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Abstract—Today, FPGA vendors provide a C++/C-based pro-
gramming environment to enhance programmer productivity
over using a hardware-description language at the register-
transfer level. The common perception is that this enhanced pro-
ductivity comes at the expense of significantly less performance,
e.g., as much an order of magnitude worse.

To characterize this performance-productivity tradeoff, we
propose a new composite metric, Π, that quantitatively cap-
tures the perceived discrepancy between the performance and
productivity of any two given FPGA programming languages,
e.g., Verilog vs. OpenCL. We then present the implications of
our metric via a case study on the design of a Sobel filter
(i.e., edge detector) using three different programming models
— Verilog, OpenCL, oneAPI — on an Intel Arria 10 GX FPGA
accelerator. Relative to performance, our results show that an
optimized OpenCL kernel achieves 84% of the performance of
an optimized Verilog version of the code on a 7680×4320 (8K)
image. Conversely, relative to productivity, OpenCL offers a 6.1×
improvement in productivity over Verilog, while oneAPI improves
the productivity by an additional factor of 1.25× over OpenCL.

Index Terms—FPGA, hardware-description language (HDL),
high-level synthesis (HLS), oneAPI, OpenCL, Verilog, perfor-
mance, productivity, register-transfer level (RTL), SLOC

I. INTRODUCTION

Historically, the reconfigurable logic in an FPGA has been
programmed in a hardware description language (HDL), such
as Verilog or VHDL. An HDL provides fine-grained control
over resource utilization and latency-sensitive datapaths. This
control, however, comes at the cost of significantly longer code
development time and more difficult debugging.

A typical development flow for an HDL-based kernel design
consists of a multi-stage process, including simulation, timing
analysis, and placement and routing. Oftentimes, errors identi-
fied at these stages can only be resolved by making appropriate
changes in the HDL code. Therefore, writing functionally
correct HDL code involves multiple time-consuming feedback
loops from various compilation stages back to the HDL code.

To address this complex development flow, the introduction
of high-level synthesis (HLS) tools allows developers to write
code at a much higher level of abstraction. For example,
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the vendor-neutral OpenCL standard [1] is a C-based HLS
framework, supported by FPGA vendors and their associated
runtime systems, e.g., Intel’s FPGA SDK for OpenCL [2] and
Xilinx’s SDAccel [3]. More recently, C++-based abstraction
frameworks, such as Kokkos [4] and SyCL [5], are being in-
creasingly adopted by the high-performance computing (HPC)
community. These frameworks further improve productivity
by raising the level of programming abstraction to C++.
For example, oneAPI from Intel [6] uses SyCL to support
heterogeneous computing across a diverse set of architectures,
including CPU, GPU, and FPGA.

OpenCL and oneAPI offer C-based and C++-based code
development, respectively, hiding the complexity of HDL and
allowing programmers to write code that is more akin to
typical software development with much greater productivity.
In recent years, OpenCL-based HLS has been adopted in a
number of application domains, e.g., deep learning [7], stencil
computations [8], and graph processing [9]. Furthermore, HLS
frameworks, such as OpenCL and oneAPI, deliver the added
capability of deploying the same code to multiple types of
accelerators, including CPUs and GPUs. Fig. 1 illustrates
the productivity benefits of HLS approaches over HDL via
a vector addition kernel.

What is effectively a single-line kernel in a single-source
oneAPI code (Fig. 1a) becomes several lines of code in
OpenCL (Fig. 1b) and an order of magnitude more lines of
code in Verilog (Fig. 1c), which offers explicit control but
at the expense of productivity and portability. Conversely, the
development ease of HLS comes at a cost of less control over
the FPGA hardware and potential performance penalties.

