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ABSTRACT
Typical GPU programs consist of four steps: (1) data preparation
and preprocessing, (2) host CPU-to-GPU data transfers, (3) execu-
tion of one or more GPU kernels, and (4) transfer of results back
to the CPU. While the kernel is running on the GPU, the CPU
cores often remain idle, waiting on the GPU to finish the kernel
execution. It is possible to utilize the idle resources by assigning
a portion of the workload to the CPU cores while GPU processes
the rest of the workload. In recent years, several frameworks have
been presented that perform automated distribution of workload
to both CPU and GPU and show performance improvement over
GPU-only solutions. While the aforementioned frameworks offer
techniques for CPU+GPU workload distribution for regular applica-
tions, identifying the CPU+GPU workload distribution that delivers
performance improvements over GPU-only solutions for irregular
applications remains a difficult problem due in part to the workload
imbalance and data-dependent irregular memory access patterns.

This work evaluates a hybrid CPU+GPU implementation of an
irregular workload – graph link prediction using the Jaccard simi-
larity index. For the graphs that benefit the most from our hybrid
CPU-GPU approach, our implementation delivers a 16.4-28.8% im-
provement over the state-of-the-art Jaccard similarity implementa-
tion from the cuGraph library.
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1 INTRODUCTION
General-purpose GPU (GPGPU) computing implements an offload
model to move expensive computation to the GPU. In many GPGPU
computations, the CPU cores remain idle while the GPU programs
(known as kernels) are running, leading to CPU core underutiliza-
tion. In recent years, multiple frameworks have been introduced
that offer automated distribution of workloads between CPU(s) and
GPU(s) for improved performance over GPU-only solutions. An
example of such a framework is CoreTSAR [9], a task-size adapting
runtime system that supports work-sharing of loop iterations across
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heterogeneous resources. While CoreTSAR and similar frameworks
offer work-sharing across CPU and GPU for regular workloads,
distributing the workload for irregular applications remains a chal-
lenging task due to the workload imbalance and irregular memory
access pattern of such workloads. This work presents a hybrid
CPU-GPU implementation of an irregular workload – graph link
prediction using the Jaccard similarity index [4]. We evaluate the
efficacy of our implementation on a number of real-world graphs
with variations in the number of vertices, number of edges, and
degree distribution.

2 JACCARD SIMILARITY
In graph analytics and related applications, the Jaccard similarity
index can be used to measure the connectedness between two or
more vertex pairs to support prediction of new links. The Jaccard
similarity between any two sets A and B, is defined as shown in
the Equation (1).

Jaccard similarity(A,B) = |A ∩ B|
|A ∪ B| (1)

In graph datasets, the Jaccard similarity for any two vertices is
computed using the respective neighborhood sets of the vertices.
Computing the intersection size of the neighborhood sets is often
done using either a binary search, for its good asymptotic perfor-
mance on unknown data sizes, or a two-pointer approach for more
regular memory accesses on smaller data.

2.1 CPU implementation
The CPU implementation used in this work uses edge-centric paral-
lelism, where each thread computes the Jaccard similarity score for
a unique vertex pair connected by an existing edge. The algorithm
terminates when the similarity scores for all edge-connected vertex
pairs are computed. Similar to the set intersection approach by Pear-
son et al. [7], the CPU implementation to compute set intersection
selects between the binary search and two-pointer set intersec-
tion [7] based on the neighborhood set sizes. We use OpenMP [6]
to implement edge-centric Jaccard similarity computation on CPU.

2.2 GPU implementation
The pairwise intersection kernel [2] from the cuGraph [3] library
is used as the GPU implementation for this work. It is an edge-
centric kernel with a two-dimensional thread block: threads along
one dimension identify the source and destination vertices of an
edge and threads along the second dimension check if each source
neighbor is present in the destination neighbor list.
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(a) Runtime evaluation for europe_osm graph (b) Runtime evaluation for hollywood-2009 graph

(c) Runtime evaluation for sc-ldoor graph (d) Runtime evaluation for HV15R graph

Figure 1: Hybrid CPU-GPU runtime evaluation for Jaccard Similarity (JS)

2.3 Workload distribution
The edge list containing the source and destination vertices is sorted
based on the neighborhood sizes of the source and destination
vertices. A configurable portion of the edges, starting from the
sparser end of the list, is then marked for execution on the CPU
while the remaining denser edges are marked for processing on
GPU. The edges are then assigned to respective targets but using
the original edge list and computed vector masks.

3 EVALUATION
Fig. 1 shows the runtime evaluation of the hybrid CPU-GPU imple-
mentation. The graph datasets are taken from the network repos-
itory [8]. The CPU used in the evaluation is an AMD EPYC 7742
64-core processor, and the GPU is an NVIDIA A100. We evaluate
our implementation on graphs with varied characteristics such as
the number of edges, number of vertices, and degree distribution,
which is captured by the Gini index [5] metric, which lies in the
range [0,1). A Gini index closer to 1 indicates that a small number
of vertices in the graph have a very high degree, while most of
the vertices have a low degree, indicating a workload imbalance.
Conversely, a near-zero Gini index indicates an almost even degree
distribution. From the evaluation, we observe that some graphs do
not benefit from a CPU+GPU implementation, while some graphs
show as much as a 28.8% improvement. As a part of the exten-
sion to this work, we intend to present a heuristic based on the
aforementioned graph properties to determine the following.

(1) Whether a CPU+GPU implementation can outperform GPU-
only performance for a given input graph

(2) How to split the workload to achieve performance improve-
ments over GPU-only performance

4 CONCLUSION
This work presents a hybrid CPU+GPU implementation of graph
link prediction using the Jaccard similarity index. For the graphs
that benefit themost from our hybrid approach, our implementation
achieves 16.4%-28.8% improvement over the state-of-the-art Jaccard
similarity implementation from the cuGraph library [2].

5 FUTUREWORK
As a subject of future study, we intend to deploy a heuristic-based
approach to determine CPU + GPUworkload distribution that deliv-
ers the optimal performance relative to the GPU-only performance.
Such a heuristic would be based on the properties of the input
graph, for ex., avg. degree, Gini index, minimum, and maximum
degree. We also intend to optimize the preprocessing steps such as
sorting using existing optimized libraries such as CUB [1].
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