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A Systematic Approach for Providing End-to-End Probabilistic QoS Guarantees
�
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Abstract|We propose a probabilistic characterization of

network traÆc. This characterization can handle traÆc with

heavy-tailed distributions in performance analysis. We show

that queue size, output traÆc, virtual delay, aggregate traÆc,

etc. at various points in a network can easily be characterized

within the framework of our characterization. This charac-

terization is measurable and allows for a simple probabilistic

method for regulating network traÆc. All of these properties

of the proposed characterization enable a systematic approach

for providing end-to-end probabilistic QoS guarantees.

1 Introduction

For nearly two decades, Quality of Service (QoS) guar-
antees in communication networks have been actively
researched. However, network services with provable
QoS guarantees have not been widely deployed for rea-
sons ranging from economic issues to technical problems;
see [1] for a recent discussion on this subject.

One reason that services with explicit QoS guarantees
have not been widely deployed is that an e�ective system-
atic approach to end-to-end probabilistic QoS guarantees
has yet to be developed. Most probabilistic performance
analyses in the literature, speci�cally queueing analyses,
focus on single-hop networking problems, in part because
the assumptions about the adopted traÆc models, such
as independence or conformance to a speci�c stochas-
tic model, fail for the multi-hop cases (i.e. such assump-
tions are lost after the �rst network element). As a re-
sult, multi-hop analyses become intractable. This holds
for both Markovian and self-similar traÆc models [2{4].
The desired analytic tractability is provided by some de-
terministic traÆc models, e.g. [5{7], but they lead to
severe underutilization of network resources.

In classical queueing theory, a particular stochastic
process is �rst adopted to model traÆc, and later the
implications of this model on queueing behavior over var-
ious network elements are examined. This is often dif-
�cult to do even for a single network element with even
a remotely realistic stochastic model, and becomes in-
tractable for multiple network elements in tandem.

We propose a probabilistic characterization of network
traÆc by basing the characterization directly on the
queue-size behavior that a traÆc induces on a network el-
ement, rather than picking a particular stochastic model
�rst and then examining its implications on the queue-
size behavior. In this way, we eliminate many mathemat-
ical complications forbidding a tractable performance
analysis. Our characterization does not depend on or
adopt any particular stochastic process model. Hence, it
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can characterize traÆc belonging to any stochastic pro-
cess model including those with long-range dependency.
The goal of this study is to examine the properties of

the proposed characterization, whereby to show that it
enables a systematic analysis of end-to-end probabilis-
tic QoS guarantees in communication networks. To see
the e�ectiveness of the facilitated analysis method, we
carried out various simulation studies some of which we
present in this text. The characterization that we pro-
pose is capable of addressing network traÆc with heavy-
tailed distributions, including power-tailed distributions,
in performance analyses.
The rest of the paper is organized as follows: Sec. 2

provides background. Sec. 3 introduces the proposed
traÆc characterization. Sections 3.1 and 3.2 provide
the implications of the new characterization on aggre-
gate ows, average rate, over a single network element,
and over tandem networks. Sec. 3.3 gives the mean per-
formance guarantees. Sections 3.4 and 3.5 show the sta-
tionarity and measurability of the new characterization,
respectively. Sec. 3.6 provides some simulation results.
Sec. 4 discusses the viability of the proposed analysis
scheme. Sec. 5 provides a brief comparison with some
related work. Finally, Sec. 6 concludes the study.

2 Background

We adopt a discrete-time formulation in the context of
packet networks. A ow is a discrete random process
whose sample-paths are non-decreasing functions de�ned
from the integers to the non-negative integers. The val-
ue R(n) of a ow R at time n denotes the total num-
ber of packets, belonging to a stream of packets, that
pass through a cross-section of a communication link
by time n (inclusive). Packets are assumed to instan-
taneously arrive and depart at a network element, i.e. a
whole packet can arrive instantaneously at time k and
depart at time n where n > k. All functions are de�ned
from the integers to the integers, unless otherwise noted.
We use the following de�nitions in this study, which

were previously introduced in the literature [8{12].