To concretely illustrate the above, we present a case study
on the design of a Sobel filter in Verilog, OpenCL, and
oneAPI. Through our experiments and the results from [10],
Fig. 2 shows that there exists a performance-productivity gap
between HDL and HLS frameworks. Achieving either high
productivity or high performance generally comes at the ex-
pense of the other. While the aforementioned frameworks offer
complementary tradeoffs, the performance-productivity gap
between these frameworks has not been rigorously quantified
to the best of our knowledge. In all, our contributions include
• A new metric, Π, to capture the performance-productivity

tradeoff between FPGA programming abstractions.
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1 h . p a r a l l e l f o r ( num items , [ = ] ( a u t o i ) { sum [ i ] = a [ i ] + b [ i ] ;
↪→ }) ;

(a) oneAPI Kernel for Vector Addition

1 k e r n e l vo id v e c t o r a d d ( g l o b a l i n t *x ,
2 g l o b a l i n t *y ,
3 g l o b a l i n t * r e s t r i c t z )
4 {
5 / / g e t i n d e x of t h e work i t em
6 i n t i n d e x = g e t g l o b a l i d ( 0 ) ;
7
8 / / add t h e v e c t o r e l e m e n t s
9 z [ i n d e x ] = x [ i n d e x ] + y [ i n d e x ] ;

10 }

(b) OpenCL Kernel for Vector Addition

1 module vector add
2 (
3 input clk ,
4 input rst ,
5
6 // CCI-P signals
7 input rx ,
8 output tx
9 ) ;

10 localparam [127:0] afu id = ‘AFU ACCEL UUID;
11 // User registers (memory mapped to address h0040, h0042, and h0044)
12 logic [63:0] in0 r , in1 r , out r ;
13
14 always ff @(posedge clk or posedge rst )
15 begin
16 if ( rst )
17 begin
18 out r <= ’0;
19 end
20 else
21 begin
22 out r <= in0 r + in1 r ;
23 end
24 end
25 always ff @(posedge clk or posedge rst )
26 begin
27 // Code for reading rx from memory mapped I/O

...
45 end
46 always ff @(posedge clk or posedge rst )
47 begin
48 // Code for writing tx ( out r ) to memory mapped I/O

...
69 end
70 end module

(c) The Verilog Kernel for Vector Addition

Fig. 1: Vector Addition Kernel in OneAPI, OpenCL, and Verilog
listed in the order of decreasing productivity

• A case study on the design and implementation of the Sobel
edge detection filter in oneAPI, OpenCL, and Verilog.

• A quantification of the productivity offered by oneAPI and
OpenCL over Verilog.

• A set of optimizations in OpenCL, including manual vec-
torization, unrolling, and inference of shift registers, aimed
at making the performance competitive with Verilog.

The rest of the paper is organized as follows. In §II, we present
related work. In §III, we present our new metric, Π, to capture
the performance-productivity tradeoff. In §IV, we describe our
implementation of a Sobel filter. In §V, we articulate the HLS
optimizations that we used to enhance the performance of our
kernels. In §VI, we evaluate the productivity and performance
of our Sobel filter. We discuss future work in §VII and
conclude in §VIII.

II. RELATED WORK

The concept of image gradient detection using an isotropic
3×3 operator (also known as the Sobel operator or Sobel filter)
was introduced by Sobel et al. [11]. Since its introduction,

Fig. 2: Visualization of the Performance-Productivity Tradeoff
using a Sobel Filter on an 1280 × 720 (HD) Image

edge detection using the Sobel filter has been extensively stud-
ied on both fixed (e.g., CPU, DSP, GPU) and reconfigurable
architectures (e.g., FPGA).

A. Acceleration of Sobel Filter

Knap et al. use the Sobel filter as a kernel to evaluate the
performance of unified virtual memory on Nvidia’s Pascal
and Volta GPUs [12]. Nausheen et al. present an efficient
implementation of a Sobel filter on an FPGA that achieves sub-
millisecond latency when processing 512×512 images [13].
Zhao et al. realize real-time lane detection using a Sobel filter
on an FPGA [14]. For input video with 720p (HD) resolution,
they achieve a throughput of over 160 frames per second.

The work of Hill et al. [10] is the most similar to ours.
They present a performance-productivity evaluation between
OpenCL and HDL. In their evaluation of edge-detection filters,
they report the development time of OpenCL to be 6.0×
faster than HDL but at the expense of 1.4× higher resource
utilization of FPGA hardware and up to 10% performance
degradation when compared to HDL.

