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Abstract—Current implementations of MPI are unaware of
accelerator memory (i.e., GPU device memory) and require
programmers to explicitly move data between memory spaces.
This approach is inefficient, especially for intranode communi-
cation where it can result in several extra copy operations.
In this work, we integrate GPU-awareness into a popular
MPI runtime system and develop techniques to significantly
reduce the cost of intranode communication involving one or
more GPUs. Experiment results show an up to 2x increase in
bandwidth, resulting in an average of 4.3% improvement to
the total execution time of a halo exchange benchmark.

I. INTRODUCTION

Graphics processing units (GPUs) have undergone signif-
icant architectural generalization over the past several years
and have transformed into general purpose, highly parallel
processors. As low-cost, power-efficient accelerators, GPUs
have provided significant speedup across a broad range of
computational science, engineering, and analytics domains.
In the November 2011 Top500 list [1], 3 out of the top 5
supercomputers in the world—and a total of 39 out of 500
systems—utilize GPUs.

The Message Passing Interface (MPI) [2] is the industry
standard for parallel programming and is used on virtually
every high performance computing system. Introduced in
1984, the MPI standard has evolved to complement changes
in CPU architecture and high-performance networks. One
of the current challenges faced by the MPI community is
the evolution of this popular parallel programming model to
interoperate with and exploit GPU accelerators.

Current implementations of MPI continue to assume that
all communication buffers are located in the main memory.
Hence, developers must explicitly move data between device
and host memories in order to perform MPI operations.
With current GPUs, this strategy results in high-latency
data movement across the PCIe bus and through several
temporary buffers, even when performing communication
between processes located on the same node. To facilitate
these transfers, developers today typically maintain duplicate
buffers in host and GPU memory manually, an approach that

not only introduces code complexity but also is wasteful of
system resources. Furthermore, one of MPI’s strengths is its
ability to hide the performance details of data movement
in parallel computations. This capability is significantly
diminished when manual GPU data movement is performed
outside the MPI library. In an experiment conducted with
a pair of MPI processes on the same physical machine, we
find that the bandwidth achieved is only half the theoretical
peak when manual data movement is used.

We address these challenges by extending MPI and in-
tegrating direct support for the GPU memory space into
MPICH2, a popular open-source MPI implementation. This
interface allows programmers to pass GPU buffers directly
to MPI routines without the need for explicit intermediate
copies. As an initial step toward efficient MPI communica-
tion for GPU-accelerated parallel applications, we present
an approach to perform efficient intranode communication.
By integrating GPU data movement into MPI, multiple
optimizations become possible. Temporary copies can be
eliminated, freeing additional resources to the application
and significantly improving performance. In addition, by
pipelining GPU and inter-process data movement, PCIe and
main memory concurrency can be leveraged to increase
transfer efficiency.

We evaluate our system on several microbenchmarks and
on a nine-point two-dimensional stencil benchmark that
performs halo-type neighboring exchange communication.
Results indicate up to twofold improvement in bandwidth for
large messages and roughly 10% improvement in latency for
small messages. These improvements in raw communication
performance translated into an average improvement of 4.3%
to the total execution time of the 2-D stencil benchmark
across a range of process counts and problem sizes.

The rest of this paper is organized as follows. Section
II presents background information on GPU computing,
MPI, and MPICH2’s intranode communication architecture.
Section III discusses current challenges in mixed GPU+MPI
programming. Section IV introduces the design of our
system, its integration with the Nemesis communication



subsystem in MPICH2, and several performance optimiza-
tions. Section V presents an experimental evaluation, and
Section VI discusses related work. Section VII summarizes
our conclusions.

II. BACKGROUND

This work focuses on enhancing the performance of
intranode communication where the source, target, or both
buffers reside in separate accelerator memory. In this section,
we provide background on computing with GPUs and MPI.

A. GPU Computing and CUDA

Graphics processing units were originally designed for
rendering workloads. In recent years, the highly parallel
GPU architecture was found to be extremely useful as
a computation accelerator across a broad range of high-
performance computing workloads.