De�nition 1 The min-+ convolution f g of any two
functions f and g is de�ned as

(f g)(n) = min
k6n

ff(k) + g(n� k)g for all n,

`f g' is read as \f min-convolved with g".

De�nition 2 The min-+ deconvolution f g of any two
functions f and g is de�ned as

(f g)(n) = max
k>0

ff(n+ k)� g(k)g for all n,

`f g' is read as \f min-deconvolved with g".
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De�nition 3 The max-+ convolution f g of and two
functions f and g is de�ned as

(f g)(n) = max
k6n

ff(k) + g(n� k)g for all n,

`f g' is read as \f max-convolved with g".

De�nition 4 The max-+ deconvolution f g of any two
functions f and g is de�ned as

(f g)(n) = min
k>0

ff(n+ k)� g(k)g for all n,

`f g' is read as \f max-deconvolved with g".

De�nition 5 An S-server with service curve S is a net-
work element that when fed with any input ow R, the
corresponding output ow G satis�es

G(n) > (R S)(n) for all n. (1)

Service curve S is a non-decreasing function de�ned from
the integers to the non-negative integers, that S(n) = 0
for all n 6 0. An S-server with equality is an S-server
that inequality (1) becomes an equality.

An S-server can be viewed as a generalization of a
work-conserving server1. This view becomes clear if we
note that the output ow G of a work-conserving server
with input ow R and with a constant integer capacity
of serving � packets per time-slot is given2 by

G(n) = min
k6n

fR(k) + � � (n� k)g for all n,

which can be equivalently represented also as

G(n) = (R S)(n) for all n, where S(n) = maxf0; ��ng;

i.e. such a work-conserving server is an S-server with
equality with service curve S(n) = maxf0; � � ng.
The concept of service curves was introduced in [8, 9].

Service curves together with an appropriate traÆc char-
acterization, such as the deterministic ones in [6, 14] or
the probabilistic one in this study, enable a systematic
approach to performance analyses in communication net-
works, e.g. see [6, 9{12]. This systematic approach is
analogous to that in Linear Systems Theory. For various
applications of the service-curve model, such as multime-
dia smoothing, see for example [12].

3 TraÆc Characterization

We propose the following probabilistic characterization
of network traÆc.

De�nition 6 A ow R is said to be bursty with a service
curve S and a bounding function f , and denoted as R �

(S; f), if the following inequality holds for all n and �;

P
�
R(n)�R(k) > S(n�k) + �; for some k<n

�
6 f(�);

where f is de�ned from the integers to the non-negative
real numbers.

1A network element is said to be work-conserving if it serves
packets at full capacity whenever it has packets to serve, uncondi-
tionally of any other criteria.

2This is often referred to as Reich's result [13].

We assume without loss of generality that the following
properties hold for any bounding function f :

1. f is non-increasing, as the probability corresponding
to a � in De�nition 6 is non-increasing with �.

2. f(�) 6 1 for all �, as the probability of an event can
not be larger than 1. We assume for mathematical
convenience that f(�) = 1 for all negative �.

3. lim�!1 f(�) = 0, as any cumulative distribution
function F satis�es limx!1 F (x) = 1.

In the rest of this section, we show some of the impli-
cations/properties of De�nition 6. The proofs of the the-
orems and corollaries can be found in Appendix or [15].

3.1 Implications on Agg. Flow and Ave. Rate

The implications of De�nition 6 on aggregate ows and
average rate are given by Theorems 1 and 2, respectively.

Theorem 1 Given any two ows R1 � (S1; f1) and
R2 � (S2; f2), the aggregate ow R1 +R2 is bursty with
service curve S1 + S2 and bounding function f1 f2. In
other words, R1 +R2 � (S1 + S2; f1 f2) .

By a repeated application of Theorem 1, we can easily
�nd the characterization of an aggregate ow that has
an arbitrary number of ows being aggregated.