In contrast to [10], [13], [14], we evaluate our imple-
mentation of the Sobel filter on significantly larger images,
ranging from 720p (1280×720) to 4K (3840×2160) to 8K
(7680×4320). In addition, the optimizations for our Verilog
reference implementation deliver a throughput of 549 frames
per second for HD images, which is 3.43× better than the
throughput reported in [14] and 1.75× better than the mea-
sured throughput for HD images in [10]. In §II-B, we discuss
existing metrics that can are used to quantify the performance-
portability-productivity tradeoffs between heterogeneous com-
puting systems.

B. Studies on Performance, Portability, and Productivity

In recent years, there has been a growth in frameworks
and languages for writing programs that are portable across
diverse hardware platforms. Examples of such frameworks
include OpenCL [1], oneAPI [6], and Kokkos [4]. However,
achieving high performance on each of the diverse set of
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platforms requires platform-aware optimizations and vendor-
specific extensions to the frameworks mentioned above. Thus,
achieving portability across a set of platforms while main-
taining an acceptable level of performance on each platform
remains a daunting challenge.

To quantify the “goodness” of a framework in achieving
performance portability, Pennycook et al. propose a metric
that is the harmonic mean of an application’s performance
efficiency observed across a set of platforms [15]. Harell et al.
propose metrics such as code divergence, maintenance cost,
and development cost to measure performance, productivity,
and portability across a set of platforms [16]. Pennycook et al.
further expand on their work on the performance portability
metric by incorporating code convergence [17], which is a
measure of similarity between the two programs written for
two or more heterogeneous platforms. Funk et al. propose
a metric called the relative development time productivity
(RDTP) of a parallel computing framework and define it as
the measured speedup (relative to the serial code) divided by
the “relative effort” Ψ, which, in turn, is the ratio of SLOC in
the parallel code to the SLOC in the serial code [18].

Compared to the metrics proposed in [15]–[17], our metric
applies to a single platform, and it incorporates both per-
formance and productivity in terms of source lines of code
and development time. Compared to [18] where the value
of the metric is measured relative to the performance and
productivity of a serial code, our metric seeks to capture the
performance-productivity tradeoff between any two languages.

III. QUANTIFYING PERFORMANCE VS. PRODUCTIVITY

Quantifying the performance-productivity tradeoffs between
two programming abstractions requires definitions of metrics
to evaluate performance and productivity. For performance, we
measure the performance of our Sobel filter implementations
in frames processed per second. The metrics used to quantify
productivity are described in §III-A.

A. Quantifying Productivity

Productivity is challenging to quantify. Many subjective
factors, like level of expertise of the developer, familiarity with
the programming language, and debugging time can impact a
developer’s productivity. In this paper, we first present two
widely-used productivity metrics — time to develop (TDEV)
and source lines of code (SLOC) — and then leverage these
productivity metrics to propose a new composite metric,
ΠA→B , to quantify the tradeoff between the productivity and
performance of language A vs. language B in §III-B.

1) Time to Develop the Application (TDEV): Under ideal
circumstances, productivity can be measured by performing
an exhaustive user study to evaluate developers’ efforts. The
Constructive Cost Model (COCOMO) [19] is one approach
for evaluating productivity. COCOMO incorporates several
qualitative metrics, such as the developer’s level of expertise
and the time required to complete the software project. Hill et
al. use the actual development time to evaluate the productivity
benefits of HLS over HDL. Similar to the aforementioned

work, we report the time to develop the program (TDEV) in
HDL and HLS. TDEV includes the time to plan, write, debug,
test, and optimize the Sobel filter program.

2) Source Lines of Code (SLOC): While the time required
to develop the program may provide insight its use for
objectively quantifying productivity is difficult because we
cannot normalize the qualitative metrics across developers with
varying levels of expertise. Furthermore, such a direct measure
of productivity involves logging the time taken by program-
mers to develop HDL and HLS kernels, respectively. In turn,
the evaluation of development time may be biased because
there can be significant variations in code development time,
depending on the FPGA developer’s HDL and HLS language
expertise. Therefore, to complement the development time,
which is a subjective metric, we use SLOC for an objective
comparison between the productivity of HLS and HDL.