Current GPU devices fall into two broad categories:
integrated and discrete. Integrated GPUs are built into
the same hardware components as the host processor and
share memory and other resources. Discrete GPUs, on the
other hand, are distinct from the host processor and tend
to utilize a distinct memory subsystem. The larger chip
area, more powerful parallel processing units, and high-
throughput dedicated memory on discrete GPUs provide
great performance potential and have made discrete GPUs
a preferred design in current high-performance computing
(HPC) systems. Current discrete GPUs are expansion cards
that connect to the host processor and memory through the
PCIe bus. Thus, data in host and device memories must be
explicitly copied by using special commands.

The Compute Unified Device Architecture (CUDA) is one
of the most popular general-purpose parallel programming
models on GPU today and is designed primarily for NVIDIA
GPUs [3]. Our work here focuses on CUDA because of
its importance to current HPC applications; however, our
design is general and can be readily adapted to other GPU
programming models. In the CUDA model, data between
host and device memories is transferred by using the cu-
daMemcpy command. The programmer annotates functions
in the program source code to enable them to run on the
GPU. When invoked, these functions are launched as GPU
kernels.

B. The Message Passing Interface

MPI [2] is the industry standard for parallel program-
ming. MPI defines point-to-point send/receive, one-sided,
and collective communication operations and allows the
programmer to construct parallel programs that are portable
across virtually all parallel computing architectures. While
MPI is best known for high-performance internode commu-
nication, most popular MPI implementations also provide
highly optimized intranode communication between cores
and processors on the same node.

C. MPICH2 Intranode Communication Architecture

MPICH2 is an open-source implementation of MPI
standard. Designed for high-performance communication,
MPICH2 is built on the Nemesis communication subsys-
tem [4] and supports intranode message-passing through
shared memory and internode communication by using net-
work modules designed for specific networks. The Nemesis
network module API efficiently supports high-performance
RDMA-style networks as well as TCP. MPICH2 abstracts
connections between two processes with a virtual channel
data structure that stores state information associated with
the connection. In this work, we focus on intranode GPU
native communication and therefore will make modifications
primarily to Nemesis.

MPICH2 has two data transmission modes: eager mode
and rendezvous mode. Eager mode is intended for shorter
messages and is optimized for latency; rendezvous mode is
intended for large messages and is optimized for bandwidth.
In eager mode, a message is sent to the other party through
shared-memory message queues. The data is copied from
the user buffer into one or more available elements in a
free queue, which are then inserted to the receiver’s receive
queue. The message queue is implemented with atomic
memory operations so that multiple processes can enqueue
elements on the queue concurrently without locking. This
strategy means that only one receive queue is needed per
process, rather than one queue per pair of processes.

Nemesis uses the large message transfer (LMT) proto-
col to implement rendezvous mode. In the LMT protocol,
shared-memory copy buffers are created between pairs of
processes the first time they communicate with each other.
The copy buffers are arranged as a ring buffer so that
the sender can copy into one buffer while the receiver is
copying out of another buffer in a pipelined manner. Nemesis
supports other implementations of LMT that use vmsplice or
I/OAT with kernel module support; however, these methods
are not considered in this paper. The Nemesis progress
engine is responsible for driving the LMT protocol.

III. CHALLENGES IN CUDA+MPI PROGRAMMING

The mixed CUDA+MPI parallel programming model has
gained widespread adoption for programming clusters with
GPU accelerators today. In this model, intranode parallelism
is expressed in the CUDA model, and internode parallelism
is managed through MPI. Because MPI implementations
are not aware of the distinct accelerator memory space, the
programmer must manually copy data between device and
host buffers, as shown in Listing 1. In this simple example,
the only purpose of the host buf buffer is to facilitate MPI
communication of data stored in device memory. As the
number of accelerators (and hence distinct memories) per
node increases, manual data movement poses significant
productivity problems [5].



double *dev_buf, *host_buf;
cudaMalloc(&dev_buf, size);
cudaMallocHost(&host_buf, size);

if (my_rank == sender) { /* sender */
computation_on_GPU(dev_buf);
cudaMemcpy(host_buf, dev_buf, size, ...);
MPI_Send(host_buf, size, ...);

} else { /* receiver */
MPI_Recv(host_buf, size, ...);
cudaMemcpy(dev_buf, host_buf, size, ...);
computation_on_GPU(dev_buf);

}

Listing 1. Example MPI program with manual data movement.

