over large message chunks (16
Kbytes) to the network
adapter, which segments the
chunks into frames sized for
the MTU. This causes only a
few interrupts, which the host
processor receives regardless
of MTU size. In other words,
the TOE shields the host
from the overhead of smaller
MTU sizes; but for non-
TOE, an MTU of 1.5 Kbytes
results in more segments and
correspondingly more inter-
rupts that must be handled
for every message, yielding
lower performance relative to
an MTU of 9 Kbytes.

Figures 3b and 4b also
show the CPU utilization. For
TOE, utilization remains
close to 38 percent with an
MTU of 1.5 Kbytes as well as
9 Kbytes. But for non-TOE,
the CPU utilization increases
slightly (52 to 58 percent)
when moving from standard
(1.5-Kbyte) to jumbo (9-
Kbyte) frames. The stack

implementation explains some of this trend.
When the application calls a write call, the
host CPU copies the data into the socket
buffer. If there is no space in the socket buffer,
the CPU waits for the network adapter to
complete its send of the existing data and cre-
ate space for the new data to be copied. Once
the data is copied, the underlying TCP-IP
stack handles the actual data transmission. If
the network adapter sends the data out faster,
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space is created in the socket
buffer faster, and the host
CPU spends a larger fraction
of its time copying data to the
socket buffer rather than wait-
ing for space to be created.
Thus, when performance
improves, we expect the host
CPU to spend more time
copying data and using CPU
cycles. But the use of jumbo
frames also reduces the CPU
overhead for non-TOE
because there are fewer inter-
rupts. Because of these two
conditions, we found only a 6
percent increase in CPU uti-
lization with jumbo frames.

Multiple-connection
microbenchmarks

Our next evaluations were
for TOE and non-TOE net-
works with microbench-
marks that use multiple
simultaneous connections.
For all these experiments, we
used an MTU of 1.5 Kbytes
to abide by the standard Eth-
ernet frame size.

Figure 5a shows the aggre-
gate bandwidth for two nodes
in Cluster 1 simultaneously
executing multiple instances
of the unidirectional band-
width test. The TOE net-
work achieved 7.1 Gbps to
7.6 Gbps (equally divided
between each thread). The
non-TOE stack peaked at 4.9
Gbps (again, equally divided
between each thread). These
results are similar to the single-stream results;
thus, using multiple simultaneous streams to
transfer data does not make much difference.

Figure 5b shows the impact of multiple
connections on small-message transactions.
In this experiment, client nodes performed a
point-to-point latency test with the same serv-
er, forming a hot spot. We performed this
experiment on Cluster 2 with one node acting
as a server node and each of the other three
nodes hosting 12 client processes in all. We

allotted the clients cyclically, so “three clients”
refers to one client per node, “six clients” refers
to two clients per node, and so on.

As Figure 5b shows, both the TOE and
non-TOE networks show similar scalability
as clients increase. We can thus deduce that
the TOE performs lookup for connection-
related data structures efficiently enough to
avoid a significant bottleneck.

Although results from the hot-spot test
show that the lookup time for connection-
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related data structures is quite efficient on the
TOE, the test did not stress the other
resources on the network adapter, such as
management of memory regions for buffer-
ing data during transmission and reception.
To test these other resources, we performed
the fan-in and fan-out tests. In both the fan-
in and fan-out bandwidth tests, which we per-
formed on Cluster 2, one server process carries
out unidirectional bandwidth tests simulta-
neously with multiple client processes. In the
fan-out test, the server sends data to the dif-
ferent clients, stressing the transmission path

on the network adapter; and in the fan-in test,
the clients send data to the server process,
stressing the receive path on the network
adapter. These tests differ from the multi-
stream test, in which we performed band-
width tests between multiple processes on the
same two nodes. In the fan-in and fan-out
tests, we performed bandwidth tests between
one server process and multiple client process-
es on multiple physical nodes.

Figure 6 shows the TOE and non-TOE
performance for the fan-in and fan-out band-
width tests. The performance for both tests

remains constant as the client
number  increases. This
shows that if a server must
stream data to or receive data
streams from multiple clients
simultaneously over a
10GigE TOE network, it
does not suffer any noticeable
performance degradation.
This in turn suggests efficient
transmit- and receive-path
implementations for the
TOE in the presence of mul-
tiple flows corresponding to
different remote nodes.

10GigE TCP offload engine
versus IBA and Myrinet

We conducted these exper-
iments to evaluate the perfor-
mance of the Chelsio T110
10GigE adapter with TOE as
compared to the SDP imple-
mentations on top of IBA
and Myrinet. We performed
all these experiments on
Cluster 3.