Theorem 2 Given a ow R � (S; f), where
P
1

�=0 f(�)
is �nite, the long-term average rate � of R satis�es

� , lim sup
(n�k)!1

E[R(n)�R(k)]

n� k
6 lim sup

n!1

S(n)

n
:

3.2 Implications over an S-server

The next theorem is key to understand the characteri-
zation given by De�nition 6. The following explanations
are needed for the theorem: The queue-size Q(n) denotes
the total number of packets that reside in a network ele-
ment at time n. That is, if R andG denote the aggregates
of the ows at the input and at the output of the network
element, respectively, then Q(n) = R(n)�G(n).

Theorem 3 If a ow R � (S�; f) is fed into an S-server
with service curve S, then the distribution of the queue
size Q at the server satis�es

P
�
Q(n) > �

�
6 f

�
�+(S S�)(0)

�
for all n and � > 0.

Note that if service curve S of the S-server is pointwise
greater than or equal to S� of the ow, then the bound
on the queue-size distribution becomes equal to f(�).
The output ow of an S-server can also be easily char-

acterized in accordance with De�nition 6. This is given
by the following theorem.

Theorem 4 If a ow R � (S�; f) is fed into an S-server
with service curve S, then the output ow G of the server
is bursty with service curve S� S and bounding func-
tion f . In other words, G � (S� S; f).
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The characterization provided by De�nition 6 has also
an implication on the virtual delay at an S-server. Vir-
tual delay is de�ned below, which was previously intro-
duced in the literature.

De�nition 7 The virtual-delayD(n) at time n at a net-
work element is de�ned with respect to an input ow R

and the corresponding output ow G, as

D(n) = minfÆ : Æ > 0; G(n+ Æ) > R(n)g :

The virtual-delay D(n) is the delay experienced by a
packet arriving at time n, if the packets were to be served
in the order in which they arrive.

Theorem 5 If a ow R � (S�; f) is fed into an S-server
with service curve S, then the distribution of the virtual-
delay D(n) at the server satis�es

P
�
D(n) > �

�
6 f

�
(S S�)(�)

�
for all n and � > 0.

All of the theorems presented in this section enable a
systematic analysis of end-to-end probabilistic QoS guar-
antees over a tandem of network elements. This is made
explicit by the following corollary.

Corollary 1 Let a ow R1 � (S�; f) be fed into an S-
server with service curve S1, and let the output R2 of
this �rst server be fed into another S-server with service
curve S2. The following statements hold:

1. The output ow R3 of the S-server with service
curve S2 is bursty with service curve S3 and bound-
ing function f , where

S3(n) =

(
0 if n 6 0

(S� (S1 S2))(n) else.

In other words, R3 � (S3; f).

2. The total number of packets, Q1(n) +Q2(n), stored
in the tandem network at any time n satis�es

P
�
(Q1 +Q2)(n) > �

�
6 (g h)(�) for all �, where

g(�) = f
�
� + (S1 S�)(0)

�
h(�) = f

�
� + (S2 (S� S1))(0)

�
= f

�
� + ((S1 S2) S�)(0)

�
:

3. The total virtual-delay DT (n) = D1(n) +D2(n+ Æ)
experienced by a packet arriving at time n at the �rst
network element and at time n+Æ for some Æ > 0 at
the second network element, satis�es for any Æ > 0

P
�
DT (n) > �

�
6 (g h)(�) for all �, where

g(�) = f
�
(S1 S�)(�)

�
h(�) = f

�
(S2 (S� S1))(�)

�
= f

�
((S1 S2) S�)(�)

�
:

We can actually slightly improve the above results
in items 2 and 3 in Corollary 1, and further emphasize
the main result that we want to convey by the corollary.
It is easy to show that the bounds we would obtain by re-
placing (g h)(�) in items 2 and 3 in Corollary 1 by h(�)
also hold; see [15] for a proof. Hence, the bounds in the
last two items in Corollary 1 can actually be replaced by

minfh(�); (g h)(�)g:

Thus, it becomes clear by Corollary 1 and the above
remark that we can actually view the tandem network as
a single S-server with service curve S1 S2, and obtain
valid performance results.

By a repeated application of Corollary 1 and the dis-
cussions in the previous paragraph, we obtain similar re-
sults for any number of network elements in tandem.