Beyond the problem of programming productivity, the
performance of such a mixed programming scheme is also
troublesome. In Figure 1, we measured the latency and the
bandwidth of intranode communication between two MPI
processes running on a single machine, using the latency
and bandwidth tests from the OSU MPI micro-benchmark
suite [6]. In this experiment, we vary the location of source
and destination buffers between main memory and GPU
device memory. When a buffer is located in device memory,
a manual cudaMemcpy is performed between a temporary
host buffer and the source/target device buffer.

From these results, we see that latency is increased and
bandwidth decreased by more than an order of magnitude
for small messages when either buffer is located in device
memory. The bandwidth achieved when a GPU buffer is
used peaks at between 1.6 and 2.8 GB/sec. This is sig-
nificantly lower than the theoretical peak of this system,
6 GB/sec, which is bounded by the smaller of the PCIe
and memory bandwidths. This gap of roughly 50% in
performance is incurred because the naı̈ve two-copy method
ignores parallelism present in the hardware that allows
bidirectional memory copies between host and device and
host-to-host copies to proceed in parallel. As we describe in
Section IV, techniques such as pipelining of data transfers
can greatly improve communication performance by lever-
aging hardware data movement parallelism. Such techniques
can be implemented in an application by the programmer;
however, they introduce significant complexity and, as we
will demonstrate, can deliver greater performance benefit
when integrated with the existing intranode communication
infrastructure.

IV. DESIGN

To address the challenges of mixed CUDA+MPI program-
ming, we integrate support for device-resident buffers into
the MPI implementation. This approach not only improves
productivity but also greatly improves performance by more
efficiently communicating data within the node. The GPU
memory buffer support is added to MPICH2 by making
MPI communication routines aware of addresses in the
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Figure 1. Intranode latency and bandwidth between two MPI processes,
with different source/destination buffer location choices. When a GPU
device buffer is used, its associated host buffer is pinned.

device memory, enabling MPI to internally perform efficient
intranode data movement. DMA-assisted asynchronous PCIe
data movement is leveraged and built into the current LMT
pipeline of Nemesis in order to increase throughput. Data
movement between host and device also plays an important
role in achieving a high performance implementation, and
several schemes are explored.

A. Integrating GPU-Awareness in the MPI Interface

Several options are possible to integrate support passing
GPU buffer arguments to MPI routines. CUDA provides
a unified virtual address space (UVA), which maps device
buffers into the virtual address space and provides routines
that can be used to query whether a given address corre-
sponds to host or device memory. This way, device buffers
can be passed directly to MPI, and MPI can decide whether
to start a PCIe or a main memory transfer by internally
querying the buffer’s location. However, other accelerator
programming models of interest, such as OpenCL [7], do not
provide a unified virtual address space and require several



handles (e.g., context handle) to access the device.
To provide a fully generic interface that can support a

variety of accelerator models, we have extended the MPI
interface with an MPIGPU interface that adds a buffer type
parameter for each buffer passed to an MPI routine. The
buffer type parameter allows the programmer to specify how
the corresponding void * argument should be interpreted and
in which memory space the argument resides. For example,
in an OpenCL program, a struct or record argument with
relevant resource handles would be passed, which provides
MPI with all the information needed to access the given
buffer.

This new interface is demonstrated in the following ex-
ample, where a nonblocking receive is posted to receive into
a host buffer and a send is performed from a GPU buffer.

MPIGPU_Irecv(host_buf, MPIGPU_HOST_CPU, count,
datatype, left_neighbor, tag, comm, &request);

MPIGPU_Send(dev_buf, MPIGPU_BUF_GPU, count,
datatype, right_neighbor, tag, comm);

B. Eliminating Unnecessary Copies

Integrating support for GPU buffers into the MPI interface
not only enhances productivity but also can significantly im-
prove performance by allowing the implementation to elim-
inate unnecessary copying of data into temporary buffers.
In Figure 2(a) we show the data movement corresponding
to the manual mixed CUDA+MPI code from Listing 1.
In this example, which is currently how all CUDA+MPI
codes are written, a user-managed host-side buffer is used
to help transfer data buffers residing in GPU memory. Data
is first transferred from the device to a temporary buffer;
next Nemesis copies this data into an internal buffer that
is accessible to both processes; it is copied again into a
temporary user buffer; and finally it is transferred to the
device. Thus, when both the source and destination buffers
reside on the GPU, two memory copies and two PCIe data
transfers are involved.