Microbenchmark comparison
The performance benefits

of TOE over non-TOE net-
works hint at TOE’s capabil-
ities, but to get a more
complete picture, we had to
compare the performance of
TOE networks with that of
the traditional Ethernot net-
works.

Figure 7 shows the basic
microbenchmark perfor-
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mance of the 10GigE TOE as
compared to SDP/IBA and
SDP/Myrinet (SDP/MX/
Myrinet and SDP/GM/
Myrinet).

Figures 7a and 7b compare
ping-pong latency for the
network stacks. IBA and
Myrinet provide both
polling- and event-based
mechanisms to inform the
user about the completion of
data transmission or recep-
tion; 10GigE provides only
an event-based mechanism.
In the polling approach, the
sockets implementation must
continuously poll on a prede-
fined location to check if the
data transmission or recep-
tion has completed. This
approach delivers high band-
width and low latency but 
the continuous monitoring
requires a large percentage of
CPU resources. In the event-
based approach, the sockets
implementation requests the
network adapter to inform it
of a completion and then
sleeps. On a completion
event, the network adapter
wakes this process up through
an interrupt. 

Although the event-based
approach requires a lower
percentage of CPU resources
(because the application does
not have to continuously
monitor the data-transfer
completions), it incurs the
additional cost of an interrupt. In general, for
single-threaded applications, the polling
approach is more efficient; for most multi-
threaded applications, the event-based
approach performs better. 

As Figures 7a and 7b show, SDP/Myrinet
generally achieves the lowest small-message
latency for both approaches. For the polling-
based models, SDP/MX/Myrinet and SDP/
GM/Myrinet achieve latencies of 4.64 µs and
6.68 µs, compared with the 8.25 µs that
SDP/IBA achieves. For the event-based mod-

els, SDP/MX/Myrinet and SDP/GM/Myrinet
achieve latencies of 14.47 µs and 11.33 µs,
compared with the 14.3 µs and 24.4 µs that
10GigE TOE and SDP/IBA achieve.

The figure also shows, however, that for mes-
sages larger than 2 Kbytes for event-based and
4 Kbytes for polling-based communication,
SDP/Myrinet performance deteriorates. For
messages in this range, SDP/IBA performs best,
followed by 10GigE TOE and then the two
SDP/Myrinet implementations. For the ping-
pong latencies, the 10GigE (Fujitsu), IBA (Mel-
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lanox), and Myrinet (Myri-
com) switches contribute
approximately 1000 ns, 300
ns, and 60 ns, respectively.

Figure 7c shows the results
of the unidirectional band-
width test. The 10GigE TOE
achieves the highest band-
width at close to 6.4 Gbps,
compared with the 5.4 Gbps
and 3.9 Gbps that SDP/IBA
and SDP/Myrinet achieve.
(The theoretical peak for
Myrinet is 4 Gbps.)

In the event-based results,
the bandwidth drop for
SDP/GM/Myrinet for mes-
sages of 512 Kbytes is likely
due to this implementation’s
high dependency on L2 cache
activity. Even 10GigE TOE
shows a slight drop in perfor-
mance for very large messages,
but not one as drastic as
SDP/GM/Myrinet exhibits.
Our systems use a 512-Kbyte
L2 cache and relatively slow
memory (266-MHz DDR
SDRAM), which causes the
drop to be significant. Sys-
tems with larger L2 caches, L3
caches, faster memory, or bet-
ter memory architectures
(nonuniform memory access,
for example), will likely expe-
rience smaller drops. Further,
bandwidth for all networks is
the same whether or not they
use a switch, so switches do
not appear to be a bottleneck
for this test.

Application-level comparison
In this series of tests, we

evaluated the performance of
four applications across the
three network technologies
(IBA, Myrinet, and 10GigE
TOE):

• Virtual Microscope (VM),8

a biomedical image-visual-
ization tool; 
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• Iso-Surface Oil-Reservoir Simulation
(ISO);9

• Parallel Virtual File System (PVFS),10 a clus-
ter file-system; and

• Ganglia,11 a popular cluster-management
tool.

The first two applications run on Data-
Cutter, a component-based framework devel-
oped at the University of Maryland to provide
a flexible and efficient runtime environment
for data-intensive applications on distributed
platforms.