3.3 Average Performance Guarantees

In the framework of our characterization, average perfor-
mance guarantees at various points in a network follow
immediately from the results in Section 3.2. The next
two corollaries show this for average queue size and vir-
tual delay at an S-server, respectively.

Corollary 2 If a ow R � (S�; f) is fed into an S-
server with service curve S, then the average queue size
Q(n) at the server is upper-bounded at any time n as

E[Q(n)] 6
1X
�=0

f
�
� + (S S�)(0)

�
:

Corollary 3 If a ow R � (S�; f) is fed into an S-
server with service curve S, then the mean virtual-delay
D(n) at the server is upper-bounded at any time n as

E[D(n)] 6
1X
�=0

f
�
(S S�)(�)

�
:

3.4 Stationarity

The proposed characterization has also a stationarity
property in the sense that the characterization of a time-
shifted traÆc does not change with respect to that of
the unshifted traÆc. This is what we show next. Let
R0(n) , R(n � t) for all n and for some t, i.e. R0 is a
time-shifted version of R. We have for all n, �, and t;

n
R0(n)�R0(k) > S(n� k) + �; for some k < n

o
=
n
R(n� t)�R(k� t) > S(n�k)+�; for some k < n

o
=
n
R(n� t)�R(k� t) > S(n�k)+�; 9 k� t < n� t

o
;

setting u � n� t and v � k � t, we get

=
n
R(u)�R(v) > S(u� v) + �; for some v < u

o
:
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Taking the probabilities of the both sides of the last
equality above, we get the desired result; i.e. if R is bursty
with service curve S and bounding function f , then so
is its time-shifted version R0, and vice versa. Due to the
propagation delay in communication networks, realistic
traÆc characterizations need to have this property.

3.5 Measurability

We can determine a characteristic of a ow in accordance
with De�nition 6 by using Theorems 2 and 3.
First, we need to pick an appropriate service curve S.

For that, we need to know the long-term average rate
of ow R that we want to characterize. A fairly good
approximation of the long-term average rate of a ow
can be found by using a variant of the Law of Large
Numbers [16]. Let � be the estimated long-term average
rate of ow R. Then by Theorem 2, we can pick a service

curve S such that lim supn!1
S(n)

n
> �. Thus, service

curves of the following from

S(n) = maxf0; � � (n�D)g where integer � > �

are good candidates to �nd a characteristic of R. The pa-
rameter D can be chosen according to i) the end-to-end
delay requirement of R, and ii) how this delay require-
ment is to be distributed over each network element on
the path of ow R before it reaches its destination.
Once a service curve is picked as described above, we

can then �nd a bounding function f in characterizing R
as R � (S; f) by feeding it into an S-server with equality
with service curve S. Let the S-server be initially empty;
i.e. no packet is stored at the server at time 0. It can be
noted via the proof of Thm. 3 that in this case we have

P
�
R(n)�R(k) > S(n�k) + �; 9 k<n

�
= P(Q(n) > �) :

Thus, simply by measuring the queue-size probabili-
ties P(Q(n) > �), we can �nd a tight bounding func-
tion f corresponding the S being chosen. By using
the monotonicity result on the queue-size distribution in
G/G/1 queues with certain basic properties (e.g. station-
ary or ergodic input traÆc, initially empty queue size,
stable server, etc.), it suÆces to observe the stationary
queue-size distributions to determine f ; see Ch. 6 of [17].

3.6 Simulations

We carried out various simulation studies to check the
validity of our �ndings. Due to the page limitation, we
report only a small part of these studies.
The main simulation setup that we consider here is

shown in Figure 1(a). Input ow Rin was obtained from
a real traÆc trace collected on the incoming/outgoing
link of the Los Alamos National Laboratory. The link
connected the Laboratory subnet to outside networks.
Hence, Rin represents a Wide-Area Network (WAN) traf-
�c. The underlying network technology was FDDI (Fiber
Distributed Data Interface).
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Figure 1: (a) Simulation setup. (b) A snapshot of rin.
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Figure 2: Plot for simulation setup in Fig. 1(a).