By integrating support for GPU buffers into MPI, we
can eliminate the unnecessary user-level staging of data
between MPI and the device, as shown in Figure 2(b).
Now MPI takes the responsibility for moving data from
device memory. It will first check the buffer type, and then
transport the given data directly to the shared buffer used for
Nemesis interprocess communication. As we demonstrate
in Section V-A, this optimization significantly reduces the
latency of communication operations, especially for latency-
sensitive small messages.

C. Increasing Throughput with Pipelining

While eliminating memory copies is extremely beneficial
for small messages transported by using the eager mode
protocol, optimizing the rendezvous mode protocol is the key
to providing good bandwidth for large messages. The LMT
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Figure 2. Memory copies in (a) CUDA+MPI and (b) MPIGPU.

protocol for rendezvous mode in Nemesis is implemented
through a shared-memory copy buffer, which is created in
a virtual channel between every pair of MPI processes in a
given node. The copy buffer is managed as a ring buffer, as
shown in Figure 3(a), where a copy buffer length for each
buffer unit represents its full/empty state.

When a message is about to be transported through this
ring buffer, the sender packs the message data into multiple
segments and tries to copy them into as many consecutive
available ring buffer units as possible; the receiver serially
unpacks the consecutive buffer units out of the ring buffer
and into the user-designated receive buffer. The data segmen-
tation in Nemesis is done according to the maximum length
of a copy buffer unit and the MPI data type. In MPICH2,
a progress engine drives this in a nonblocking manner—the
packing/unpacking progress can be paused, if the next buffer
unit is unavailable, and resumed later; the progress engine
can take the chance to drive other pending actions.

Modern GPUs are equipped with one or more DMA
engines, which can be used to either synchronously or asyn-
chronously transmit data between GPU device and page-
locked main memory. Asynchronous DMA transfer has been
shown to maximize the performance of the PCIe bus and
achieve the highest bandwidth [3]. Thus, the Nemesis LMT
shared buffers are page-locked to enable asynchronous DMA
copies.

However, a challenge brought by asynchronous GPU
memory copy in a nonblocking progress-engine-driven loop
is, for both sender and receiver, to poll the ring buffer and
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decide whether to pause the loop. Originally, a CPU-side
memory copy is a synchronous action and returns with
data ready in the destination. But now, we need to poll
the status of both (1) availability of the buffer units, which
are changed by the other party in a communication pair,
and (2) completion of previously submitted asynchronous
DMA memory copy. The two types of polling activity are
interdependent: failing to poll the completion of DMA copy
will delay the notification of availability of buffer units to the
other party, and failing to check the newly available buffer
units will delay starting new asynchronous DMA copy.

Under these requirements, we modify the algorithm (in
the loop of sender and receiver both) by including two
new ahead pointer (Ra and Sa in Figure 3(a)) and start
DMA asynchronous copies as eagerly as possible. That is,
whenever there is an available buffer (empty for sender, or
nonempty for receiver), a new DMA copy is issued, and the
ahead pointer (Sa for sender, Ra for receiver) proceeds;
but the length of that buffer unit is not changed until the
completion of the DMA command. Here we put priority
on availability of buffer units over timely checking DMA
completion. This strategy keeps the buffering throughput
efficient, since the PCIe latency is much larger than that
of main memory operations, and floods the DMA engine,
which typically can combine DMA requests or at least
reduce idle time by pipelining operations. The pseudo-
code for the receive progress loop is shown in Algorithm
1; the send-side loop is similar. Note this is a multilevel
nested loop, and the loading/saving-state activities (line 1
and 5) are designed for the re-entrant progress driven by
the progress engine. The unpack function (line 14) eagerly
starts the DMA asynchronous memory copy and handles
data layout according to MPI types. The inner loop (line
3–11) holds the progression of Ra under either of the
following circumstances: (1) there is more data to receive,
but the sender has not put data in the buffer, or the pending

DMA commands has reached a maximum threshold; or (2)
there is no more data to receive, and there are pending
DMA commands. The DMA maximum pending threshold
is a parameter to decide the level of compromising, for
the eagerness of initiating DMA copies, the timeliness of
checking DMA completion, and, in turn, the timeliness of
notifying the availability of buffer units to the other party.