Data-Cutter
Data-Cutter implements a filter-stream pro-

gramming model, in which the application
processing structure is a set of components, or
filters, that exchange data through a stream

abstraction. Filters connect via logical streams,
each of which denotes a unidirectional data
flow from one filter (the producer) to another
(the consumer). A filter reads data from its
input streams and writes data to its output
streams. The logical-stream implementation
uses the sockets interface for point-to-point
stream communication. A filter group—a set
of filters connected through logical streams—
realizes the application’s overall processing
structure. When a filter group is instantiated to
process an application query, the runtime sys-
tem establishes socket connections between fil-
ters placed on different hosts before starting
the execution of the application query.

The filter group handles an application
query as a unit of work. The processing of a
UOW can be done in a pipelined fashion; dif-
ferent filters can work on different data ele-
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ments simultaneously, as Figure 8 illustrates.
Virtual Microscope. VM is a data-intensive

digitized microscopy application. The soft-
ware support required to store, retrieve, and
process digitized slides to provide interactive
response times for the standard behavior of a
physical microscope is a challenging issue. The
main difficulty stems from handling large vol-
umes of image data, which can range from a
few hundred megabytes to several gigabytes
per image. At a basic level, the software sys-
tem should emulate the use of a physical
microscope, including continuously moving

the stage and changing magnification. The
processing of client queries requires project-
ing high-resolution data onto a grid of suit-
able resolution and appropriately composing
pixels mapping onto a single grid point.

Iso-Surface Oil-Reservoir Simulation. Iso is
the result of computational modeling for the
seismic analysis of oil reservoirs that examines
a reservoir’s seismic properties by using output
from oil reservoir simulations. The main
objective of oil reservoir modeling is to under-
stand the reservoir properties and predict oil
production. This in turn lets companies opti-
mize return on investment from a given reser-
voir, while minimizing environmental effects.
Iso demonstrates a dynamic, data-driven
approach to solve optimization problems in
oil reservoir management. Analysts evaluate
the output from seismic simulations to inves-
tigate the change in the reservoirs’ geological
characteristics and to guide future oil reservoir
simulations. Seismic simulations produce out-
put that represents the traces of sound waves
generated by sound sources and recorded by
receivers on a 3D grid over many time steps.
One analysis of seismic data sets involves map-
ping and aggregating traces onto a 3D volume
through seismic imaging. The resulting 3D
volume is suitable for visualization or for gen-
erating input for further reservoir simulations.

Performance comparison. Figure 9 compares the
performance of VM and Iso over the three net-
works. As Figure 9a shows, SDP/IBA outper-
forms the other two networks for VM, primarily
because IBA delivers lower latency than TOE
and SDP/GM/Myrinet for medium-sized mes-
sages (see Figure 7a). Although VM deals with
large data sets (each image was about 16
Mbytes), the data set is broken into small UOW
segments that the network processes in a
pipeline. This makes the application sensitive
to the latency of medium-sized messages.

Figure 9b compares the performance of the
Iso application for the three networks with a
dataset of about 64 Mbytes. Again, although
the performance of the three networks is
much closer than it was for VM, SDP/IBA
slightly outperforms the other two networks.

Parallel Virtual File System
Figure 10 shows the results of running

PVFS on the three networks. PVFS, which
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Clemson University and Argonne National
Laboratory jointly developed to meet the
increasing I/O demands of parallel applica-
tions in cluster systems, is one of the leading
parallel file systems for Linux cluster systems.
As Figure 10 shows, a typical PVFS environ-
ment comprises several nodes configured as
I/O servers with one node (either an I/O serv-
er or a different node) configured as a meta-
data manager.

PVFS stripes files across a set of I/O server
nodes, which allows parallel access to the data.
It uses the native file system on the I/O servers
to store individual file stripes. An I/O daemon
runs on each I/O node and services requests
from the computational nodes, primarily read
and write requests. Thus, data transfers direct-
ly between the I/O servers and the computa-
tional nodes. A manager daemon running on
a metadata manager node handles metadata
operations involving file permissions, trunca-
tion, file stripe characteristics, and so on. Meta-
data is also stored on the local file system. The
metadata manager provides a clusterwide, con-
sistent name space to applications but does not
participate in read or write operations. 

PVFS also supports a set of feature-rich
interfaces, including support for both con-
tiguous and noncontiguous accesses to both
memory and files. It is available with a range
of application programming interfaces (APIs):
native, Unix/Posix, MPI-I/O, multidimen-
sional block, and array I/O. This API flexi-
bility is a key factor in the popularity of PVFS.