Rin was obtained by �rst slotting the time into 1 mil-
lisecond intervals, and then by counting the total number
of packets arriving in each 1ms interval over a duration
of a traÆc trace being collected. The value rin(n) ,
Rin(n) � Rin(n � 1) is the total number of packets that
arrive in interval n. The length of Rin that we ran in the
simulations was 1,600,000 slots. A snapshot of rin in the
�rst second is shown in Figure 1(b).
The average rate of Rin over the 1,600,000 slots was

11:9974 packets per time slot. Hence, to �nd a charac-
terization of Rin, we picked the following service curve

S�(n) = maxf0; 13 (n� 3)g

By feeding Rin into an S-server with equality with service
curve S�, we found an estimate of a bounding function
fin, as explained in Section 3.5, which is shown in Fig. 2.
Next, we fed Rin into a tandem of two network ele-

ments shown in Figure 1, where

S1(n) = maxf0; 16 (n�2)g S2(n) = maxf0; 14 (n�1)g ;

and obtained the output ow Rout. Corollary 1 states
that Rout � (S3; fin) where S3(n) = (S� (S1 S2))(n).
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In order to check the validity of this result, we fed Rout

into another S-server with equality with service curve S3,
and obtained an estimate fout of its bounding function,
as explained in Section 3.5. The estimate fout is shown in
Fig. 2. We expect by Corollary 1 that fout(n) 6 fin(n).
The proximity of fin and fout in Figure 2 is satisfying.

Finally, we would like to note that the queue-size dis-
tributions that we observed in this experimental study
were all heavy-tailed, as this could be noted in Figure 2.

4 Viability

The analysis framework that we propose in this study to
manage end-to-end probabilistic QoS guarantees requires
that every input traÆc at its entry point into a network
has a known characteristic in accordance with De�ni-
tion 6. To address this requirement, we came up with a
simple probabilistic regulation method, called CpR, that
regulates an arbitrary traÆc to a given (S; f) speci�ca-
tion, hence made the proposed framework viable [18]. We
described CpR and showed its correctness in [18].

To show the e�ectiveness of CpR in regulating a ow R,
we provide a simulation result here. Flow R being regu-
lated was obtained from a real traÆc trace in exactly the
same way that Rin was obtained in Sec. 3.6. Both traÆc
traces were collected on the same network, by the same
apparatus, as indicated in Sec. 3.6. The length of R that
we ran in the simulations was 3,600,000 slots. The aver-
age rate of R over the 3,600,000 slots was 12:523 packets
per time slot. Hence, we chose Sreg(n) = maxf0; 13 � ng
as the service curve that we would like the regulated ow
to have as speci�ed in its characteristic. The bounding
function that we targeted for the regulated ow to have
was a truncated Pareto distribution given below;

fpareto(�) =

8><
>:
1 if � < 0,

(� + 1)�2 if 0 6 � 6 103,

0 if � > 103.

We input Sreg and fpareto into CpR and regulated ow R

one thousand times with these parameters; i.e. obtained
1000 regulated ow sample-paths from R by CpR. We
found an estimate of a bounding function for each one of
these 1000 sample-paths by feeding a sample-path into
an S-server with equality with service curve Sreg, as ex-
plained in Section 3.5. Later, we found the pointwise
average of these 1000 bounding-function estimates. This
average is denoted by freg and shown in Figure 3. As
expected, Figure 3 shows that the regulated ow has the
targeted bounding function fpareto, i.e. the regulated ow
conforms to (Sreg; fpareto) speci�cation; the proximity of
freg and fpareto in the �gure is quite satisfying.