Algorithm 1: Pseudo-code of receive progress loop

1 load state;
2 repeat
3 while (more data AND (copybuf len[Ra] == 0 OR

pending dma reaches max)) OR (no more data
AND pending dma) do

4 if failed for a certain number of polls then
5 save state and exit;
6 while query dma of R finish do
7 if surfeit[R-1] != 0 then
8 copybuf len[R-1] := 0;
9 if surfeit[R] = 0 then

10 copybuf len[R] := 0;
11 proceed R;

12 if more data then
13 proceed Ra;
14 unpack(buf[Ra] - surfeit, &surfeit);
15 surfeit[Ra] := surfeit;
16 if surfeit != 0 then
17 copy surfeit buf before buf[Ra+1];
18

19 until no more data AND no pending DMA;

With a specific MPI data type, a single element may cross
two neighboring units. However, data segment pack/unpack
functions work only at the boundaries of fundamental data
types. Thus, surfeit data, which belongs to the next data
element, may not be copied out of the shared memory buffer.
The surfeit is decided upon return of unpack, even if its
asynchronous DMA request is proceeding. When detected,
it can be immediately moved to the end of this unit, making
it a contiguous buffer with the available data in the next
buffer unit. Thus, Ra can proceed proactively. Later, when
a DMA command is found complete, the previous buffer
unit’s length can be set to 0. This is shown in Figure 3(b).
Also note that this surfeit occurring in the buffer unit at
R − 1 can make us lose one unit, because the postponed
DMA polling for R, due to proactive DMA initiation, may
not clear its buffer length in time, if the DMA maximum
pending threshold is set to the number of buffer units.

D. Efficient Host-Device Data Movement

GPU memory, the on-board device memory, is separated
from the main memory on the host. In spite of the recent



CUDA UVA and GPUDirect technologies [3], special GPU
memory copy commands, for example, cudaMemcpy (which
are different from memcpy on the host side), must be
used to handle the memory copies involving GPU memory.
These commands utilize the DMA engine on the GPU
through interaction with the GPU driver. Typically these
GPU memory copy commands ask for the location of source
and destination buffers, in main memory or GPU device
memory, as function arguments. The different memory copy-
ing methods make it challenging to introduce GPU memory
awareness to MPICH2, which assumes a single memory
space. When a memory copy needs to be initiated, the
locations of source and destination buffers must be known
beforehand to determine whether normal memcpy or GPU
memory copy should be used.

The recent CUDA UVA technology provides program-
mers with a logical universal virtual address space to make
programming easier. It maps GPU device memory buffers
to a part of the virtual address space of a process so that
the driver and the runtime library can tell where a buffer
is located using its address. This provides developers with
a pointer query API and an easier version of cudaMemcpy,
the latter of which, asking for only a default argument, can
determine the location of a buffer by itself and perform
a transparent memory copy. Though the proprietary driver
is a black box, we speculate that the default version of
cudaMemcpy API embeds something similar to that done for
the pointer query API before starting the actual cudaMemcpy
action with correct buffer location parameters.

Therefore, adding support for GPU memory copy into
MPICH2 can be done in three ways:

• UVA-Default: This method simply replaces all mem-
cpy with cudaMemcpy with the default parameter, re-
lying on UVA and the GPU driver to perform device-
host and host-host copy operations. This is the easiest
method for extending MPICH2.

• Query-and-memcpy: This method queries the buffer
location with the driver at run time. After a query, it
can be decided whether to use normal memcpy or a
GPU memory copy command.

• Parameterized-memcpy: This method stores the lo-
cation of a buffer pointer and passes it around with
the pointer within MPICH2. Any memory copy that
may involve a GPU-resident pointer will be modified
to check this location first and decide to use normal
memcpy or a GPU memory copy command.