B. Composite Metric for Measuring Performance-Productivity
Tradeoff

Here we seek to quantify the tradeoff between productivity
and performance. Unfortunately, several factors hinder an ac-
curate quantification of the performance-productivity tradeoff.
For instance, developers with varying levels of expertise in
HDLs may perceive the programming productivity of HDL
differently. Sacrificing performance for better productivity
by opting for HLS may not be a viable option for some
developers, e.g., mission-critical systems. On the other hand,
developers may prioritize the rapid prototyping offered by
HLS over achieving high performance via HDL. To assist
developers when making decisions on the choice of pro-
gramming language for the FPGA, we propose a metric,
ΠA→B , that captures the tradeoff between performance and
productivity. We have formulated ΠA→B such that it evaluates
to zero for the ideal case. The rationale behind our metric is
as follows:

For an application implemented using both a low-
level language A and a high-level language B, the
metric should
1) Reward a transition from A to B if higher pro-

ductivity in B can be achieved without significant
degradation in the performance compared to A.
The value of ΠA→B is closer to zero in this case.

2) Penalize a transition from A to B if higher
productivity in B is achieved with a significant
degradation in the performance compared to A.
The value of ΠA→B is considerably greater than
zero in such as case.

With this rationale in mind, we define our metric, ΠA→B , as
follows:

ΠA→B =
∆TA→B

∆PA→B
(1)

where the numerator, ∆TA→B , is the relative difference in
the performance of a kernel when making a transition from
a low-level language A to a high-level language B and the
denominator, ∆PA→B , is the relative productivity improve-
ment. It incorporates both SLOC and TDEV of language A
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and language B. The numerator, ∆TA→B , and the denomina-
tor, ∆PA→B , from Equation (1) are given by the following
equations, respectively.

∆TA→B =
ThroughputA − ThroughputB

ThroughputA
(2)

∆PA→B = α

(
SLOCA − SLOCB

SLOCA

)
+

(1− α)

(
TDEVA − TDEVB

TDEVA

)
where 0 ≤ α ≤ 1

(3)

α and (1-α) in the Equation (3) are weights assigned
to relative improvements in SLOC and TDEV, respectively.
The value of α can be varied depending on the perceived
significance of SLOC and TDEV metrics. In this work, we
evaluate the value of π with the three values of α, (α=1),
(α=0), and (α=0.5). Setting α as one discards the subjec-
tive metric TDEV altogether in favor of an objective SLOC
comparison. Setting α as zero discards SLOC and accounts
for the development time entirely. When α is 0.5, equal
weights are assigned to SLOC and TDEV. As shown in Fig. 3,
SLOC and TDEV complement each other. SLOC provides
an objective quantification of the effort needed to write the
program, while TDEV accounts for the effort spent in the
planning, verification, testing, and optimization phases of the
program.

Fig. 3: The Spectrum of Productivity Metrics

C. Implications of ΠA→B

We characterize ΠA→B across the following four regions of
values: (1) ΠA→B > 1, (2) 0 < ΠA→B ≤ 1, (3) ΠA→B = 0,
and (4) ΠA→B < 0.

1) ΠA→B > 1: This implies that the relative difference
in the performance of A and B is higher than the relative
difference in the productivity of A and B. We deem this
case as undesirable because the performance degradation is
significant compared to productivity gains in going from
language A to language B.

2) 0 < ΠA→B <= 1: A non-zero value of Π less than
one implies that there is some performance cost associated
with making a transition from a lower-level programming
abstraction A to a higher one B.

3) ΠA→B = 0: The implication here is that the productivity
improvement of language B over language A does not come
at the cost of any performance degradation.

4) ΠA→B < 0: A negative value of ΠA→B implies that
either ∆TA→B or ∆PA→B is negative. Both conditions are
corner cases, and we do not come across these conditions in
our evaluation.

IV. CASE STUDY: SOBEL FILTER

In this paper, we explore image edge detection using a Sobel
filter. We implement an integer variation of the Sobel Filter,
which is representative of a structured-grid dwarf (or motif)
from the OpenDwarfs benchmark suite [20]. Fig. 4 shows the
application of our Sobel filter on an image taken from [21].