5 Related Work

Some of the related works that motivate this study can
be found in [19{23]. De�nition 6 is a generalization of
the characterization in [23], which we have come up with
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Figure 3: Plot for regulating ow R by CpR.

independently. The characterization in [22] is the most
closely related one among the ones in [19{22] which mo-
tivate this study and [23]. The traÆc characterization
provided in [22] is stated below for clarity;

(Adapted from Def. 3 in [22]) A ow R is said to have
a Stochastically Bounded Burstiness (SBB) with upper-
rate � and bounding function f if

1. for any n 2 Z+, the n-fold integral
�R
1

�
du
�n
f(u) is

bounded for any �, and

2. the inequality P
�
R(t)�R(s) > � � (t�s) + �

�
6 f(�)

holds for all � and for all 0 6 s < t:

The di�erences between the characterization in [22]
and that of our study, and the di�erences between the
enabled analysis methods are briey as follows: j1 Our
characterization allows for a simple and tight regulation
method indicated in Sec. 4|this is the single most im-
portant di�erence, as it determines the viability of a re-
spective approach. j2 Our characterization allows for a
simple measurement scheme described in Sec. 3.5 to de-
termine a tight characterization of a real traÆc. In [22],
a characterization of a ow is determined in traditional
ways with often loose probabilistic bounding techniques.
j3 The bounding function in our characterization does

not have the restriction in [22], i.e. condition 1 in the
de�nition stated above. As a result, our characterization
can handle traÆc that has a bounding function which be-
longs to a larger set (i.e. this larger set includes the set
speci�ed in condition 1 above), e.g. a piecewise-Pareto
bounding function, while the characterization in [22] can
not|such piecewise bounding functions were commonly
observed in our simulations with real traÆc. j4 Our
characterization yields tighter performance bounds as it
avoids some use of the Union Bound which is a loose
probability bound. For example, if an SBB ow R with
upper-rate � and bounding function f is fed into a work-
conserving server with rate C, where � < C, the follow-
ing bound on the queue-size distribution at the server is
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given by Thm. 3 in [22];

P
�
Q(n) > �

�
6 f(� + 1) +

1

C � �

Z
1

�+1

f(u) du; (2)

whereas the bound that we would give on P
�
Q(n) > �

�
in this case would be just f(�) by our Thm. 3, where we
would characterize R as R � (S; f), S(n) = maxf0; ��ng.
The di�erence between the two bounds are due to the
Union Bound used in deriving (2), which we did not use,
hence our bound is tighter. See for example the compar-
ison given by Figure 1 in [24]. j5 Our characterization
is de�ned more generally by basing it on service curves.
The studies in [19,20] can be thought as a special case

of the work in [22], thus the above �ve di�erences also
apply for comparing our work with [19, 20] too.

The above di�erences i1 , i2 , and i5 also apply for
comparing our work with [21]. Moreover, the character-
ization in [21] is concerned with only steady-state distri-
butions, hence would not address transient performance
behaviors, whereas our characterization does. We are
also concerned with transient behaviors since most of
the communication sessions in todays networks are short-
lived [2]. Finally, the computation of a characterization
in [21] is a labor-intensive and complex task, hence is not
suitable for real-time applications [21].

6 Conclusions

We proposed a probabilistic characterization of network
traÆc and examined some of its properties; Theorems 1
through 5, Corollaries 1 through 3, stationarity, measur-
ability, and viability. Performance implications of Def. 6
over switches and multiplexers are examined in [24]. The
properties examined in this study and the results in [24]
show that the proposed characterization enables a sys-
tematic approach for providing end-to-end probabilis-
tic QoS guarantees in communication networks analyt-
ically; e.g. see Corollary 1. This characterization can
handle traÆc with heavy-tailed distributions in perfor-
mance analysis. Future work includes building a network
testbed to demonstrate the applicability of the proposed
analysis framework.
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Appendix

Proof of Theorem 1: The proof follows by considering
the following events for any n, �, and u 6 �;

A =
n
(R1 +R2)(n) � (R1 +R2)(k) >

(S1 + S2)(n� k) + �; 9 k < n
o

A1 =
n
R1(n)�R1(k) > S1(n� k) + u; 9 k < n

o
A2 =

n
R2(n)�R2(k) > S2(n� k) + � � u; 9 k < n

o
:

Note that A � A1[A2 , since the intersection of the com-
plements of both of the events A1 and A2 is clearly a sub-
set of the complement of the event A, i.e. Ac

1 \ Ac
2 � Ac.