The first two approaches require less modification to
MPICH2’s internals. However, they may introduce extra
overhead of interaction with the GPU driver. In Figure 4,
we measured the bandwidth of moving data across host
and a GPU device with all three methods (using the same
system setup as in Section V). While the overhead is less
important when the copied data sizes are increased, for data
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Figure 4. Bandwidth of different GPU memory copy methods between
host and GPU device. Adapted from from CUDA SDK bandwidth test [8].
Host buffer is pinned always.

sizes smaller than 64 KB, Query-and-memcpy shows this
overhead, more clearly in the direction of “Host to Device.”
Interestingly, the UVA-Default method does not show any
overhead. The difference here is that the Query-and-memcpy
method enters the driver twice, for pointer querying and the
GPU memory copy command, whereas UVA-Default and
Parameterized-memcpy do so only once and probably cause
less operating system overhead due to privilege level change.

Although UVA-Default seems to be a good option, a factor
that one cannot neglect is the performance on the host-
side memory copy, if it were used to replace all memcpy
in MPICH2. The CPU-side memcpy in MPICH2, namely,
MPIU Memcpy, is actually an efficient implementation [9]
that tries to optimize both memory copy performance and
the impact on cache behavior of the computation. When an
MPI communication primitive is called, it may evict the data
stored in CPU cache, which in turn affects the performance
of computation after the copy completes. Therefore, the
less such cache disruption an MPI implementation does,
the more easily an MPI program developer can analyze the
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performance of his own code. In MPICH2, MPIU Memcpy
uses nontemporal instructions to alleviate the impact for
large enough copy data sizes (i.e., 64 KB and beyond).

In Figure 5, we show the bandwidth of host-side mem-
ory copy using UVA-Default, MPIU Memcpy, and mem-
cpy (from glibc), on the same system as above. As
MPIU Memcpy falls back to memcpy before 64KB, they
overlap until non-temporal version is used. The bandwidth
of memcpy in the mid-range is larger than the actual memory
bandwidth, which is measured in larger sizes, and is due to
the hardware cache behavior of the microbenchamrk. The
true memory bandwidth is shown when MPIU Memcpy starts
the nontemporal implementation but appears more gradually
in memcpy. However, UVA-Default does not behave as well
as the other two. The reason is probably that it does too much
work in checking the location of destination and source
buffers, and this work disturbs hardware cache a lot even
for small data copy sizes. This overhead is not shown in
the previous experiment, however, because the PCIe latency
dominates it in that case but here memory and cache latency
is smaller.

In addition to performance considerations, we decided
to adopt Parameterized-memcpy for portability reasons to
support GPU programming models that do not provide UVA.

V. EVALUATION

Our evaluation in this section and the previous sections
is conducted on Keeneland [11] cluster, a National Science
Foundation Track2D Experimental System based on the
HP SL390 powered with Nvidia Tesla M2070 GPUs in
Oak Ridge National Laboratory. Each compute node in
Keeneland has two Intel Xeon X5660 CPUs, 24 GB main
memory, 3 GPU devices connected through 2 IO hubs; nodes
are connected via single rail, QDR Infiniband. The software
environment is CentOS release 5.5 (Final) with Linux kernel
2.6.18-194.el5.perfctr, CUDA driver/runtime v4.0.
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A. Exploration of Buffering and Message Queue Parameters

We present an exploration of the parameter space for the
shared buffer and message queue. Using the ideal parameters
for our experimental platform, we measure performance and
compare it with a baseline manual code similar to that
presented in Listing 1. Performance measurements were
taken using the latency and bandwidth tests from OSU
microbenchmark suite [6].