(a) Original RGB image [21] (b) Output of Sobel Filter

Fig. 4: An Example of Edge Detection Using a Sobel Filter

A. Design of Sobel Filter

A Sobel filter is a convolution filter that identifies pixels that
occur at the edges of the objects in an image. Edge detection
occurs by approximating the derivative of the luminosity or
brightness across the pixel. Our implementation of the Sobel
filter takes an array of integers, which represent RGB pixels,
as input. It then performs a “floating-point free” conversion
to a luminosity value, as is done in [22]. Finally, it employs
a sliding-window approach to add the horizontal and vertical
gradients and compute the output pixel value. Algorithm 1
describes our baseline implementation of the Sobel filter.

Each of our Sobel filters in Verilog, OpenCL, and oneAPI,
respectively, implement the computational logic in Algo-
rithm 1 and possess the same computational logic and op-
timizations. The memory models in our OpenCL and oneAPI
implementations are batch-oriented in that all the relevant data
is moved from the main memory of the CPU host to the
DRAM on the FPGA card before the Sobel filter is applied.
The memory model in our Verilog implementation is stream-
oriented with the Sobel filter being applied as the data is
“streamed” from the main memory of the CPU host to the
internal FPGA memory. While the difference in the memory
models is not ideal for a direct performance comparison, it
allows us to measure the sensitivity of our metric to the varia-
tions in the level of optimizations of the two implementations
under consideration.
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Algorithm 1: Sobel Filter Using Sliding Window [22]
Input : rgb pixels[height ∗ width]
Output: sobel values[height ∗ width]
Data: count, rows[2 ∗ width+ 3], gx[3][3], gy[3][3]

1 gx← {{−1,−2,−1}, {0, 0, 0}, {1, 2, 1}}
2 gy ← {{−1, 0, 1}, {−2, 0, 2}, {−1, 0, 1}}
3 count← −(2 ∗ width+ 3)
4 while count < height ∗ width do
5 for i← width ∗ 2 + 2 to 1 do
6 rows[i]← rows[i− 1]
7 end
8 if count ≥ 0 then
9 rows[0]← rgbtoLuma(rgb pixels[count])

10 end
11 x dir, y dir ← 0
12 for i← 0 to 2 do
13 for j ← 0 to 2 do
14 x dir+ = rows[i ∗ width+ j] ∗ gx[i][j]
15 y dir+ = rows[i ∗ width+ j] ∗ gy[i][j]
16 end
17 end
18 sum = abs(x dir) + abs(y dir)
19 sum = max(255, sum)
20 if count ≥ 0 then
21 sobel values[count]← sum
22 end
23 count← count+ 1
24 end

TABLE I: Differences in the Tested Kernel Implementations

Language
Implementation

Memory Model Loop Unrolling Vectorization
Verilog Stream mode ✓ ✓
OpenCL Batch mode ✓ ✓
oneAPI Batch mode ✓ ×
✓: implemented, × : not implemented

We compute the value of Π for implementations with varia-
tions in memory models and optimizations. Table I shows our
tested implementations. The selection of streaming approach
for the Verilog implementation is also guided by the availabil-
ity of existing open-source DMA interfaces [23]. The use of
such interfaces simplifies the already-complex memory man-
agement and kernel design in Verilog. Likewise, using HLS
tools like OpenCL and oneAPI simplifies the management of
data transfers to and from the device due to its high-level
programming abstraction. Our implementation of the Verilog
kernel uses the same general logic that is used in the HLS
implementations. Most of the practical difficulty of the Verilog
implementation lies in the host-to-kernel communication. Our
Verilog implementation uses a module created by Emas et
al. [23], [24], which provides a level of abstraction with a
direct memory interface between host and kernel.

V. OPTIMIZATIONS

In this section, we describe the optimizations explored in
the technology stacks. In our OpenCL and oneAPI implemen-
tations, we use the single work item configuration for kernel
invocation and explore the optimizations for the single work
item kernel.