To evaluate the performance of concurrent
read or write operations in PVFS, we used the
pvfs-test program from standard PVFS releas-
es. This test uses an MPI program to paral-
lelize file write or read access of contiguous
2-Mbyte data buffers from each computa-
tional node. We performed two types of tests
for both read and write: three clients simulta-
neously read a file from or write a file to the
server (1S/3C) and a single client reads the
stripes from or writes the stripes to all three
servers simultaneously (3S/1C). Figure 11
shows that the 10GigE TOE network out-
performs the other two in both tests for read
and write. This follows the same trend as that
in Figure 7c.

Figure 12 shows the performance of MPI-
Tile-I/O,12 a tile-reading MPI-I/O application
that tests the performance of tiled access to a
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2D dense data set, simulating the workload in
some visualization and numerical applications.
In our experiments, we used two nodes as
servers and the other two as clients running
MPI-Tile-I/O processes. Each process renders
a 1 × 2 array of displays, each with 1024 × 768
pixels. The size of each element is 32 bytes,
leading to a file size of 48 Mbytes.

We evaluated both the read and write per-
formance of MPI-Tile-I/O over PVFS. As the
figure shows, the 10GigE TOE network pro-
vides better performance than the other two
in terms of both read and write bandwidth.
All the networks performed considerably

worse in this test than in the concurrent file
I/O test. This is likely due to the MPI-Tile-
I/O benchmark’s noncontiguous data-access
pattern, which adds significant overhead.

Ganglia
Figure 13 presents the results of running

Ganglia, an open-source project that grew out
of the University of California, Berkeley, Mil-
lennium Project. It is a scalable distributed
monitoring system for high-performance
computing systems (such as clusters and grids)
that is based on a hierarchical design targeted
at federations of clusters. Ganglia leverages
widely used technologies such as Extensible
Markup Language (XML) for data represen-
tation, the External Data Representation stan-
dard for compact and portable data transport,
and the open source tool, RRDtool, for data
storage and visualization. Ganglia uses care-
fully engineered data structures and algo-
rithms to achieve very low per-node overheads
and high concurrency. 

The Ganglia system contains a server-mon-
itoring daemon that runs on each cluster node
and occasionally monitors the various system
parameters including CPU load, disk space,
and memory use. Ganglia also contains a
client tool that contacts the servers in the clus-
ters and collects relevant information. 

Ganglia supports two forms of global data
collection for the cluster. In the first method,
the servers can communicate with each other
to share their respective state information, and
the client can communicate with any one
server to collect the global information. In the
second method, the servers just collect their
local information without communicating
with other server nodes, while the client com-
municates with each server node to obtain the
global cluster information. In our experi-
ments, we used the second approach.

As Figure 13 shows, the 10GigE TOE net-
work outperforms the other two by up to a
factor of 11 in some cases. This performance
difference stems from Ganglia’s work pattern.
The client node is an end node that gathers
information about all servers in the cluster
and displays it to the user. To collect this
information, the client opens a connection
with each node in the cluster and obtains the
relevant information (from 2 to 10 Kbytes)
from the nodes. Thus, Ganglia is quite sen-
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sitive to connection time and to medium-
sized message latency.

Although Figures 7a and 7b show that
10GigE TOE and SDP/GM/Myrinet do not
perform very well for medium-sized messages,
the connection time for 10GigE is only about
60 µs, whereas the connection times for
SDP/GM/Myrinet and SDP/IBA are in the
millisecond range. During connection setup,
SDP/GM/Myrinet and SDP/IBA must pre-
register a set of buffers to carry out the required
communication; this operation is quite expen-
sive for Myrinet and IBA because it involves
informing the network adapters about each of
these buffers and the corresponding protection
information. This coupled with other over-
heads, such as the state transitions (Init-RTR-
RTS) that IBA requires during connection
setup, increase the connection time tremen-
dously for SDP/IBA and SDP/GM/Myrinet.
All in all, the connection setup time dominates
the performance of Ganglia in our experiments,
resulting in better performance for the 10GigE
TOE network.

Our results demonstrate that TCP
offloading not only provides 10GigE a

significant push in the performance it can
achieve, but also enables a performance com-
parable to that of traditional Ethernot net-
works, such as IBA and Myrinet, for
sockets-based applications.

With the advent of TOEs for 10GigE, Eth-
ernet has largely bridged the performance gap
with IBA and Myrinet via the sockets inter-
face—a successful first step on the part of Eth-
ernet toward a network infrastructure that
delivers high performance in a SAN while
maintaining WAN compatibility.

Although the sockets interface is the most
widely used interface for grids, file systems,
storage, and other commercial applications,
MPI is considered the de facto standard for
scientific applications. Thus, a feasibility study
of 10GigE as a SAN is incomplete without
comparing MPI over the various networks.
This will be our focus in future work. MICRO
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