First, we determine the shared buffer unit size for LMT
shared buffer using bandwidth test. The results are shown
in Figure 6 for 4 MB, 1 MB, and 256 KB messages,
which are points of interest for MPI messaging and are
representative of trend. First, we notice that different trends
are shown when GPU memory is used or not (as we compare
“H2H” to “D2D”/“H2D”); this result suggests that different
parameters should be used for host-only and host-GPU
transfers. Second, as long as GPU memory is used, on one
side or both, the best bandwidth can be attained only with a
128 KB or larger shared buffer unit size, since small-sized
data transmission on PCIe bus is inefficient. The optimal
point occurs at 256 KB, with the exception of 128 KB
for 256 KB messages. Considering the possibility of even
larger messages, we chose 256 KB for this parameter. Third,
for host-only messages, the peak bandwidth is reached with
smaller unit sizes (32 KB by default now in Nemesis). The
reason is that because main memory has much lower access
latency than does the PCIe bus, moving fine-grained chunks
in shared buffer can increase parallelism of the pipeline.
Therefore, we should let the shared buffer fall back to its
original parameter value when no GPU memory is involved.
And this information regarding the location of buffer of the
other side can be exchanged in the LMT’s handshaking step.

Using this shared buffer parameter setting, we try to cap
the performance curves of eager message queues, in order to
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Figure 7. Latency/bandwidth of two intranode MPI processes, source and
destination buffers both in GPU memory, using different message queue
element sizes. The optimal shared buffer is shown for comparison. The
results of “Device-to-Host” and “Host-to-Device” are similar.

find the best message queue element sizes and the threshold
of switching modes. In Figure 7, latency and bandwidth of
message queues at 16 KB, 32 KB, 64 KB, and 128 KB are
shown together with that of the shared buffer. The latency of
the message queue has no significant advantage over that of
the shared buffer when the GPU buffer is used, because the
PCIe bus latency is dominant. However, the message queue
can have a larger number of cells than the number of shared
buffer unit sizes, because of its scalable linear-complexity
nature. Therefore it shows better bandwidth, simply because
it can hold more simultaneous requests. With regard to
latency or bandwidth, the message queue loses to the shared
buffer beyond the point of 64 KB, which we choose as the
threshold of switching modes. When the message queue is
used for sizes below that, we choose 64 KB as the message
queue element size, which is also the original value now in
the system for host-side messages.

B. Performance Comparison with Manual CUDA+MPI

Using this set of parameters, we compare the latency and
bandwidth of MPIGPU with manual CUDA+MPI where the
user must manually move data between host and device in
Figure 8. The benefit of latency for small messages, from
eliminating one or two main-memory copy, is bounded by
the memory latency. On average, for messages smaller than
or equal to 64 KB, latency improvement is 6.4%, 15.7%, and
10.9% for “D2D,” “H2D,” and “D2H,” respectively. With
full range of size till 4 MB, the improvement is increased
to 24.5%, 31.9%, and 23.9%, respectively. The benefit of
bandwidth increases with messages sizes and achieves up
to 2x speedup over manual mixing CUDA with MPI for
all three cases shown. On average, for messages between
64 KB and 4 MB, the improvement is 56.5%, 48.7%, and
27.9% for “D2D,” “H2D,” and “D2H,” respectively; with full
range of size between 1 byte and 4 MB, the improvement
is 18.1%, 27.5%, and 10.2%, respectively. While the peak
“D2D” bandwidth is around 60% of the theoretical one—
that is, the smaller of bandwidth on PCIe and main memory
assuming a fully pipelined conduit—the “D2H” bandwidth
efficiency is nearly 90%, almost saturating the theoretical
bandwidth. The efficiency in the reverse direction is not as
large because, on this system, measurement shows larger
device-to-host PCIe bandwidth than the other direction.

C. Evaluation with 2-D Stencil Benchmark

Stencil2D from SHOC benchmark suite [12] measures
the performance of a halo-type, nine-point, two-dimensional
stencil computation. It performs an iterative stencil com-
putation on the GPU and requires a halo exchange every
haloWidth iterations. In this type of computation, processes
are arranged in an N -dimensional Cartesian grid, and each
process is assigned a corresponding section of a N -d array.
Periodically, a process must obtain the values that its neigh-
bors have calculated for the array elements that neighbor its
patch, or its halo. Thus, this communication idiom, which is
common across a broad range of iterative solvers, is referred
to as a halo exchange.