A. Loop Unrolling

The clock speed of FPGAs is relatively low compared
to CPUs and GPUs. Achieving high performance on FPGA
necessitates high data reuse and parallelism. Parallelism on
FPGAs can be realized with circuit replication and a deep
pipeline. Loop unrolling allows the HLS compiler to imple-
ment deep pipelines. Loop unrolling is also used to infer
specialized hardware such as a shift register [25]–[27]. In our
implementation of a Sobel filter, we fully unroll the loops.
Correct use of the #pragma unroll instructs the compiler to
infer a shift register [25]–[27]. Shift registers enable the elim-
ination of loop carried dependencies and allow for initiation
intervals1 as low as one. Additionally, a shift register saves
repeated accesses to local or global memory in a means highly
conducive to pipelining. Shift registers are also an intuitive part
of a rolling window-type image convolution such as the Sobel
filter.

B. Vectorization

It has been shown that there is significant performance to be
gained by fully saturating the memory bus between the FPGA
chip and global memory [28]. The Arria 10 device that we
use in this work has a 512-bit wide bus. This allows us to
fetch OpenCL’s int16 vector type in a single load instruction.
Similarly, the host-to-kernel memory interface used in the
Verilog implementation has a 512-bit width. Vectorization
enables a “wide” data-parallel pipeline. In the baseline ap-
proach, a single output pixel is determined from the eight
values on the edge of the 3×3 convolution. In our vectorized
implementation, we apply the Sobel filter to 16 elements at
once.

We implement this in Verilog by using a series of generate
statements to perform the same operations for all the interior
pixels in the window. The same result is created in OpenCL
using the OpenCL’s vector types.

VI. PRODUCTIVITY AND PERFORMANCE EVALUATION

HDL development is significantly different from C and
C++-based HLS development. Differences in the HDL and
HLS workflows introduce deviations in the performance and
productivity of HLS and HDL approaches. In order to evaluate
ΠA→B , we need to evaluate the relative difference in the per-
formance and productivity of frameworks under consideration.
In this section, we evaluate the performance and productivity
of our implementations of Sobel filter in Verilog, OpenCL,
and oneAPI.

1The initiation interval is the number of clock cycles that the pipeline must
stall before it can process the next loop iteration.
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A. Productivity Evaluation

Table II shows the variation in the SLOC of our imple-
mentations. As expected, the Verilog implementation has the
most SLOC among the three FPGA programming languages.
Optimized OpenCL implementation (ST + LU + V) offers a
2.5× improvement in productivity over Verilog, while oneAPI
improves productivity by an additional factor of 1.5 × over
OpenCL.

Table III shows the efforts in terms of development time
for HLS and HDL implementations. Table IV shows the
development time for each of the tested implementations.
Implementing the Sobel filter in HLS took significantly less
time compared to Verilog.

Working for 20 hours per week, designing an optimized
implementation of the Sobel filter required approximately four
months, while implementing the same in OpenCL required
three weeks. Compared to Hill et al. [10], where authors
required six months of work for Verilog and one month for
OpenCL, our Verilog and OpenCL implementations took 1.5×
and 1.3× less time to develop, respectively. We believe the
difference in the development time is due to the use of existing
data transfer modules [23], [24] in Verilog and the availability
of the reference implementation for OpenCL [22].

B. Performance Evaluation

We evaluate the performance of our implementation using
three metrics. The first means of evaluating the performance
is an attempt at measuring the on-device computational time.
The second metric involves measuring the time between the
beginning of the memory transfer from the host to the device
and the end of the memory transfer of the computation results
back to the host. The first metric abstracts away the different
memory models used in Verilog and HLS implementations.
It becomes less representative of the actual computational
time as the amount of memory to be transferred to the
device increases. The second measure of device computation
time is more relevant for the case of larger kernels. For
Verilog implementation, we cannot measure the on-device
computation time accurately. This is because we cannot isolate
computation time from the data transfer time in our streaming
Verilog kernel, where input pixels are streamed from host to
device. Therefore, for Verilog implementation, we only report
the total time to solution, which includes the data transfer time

TABLE II: Productivity Comparison between the Verilog, OpenCL
and oneAPI Implementations of Sobel Filter