Thus, by utilizing the Union Bound and the fact that
R1 � (S1; f1) and R2 � (S2; f2), we get

P(A) 6 P(A1 [ A2) 6 P(A1)+P(A2) 6 f1(u)+f2(��u) ;

since the last inequality holds for any u 6 �, we also get

P(A) 6 min
u6�

ff1(u) + f2(� � u)g = (f1 f2)(�) :

We allowed a slight abuse of notation in the last two
relations above. To be strict, we should have used in�-
mum `inf' above instead of minimum `min', since 1) fi's
are real-valued, and 2) the minimum could potentially be
taken over an in�nite number of terms. However, note
that the minimum (or in�mum) is taken e�ectively over
a set of �nite number of elements due to the fact that
fi(s) = 1 for all s < 0 and lims!1 fi(s) = 0 for i equals
to both 1 and 2. More speci�cally, the min-+ convolu-
tion (f1 f2)(�) is equal to the minimum of the terms
corresponding to each integer u in [0; �] and the term 1.

Finally note that we also have (f1 f2)(�) = 1 for
all � < 0, again due to the properties of a bounding
function mentioned above. This completes the proof.

Proof of Theorem 2: We use a simple relation about
the mean of a random variable, that is given by the last
equality in (3). This relation can derived as follows: Let
X is a non-negative random variable, we have

E[X ] =

1X
a=0

a � fX(a) =

1X
a=0

�
1X
u=0

[u < a]

�
� fX(a)

where the notation `[Statement]' stands3 for 1 if the
Statement is true, and 0 otherwise,

=

1X
a=0

1X
u=0

[u < a]�fX(a) =

1X
u=0

�
1X
a=0

[u < a]�fX(a)

�

=

1X
u=0

�X
a>u

fX(a)

�
=

1X
u=0

P(X > u) : (3)

The proof of the theorem follows by considering the
mean of R(n)�R(k) in any interval (k; n] and upper-
bounding it as;

E[R(n)�R(k)] =

1X
�=0

P(R(n)�R(k) > �) by (3)

=

S(n�k)�1X
�=0

P(R(n)�R(k) > �) +
1X

�=S(n�k)

P(R(n)�R(k) > �)

=

S(n�k)�1X
�=0

P(R(n)�R(k) > �) +
1X
�=0

P
�
R(n)�R(k) > S(n� k) + �

�

6
S(n�k)�1X

�=0

1 +

1X
�=0

P
�
R(n)�R(k) > S(n� k) + �

�

= S(n� k) +

1X
�=0

P
�
R(n)� R(k) > S(n� k) + �

�
6 S(n� k) +

1X
�=0

P
�
R(n)�R(u) > S(n� u) + �; for some u < n

�

6 S(n� k) +

1X
�=0

f(�) :

Thus, the mean rate � of R is upper-bounded as

� , lim sup
(n�k)!1

E[R(n)�R(k)]

n� k

6 lim sup
(n�k)!1

S(n� k) +
P
1

�=0 f(�)

n� k

= lim sup
n!1

S(n)

n
(holds since

P
1

�=0 f(�) <1).

Note that if
P
1

�=0 f(�) is in�nite, then there is no ap-

parent relation between � and lim supn!1
S(n)

n
.

Proof of Theorem 3: Let G denote the output ow
corresponding to R in the theorem. The proof follows by
considering the following events for any n and � > 0;

3We adopted this notation from `Concrete Mathematics: A

Foundation for Computer Science', Addison-Wesley, 2nd ed., 1994,
by R. L. Graham, D. E. Knuth, O. Patashnik.
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fQ(n) > �g = fR(n)�G(n) > �g

�

n
R(n)�min

k6n
fR(k) + S(n� k)g > �

o
=
n
max
k6n

fR(n)�R(k)� S(n� k)g > �
o

=
n
R(n)�R(k)� S(n� k) > �; for some k < n

o
=
n
R(n)�R(k) > S(n� k) + �; for some k < n

o
=
n
R(n)�R(k) >

S�(n� k) + � + S(n� k)� S�(n� k); 9 k < n
o

�

n
R(n)�R(k) > S�(n�k)+�+(S S�)(0); 9 k < n

o
:

As R is given to be R � (S�; f), we obtain the desired
result by taking the probabilities of the both sides in the
last line above; we have for all n and non-negative � that

P(Q(n) > �) 6

P
�
R(n)�R(k) > S�(n�k)+�+(S S�)(0); 9 k < n

�
6 f

�
� + (S S�)(0)

�
:

Proof of Theorem 4: The proof follows by considering
the following events for any n, k < n, and �;

n
G(n) �G(k) > (S� S)(n� k) + �

o
�

n
G(n)� (R S)(k) > (S� S)(n� k) + �

o
�

n
R(n)� (R S)(k) > (S� S)(n� k) + �

o
=
n
R(n)�min

l6k
fR(l) + S(k� l)g > (S� S)(n� k) + �

o
=
n
max
l6k

fR(n)�R(l)�S(k� l)g > (S� S)(n� k)+�
o

=
n
R(n)�R(l)�S(k�l) > (S� S)(n�k)+�; 9 l 6 k

o
=
n
R(n)�R(l) > (S� S)(n�k)+S(k�l)+�; 9 l 6 k

o
�

n
R(n)�R(l) > S�(n�l)�S(k�l)+S(k�l)+�; 9 l 6 k

o
=
n
R(n)�R(l) > S�(n� l) + �; for some l 6 k

o
=
n
R(n)�R(l) > S�(n� l) + �; for some l 6 k < n

o
�

n
R(n)�R(l) > S�(n� l) + �; for some l < n

o
:

Taking the union of both sides over all k < n (note that
the union of the right-hand-side is equal to itself), and
later taking the probabilities of unioned sets, we obtain
the desired result as shown below

P
�
G(n)�G(k) > (S� S)(n�k)+�; 9 k < n

�
6

P
�
R(n)�R(l) > S�(n� l) + �; 9 l < n

�
6 f(�):

We might actually need to rectify the result in Theo-
rem 4 slightly by replacing the service curve S� S in
characterizing the output ow by So given below

So(n) =

(
0 if n 6 0

(S� S)(n) else.

We would like to have this recti�cation for two reasons:
1) A service curve is de�ned to take on the value zero
for non-positive values of its argument. 2) In the proof,
we utilize S� S only for positive values of its argument.
We have not done this recti�cation in the body of the
theorem in order not to clutter the result.

Proof of Theorem 5: The proof follows by considering
the following events for any n and � > 0;

fD(n) > �g = fG(n+ �) < R(n)g

� f(R S)(n+ �) < R(n)g

= fR(n)� (R S)(n+ �) > 0g

=
n
R(n)� min

k6n+�
fR(k) + S(n+ � � k)g > 0

o
=
n

max
k6n+�

fR(n)�R(k)� S(n+ � � k)g > 0
o

=
n
R(n)�R(k)� S(n+ � � k) > 0; for some k < n

o
(note that a k in the last line above can not be greater
than or equal to n, since in that case the left-hand-side
of the inequality could not become positive)

=
n
R(n)�R(k) > S(n+ � � k); for some k < n

o
=
n
R(n)�R(k) >

S�(n� k) + S(n� k + �)� S�(n� k); 9 k < n
o

�

n
R(n)�R(k) > S�(n� k) + (S S�)(�); 9 k < n

o
:

Hence, by taking the probabilities of both sides, and us-
ing the characterization of R, we get the desired result

P(D(n) > �) 6

P
�
R(n)�R(k) > S�(n� k) + (S S�)(�); 9 k < n

�
6 f

�
(S S�)(�)

�
:

Proof of Cor. 1 follows from Theorems 3 through 5 and
a few algebraic properties of the min-+ algebra; see [15].

Proof of Corollary 2: The proof follows immediately
by Theorem 3;

E[Q(n)] =

1X
�=0

P(Q(n) > �) 6
1X
�=0

f
�
� + (S S�)(0)

�
:

Proof of Corollary 3: The proof follows immediately
by Theorem 5;

E[D(n)] =

1X
�=0

P(D(n) > �) 6
1X
�=0

f
�
(S S�)(�)

�
:
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