In Figure 9, the mean time speedup of using MPIGPU
against the original manual version is shown. Also shown is
the percentage of execution time spent on communication. In
general, we have seen an average 4.3% improvement in the
total execution time of stencil2d. Grouped by different num-
ber of processes, an averaged improvement of 5.8%, 5.6%,
and 5.0% are shown for 4, 6, and 8 processes respectively,
except for the case of two processes, where only a 0.69%
improvement is shown. This is probably because Stencil2D
exchanges a vector-typed data along one dimension, which
leads to a number of small PCIe requests. Thus, more
processes leads to more asynchronous data transmission
commands along this dimension and hence a larger potential
for DMA engines to combine these small requests than in
the case of only two processes. Also note that the percentage
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Figure 9. Stencil2D performance improvement of MPIGPU over
CUDA+MPI. The problem size is fixed when the number of processes
are varied.

of the execution time spent in communication decreases
when we increase the problem size, because in Stencil2D
the computation grows quadratically with the problem size
and the communication grows linearly. This limits the
MPIGPU’s potential benefit when we increase the problem
size. Since a node has only three GPU devices, when the
number of processes is larger than that of the devices, the
tasks are assigned in a round-robin order. And a context-
sharing overhead is introduced when multiple processes are
using the same GPU device. This is the reason the 8-process
cases have a smaller percentage of communication than do
the others (although they have more data to exchange) and
hence less improvement, shown in the medium and large
problem size. The trend is not shown in the small problem
size, where the tiny (6144 bytes) exchanges data size and the
smaller number of noncontiguous PCIe data transfers cause
other latency-induced overhead.

VI. RELATED WORK

Because of the increasing popularity of using GPU or
other accelerators for HPC programs, MPI, as an evolving
standard, has a natural demand to make it accelerator-
friendly. Recently, Stuart et al. proposed several potential
directions for extending the MPI standard to provide native
support of these accelerators [13]. One significant propsed
extension is to allow accelerators to obtain MPI ranks and
participate directly in MPI operations. In comparison, our
work operates within the current MPI standard and proposes
a method of integration that greatly improves intranode
communication performance and productivity for current
GPU-accelerated applications.

Similar work to ours has recently been done to add
support for CUDA devices to MVAPICH2, which is based
on MPICH2 and optimized for InfiniBand networks. This
work has focused on MPI point-to-point communication for
internode GPU communication [5], all-to-all communication
[14], and noncontiguous-type communication [15]. Similar
work has also been proposed in the context of OpenMPI
[16]. However, performance optimization for intranode MPI
communication with GPU native buffer support has not been
addressed and is the focus of this paper.

GPUDirect [17] is a set of techniques for performance
improvement on NVIDIA GPUs. It includes eliminating
one-extra copy between two system memories for RDMA
communication of GPU pinned host buffers, peer-to-peer
memory access and peer-to-peer data transmission between
GPU devices within one process. cudaIPC, a new feature
in CUDA 4.1 [18], can improve device-to-device MPI com-
munication when present; yet this feature is not available in
other GPU programing models and may not be helpful for
device-to-host and host-to-device MPI communication.



VII. CONCLUDING REMARKS

GPU and other accelerators are emerging computation
hardware in HPC systems. In the past few years we have
seen rapid evolution of GPUs, with new architectural func-
tionality and software features every season or half year.
With increasing interest in these accelerators, we expect
systems softwares, such as the MPI communication system,
to have a more pressing need to extend native support of
GPU and other accelerators for application development.

In this work, we propose a uniform MPI communica-
tion interface for a GPU-accelerated system, where user-
specified buffers can reside in traditional main memory or
in GPU memory. We present the design and implementation
of integrating transparent GPU-awareness into MPICH2, a
popular MPI implementation. With a focus on intranode
communication, we further improve the throughput by taking
advantage of the DMA engines on GPU and adapting the
ring buffer pipeline of Nemesis communication subsystem.
We also highlight the importance of choosing an efficient
memory copy method. The augmented MPICH2-GPU sys-
tem is evaluated through both microbenchmarking and a
halo exchange benchmark and shows 23.9–31.9% latency
improvement and 10.2–27.5% bandwidth improvement, for
different source and destination buffer locations, and 4.3%
average performance improvement in the halo exchange
benchmark.
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