Language Implementation
Kernel
SLOC

Host
SLOC

Total
SLOC

Verilog LU + V 298 131 429
OpenCL ST 58 76 134
OpenCL ST + LU 61 76 137
OpenCL ST + LU + V 94 76 170
oneAPI ST 60 27 87
oneAPI ST + LU 63 27 90

SLOC: Source Lines of Code
ST: Single-Task Kernel, LU: Loop Unrolling, V:Vectorization

TABLE III: Development Time in Hours for HLS and Verilog
Implementations

Time taken (Hours)
Task RTL OpenCL OneAPI Status
Funtional Kernel
development

85 5 2
Correctness tests
passed in simulation

Correctness tests
on FPGA

180 20 10

Verified the correctness
of the kernel on FPGA
Verified interactions
between host
and FPGA device.

Optimizations 40 25 8
Implemented
optimizations
for RTL and HLS

Total 305 50 20

TABLE IV: Total Development Time (TDEV) for Tested Implemen-
tations

Implementation
TDEV
(hours)

Verilog 305
OpenCL (ST) 20
OpenCL (ST + LU) 25
OpenCL (ST + LU + V) 50
oneAPI (ST) 12
oneAPI (ST + LU) 20

and computation time. The third metric used for performance
evaluation is throughput in terms of frames per second. We
evaluate the value of frames per second by computing the
reciprocal of the total execution time in seconds.

We perform our experiments on Intel Arria 10 GX FPGA.
Intel(R) Xeon(R) Gold 6128 CPU with an operating frequency
of 3.4 GHz is the host CPU. In both OpenCL and oneAPI,
we explore the two(2) variants of the Sobel filter kernel.
We begin our experiments with a baseline single-task (ST)
implementation of the Sobel filter. Then, we evaluate the
performance of the single-task version with fully unrolled
loops (ST + LU). For OpenCL, we explore the impact of
vectorization along with unrolling (ST + LU + V). In Verilog,
we implement vectorization(V) by replicating compute-units
by a factor of 16. This implementation generates 16 outputs
pixels for every incoming stream of pixels.

1) Resource Utilization: The resource utilization report for
our implementations is shown in the Table VI. We report the
utilization for kernels compiled for 8K images. We observe
that our Verilog implementation has higher register usage
compared with all other implementations. Higher register
usage in Verilog is primarily because of the difference in
the memory model, where the Verilog implementation uses
an optimized host-to-kernel pipeline from [23], [24].

2) Impact of Optimizations: Table V shows the perfor-
mance of our Sobel filter implementations in Verilog, OpenCL,
and OneAPI. For all three problem sizes, we observe that
Verilog implementation is the fastest among the three. While
the baseline single-task implementation is easier to develop,
its performance is significantly lower than the optimized Ver-
ilog implementation (≈ 60,000× slower). After applying the
optimizations discussed in §V, our OpenCL implementation
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TABLE V: Sobel Filter: Performance Comparison between Verilog, OpenCL and oneAPI

Language Implementation
Image size

HD (1280 × 720) 4K (3840 × 2160) 8K (7680 × 4320)
Event-based

Kernel Runtime
µS

Total time
to solution

µS

Throughput
Frames/Sec.

Event-based
Kernel Runtime

µS

Total time
to solution

µS

Throughput
Frames/Sec.

Event-based
Kernel Runtime

µS

Total time
to solution

µS

Throughput
Frames/Sec.

Verilog LU + V - 1819 549.75 - 7540 132.62 - 34438 29.03
OpenCL ST 33774130 33783121 0.029 262735483 262778854 0.003 2071574849 2071836869 0.00048
OpenCL ST + LU 6486 12437 80.40 25760 45388 22.03 108257 180884 5.52
OpenCL ST + LU +V 495 3452 289.68 1886 11670 85.68 6865 41340 24.189
oneAPI ST 33504870 33513991 0.029 259019005 259036160 0.003 209378013 2097346330 0.00047
oneAPI ST + LU 7202 15388 64.98 27402 46655 21.43 113759 183193 5.45

ST: Single-Task kernel, LU: Loop Unrolling, V:Vectorization

TABLE VI: Sobel Filter: Resource Usage Summary of 8k (7680 x
4320) Images

Language Implementation
Logic
Utilization

FFs /
Registers

RAMs
Frequency
(MHz)

Verilog LU + V 73159 (18%) 187843 223 (9%) 292

OpenCL
ST 67407 (16%) 114308 389 (14%) 250
ST + LU 66884 (16%) 113245 390 (14%) 320
ST + LU + V 71526 (17%) 123600 398 (15%) 324

oneAPI
ST 80126 (20%) 116618 379 (14%) 246
ST + LU 79626 (19%) 115613 381 (14%) 297

ST: Single-Task kernel, LU: Loop Unrolling, V:Vectorization

delivers competitive performance that is within 20% of the
performance of Verilog for an 8K image. A notable observa-
tion from the Table V is that the gap between the performance
of Verilog, OpenCL/OneAPI lessens as the problem size
increases. Identifying the exact cause behind this decrease in
the gap and remains a subject of future study.

C. Evaluation of Performance-Productivity Tradeoff Using Π

Table VII shows the variation in ΠA→B , where an 8K image
is used to measure the performance of A and B. Depending
on the choice of implementations of the Sobel filter for A and
B, we get a wide range of values for ΠA→B . For example, our
Verilog implementation is ≈60,000× faster than the baseline
OpenCL single-task implementation. Value of ∆TA→B for this
combination is almost equal to 1. While OpenCL (ST) offers
considerable improvement in productivity over Verilog, the
degradation in performance is far too significant. As a result,
the value of Π for this combination is greater than one for all
three values of α as shown in Table VII.

The value of Π between Verilog and our optimized OpenCL
implementation, OpenCL (ST + LU + V) ranges from 0.199
to 0.275 depending on the value of α. In this case, the
relative improvement in productivity is more significant than
the relative loss in performance. While we do not come across
a case in Table VII where Π evaluates to zero, we do notice
that for identical implementations of OpenCL and oneAPI, the
value of Π is closer to zero. This observation highlights that
for equivalent kernel implementations, oneAPI provides very
nearly the same performance as OpenCL, with significantly-
improved productivity.

TABLE VII: Evaluation of Π for Various Implementations of Sobel
Filter on an 8K Image

A B
ΠA→B

α = 1

ΠA→B

α = 0

ΠA→B

α = 0.5

Verilog OpenCL (ST) 1.454 1.070 1.233
Verilog OpenCL (ST + LU) 1.190 0.881 1.013
Verilog OpenCL (ST+ LU +V) 0.275 0.199 0.231
Verilog oneAPI (ST) 1.253 1.041 1.137
Verilog oneAPI (ST + LU) 1.028 0.869 0.942
OpenCL (ST) oneAPI (ST) 0.057 0.050 0.053
OpenCL (ST +LU) oneAPI (ST + LU) 0.035 0.060 0.044

ST: Single-Task Kernel, LU: Loop Unrolling, V:Vectorization

VII. FUTURE WORK

As a subject of future study, we intend to evaluate the
performance-productivity tradeoffs for FPGA accelerators in
a wide range of applications. More specifically, we intend
to explore the performance-productivity gap for applications
where irregular memory accesses and workload imbalance
significantly limit the optimization scope.

VIII. CONCLUSION

This work has quantified the performance-programmability
gap between Verilog, OpenCL, and oneAPI using a case study
on Sobel filer. We proposed a new metric for the evaluation
of tradeoffs between performance and productivity of FPGA
programming models. While performance parity may be out
of reach, we can still get within an order of magnitude of
Verilog in terms of performance with OpenCL and oneAPI,
and in some cases within 20%, In comparison with Verilog
and OpenCL, we observed that the modern C++-based oneAPI
was the most productive for development in terms of SLOC
and development time. oneAPI required ≈4× less SLOC
than Verilog and 1.5× less SLOC than OpenCL. In terms
of development time in hours, oneAPI required 7.6× less
time than Verilog and 1.25× less time than OpenCL. For
implementations with identical optimizations, the productivity
improvements due to oneAPI did not come at the cost of
significant performance degradation as event-based kernel ex-
ecution time for oneAPI and OpenCL kernel implementations
was roughly the same.
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